Merge remote branch 'origin/master' into HEAD
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t ap)
104 {
105 uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107 if (new_ap != dap->ap_current)
108 {
109 dap->ap_current = new_ap;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 const uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if ((retval = dap_run(dap)) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
339 }
340 }
341
342 return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 const uint8_t *buffer, int count, uint32_t address)
347 {
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
350
351 wcount = count >> 1;
352
353 while (wcount > 0)
354 {
355 int nbytes;
356
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360 if (wcount < blocksize)
361 blocksize = wcount;
362
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
366
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
371
372 do
373 {
374 nbytes = MIN((writecount << 1), 4);
375
376 if (nbytes < 4)
377 {
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if ((retval = dap_run(dap)) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
414 }
415 }
416
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
419
420 } while (writecount);
421 wcount -= blocksize;
422 }
423
424 return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
428 {
429 int retval = ERROR_OK;
430
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434 while (count > 0)
435 {
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
445
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
449
450 count -= 2;
451 address += 2;
452 buffer += 2;
453 }
454
455 return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 const uint8_t *buffer, int count, uint32_t address)
460 {
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
463
464 wcount = count;
465
466 while (wcount > 0)
467 {
468 int nbytes;
469
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473 if (wcount < blocksize)
474 blocksize = wcount;
475
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
480
481 do
482 {
483 nbytes = MIN(writecount, 4);
484
485 if (nbytes < 4)
486 {
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if ((retval = dap_run(dap)) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
522 }
523 }
524
525 buffer += nbytes;
526 writecount -= nbytes;
527
528 } while (writecount);
529 wcount -= blocksize;
530 }
531
532 return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
536 {
537 int retval = ERROR_OK;
538
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542 while (count > 0)
543 {
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
551
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
555
556 count--;
557 address++;
558 buffer++;
559 }
560
561 return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566 */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
578 */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
581 {
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
585
586 count >>= 2;
587 wcount = count;
588
589 while (wcount > 0)
590 {
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
594 */
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
599
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
603
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
608
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
614 */
615
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
622 {
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
626 */
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
632 }
633
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636 */
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
642
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
645 {
646 errorcount++;
647 if (errorcount <= 1)
648 {
649 /* try again */
650 continue;
651 }
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
654 }
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
658 }
659
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
662 {
663 for (readcount = 0; readcount < count; readcount++)
664 {
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
668
669 for (i = 0; i < 4; i++)
670 {
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
675 }
676 }
677 }
678
679 return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
684 {
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
688
689 wcount = count >> 1;
690
691 while (wcount > 0)
692 {
693 int nbytes;
694
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
699
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
703
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
708
709 do
710 {
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
715 {
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
825 {
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
828 }
829
830 nbytes = MIN(readcount, 4);
831
832 for (i = 0; i < nbytes; i++)
833 {
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
837 }
838
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
842 }
843
844 return retval;
845 }
846
847 /**
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
854 */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
857 {
858 uint32_t invalue;
859 int retval = ERROR_OK;
860
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864 while (count > 0)
865 {
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
875
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
880 }
881
882 return retval;
883 }
884
885 /*--------------------------------------------------------------------*/
886 /* Wrapping function with selection of AP */
887 /*--------------------------------------------------------------------*/
888 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
889 uint32_t address, uint32_t *value)
890 {
891 dap_ap_select(swjdp, ap);
892 return mem_ap_read_u32(swjdp, address, value);
893 }
894
895 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
896 uint32_t address, uint32_t value)
897 {
898 dap_ap_select(swjdp, ap);
899 return mem_ap_write_u32(swjdp, address, value);
900 }
901
902 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
903 uint32_t address, uint32_t *value)
904 {
905 dap_ap_select(swjdp, ap);
906 return mem_ap_read_atomic_u32(swjdp, address, value);
907 }
908
909 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
910 uint32_t address, uint32_t value)
911 {
912 dap_ap_select(swjdp, ap);
913 return mem_ap_write_atomic_u32(swjdp, address, value);
914 }
915
916 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
917 uint8_t *buffer, int count, uint32_t address)
918 {
919 dap_ap_select(swjdp, ap);
920 return mem_ap_read_buf_u8(swjdp, buffer, count, address);
921 }
922
923 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
924 uint8_t *buffer, int count, uint32_t address)
925 {
926 dap_ap_select(swjdp, ap);
927 return mem_ap_read_buf_u16(swjdp, buffer, count, address);
928 }
929
930 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
931 uint8_t *buffer, int count, uint32_t address)
932 {
933 dap_ap_select(swjdp, ap);
934 return mem_ap_read_buf_u32(swjdp, buffer, count, address);
935 }
936
937 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
938 const uint8_t *buffer, int count, uint32_t address)
939 {
940 dap_ap_select(swjdp, ap);
941 return mem_ap_write_buf_u8(swjdp, buffer, count, address);
942 }
943
944 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
945 const uint8_t *buffer, int count, uint32_t address)
946 {
947 dap_ap_select(swjdp, ap);
948 return mem_ap_write_buf_u16(swjdp, buffer, count, address);
949 }
950
951 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
952 const uint8_t *buffer, int count, uint32_t address)
953 {
954 dap_ap_select(swjdp, ap);
955 return mem_ap_write_buf_u32(swjdp, buffer, count, address);
956 }
957
958
959 /*--------------------------------------------------------------------------*/
960
961
962 /* FIXME don't import ... just initialize as
963 * part of DAP transport setup
964 */
965 extern const struct dap_ops jtag_dp_ops;
966
967 /*--------------------------------------------------------------------------*/
968
969 /**
970 * Initialize a DAP. This sets up the power domains, prepares the DP
971 * for further use, and arranges to use AP #0 for all AP operations
972 * until dap_ap-select() changes that policy.
973 *
974 * @param dap The DAP being initialized.
975 *
976 * @todo Rename this. We also need an initialization scheme which account
977 * for SWD transports not just JTAG; that will need to address differences
978 * in layering. (JTAG is useful without any debug target; but not SWD.)
979 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
980 */
981 int ahbap_debugport_init(struct adiv5_dap *dap)
982 {
983 uint32_t ctrlstat;
984 int cnt = 0;
985 int retval;
986
987 LOG_DEBUG(" ");
988
989 /* JTAG-DP or SWJ-DP, in JTAG mode
990 * ... for SWD mode this is patched as part
991 * of link switchover
992 */
993 if (!dap->ops)
994 dap->ops = &jtag_dp_ops;
995
996 /* Default MEM-AP setup.
997 *
998 * REVISIT AP #0 may be an inappropriate default for this.
999 * Should we probe, or take a hint from the caller?
1000 * Presumably we can ignore the possibility of multiple APs.
1001 */
1002 dap->ap_current = !0;
1003 dap_ap_select(dap, 0);
1004
1005 /* DP initialization */
1006
1007 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1008 if (retval != ERROR_OK)
1009 return retval;
1010
1011 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1012 if (retval != ERROR_OK)
1013 return retval;
1014
1015 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1016 if (retval != ERROR_OK)
1017 return retval;
1018
1019 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1020 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1025 if (retval != ERROR_OK)
1026 return retval;
1027 if ((retval = dap_run(dap)) != ERROR_OK)
1028 return retval;
1029
1030 /* Check that we have debug power domains activated */
1031 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1032 {
1033 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1034 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1035 if (retval != ERROR_OK)
1036 return retval;
1037 if ((retval = dap_run(dap)) != ERROR_OK)
1038 return retval;
1039 alive_sleep(10);
1040 }
1041
1042 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1043 {
1044 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1045 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1046 if (retval != ERROR_OK)
1047 return retval;
1048 if ((retval = dap_run(dap)) != ERROR_OK)
1049 return retval;
1050 alive_sleep(10);
1051 }
1052
1053 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 /* With debug power on we can activate OVERRUN checking */
1057 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1058 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 return ERROR_OK;
1066 }
1067
1068 /* CID interpretation -- see ARM IHI 0029B section 3
1069 * and ARM IHI 0031A table 13-3.
1070 */
1071 static const char *class_description[16] ={
1072 "Reserved", "ROM table", "Reserved", "Reserved",
1073 "Reserved", "Reserved", "Reserved", "Reserved",
1074 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1075 "Reserved", "OptimoDE DESS",
1076 "Generic IP component", "PrimeCell or System component"
1077 };
1078
1079 static bool
1080 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1081 {
1082 return cid3 == 0xb1 && cid2 == 0x05
1083 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1084 }
1085
1086 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1087 uint32_t *out_dbgbase, uint32_t *out_apid)
1088 {
1089 uint32_t ap_old;
1090 int retval;
1091 uint32_t dbgbase, apid, idcode;
1092
1093 /* AP address is in bits 31:24 of DP_SELECT */
1094 if (ap >= 256)
1095 return ERROR_INVALID_ARGUMENTS;
1096
1097 ap_old = dap->ap_current;
1098 dap_ap_select(dap, ap);
1099
1100 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1101 if (retval != ERROR_OK)
1102 return retval;
1103 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1104 if (retval != ERROR_OK)
1105 return retval;
1106 retval = dap_run(dap);
1107 if (retval != ERROR_OK)
1108 return retval;
1109
1110 /* Excavate the device ID code */
1111 struct jtag_tap *tap = dap->jtag_info->tap;
1112 while (tap != NULL) {
1113 if (tap->hasidcode) {
1114 idcode = tap->idcode;
1115 break;
1116 }
1117 tap = tap->next_tap;
1118 }
1119 if (tap == NULL || !tap->hasidcode)
1120 return ERROR_OK;
1121
1122 dap_ap_select(dap, ap_old);
1123
1124 /* The asignment happens only here to prevent modification of these
1125 * values before they are certain. */
1126 *out_dbgbase = dbgbase;
1127 *out_apid = apid;
1128
1129 return ERROR_OK;
1130 }
1131
1132 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1133 uint32_t dbgbase, uint8_t type, uint32_t *addr)
1134 {
1135 uint32_t ap_old;
1136 uint32_t romentry, entry_offset = 0, component_base, devtype;
1137 int retval = ERROR_FAIL;
1138
1139 if (ap >= 256)
1140 return ERROR_INVALID_ARGUMENTS;
1141
1142 ap_old = dap->ap_current;
1143 dap_ap_select(dap, ap);
1144
1145 do
1146 {
1147 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1148 entry_offset, &romentry);
1149 if (retval != ERROR_OK)
1150 return retval;
1151
1152 component_base = (dbgbase & 0xFFFFF000)
1153 + (romentry & 0xFFFFF000);
1154
1155 if (romentry & 0x1) {
1156 retval = mem_ap_read_atomic_u32(dap,
1157 (component_base & 0xfffff000) | 0xfcc,
1158 &devtype);
1159 if ((devtype & 0xff) == type) {
1160 *addr = component_base;
1161 retval = ERROR_OK;
1162 break;
1163 }
1164 }
1165 entry_offset += 4;
1166 } while (romentry > 0);
1167
1168 dap_ap_select(dap, ap_old);
1169
1170 return retval;
1171 }
1172
1173 static int dap_info_command(struct command_context *cmd_ctx,
1174 struct adiv5_dap *dap, int ap)
1175 {
1176 int retval;
1177 uint32_t dbgbase, apid;
1178 int romtable_present = 0;
1179 uint8_t mem_ap;
1180 uint32_t ap_old;
1181
1182 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1183 if (retval != ERROR_OK)
1184 return retval;
1185
1186 ap_old = dap->ap_current;
1187 dap_ap_select(dap, ap);
1188
1189 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1190 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1191 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1192 if (apid)
1193 {
1194 switch (apid&0x0F)
1195 {
1196 case 0:
1197 command_print(cmd_ctx, "\tType is JTAG-AP");
1198 break;
1199 case 1:
1200 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1201 break;
1202 case 2:
1203 command_print(cmd_ctx, "\tType is MEM-AP APB");
1204 break;
1205 default:
1206 command_print(cmd_ctx, "\tUnknown AP type");
1207 break;
1208 }
1209
1210 /* NOTE: a MEM-AP may have a single CoreSight component that's
1211 * not a ROM table ... or have no such components at all.
1212 */
1213 if (mem_ap)
1214 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1215 dbgbase);
1216 }
1217 else
1218 {
1219 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1220 }
1221
1222 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1223 if (romtable_present)
1224 {
1225 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1226 uint16_t entry_offset;
1227
1228 /* bit 16 of apid indicates a memory access port */
1229 if (dbgbase & 0x02)
1230 command_print(cmd_ctx, "\tValid ROM table present");
1231 else
1232 command_print(cmd_ctx, "\tROM table in legacy format");
1233
1234 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1235 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1236 if (retval != ERROR_OK)
1237 return retval;
1238 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1239 if (retval != ERROR_OK)
1240 return retval;
1241 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1242 if (retval != ERROR_OK)
1243 return retval;
1244 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1245 if (retval != ERROR_OK)
1246 return retval;
1247 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1248 if (retval != ERROR_OK)
1249 return retval;
1250 retval = dap_run(dap);
1251 if (retval != ERROR_OK)
1252 return retval;
1253
1254 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1255 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1256 ", CID2 0x%2.2x"
1257 ", CID1 0x%2.2x"
1258 ", CID0 0x%2.2x",
1259 (unsigned) cid3, (unsigned)cid2,
1260 (unsigned) cid1, (unsigned) cid0);
1261 if (memtype & 0x01)
1262 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1263 else
1264 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1265 "Dedicated debug bus.");
1266
1267 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1268 entry_offset = 0;
1269 do
1270 {
1271 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1272 if (retval != ERROR_OK)
1273 return retval;
1274 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1275 if (romentry&0x01)
1276 {
1277 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1278 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1279 uint32_t component_base;
1280 unsigned part_num;
1281 char *type, *full;
1282
1283 component_base = (dbgbase & 0xFFFFF000)
1284 + (romentry & 0xFFFFF000);
1285
1286 /* IDs are in last 4K section */
1287
1288
1289 retval = mem_ap_read_atomic_u32(dap,
1290 component_base + 0xFE0, &c_pid0);
1291 if (retval != ERROR_OK)
1292 return retval;
1293 c_pid0 &= 0xff;
1294 retval = mem_ap_read_atomic_u32(dap,
1295 component_base + 0xFE4, &c_pid1);
1296 if (retval != ERROR_OK)
1297 return retval;
1298 c_pid1 &= 0xff;
1299 retval = mem_ap_read_atomic_u32(dap,
1300 component_base + 0xFE8, &c_pid2);
1301 if (retval != ERROR_OK)
1302 return retval;
1303 c_pid2 &= 0xff;
1304 retval = mem_ap_read_atomic_u32(dap,
1305 component_base + 0xFEC, &c_pid3);
1306 if (retval != ERROR_OK)
1307 return retval;
1308 c_pid3 &= 0xff;
1309 retval = mem_ap_read_atomic_u32(dap,
1310 component_base + 0xFD0, &c_pid4);
1311 if (retval != ERROR_OK)
1312 return retval;
1313 c_pid4 &= 0xff;
1314
1315 retval = mem_ap_read_atomic_u32(dap,
1316 component_base + 0xFF0, &c_cid0);
1317 if (retval != ERROR_OK)
1318 return retval;
1319 c_cid0 &= 0xff;
1320 retval = mem_ap_read_atomic_u32(dap,
1321 component_base + 0xFF4, &c_cid1);
1322 if (retval != ERROR_OK)
1323 return retval;
1324 c_cid1 &= 0xff;
1325 retval = mem_ap_read_atomic_u32(dap,
1326 component_base + 0xFF8, &c_cid2);
1327 if (retval != ERROR_OK)
1328 return retval;
1329 c_cid2 &= 0xff;
1330 retval = mem_ap_read_atomic_u32(dap,
1331 component_base + 0xFFC, &c_cid3);
1332 if (retval != ERROR_OK)
1333 return retval;
1334 c_cid3 &= 0xff;
1335
1336
1337 command_print(cmd_ctx,
1338 "\t\tComponent base address 0x%" PRIx32
1339 ", start address 0x%" PRIx32,
1340 component_base,
1341 /* component may take multiple 4K pages */
1342 component_base - 0x1000*(c_pid4 >> 4));
1343 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1344 (int) (c_cid1 >> 4) & 0xf,
1345 /* See ARM IHI 0029B Table 3-3 */
1346 class_description[(c_cid1 >> 4) & 0xf]);
1347
1348 /* CoreSight component? */
1349 if (((c_cid1 >> 4) & 0x0f) == 9) {
1350 uint32_t devtype;
1351 unsigned minor;
1352 char *major = "Reserved", *subtype = "Reserved";
1353
1354 retval = mem_ap_read_atomic_u32(dap,
1355 (component_base & 0xfffff000) | 0xfcc,
1356 &devtype);
1357 if (retval != ERROR_OK)
1358 return retval;
1359 minor = (devtype >> 4) & 0x0f;
1360 switch (devtype & 0x0f) {
1361 case 0:
1362 major = "Miscellaneous";
1363 switch (minor) {
1364 case 0:
1365 subtype = "other";
1366 break;
1367 case 4:
1368 subtype = "Validation component";
1369 break;
1370 }
1371 break;
1372 case 1:
1373 major = "Trace Sink";
1374 switch (minor) {
1375 case 0:
1376 subtype = "other";
1377 break;
1378 case 1:
1379 subtype = "Port";
1380 break;
1381 case 2:
1382 subtype = "Buffer";
1383 break;
1384 }
1385 break;
1386 case 2:
1387 major = "Trace Link";
1388 switch (minor) {
1389 case 0:
1390 subtype = "other";
1391 break;
1392 case 1:
1393 subtype = "Funnel, router";
1394 break;
1395 case 2:
1396 subtype = "Filter";
1397 break;
1398 case 3:
1399 subtype = "FIFO, buffer";
1400 break;
1401 }
1402 break;
1403 case 3:
1404 major = "Trace Source";
1405 switch (minor) {
1406 case 0:
1407 subtype = "other";
1408 break;
1409 case 1:
1410 subtype = "Processor";
1411 break;
1412 case 2:
1413 subtype = "DSP";
1414 break;
1415 case 3:
1416 subtype = "Engine/Coprocessor";
1417 break;
1418 case 4:
1419 subtype = "Bus";
1420 break;
1421 }
1422 break;
1423 case 4:
1424 major = "Debug Control";
1425 switch (minor) {
1426 case 0:
1427 subtype = "other";
1428 break;
1429 case 1:
1430 subtype = "Trigger Matrix";
1431 break;
1432 case 2:
1433 subtype = "Debug Auth";
1434 break;
1435 }
1436 break;
1437 case 5:
1438 major = "Debug Logic";
1439 switch (minor) {
1440 case 0:
1441 subtype = "other";
1442 break;
1443 case 1:
1444 subtype = "Processor";
1445 break;
1446 case 2:
1447 subtype = "DSP";
1448 break;
1449 case 3:
1450 subtype = "Engine/Coprocessor";
1451 break;
1452 }
1453 break;
1454 }
1455 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1456 (unsigned) (devtype & 0xff),
1457 major, subtype);
1458 /* REVISIT also show 0xfc8 DevId */
1459 }
1460
1461 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1462 command_print(cmd_ctx,
1463 "\t\tCID3 0%2.2x"
1464 ", CID2 0%2.2x"
1465 ", CID1 0%2.2x"
1466 ", CID0 0%2.2x",
1467 (int) c_cid3,
1468 (int) c_cid2,
1469 (int)c_cid1,
1470 (int)c_cid0);
1471 command_print(cmd_ctx,
1472 "\t\tPeripheral ID[4..0] = hex "
1473 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1474 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1475 (int) c_pid1, (int) c_pid0);
1476
1477 /* Part number interpretations are from Cortex
1478 * core specs, the CoreSight components TRM
1479 * (ARM DDI 0314H), CoreSight System Design
1480 * Guide (ARM DGI 0012D) and ETM specs; also
1481 * from chip observation (e.g. TI SDTI).
1482 */
1483 part_num = (c_pid0 & 0xff);
1484 part_num |= (c_pid1 & 0x0f) << 8;
1485 switch (part_num) {
1486 case 0x000:
1487 type = "Cortex-M3 NVIC";
1488 full = "(Interrupt Controller)";
1489 break;
1490 case 0x001:
1491 type = "Cortex-M3 ITM";
1492 full = "(Instrumentation Trace Module)";
1493 break;
1494 case 0x002:
1495 type = "Cortex-M3 DWT";
1496 full = "(Data Watchpoint and Trace)";
1497 break;
1498 case 0x003:
1499 type = "Cortex-M3 FBP";
1500 full = "(Flash Patch and Breakpoint)";
1501 break;
1502 case 0x00d:
1503 type = "CoreSight ETM11";
1504 full = "(Embedded Trace)";
1505 break;
1506 // case 0x113: what?
1507 case 0x120: /* from OMAP3 memmap */
1508 type = "TI SDTI";
1509 full = "(System Debug Trace Interface)";
1510 break;
1511 case 0x343: /* from OMAP3 memmap */
1512 type = "TI DAPCTL";
1513 full = "";
1514 break;
1515 case 0x906:
1516 type = "Coresight CTI";
1517 full = "(Cross Trigger)";
1518 break;
1519 case 0x907:
1520 type = "Coresight ETB";
1521 full = "(Trace Buffer)";
1522 break;
1523 case 0x908:
1524 type = "Coresight CSTF";
1525 full = "(Trace Funnel)";
1526 break;
1527 case 0x910:
1528 type = "CoreSight ETM9";
1529 full = "(Embedded Trace)";
1530 break;
1531 case 0x912:
1532 type = "Coresight TPIU";
1533 full = "(Trace Port Interface Unit)";
1534 break;
1535 case 0x921:
1536 type = "Cortex-A8 ETM";
1537 full = "(Embedded Trace)";
1538 break;
1539 case 0x922:
1540 type = "Cortex-A8 CTI";
1541 full = "(Cross Trigger)";
1542 break;
1543 case 0x923:
1544 type = "Cortex-M3 TPIU";
1545 full = "(Trace Port Interface Unit)";
1546 break;
1547 case 0x924:
1548 type = "Cortex-M3 ETM";
1549 full = "(Embedded Trace)";
1550 break;
1551 case 0x930:
1552 type = "Cortex-R4 ETM";
1553 full = "(Embedded Trace)";
1554 break;
1555 case 0xc08:
1556 type = "Cortex-A8 Debug";
1557 full = "(Debug Unit)";
1558 break;
1559 default:
1560 type = "-*- unrecognized -*-";
1561 full = "";
1562 break;
1563 }
1564 command_print(cmd_ctx, "\t\tPart is %s %s",
1565 type, full);
1566 }
1567 else
1568 {
1569 if (romentry)
1570 command_print(cmd_ctx, "\t\tComponent not present");
1571 else
1572 command_print(cmd_ctx, "\t\tEnd of ROM table");
1573 }
1574 entry_offset += 4;
1575 } while (romentry > 0);
1576 }
1577 else
1578 {
1579 command_print(cmd_ctx, "\tNo ROM table present");
1580 }
1581 dap_ap_select(dap, ap_old);
1582
1583 return ERROR_OK;
1584 }
1585
1586 COMMAND_HANDLER(handle_dap_info_command)
1587 {
1588 struct target *target = get_current_target(CMD_CTX);
1589 struct arm *arm = target_to_arm(target);
1590 struct adiv5_dap *dap = arm->dap;
1591 uint32_t apsel;
1592
1593 switch (CMD_ARGC) {
1594 case 0:
1595 apsel = dap->apsel;
1596 break;
1597 case 1:
1598 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1599 break;
1600 default:
1601 return ERROR_COMMAND_SYNTAX_ERROR;
1602 }
1603
1604 return dap_info_command(CMD_CTX, dap, apsel);
1605 }
1606
1607 COMMAND_HANDLER(dap_baseaddr_command)
1608 {
1609 struct target *target = get_current_target(CMD_CTX);
1610 struct arm *arm = target_to_arm(target);
1611 struct adiv5_dap *dap = arm->dap;
1612
1613 uint32_t apsel, baseaddr;
1614 int retval;
1615
1616 switch (CMD_ARGC) {
1617 case 0:
1618 apsel = dap->apsel;
1619 break;
1620 case 1:
1621 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1622 /* AP address is in bits 31:24 of DP_SELECT */
1623 if (apsel >= 256)
1624 return ERROR_INVALID_ARGUMENTS;
1625 break;
1626 default:
1627 return ERROR_COMMAND_SYNTAX_ERROR;
1628 }
1629
1630 dap_ap_select(dap, apsel);
1631
1632 /* NOTE: assumes we're talking to a MEM-AP, which
1633 * has a base address. There are other kinds of AP,
1634 * though they're not common for now. This should
1635 * use the ID register to verify it's a MEM-AP.
1636 */
1637 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1638 if (retval != ERROR_OK)
1639 return retval;
1640 retval = dap_run(dap);
1641 if (retval != ERROR_OK)
1642 return retval;
1643
1644 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1645
1646 return retval;
1647 }
1648
1649 COMMAND_HANDLER(dap_memaccess_command)
1650 {
1651 struct target *target = get_current_target(CMD_CTX);
1652 struct arm *arm = target_to_arm(target);
1653 struct adiv5_dap *dap = arm->dap;
1654
1655 uint32_t memaccess_tck;
1656
1657 switch (CMD_ARGC) {
1658 case 0:
1659 memaccess_tck = dap->memaccess_tck;
1660 break;
1661 case 1:
1662 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1663 break;
1664 default:
1665 return ERROR_COMMAND_SYNTAX_ERROR;
1666 }
1667 dap->memaccess_tck = memaccess_tck;
1668
1669 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1670 dap->memaccess_tck);
1671
1672 return ERROR_OK;
1673 }
1674
1675 COMMAND_HANDLER(dap_apsel_command)
1676 {
1677 struct target *target = get_current_target(CMD_CTX);
1678 struct arm *arm = target_to_arm(target);
1679 struct adiv5_dap *dap = arm->dap;
1680
1681 uint32_t apsel, apid;
1682 int retval;
1683
1684 switch (CMD_ARGC) {
1685 case 0:
1686 apsel = 0;
1687 break;
1688 case 1:
1689 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1690 /* AP address is in bits 31:24 of DP_SELECT */
1691 if (apsel >= 256)
1692 return ERROR_INVALID_ARGUMENTS;
1693 break;
1694 default:
1695 return ERROR_COMMAND_SYNTAX_ERROR;
1696 }
1697
1698 dap->apsel = apsel;
1699 dap_ap_select(dap, apsel);
1700
1701 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1702 if (retval != ERROR_OK)
1703 return retval;
1704 retval = dap_run(dap);
1705 if (retval != ERROR_OK)
1706 return retval;
1707
1708 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1709 apsel, apid);
1710
1711 return retval;
1712 }
1713
1714 COMMAND_HANDLER(dap_apid_command)
1715 {
1716 struct target *target = get_current_target(CMD_CTX);
1717 struct arm *arm = target_to_arm(target);
1718 struct adiv5_dap *dap = arm->dap;
1719
1720 uint32_t apsel, apid;
1721 int retval;
1722
1723 switch (CMD_ARGC) {
1724 case 0:
1725 apsel = dap->apsel;
1726 break;
1727 case 1:
1728 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1729 /* AP address is in bits 31:24 of DP_SELECT */
1730 if (apsel >= 256)
1731 return ERROR_INVALID_ARGUMENTS;
1732 break;
1733 default:
1734 return ERROR_COMMAND_SYNTAX_ERROR;
1735 }
1736
1737 dap_ap_select(dap, apsel);
1738
1739 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1740 if (retval != ERROR_OK)
1741 return retval;
1742 retval = dap_run(dap);
1743 if (retval != ERROR_OK)
1744 return retval;
1745
1746 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1747
1748 return retval;
1749 }
1750
1751 static const struct command_registration dap_commands[] = {
1752 {
1753 .name = "info",
1754 .handler = handle_dap_info_command,
1755 .mode = COMMAND_EXEC,
1756 .help = "display ROM table for MEM-AP "
1757 "(default currently selected AP)",
1758 .usage = "[ap_num]",
1759 },
1760 {
1761 .name = "apsel",
1762 .handler = dap_apsel_command,
1763 .mode = COMMAND_EXEC,
1764 .help = "Set the currently selected AP (default 0) "
1765 "and display the result",
1766 .usage = "[ap_num]",
1767 },
1768 {
1769 .name = "apid",
1770 .handler = dap_apid_command,
1771 .mode = COMMAND_EXEC,
1772 .help = "return ID register from AP "
1773 "(default currently selected AP)",
1774 .usage = "[ap_num]",
1775 },
1776 {
1777 .name = "baseaddr",
1778 .handler = dap_baseaddr_command,
1779 .mode = COMMAND_EXEC,
1780 .help = "return debug base address from MEM-AP "
1781 "(default currently selected AP)",
1782 .usage = "[ap_num]",
1783 },
1784 {
1785 .name = "memaccess",
1786 .handler = dap_memaccess_command,
1787 .mode = COMMAND_EXEC,
1788 .help = "set/get number of extra tck for MEM-AP memory "
1789 "bus access [0-255]",
1790 .usage = "[cycles]",
1791 },
1792 COMMAND_REGISTRATION_DONE
1793 };
1794
1795 const struct command_registration dap_command_handlers[] = {
1796 {
1797 .name = "dap",
1798 .mode = COMMAND_EXEC,
1799 .help = "DAP command group",
1800 .chain = dap_commands,
1801 },
1802 COMMAND_REGISTRATION_DONE
1803 };
1804
1805

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)