kinetis: Revise CPU un-securing code
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focusses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction piplining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
81
82 /*
83 uint32_t tar_block_size(uint32_t address)
84 Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92 * *
93 * DP and MEM-AP register access through APACC and DPACC *
94 * *
95 ***************************************************************************/
96
97 /**
98 * Select one of the APs connected to the specified DAP. The
99 * selection is implicitly used with future AP transactions.
100 * This is a NOP if the specified AP is already selected.
101 *
102 * @param dap The DAP
103 * @param apsel Number of the AP to (implicitly) use with further
104 * transactions. This normally identifies a MEM-AP.
105 */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108 uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110 if (new_ap != dap->ap_current) {
111 dap->ap_current = new_ap;
112 /* Switching AP invalidates cached values.
113 * Values MUST BE UPDATED BEFORE AP ACCESS.
114 */
115 dap->ap_bank_value = -1;
116 dap->ap_csw_value = -1;
117 dap->ap_tar_value = -1;
118 }
119 }
120
121 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
122 {
123 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
124 dap->apcsw[dap->ap_current >> 24];
125
126 if (csw != dap->ap_csw_value) {
127 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128 int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
129 if (retval != ERROR_OK)
130 return retval;
131 dap->ap_csw_value = csw;
132 }
133 return ERROR_OK;
134 }
135
136 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
137 {
138 if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
139 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140 int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
141 if (retval != ERROR_OK)
142 return retval;
143 dap->ap_tar_value = tar;
144 }
145 return ERROR_OK;
146 }
147
148 /**
149 * Queue transactions setting up transfer parameters for the
150 * currently selected MEM-AP.
151 *
152 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153 * initiate data reads or writes using memory or peripheral addresses.
154 * If the CSW is configured for it, the TAR may be automatically
155 * incremented after each transfer.
156 *
157 * @todo Rename to reflect it being specifically a MEM-AP function.
158 *
159 * @param dap The DAP connected to the MEM-AP.
160 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
161 * matches the cached value, the register is not changed.
162 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
163 * matches the cached address, the register is not changed.
164 *
165 * @return ERROR_OK if the transaction was properly queued, else a fault code.
166 */
167 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
168 {
169 int retval;
170 retval = dap_setup_accessport_csw(dap, csw);
171 if (retval != ERROR_OK)
172 return retval;
173 retval = dap_setup_accessport_tar(dap, tar);
174 if (retval != ERROR_OK)
175 return retval;
176 return ERROR_OK;
177 }
178
179 /**
180 * Asynchronous (queued) read of a word from memory or a system register.
181 *
182 * @param dap The DAP connected to the MEM-AP performing the read.
183 * @param address Address of the 32-bit word to read; it must be
184 * readable by the currently selected MEM-AP.
185 * @param value points to where the word will be stored when the
186 * transaction queue is flushed (assuming no errors).
187 *
188 * @return ERROR_OK for success. Otherwise a fault code.
189 */
190 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
191 uint32_t *value)
192 {
193 int retval;
194
195 /* Use banked addressing (REG_BDx) to avoid some link traffic
196 * (updating TAR) when reading several consecutive addresses.
197 */
198 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
199 address & 0xFFFFFFF0);
200 if (retval != ERROR_OK)
201 return retval;
202
203 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
204 }
205
206 /**
207 * Synchronous read of a word from memory or a system register.
208 * As a side effect, this flushes any queued transactions.
209 *
210 * @param dap The DAP connected to the MEM-AP performing the read.
211 * @param address Address of the 32-bit word to read; it must be
212 * readable by the currently selected MEM-AP.
213 * @param value points to where the result will be stored.
214 *
215 * @return ERROR_OK for success; *value holds the result.
216 * Otherwise a fault code.
217 */
218 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
219 uint32_t *value)
220 {
221 int retval;
222
223 retval = mem_ap_read_u32(dap, address, value);
224 if (retval != ERROR_OK)
225 return retval;
226
227 return dap_run(dap);
228 }
229
230 /**
231 * Asynchronous (queued) write of a word to memory or a system register.
232 *
233 * @param dap The DAP connected to the MEM-AP.
234 * @param address Address to be written; it must be writable by
235 * the currently selected MEM-AP.
236 * @param value Word that will be written to the address when transaction
237 * queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
242 uint32_t value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when writing several consecutive addresses.
248 */
249 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
250 address & 0xFFFFFFF0);
251 if (retval != ERROR_OK)
252 return retval;
253
254 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
255 value);
256 }
257
258 /**
259 * Synchronous write of a word to memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param dap The DAP connected to the MEM-AP.
263 * @param address Address to be written; it must be writable by
264 * the currently selected MEM-AP.
265 * @param value Word that will be written.
266 *
267 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
268 */
269 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
270 uint32_t value)
271 {
272 int retval = mem_ap_write_u32(dap, address, value);
273
274 if (retval != ERROR_OK)
275 return retval;
276
277 return dap_run(dap);
278 }
279
280 /**
281 * Synchronous write of a block of memory, using a specific access size.
282 *
283 * @param dap The DAP connected to the MEM-AP.
284 * @param buffer The data buffer to write. No particular alignment is assumed.
285 * @param size Which access size to use, in bytes. 1, 2 or 4.
286 * @param count The number of writes to do (in size units, not bytes).
287 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288 * @param addrinc Whether the target address should be increased for each write or not. This
289 * should normally be true, except when writing to e.g. a FIFO.
290 * @return ERROR_OK on success, otherwise an error code.
291 */
292 int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
293 uint32_t address, bool addrinc)
294 {
295 size_t nbytes = size * count;
296 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297 uint32_t csw_size;
298 uint32_t addr_xor;
299 int retval;
300
301 /* TI BE-32 Quirks mode:
302 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
303 * size write address bytes written in order
304 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
305 * 2 TAR ^ 2 (val >> 8), (val)
306 * 1 TAR ^ 3 (val)
307 * For example, if you attempt to write a single byte to address 0, the processor
308 * will actually write a byte to address 3.
309 *
310 * To make writes of size < 4 work as expected, we xor a value with the address before
311 * setting the TAP, and we set the TAP after every transfer rather then relying on
312 * address increment. */
313
314 if (size == 4) {
315 csw_size = CSW_32BIT;
316 addr_xor = 0;
317 } else if (size == 2) {
318 csw_size = CSW_16BIT;
319 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
320 } else if (size == 1) {
321 csw_size = CSW_8BIT;
322 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
323 } else {
324 return ERROR_TARGET_UNALIGNED_ACCESS;
325 }
326
327 if (dap->unaligned_access_bad && (address % size != 0))
328 return ERROR_TARGET_UNALIGNED_ACCESS;
329
330 retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
331 if (retval != ERROR_OK)
332 return retval;
333
334 while (nbytes > 0) {
335 uint32_t this_size = size;
336
337 /* Select packed transfer if possible */
338 if (addrinc && dap->packed_transfers && nbytes >= 4
339 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
340 this_size = 4;
341 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
342 } else {
343 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
344 }
345
346 if (retval != ERROR_OK)
347 break;
348
349 /* How many source bytes each transfer will consume, and their location in the DRW,
350 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
351 uint32_t outvalue = 0;
352 if (dap->ti_be_32_quirks) {
353 switch (this_size) {
354 case 4:
355 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
356 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
357 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
358 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
359 break;
360 case 2:
361 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
362 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
363 break;
364 case 1:
365 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
366 break;
367 }
368 } else {
369 switch (this_size) {
370 case 4:
371 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
372 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
373 case 2:
374 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
375 case 1:
376 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
377 }
378 }
379
380 nbytes -= this_size;
381
382 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
383 if (retval != ERROR_OK)
384 break;
385
386 /* Rewrite TAR if it wrapped or we're xoring addresses */
387 if (addrinc && (addr_xor || (address % dap->tar_autoincr_block < size && nbytes > 0))) {
388 retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
389 if (retval != ERROR_OK)
390 break;
391 }
392 }
393
394 /* REVISIT: Might want to have a queued version of this function that does not run. */
395 if (retval == ERROR_OK)
396 retval = dap_run(dap);
397
398 if (retval != ERROR_OK) {
399 uint32_t tar;
400 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
401 && dap_run(dap) == ERROR_OK)
402 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
403 else
404 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
405 }
406
407 return retval;
408 }
409
410 /**
411 * Synchronous read of a block of memory, using a specific access size.
412 *
413 * @param dap The DAP connected to the MEM-AP.
414 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
415 * @param size Which access size to use, in bytes. 1, 2 or 4.
416 * @param count The number of reads to do (in size units, not bytes).
417 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
418 * @param addrinc Whether the target address should be increased after each read or not. This
419 * should normally be true, except when reading from e.g. a FIFO.
420 * @return ERROR_OK on success, otherwise an error code.
421 */
422 int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
423 uint32_t adr, bool addrinc)
424 {
425 size_t nbytes = size * count;
426 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
427 uint32_t csw_size;
428 uint32_t address = adr;
429 int retval;
430
431 /* TI BE-32 Quirks mode:
432 * Reads on big-endian TMS570 behave strangely differently than writes.
433 * They read from the physical address requested, but with DRW byte-reversed.
434 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
435 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
436 * so avoid them. */
437
438 if (size == 4)
439 csw_size = CSW_32BIT;
440 else if (size == 2)
441 csw_size = CSW_16BIT;
442 else if (size == 1)
443 csw_size = CSW_8BIT;
444 else
445 return ERROR_TARGET_UNALIGNED_ACCESS;
446
447 if (dap->unaligned_access_bad && (adr % size != 0))
448 return ERROR_TARGET_UNALIGNED_ACCESS;
449
450 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
451 * over-allocation if packed transfers are going to be used, but determining the real need at
452 * this point would be messy. */
453 uint32_t *read_buf = malloc(count * sizeof(uint32_t));
454 uint32_t *read_ptr = read_buf;
455 if (read_buf == NULL) {
456 LOG_ERROR("Failed to allocate read buffer");
457 return ERROR_FAIL;
458 }
459
460 retval = dap_setup_accessport_tar(dap, address);
461 if (retval != ERROR_OK) {
462 free(read_buf);
463 return retval;
464 }
465
466 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
467 * useful bytes it contains, and their location in the word, depends on the type of transfer
468 * and alignment. */
469 while (nbytes > 0) {
470 uint32_t this_size = size;
471
472 /* Select packed transfer if possible */
473 if (addrinc && dap->packed_transfers && nbytes >= 4
474 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
475 this_size = 4;
476 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
477 } else {
478 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
479 }
480 if (retval != ERROR_OK)
481 break;
482
483 retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
484 if (retval != ERROR_OK)
485 break;
486
487 nbytes -= this_size;
488 address += this_size;
489
490 /* Rewrite TAR if it wrapped */
491 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
492 retval = dap_setup_accessport_tar(dap, address);
493 if (retval != ERROR_OK)
494 break;
495 }
496 }
497
498 if (retval == ERROR_OK)
499 retval = dap_run(dap);
500
501 /* Restore state */
502 address = adr;
503 nbytes = size * count;
504 read_ptr = read_buf;
505
506 /* If something failed, read TAR to find out how much data was successfully read, so we can
507 * at least give the caller what we have. */
508 if (retval != ERROR_OK) {
509 uint32_t tar;
510 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
511 && dap_run(dap) == ERROR_OK) {
512 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
513 if (nbytes > tar - address)
514 nbytes = tar - address;
515 } else {
516 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
517 nbytes = 0;
518 }
519 }
520
521 /* Replay loop to populate caller's buffer from the correct word and byte lane */
522 while (nbytes > 0) {
523 uint32_t this_size = size;
524
525 if (addrinc && dap->packed_transfers && nbytes >= 4
526 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
527 this_size = 4;
528 }
529
530 if (dap->ti_be_32_quirks) {
531 switch (this_size) {
532 case 4:
533 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
534 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
535 case 2:
536 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
537 case 1:
538 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
539 }
540 } else {
541 switch (this_size) {
542 case 4:
543 *buffer++ = *read_ptr >> 8 * (address++ & 3);
544 *buffer++ = *read_ptr >> 8 * (address++ & 3);
545 case 2:
546 *buffer++ = *read_ptr >> 8 * (address++ & 3);
547 case 1:
548 *buffer++ = *read_ptr >> 8 * (address++ & 3);
549 }
550 }
551
552 read_ptr++;
553 nbytes -= this_size;
554 }
555
556 free(read_buf);
557 return retval;
558 }
559
560 /*--------------------------------------------------------------------*/
561 /* Wrapping function with selection of AP */
562 /*--------------------------------------------------------------------*/
563 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
564 uint32_t address, uint32_t *value)
565 {
566 dap_ap_select(swjdp, ap);
567 return mem_ap_read_u32(swjdp, address, value);
568 }
569
570 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
571 uint32_t address, uint32_t value)
572 {
573 dap_ap_select(swjdp, ap);
574 return mem_ap_write_u32(swjdp, address, value);
575 }
576
577 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
578 uint32_t address, uint32_t *value)
579 {
580 dap_ap_select(swjdp, ap);
581 return mem_ap_read_atomic_u32(swjdp, address, value);
582 }
583
584 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
585 uint32_t address, uint32_t value)
586 {
587 dap_ap_select(swjdp, ap);
588 return mem_ap_write_atomic_u32(swjdp, address, value);
589 }
590
591 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
592 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
593 {
594 dap_ap_select(swjdp, ap);
595 return mem_ap_read(swjdp, buffer, size, count, address, true);
596 }
597
598 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
599 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
600 {
601 dap_ap_select(swjdp, ap);
602 return mem_ap_write(swjdp, buffer, size, count, address, true);
603 }
604
605 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
606 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
607 {
608 dap_ap_select(swjdp, ap);
609 return mem_ap_read(swjdp, buffer, size, count, address, false);
610 }
611
612 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
613 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
614 {
615 dap_ap_select(swjdp, ap);
616 return mem_ap_write(swjdp, buffer, size, count, address, false);
617 }
618
619 /*--------------------------------------------------------------------------*/
620
621
622 /* FIXME don't import ... just initialize as
623 * part of DAP transport setup
624 */
625 extern const struct dap_ops jtag_dp_ops;
626
627 /*--------------------------------------------------------------------------*/
628
629 /**
630 * Initialize a DAP. This sets up the power domains, prepares the DP
631 * for further use, and arranges to use AP #0 for all AP operations
632 * until dap_ap-select() changes that policy.
633 *
634 * @param dap The DAP being initialized.
635 *
636 * @todo Rename this. We also need an initialization scheme which account
637 * for SWD transports not just JTAG; that will need to address differences
638 * in layering. (JTAG is useful without any debug target; but not SWD.)
639 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
640 */
641 int ahbap_debugport_init(struct adiv5_dap *dap)
642 {
643 uint32_t ctrlstat;
644 int cnt = 0;
645 int retval;
646
647 LOG_DEBUG(" ");
648
649 /* JTAG-DP or SWJ-DP, in JTAG mode
650 * ... for SWD mode this is patched as part
651 * of link switchover
652 */
653 if (!dap->ops)
654 dap->ops = &jtag_dp_ops;
655
656 /* Default MEM-AP setup.
657 *
658 * REVISIT AP #0 may be an inappropriate default for this.
659 * Should we probe, or take a hint from the caller?
660 * Presumably we can ignore the possibility of multiple APs.
661 */
662 dap->ap_current = !0;
663 dap_ap_select(dap, 0);
664
665 /* DP initialization */
666
667 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
668 if (retval != ERROR_OK)
669 return retval;
670
671 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
672 if (retval != ERROR_OK)
673 return retval;
674
675 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
676 if (retval != ERROR_OK)
677 return retval;
678
679 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
680 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
681 if (retval != ERROR_OK)
682 return retval;
683
684 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
685 if (retval != ERROR_OK)
686 return retval;
687 retval = dap_run(dap);
688 if (retval != ERROR_OK)
689 return retval;
690
691 /* Check that we have debug power domains activated */
692 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
693 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
694 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
695 if (retval != ERROR_OK)
696 return retval;
697 retval = dap_run(dap);
698 if (retval != ERROR_OK)
699 return retval;
700 alive_sleep(10);
701 }
702
703 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
704 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
705 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
706 if (retval != ERROR_OK)
707 return retval;
708 retval = dap_run(dap);
709 if (retval != ERROR_OK)
710 return retval;
711 alive_sleep(10);
712 }
713
714 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
715 if (retval != ERROR_OK)
716 return retval;
717 /* With debug power on we can activate OVERRUN checking */
718 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
719 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
720 if (retval != ERROR_OK)
721 return retval;
722 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
723 if (retval != ERROR_OK)
724 return retval;
725
726 /* check that we support packed transfers */
727 uint32_t csw, cfg;
728
729 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
730 if (retval != ERROR_OK)
731 return retval;
732
733 retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw);
734 if (retval != ERROR_OK)
735 return retval;
736
737 retval = dap_queue_ap_read(dap, AP_REG_CFG, &cfg);
738 if (retval != ERROR_OK)
739 return retval;
740
741 retval = dap_run(dap);
742 if (retval != ERROR_OK)
743 return retval;
744
745 if (csw & CSW_ADDRINC_PACKED)
746 dap->packed_transfers = true;
747 else
748 dap->packed_transfers = false;
749
750 /* Packed transfers on TI BE-32 processors do not work correctly in
751 * many cases. */
752 if (dap->ti_be_32_quirks)
753 dap->packed_transfers = false;
754
755 LOG_DEBUG("MEM_AP Packed Transfers: %s",
756 dap->packed_transfers ? "enabled" : "disabled");
757
758 /* The ARM ADI spec leaves implementation-defined whether unaligned
759 * memory accesses work, only work partially, or cause a sticky error.
760 * On TI BE-32 processors, reads seem to return garbage in some bytes
761 * and unaligned writes seem to cause a sticky error.
762 * TODO: it would be nice to have a way to detect whether unaligned
763 * operations are supported on other processors. */
764 dap->unaligned_access_bad = dap->ti_be_32_quirks;
765
766 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
767 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
768
769 return ERROR_OK;
770 }
771
772 /* CID interpretation -- see ARM IHI 0029B section 3
773 * and ARM IHI 0031A table 13-3.
774 */
775 static const char *class_description[16] = {
776 "Reserved", "ROM table", "Reserved", "Reserved",
777 "Reserved", "Reserved", "Reserved", "Reserved",
778 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
779 "Reserved", "OptimoDE DESS",
780 "Generic IP component", "PrimeCell or System component"
781 };
782
783 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
784 {
785 return cid3 == 0xb1 && cid2 == 0x05
786 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
787 }
788
789 /*
790 * This function checks the ID for each access port to find the requested Access Port type
791 */
792 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
793 {
794 int ap;
795
796 /* Maximum AP number is 255 since the SELECT register is 8 bits */
797 for (ap = 0; ap <= 255; ap++) {
798
799 /* read the IDR register of the Access Port */
800 uint32_t id_val = 0;
801 dap_ap_select(dap, ap);
802
803 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
804 if (retval != ERROR_OK)
805 return retval;
806
807 retval = dap_run(dap);
808
809 /* IDR bits:
810 * 31-28 : Revision
811 * 27-24 : JEDEC bank (0x4 for ARM)
812 * 23-17 : JEDEC code (0x3B for ARM)
813 * 16 : Mem-AP
814 * 15-8 : Reserved
815 * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
816 */
817
818 /* Reading register for a non-existant AP should not cause an error,
819 * but just to be sure, try to continue searching if an error does happen.
820 */
821 if ((retval == ERROR_OK) && /* Register read success */
822 ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
823 ((id_val & 0xFF) == type_to_find)) { /* type matches*/
824
825 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
826 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
827 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
828 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
829 ap, id_val);
830
831 *ap_num_out = ap;
832 return ERROR_OK;
833 }
834 }
835
836 LOG_DEBUG("No %s found",
837 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
838 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
839 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
840 return ERROR_FAIL;
841 }
842
843 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
844 uint32_t *out_dbgbase, uint32_t *out_apid)
845 {
846 uint32_t ap_old;
847 int retval;
848 uint32_t dbgbase, apid;
849
850 /* AP address is in bits 31:24 of DP_SELECT */
851 if (ap >= 256)
852 return ERROR_COMMAND_SYNTAX_ERROR;
853
854 ap_old = dap->ap_current;
855 dap_ap_select(dap, ap);
856
857 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
858 if (retval != ERROR_OK)
859 return retval;
860 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
861 if (retval != ERROR_OK)
862 return retval;
863 retval = dap_run(dap);
864 if (retval != ERROR_OK)
865 return retval;
866
867 /* Excavate the device ID code */
868 struct jtag_tap *tap = dap->jtag_info->tap;
869 while (tap != NULL) {
870 if (tap->hasidcode)
871 break;
872 tap = tap->next_tap;
873 }
874 if (tap == NULL || !tap->hasidcode)
875 return ERROR_OK;
876
877 dap_ap_select(dap, ap_old);
878
879 /* The asignment happens only here to prevent modification of these
880 * values before they are certain. */
881 *out_dbgbase = dbgbase;
882 *out_apid = apid;
883
884 return ERROR_OK;
885 }
886
887 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
888 uint32_t dbgbase, uint8_t type, uint32_t *addr)
889 {
890 uint32_t ap_old;
891 uint32_t romentry, entry_offset = 0, component_base, devtype;
892 int retval = ERROR_FAIL;
893
894 if (ap >= 256)
895 return ERROR_COMMAND_SYNTAX_ERROR;
896
897 ap_old = dap->ap_current;
898 dap_ap_select(dap, ap);
899
900 do {
901 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
902 entry_offset, &romentry);
903 if (retval != ERROR_OK)
904 return retval;
905
906 component_base = (dbgbase & 0xFFFFF000)
907 + (romentry & 0xFFFFF000);
908
909 if (romentry & 0x1) {
910 retval = mem_ap_read_atomic_u32(dap,
911 (component_base & 0xfffff000) | 0xfcc,
912 &devtype);
913 if (retval != ERROR_OK)
914 return retval;
915 if ((devtype & 0xff) == type) {
916 *addr = component_base;
917 retval = ERROR_OK;
918 break;
919 }
920 }
921 entry_offset += 4;
922 } while (romentry > 0);
923
924 dap_ap_select(dap, ap_old);
925
926 return retval;
927 }
928
929 static int dap_rom_display(struct command_context *cmd_ctx,
930 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
931 {
932 int retval;
933 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
934 uint16_t entry_offset;
935 char tabs[7] = "";
936
937 if (depth > 16) {
938 command_print(cmd_ctx, "\tTables too deep");
939 return ERROR_FAIL;
940 }
941
942 if (depth)
943 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
944
945 /* bit 16 of apid indicates a memory access port */
946 if (dbgbase & 0x02)
947 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
948 else
949 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
950
951 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
952 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
953 if (retval != ERROR_OK)
954 return retval;
955 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
956 if (retval != ERROR_OK)
957 return retval;
958 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
962 if (retval != ERROR_OK)
963 return retval;
964 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
965 if (retval != ERROR_OK)
966 return retval;
967 retval = dap_run(dap);
968 if (retval != ERROR_OK)
969 return retval;
970
971 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
972 command_print(cmd_ctx, "\t%sCID3 0x%02x"
973 ", CID2 0x%02x"
974 ", CID1 0x%02x"
975 ", CID0 0x%02x",
976 tabs,
977 (unsigned)cid3, (unsigned)cid2,
978 (unsigned)cid1, (unsigned)cid0);
979 if (memtype & 0x01)
980 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
981 else
982 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
983
984 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
985 for (entry_offset = 0; ; entry_offset += 4) {
986 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
987 if (retval != ERROR_OK)
988 return retval;
989 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
990 tabs, entry_offset, romentry);
991 if (romentry & 0x01) {
992 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
993 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
994 uint32_t component_base;
995 unsigned part_num;
996 char *type, *full;
997
998 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
999
1000 /* IDs are in last 4K section */
1001 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1002 if (retval != ERROR_OK) {
1003 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
1004 ", the corresponding core might be turned off", tabs, component_base);
1005 continue;
1006 }
1007 c_pid0 &= 0xff;
1008 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1009 if (retval != ERROR_OK)
1010 return retval;
1011 c_pid1 &= 0xff;
1012 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1013 if (retval != ERROR_OK)
1014 return retval;
1015 c_pid2 &= 0xff;
1016 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1017 if (retval != ERROR_OK)
1018 return retval;
1019 c_pid3 &= 0xff;
1020 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 c_pid4 &= 0xff;
1024
1025 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1026 if (retval != ERROR_OK)
1027 return retval;
1028 c_cid0 &= 0xff;
1029 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1030 if (retval != ERROR_OK)
1031 return retval;
1032 c_cid1 &= 0xff;
1033 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1034 if (retval != ERROR_OK)
1035 return retval;
1036 c_cid2 &= 0xff;
1037 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1038 if (retval != ERROR_OK)
1039 return retval;
1040 c_cid3 &= 0xff;
1041
1042 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", "
1043 "start address 0x%" PRIx32, component_base,
1044 /* component may take multiple 4K pages */
1045 (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1046 command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s",
1047 (uint8_t)((c_cid1 >> 4) & 0xf),
1048 /* See ARM IHI 0029B Table 3-3 */
1049 class_description[(c_cid1 >> 4) & 0xf]);
1050
1051 /* CoreSight component? */
1052 if (((c_cid1 >> 4) & 0x0f) == 9) {
1053 uint32_t devtype;
1054 unsigned minor;
1055 char *major = "Reserved", *subtype = "Reserved";
1056
1057 retval = mem_ap_read_atomic_u32(dap,
1058 (component_base & 0xfffff000) | 0xfcc,
1059 &devtype);
1060 if (retval != ERROR_OK)
1061 return retval;
1062 minor = (devtype >> 4) & 0x0f;
1063 switch (devtype & 0x0f) {
1064 case 0:
1065 major = "Miscellaneous";
1066 switch (minor) {
1067 case 0:
1068 subtype = "other";
1069 break;
1070 case 4:
1071 subtype = "Validation component";
1072 break;
1073 }
1074 break;
1075 case 1:
1076 major = "Trace Sink";
1077 switch (minor) {
1078 case 0:
1079 subtype = "other";
1080 break;
1081 case 1:
1082 subtype = "Port";
1083 break;
1084 case 2:
1085 subtype = "Buffer";
1086 break;
1087 }
1088 break;
1089 case 2:
1090 major = "Trace Link";
1091 switch (minor) {
1092 case 0:
1093 subtype = "other";
1094 break;
1095 case 1:
1096 subtype = "Funnel, router";
1097 break;
1098 case 2:
1099 subtype = "Filter";
1100 break;
1101 case 3:
1102 subtype = "FIFO, buffer";
1103 break;
1104 }
1105 break;
1106 case 3:
1107 major = "Trace Source";
1108 switch (minor) {
1109 case 0:
1110 subtype = "other";
1111 break;
1112 case 1:
1113 subtype = "Processor";
1114 break;
1115 case 2:
1116 subtype = "DSP";
1117 break;
1118 case 3:
1119 subtype = "Engine/Coprocessor";
1120 break;
1121 case 4:
1122 subtype = "Bus";
1123 break;
1124 }
1125 break;
1126 case 4:
1127 major = "Debug Control";
1128 switch (minor) {
1129 case 0:
1130 subtype = "other";
1131 break;
1132 case 1:
1133 subtype = "Trigger Matrix";
1134 break;
1135 case 2:
1136 subtype = "Debug Auth";
1137 break;
1138 }
1139 break;
1140 case 5:
1141 major = "Debug Logic";
1142 switch (minor) {
1143 case 0:
1144 subtype = "other";
1145 break;
1146 case 1:
1147 subtype = "Processor";
1148 break;
1149 case 2:
1150 subtype = "DSP";
1151 break;
1152 case 3:
1153 subtype = "Engine/Coprocessor";
1154 break;
1155 }
1156 break;
1157 }
1158 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1159 (uint8_t)(devtype & 0xff),
1160 major, subtype);
1161 /* REVISIT also show 0xfc8 DevId */
1162 }
1163
1164 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1165 command_print(cmd_ctx,
1166 "\t\tCID3 0%02x"
1167 ", CID2 0%02x"
1168 ", CID1 0%02x"
1169 ", CID0 0%02x",
1170 (int)c_cid3,
1171 (int)c_cid2,
1172 (int)c_cid1,
1173 (int)c_cid0);
1174 command_print(cmd_ctx,
1175 "\t\tPeripheral ID[4..0] = hex "
1176 "%02x %02x %02x %02x %02x",
1177 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1178 (int)c_pid1, (int)c_pid0);
1179
1180 /* Part number interpretations are from Cortex
1181 * core specs, the CoreSight components TRM
1182 * (ARM DDI 0314H), CoreSight System Design
1183 * Guide (ARM DGI 0012D) and ETM specs; also
1184 * from chip observation (e.g. TI SDTI).
1185 */
1186 part_num = (c_pid0 & 0xff);
1187 part_num |= (c_pid1 & 0x0f) << 8;
1188 switch (part_num) {
1189 case 0x000:
1190 type = "Cortex-M3 NVIC";
1191 full = "(Interrupt Controller)";
1192 break;
1193 case 0x001:
1194 type = "Cortex-M3 ITM";
1195 full = "(Instrumentation Trace Module)";
1196 break;
1197 case 0x002:
1198 type = "Cortex-M3 DWT";
1199 full = "(Data Watchpoint and Trace)";
1200 break;
1201 case 0x003:
1202 type = "Cortex-M3 FBP";
1203 full = "(Flash Patch and Breakpoint)";
1204 break;
1205 case 0x00c:
1206 type = "Cortex-M4 SCS";
1207 full = "(System Control Space)";
1208 break;
1209 case 0x00d:
1210 type = "CoreSight ETM11";
1211 full = "(Embedded Trace)";
1212 break;
1213 /* case 0x113: what? */
1214 case 0x120: /* from OMAP3 memmap */
1215 type = "TI SDTI";
1216 full = "(System Debug Trace Interface)";
1217 break;
1218 case 0x343: /* from OMAP3 memmap */
1219 type = "TI DAPCTL";
1220 full = "";
1221 break;
1222 case 0x906:
1223 type = "Coresight CTI";
1224 full = "(Cross Trigger)";
1225 break;
1226 case 0x907:
1227 type = "Coresight ETB";
1228 full = "(Trace Buffer)";
1229 break;
1230 case 0x908:
1231 type = "Coresight CSTF";
1232 full = "(Trace Funnel)";
1233 break;
1234 case 0x910:
1235 type = "CoreSight ETM9";
1236 full = "(Embedded Trace)";
1237 break;
1238 case 0x912:
1239 type = "Coresight TPIU";
1240 full = "(Trace Port Interface Unit)";
1241 break;
1242 case 0x913:
1243 type = "Coresight ITM";
1244 full = "(Instrumentation Trace Macrocell)";
1245 break;
1246 case 0x921:
1247 type = "Cortex-A8 ETM";
1248 full = "(Embedded Trace)";
1249 break;
1250 case 0x922:
1251 type = "Cortex-A8 CTI";
1252 full = "(Cross Trigger)";
1253 break;
1254 case 0x923:
1255 type = "Cortex-M3 TPIU";
1256 full = "(Trace Port Interface Unit)";
1257 break;
1258 case 0x924:
1259 type = "Cortex-M3 ETM";
1260 full = "(Embedded Trace)";
1261 break;
1262 case 0x925:
1263 type = "Cortex-M4 ETM";
1264 full = "(Embedded Trace)";
1265 break;
1266 case 0x930:
1267 type = "Cortex-R4 ETM";
1268 full = "(Embedded Trace)";
1269 break;
1270 case 0x950:
1271 type = "CoreSight Component";
1272 full = "(unidentified Cortex-A9 component)";
1273 break;
1274 case 0x9a0:
1275 type = "CoreSight PMU";
1276 full = "(Performance Monitoring Unit)";
1277 break;
1278 case 0x9a1:
1279 type = "Cortex-M4 TPUI";
1280 full = "(Trace Port Interface Unit)";
1281 break;
1282 case 0xc08:
1283 type = "Cortex-A8 Debug";
1284 full = "(Debug Unit)";
1285 break;
1286 case 0xc09:
1287 type = "Cortex-A9 Debug";
1288 full = "(Debug Unit)";
1289 break;
1290 default:
1291 type = "-*- unrecognized -*-";
1292 full = "";
1293 break;
1294 }
1295 command_print(cmd_ctx, "\t\tPart is %s %s",
1296 type, full);
1297
1298 /* ROM Table? */
1299 if (((c_cid1 >> 4) & 0x0f) == 1) {
1300 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1301 if (retval != ERROR_OK)
1302 return retval;
1303 }
1304 } else {
1305 if (romentry)
1306 command_print(cmd_ctx, "\t\tComponent not present");
1307 else
1308 break;
1309 }
1310 }
1311 command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1312 return ERROR_OK;
1313 }
1314
1315 static int dap_info_command(struct command_context *cmd_ctx,
1316 struct adiv5_dap *dap, int ap)
1317 {
1318 int retval;
1319 uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1320 int romtable_present = 0;
1321 uint8_t mem_ap;
1322 uint32_t ap_old;
1323
1324 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1325 if (retval != ERROR_OK)
1326 return retval;
1327
1328 ap_old = dap->ap_current;
1329 dap_ap_select(dap, ap);
1330
1331 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1332 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1333 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1334 if (apid) {
1335 switch (apid&0x0F) {
1336 case 0:
1337 command_print(cmd_ctx, "\tType is JTAG-AP");
1338 break;
1339 case 1:
1340 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1341 break;
1342 case 2:
1343 command_print(cmd_ctx, "\tType is MEM-AP APB");
1344 break;
1345 default:
1346 command_print(cmd_ctx, "\tUnknown AP type");
1347 break;
1348 }
1349
1350 /* NOTE: a MEM-AP may have a single CoreSight component that's
1351 * not a ROM table ... or have no such components at all.
1352 */
1353 if (mem_ap)
1354 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1355 } else
1356 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1357
1358 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1359 if (romtable_present) {
1360 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1361 } else
1362 command_print(cmd_ctx, "\tNo ROM table present");
1363 dap_ap_select(dap, ap_old);
1364
1365 return ERROR_OK;
1366 }
1367
1368 COMMAND_HANDLER(handle_dap_info_command)
1369 {
1370 struct target *target = get_current_target(CMD_CTX);
1371 struct arm *arm = target_to_arm(target);
1372 struct adiv5_dap *dap = arm->dap;
1373 uint32_t apsel;
1374
1375 switch (CMD_ARGC) {
1376 case 0:
1377 apsel = dap->apsel;
1378 break;
1379 case 1:
1380 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1381 break;
1382 default:
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1384 }
1385
1386 return dap_info_command(CMD_CTX, dap, apsel);
1387 }
1388
1389 COMMAND_HANDLER(dap_baseaddr_command)
1390 {
1391 struct target *target = get_current_target(CMD_CTX);
1392 struct arm *arm = target_to_arm(target);
1393 struct adiv5_dap *dap = arm->dap;
1394
1395 uint32_t apsel, baseaddr;
1396 int retval;
1397
1398 switch (CMD_ARGC) {
1399 case 0:
1400 apsel = dap->apsel;
1401 break;
1402 case 1:
1403 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1404 /* AP address is in bits 31:24 of DP_SELECT */
1405 if (apsel >= 256)
1406 return ERROR_COMMAND_SYNTAX_ERROR;
1407 break;
1408 default:
1409 return ERROR_COMMAND_SYNTAX_ERROR;
1410 }
1411
1412 dap_ap_select(dap, apsel);
1413
1414 /* NOTE: assumes we're talking to a MEM-AP, which
1415 * has a base address. There are other kinds of AP,
1416 * though they're not common for now. This should
1417 * use the ID register to verify it's a MEM-AP.
1418 */
1419 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1420 if (retval != ERROR_OK)
1421 return retval;
1422 retval = dap_run(dap);
1423 if (retval != ERROR_OK)
1424 return retval;
1425
1426 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1427
1428 return retval;
1429 }
1430
1431 COMMAND_HANDLER(dap_memaccess_command)
1432 {
1433 struct target *target = get_current_target(CMD_CTX);
1434 struct arm *arm = target_to_arm(target);
1435 struct adiv5_dap *dap = arm->dap;
1436
1437 uint32_t memaccess_tck;
1438
1439 switch (CMD_ARGC) {
1440 case 0:
1441 memaccess_tck = dap->memaccess_tck;
1442 break;
1443 case 1:
1444 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1445 break;
1446 default:
1447 return ERROR_COMMAND_SYNTAX_ERROR;
1448 }
1449 dap->memaccess_tck = memaccess_tck;
1450
1451 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1452 dap->memaccess_tck);
1453
1454 return ERROR_OK;
1455 }
1456
1457 COMMAND_HANDLER(dap_apsel_command)
1458 {
1459 struct target *target = get_current_target(CMD_CTX);
1460 struct arm *arm = target_to_arm(target);
1461 struct adiv5_dap *dap = arm->dap;
1462
1463 uint32_t apsel, apid;
1464 int retval;
1465
1466 switch (CMD_ARGC) {
1467 case 0:
1468 apsel = 0;
1469 break;
1470 case 1:
1471 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1472 /* AP address is in bits 31:24 of DP_SELECT */
1473 if (apsel >= 256)
1474 return ERROR_COMMAND_SYNTAX_ERROR;
1475 break;
1476 default:
1477 return ERROR_COMMAND_SYNTAX_ERROR;
1478 }
1479
1480 dap->apsel = apsel;
1481 dap_ap_select(dap, apsel);
1482
1483 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1484 if (retval != ERROR_OK)
1485 return retval;
1486 retval = dap_run(dap);
1487 if (retval != ERROR_OK)
1488 return retval;
1489
1490 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1491 apsel, apid);
1492
1493 return retval;
1494 }
1495
1496 COMMAND_HANDLER(dap_apcsw_command)
1497 {
1498 struct target *target = get_current_target(CMD_CTX);
1499 struct arm *arm = target_to_arm(target);
1500 struct adiv5_dap *dap = arm->dap;
1501
1502 uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
1503
1504 switch (CMD_ARGC) {
1505 case 0:
1506 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1507 (dap->apsel), apcsw);
1508 break;
1509 case 1:
1510 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1511 /* AP address is in bits 31:24 of DP_SELECT */
1512 if (sprot > 1)
1513 return ERROR_COMMAND_SYNTAX_ERROR;
1514 if (sprot)
1515 apcsw |= CSW_SPROT;
1516 else
1517 apcsw &= ~CSW_SPROT;
1518 break;
1519 default:
1520 return ERROR_COMMAND_SYNTAX_ERROR;
1521 }
1522 dap->apcsw[dap->apsel] = apcsw;
1523
1524 return 0;
1525 }
1526
1527
1528
1529 COMMAND_HANDLER(dap_apid_command)
1530 {
1531 struct target *target = get_current_target(CMD_CTX);
1532 struct arm *arm = target_to_arm(target);
1533 struct adiv5_dap *dap = arm->dap;
1534
1535 uint32_t apsel, apid;
1536 int retval;
1537
1538 switch (CMD_ARGC) {
1539 case 0:
1540 apsel = dap->apsel;
1541 break;
1542 case 1:
1543 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1544 /* AP address is in bits 31:24 of DP_SELECT */
1545 if (apsel >= 256)
1546 return ERROR_COMMAND_SYNTAX_ERROR;
1547 break;
1548 default:
1549 return ERROR_COMMAND_SYNTAX_ERROR;
1550 }
1551
1552 dap_ap_select(dap, apsel);
1553
1554 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1555 if (retval != ERROR_OK)
1556 return retval;
1557 retval = dap_run(dap);
1558 if (retval != ERROR_OK)
1559 return retval;
1560
1561 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1562
1563 return retval;
1564 }
1565
1566 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1567 {
1568 struct target *target = get_current_target(CMD_CTX);
1569 struct arm *arm = target_to_arm(target);
1570 struct adiv5_dap *dap = arm->dap;
1571
1572 uint32_t enable = dap->ti_be_32_quirks;
1573
1574 switch (CMD_ARGC) {
1575 case 0:
1576 break;
1577 case 1:
1578 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1579 if (enable > 1)
1580 return ERROR_COMMAND_SYNTAX_ERROR;
1581 break;
1582 default:
1583 return ERROR_COMMAND_SYNTAX_ERROR;
1584 }
1585 dap->ti_be_32_quirks = enable;
1586 command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1587 enable ? "enabled" : "disabled");
1588
1589 return 0;
1590 }
1591
1592 static const struct command_registration dap_commands[] = {
1593 {
1594 .name = "info",
1595 .handler = handle_dap_info_command,
1596 .mode = COMMAND_EXEC,
1597 .help = "display ROM table for MEM-AP "
1598 "(default currently selected AP)",
1599 .usage = "[ap_num]",
1600 },
1601 {
1602 .name = "apsel",
1603 .handler = dap_apsel_command,
1604 .mode = COMMAND_EXEC,
1605 .help = "Set the currently selected AP (default 0) "
1606 "and display the result",
1607 .usage = "[ap_num]",
1608 },
1609 {
1610 .name = "apcsw",
1611 .handler = dap_apcsw_command,
1612 .mode = COMMAND_EXEC,
1613 .help = "Set csw access bit ",
1614 .usage = "[sprot]",
1615 },
1616
1617 {
1618 .name = "apid",
1619 .handler = dap_apid_command,
1620 .mode = COMMAND_EXEC,
1621 .help = "return ID register from AP "
1622 "(default currently selected AP)",
1623 .usage = "[ap_num]",
1624 },
1625 {
1626 .name = "baseaddr",
1627 .handler = dap_baseaddr_command,
1628 .mode = COMMAND_EXEC,
1629 .help = "return debug base address from MEM-AP "
1630 "(default currently selected AP)",
1631 .usage = "[ap_num]",
1632 },
1633 {
1634 .name = "memaccess",
1635 .handler = dap_memaccess_command,
1636 .mode = COMMAND_EXEC,
1637 .help = "set/get number of extra tck for MEM-AP memory "
1638 "bus access [0-255]",
1639 .usage = "[cycles]",
1640 },
1641 {
1642 .name = "ti_be_32_quirks",
1643 .handler = dap_ti_be_32_quirks_command,
1644 .mode = COMMAND_CONFIG,
1645 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1646 .usage = "[enable]",
1647 },
1648 COMMAND_REGISTRATION_DONE
1649 };
1650
1651 const struct command_registration dap_command_handlers[] = {
1652 {
1653 .name = "dap",
1654 .mode = COMMAND_EXEC,
1655 .help = "DAP command group",
1656 .usage = "",
1657 .chain = dap_commands,
1658 },
1659 COMMAND_REGISTRATION_DONE
1660 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)