targets: Print nested ROM tables with the 'dap info' command.
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focusses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction piplining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
81
82 /*
83 uint32_t tar_block_size(uint32_t address)
84 Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92 * *
93 * DP and MEM-AP register access through APACC and DPACC *
94 * *
95 ***************************************************************************/
96
97 /**
98 * Select one of the APs connected to the specified DAP. The
99 * selection is implicitly used with future AP transactions.
100 * This is a NOP if the specified AP is already selected.
101 *
102 * @param dap The DAP
103 * @param apsel Number of the AP to (implicitly) use with further
104 * transactions. This normally identifies a MEM-AP.
105 */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108 uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110 if (new_ap != dap->ap_current) {
111 dap->ap_current = new_ap;
112 /* Switching AP invalidates cached values.
113 * Values MUST BE UPDATED BEFORE AP ACCESS.
114 */
115 dap->ap_bank_value = -1;
116 dap->ap_csw_value = -1;
117 dap->ap_tar_value = -1;
118 }
119 }
120
121 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
122 {
123 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
124 dap->apcsw[dap->ap_current >> 24];
125
126 if (csw != dap->ap_csw_value) {
127 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128 int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
129 if (retval != ERROR_OK)
130 return retval;
131 dap->ap_csw_value = csw;
132 }
133 return ERROR_OK;
134 }
135
136 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
137 {
138 if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
139 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140 int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
141 if (retval != ERROR_OK)
142 return retval;
143 dap->ap_tar_value = tar;
144 }
145 return ERROR_OK;
146 }
147
148 /**
149 * Queue transactions setting up transfer parameters for the
150 * currently selected MEM-AP.
151 *
152 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153 * initiate data reads or writes using memory or peripheral addresses.
154 * If the CSW is configured for it, the TAR may be automatically
155 * incremented after each transfer.
156 *
157 * @todo Rename to reflect it being specifically a MEM-AP function.
158 *
159 * @param dap The DAP connected to the MEM-AP.
160 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
161 * matches the cached value, the register is not changed.
162 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
163 * matches the cached address, the register is not changed.
164 *
165 * @return ERROR_OK if the transaction was properly queued, else a fault code.
166 */
167 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
168 {
169 int retval;
170 retval = dap_setup_accessport_csw(dap, csw);
171 if (retval != ERROR_OK)
172 return retval;
173 retval = dap_setup_accessport_tar(dap, tar);
174 if (retval != ERROR_OK)
175 return retval;
176 return ERROR_OK;
177 }
178
179 /**
180 * Asynchronous (queued) read of a word from memory or a system register.
181 *
182 * @param dap The DAP connected to the MEM-AP performing the read.
183 * @param address Address of the 32-bit word to read; it must be
184 * readable by the currently selected MEM-AP.
185 * @param value points to where the word will be stored when the
186 * transaction queue is flushed (assuming no errors).
187 *
188 * @return ERROR_OK for success. Otherwise a fault code.
189 */
190 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
191 uint32_t *value)
192 {
193 int retval;
194
195 /* Use banked addressing (REG_BDx) to avoid some link traffic
196 * (updating TAR) when reading several consecutive addresses.
197 */
198 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
199 address & 0xFFFFFFF0);
200 if (retval != ERROR_OK)
201 return retval;
202
203 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
204 }
205
206 /**
207 * Synchronous read of a word from memory or a system register.
208 * As a side effect, this flushes any queued transactions.
209 *
210 * @param dap The DAP connected to the MEM-AP performing the read.
211 * @param address Address of the 32-bit word to read; it must be
212 * readable by the currently selected MEM-AP.
213 * @param value points to where the result will be stored.
214 *
215 * @return ERROR_OK for success; *value holds the result.
216 * Otherwise a fault code.
217 */
218 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
219 uint32_t *value)
220 {
221 int retval;
222
223 retval = mem_ap_read_u32(dap, address, value);
224 if (retval != ERROR_OK)
225 return retval;
226
227 return dap_run(dap);
228 }
229
230 /**
231 * Asynchronous (queued) write of a word to memory or a system register.
232 *
233 * @param dap The DAP connected to the MEM-AP.
234 * @param address Address to be written; it must be writable by
235 * the currently selected MEM-AP.
236 * @param value Word that will be written to the address when transaction
237 * queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
242 uint32_t value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when writing several consecutive addresses.
248 */
249 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
250 address & 0xFFFFFFF0);
251 if (retval != ERROR_OK)
252 return retval;
253
254 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
255 value);
256 }
257
258 /**
259 * Synchronous write of a word to memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param dap The DAP connected to the MEM-AP.
263 * @param address Address to be written; it must be writable by
264 * the currently selected MEM-AP.
265 * @param value Word that will be written.
266 *
267 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
268 */
269 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
270 uint32_t value)
271 {
272 int retval = mem_ap_write_u32(dap, address, value);
273
274 if (retval != ERROR_OK)
275 return retval;
276
277 return dap_run(dap);
278 }
279
280 /**
281 * Synchronous write of a block of memory, using a specific access size.
282 *
283 * @param dap The DAP connected to the MEM-AP.
284 * @param buffer The data buffer to write. No particular alignment is assumed.
285 * @param size Which access size to use, in bytes. 1, 2 or 4.
286 * @param count The number of writes to do (in size units, not bytes).
287 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288 * @param addrinc Whether the target address should be increased for each write or not. This
289 * should normally be true, except when writing to e.g. a FIFO.
290 * @return ERROR_OK on success, otherwise an error code.
291 */
292 int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
293 uint32_t address, bool addrinc)
294 {
295 size_t nbytes = size * count;
296 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297 uint32_t csw_size;
298 int retval;
299
300 if (size == 4)
301 csw_size = CSW_32BIT;
302 else if (size == 2)
303 csw_size = CSW_16BIT;
304 else if (size == 1)
305 csw_size = CSW_8BIT;
306 else
307 return ERROR_TARGET_UNALIGNED_ACCESS;
308
309 retval = dap_setup_accessport_tar(dap, address);
310 if (retval != ERROR_OK)
311 return retval;
312
313 while (nbytes > 0) {
314 uint32_t this_size = size;
315
316 /* Select packed transfer if possible */
317 if (addrinc && dap->packed_transfers && nbytes >= 4
318 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
319 this_size = 4;
320 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
321 } else {
322 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
323 }
324
325 if (retval != ERROR_OK)
326 break;
327
328 /* How many source bytes each transfer will consume, and their location in the DRW,
329 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
330 uint32_t outvalue = 0;
331 switch (this_size) {
332 case 4:
333 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
334 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
335 case 2:
336 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
337 case 1:
338 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
339 }
340
341 nbytes -= this_size;
342
343 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
344 if (retval != ERROR_OK)
345 break;
346
347 /* Rewrite TAR if it wrapped */
348 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
349 retval = dap_setup_accessport_tar(dap, address);
350 if (retval != ERROR_OK)
351 break;
352 }
353 }
354
355 /* REVISIT: Might want to have a queued version of this function that does not run. */
356 if (retval == ERROR_OK)
357 retval = dap_run(dap);
358
359 if (retval != ERROR_OK) {
360 uint32_t tar;
361 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
362 && dap_run(dap) == ERROR_OK)
363 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
364 else
365 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
366 }
367
368 return retval;
369 }
370
371 /**
372 * Synchronous read of a block of memory, using a specific access size.
373 *
374 * @param dap The DAP connected to the MEM-AP.
375 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
376 * @param size Which access size to use, in bytes. 1, 2 or 4.
377 * @param count The number of reads to do (in size units, not bytes).
378 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
379 * @param addrinc Whether the target address should be increased after each read or not. This
380 * should normally be true, except when reading from e.g. a FIFO.
381 * @return ERROR_OK on success, otherwise an error code.
382 */
383 int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
384 uint32_t adr, bool addrinc)
385 {
386 size_t nbytes = size * count;
387 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
388 uint32_t csw_size;
389 uint32_t address = adr;
390 int retval;
391
392 if (size == 4)
393 csw_size = CSW_32BIT;
394 else if (size == 2)
395 csw_size = CSW_16BIT;
396 else if (size == 1)
397 csw_size = CSW_8BIT;
398 else
399 return ERROR_TARGET_UNALIGNED_ACCESS;
400
401 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
402 * over-allocation if packed transfers are going to be used, but determining the real need at
403 * this point would be messy. */
404 uint32_t *read_buf = malloc(count * sizeof(uint32_t));
405 uint32_t *read_ptr = read_buf;
406 if (read_buf == NULL) {
407 LOG_ERROR("Failed to allocate read buffer");
408 return ERROR_FAIL;
409 }
410
411 retval = dap_setup_accessport_tar(dap, address);
412 if (retval != ERROR_OK)
413 return retval;
414
415 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
416 * useful bytes it contains, and their location in the word, depends on the type of transfer
417 * and alignment. */
418 while (nbytes > 0) {
419 uint32_t this_size = size;
420
421 /* Select packed transfer if possible */
422 if (addrinc && dap->packed_transfers && nbytes >= 4
423 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
424 this_size = 4;
425 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
426 } else {
427 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
428 }
429 if (retval != ERROR_OK)
430 break;
431
432 retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
433 if (retval != ERROR_OK)
434 break;
435
436 nbytes -= this_size;
437 address += this_size;
438
439 /* Rewrite TAR if it wrapped */
440 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
441 retval = dap_setup_accessport_tar(dap, address);
442 if (retval != ERROR_OK)
443 break;
444 }
445 }
446
447 if (retval == ERROR_OK)
448 retval = dap_run(dap);
449
450 /* Restore state */
451 address = adr;
452 nbytes = size * count;
453 read_ptr = read_buf;
454
455 /* If something failed, read TAR to find out how much data was successfully read, so we can
456 * at least give the caller what we have. */
457 if (retval != ERROR_OK) {
458 uint32_t tar;
459 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
460 && dap_run(dap) == ERROR_OK) {
461 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
462 if (nbytes > tar - address)
463 nbytes = tar - address;
464 } else {
465 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
466 nbytes = 0;
467 }
468 }
469
470 /* Replay loop to populate caller's buffer from the correct word and byte lane */
471 while (nbytes > 0) {
472 uint32_t this_size = size;
473
474 if (addrinc && dap->packed_transfers && nbytes >= 4
475 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
476 this_size = 4;
477 }
478
479 switch (this_size) {
480 case 4:
481 *buffer++ = *read_ptr >> 8 * (address++ & 3);
482 *buffer++ = *read_ptr >> 8 * (address++ & 3);
483 case 2:
484 *buffer++ = *read_ptr >> 8 * (address++ & 3);
485 case 1:
486 *buffer++ = *read_ptr >> 8 * (address++ & 3);
487 }
488
489 read_ptr++;
490 nbytes -= this_size;
491 }
492
493 free(read_buf);
494 return retval;
495 }
496
497 /*--------------------------------------------------------------------*/
498 /* Wrapping function with selection of AP */
499 /*--------------------------------------------------------------------*/
500 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
501 uint32_t address, uint32_t *value)
502 {
503 dap_ap_select(swjdp, ap);
504 return mem_ap_read_u32(swjdp, address, value);
505 }
506
507 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
508 uint32_t address, uint32_t value)
509 {
510 dap_ap_select(swjdp, ap);
511 return mem_ap_write_u32(swjdp, address, value);
512 }
513
514 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
515 uint32_t address, uint32_t *value)
516 {
517 dap_ap_select(swjdp, ap);
518 return mem_ap_read_atomic_u32(swjdp, address, value);
519 }
520
521 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
522 uint32_t address, uint32_t value)
523 {
524 dap_ap_select(swjdp, ap);
525 return mem_ap_write_atomic_u32(swjdp, address, value);
526 }
527
528 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
529 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
530 {
531 dap_ap_select(swjdp, ap);
532 return mem_ap_read(swjdp, buffer, size, count, address, true);
533 }
534
535 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
536 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
537 {
538 dap_ap_select(swjdp, ap);
539 return mem_ap_write(swjdp, buffer, size, count, address, true);
540 }
541
542 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
543 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
544 {
545 dap_ap_select(swjdp, ap);
546 return mem_ap_read(swjdp, buffer, size, count, address, false);
547 }
548
549 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
550 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
551 {
552 dap_ap_select(swjdp, ap);
553 return mem_ap_write(swjdp, buffer, size, count, address, false);
554 }
555
556 #define MDM_REG_STAT 0x00
557 #define MDM_REG_CTRL 0x04
558 #define MDM_REG_ID 0xfc
559
560 #define MDM_STAT_FMEACK (1<<0)
561 #define MDM_STAT_FREADY (1<<1)
562 #define MDM_STAT_SYSSEC (1<<2)
563 #define MDM_STAT_SYSRES (1<<3)
564 #define MDM_STAT_FMEEN (1<<5)
565 #define MDM_STAT_BACKDOOREN (1<<6)
566 #define MDM_STAT_LPEN (1<<7)
567 #define MDM_STAT_VLPEN (1<<8)
568 #define MDM_STAT_LLSMODEXIT (1<<9)
569 #define MDM_STAT_VLLSXMODEXIT (1<<10)
570 #define MDM_STAT_CORE_HALTED (1<<16)
571 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
572 #define MDM_STAT_CORESLEEPING (1<<18)
573
574 #define MEM_CTRL_FMEIP (1<<0)
575 #define MEM_CTRL_DBG_DIS (1<<1)
576 #define MEM_CTRL_DBG_REQ (1<<2)
577 #define MEM_CTRL_SYS_RES_REQ (1<<3)
578 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
579 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
580 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
581 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
582
583 #define MDM_ACCESS_TIMEOUT 3000 /* ms */
584
585 /**
586 *
587 */
588 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
589 {
590 uint32_t val;
591 int retval;
592 int timeout = 0;
593 enum reset_types jtag_reset_config = jtag_get_reset_config();
594
595 dap_ap_select(dap, 1);
596
597 /* first check mdm-ap id register */
598 retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
599 if (retval != ERROR_OK)
600 return retval;
601 dap_run(dap);
602
603 if (val != 0x001C0000) {
604 LOG_DEBUG("id doesn't match %08" PRIX32 " != 0x001C0000", val);
605 dap_ap_select(dap, 0);
606 return ERROR_FAIL;
607 }
608
609 /* read and parse status register
610 * it's important that the device is out of
611 * reset here
612 */
613 while (1) {
614 if (timeout++ > MDM_ACCESS_TIMEOUT) {
615 LOG_DEBUG("MDMAP : flash ready timeout");
616 return ERROR_FAIL;
617 }
618 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
619 if (retval != ERROR_OK)
620 return retval;
621 dap_run(dap);
622
623 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
624 if (val & MDM_STAT_FREADY)
625 break;
626 alive_sleep(1);
627 }
628
629 if ((val & MDM_STAT_SYSSEC)) {
630 LOG_DEBUG("MDMAP: system is secured, masserase needed");
631
632 if (!(val & MDM_STAT_FMEEN))
633 LOG_DEBUG("MDMAP: masserase is disabled");
634 else {
635 /* we need to assert reset */
636 if (jtag_reset_config & RESET_HAS_SRST) {
637 /* default to asserting srst */
638 adapter_assert_reset();
639 } else {
640 LOG_DEBUG("SRST not configured");
641 dap_ap_select(dap, 0);
642 return ERROR_FAIL;
643 }
644 timeout = 0;
645 while (1) {
646 if (timeout++ > MDM_ACCESS_TIMEOUT) {
647 LOG_DEBUG("MDMAP : flash ready timeout");
648 return ERROR_FAIL;
649 }
650 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
651 if (retval != ERROR_OK)
652 return retval;
653 dap_run(dap);
654 /* read status register and wait for ready */
655 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
656 if (retval != ERROR_OK)
657 return retval;
658 dap_run(dap);
659 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
660
661 if ((val & 1))
662 break;
663 alive_sleep(1);
664 }
665 timeout = 0;
666 while (1) {
667 if (timeout++ > MDM_ACCESS_TIMEOUT) {
668 LOG_DEBUG("MDMAP : flash ready timeout");
669 return ERROR_FAIL;
670 }
671 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
672 if (retval != ERROR_OK)
673 return retval;
674 dap_run(dap);
675 /* read status register */
676 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
677 if (retval != ERROR_OK)
678 return retval;
679 dap_run(dap);
680 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
681 /* read control register and wait for ready */
682 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
683 if (retval != ERROR_OK)
684 return retval;
685 dap_run(dap);
686 LOG_DEBUG("MDM_REG_CTRL %08" PRIX32, val);
687
688 if (val == 0x00)
689 break;
690 alive_sleep(1);
691 }
692 }
693 }
694
695 dap_ap_select(dap, 0);
696
697 return ERROR_OK;
698 }
699
700 /** */
701 struct dap_syssec_filter {
702 /** */
703 uint32_t idcode;
704 /** */
705 int (*dap_init)(struct adiv5_dap *dap);
706 };
707
708 /** */
709 static struct dap_syssec_filter dap_syssec_filter_data[] = {
710 { 0x4BA00477, dap_syssec_kinetis_mdmap }
711 };
712
713 /**
714 *
715 */
716 int dap_syssec(struct adiv5_dap *dap)
717 {
718 unsigned int i;
719 struct jtag_tap *tap;
720
721 for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
722 tap = dap->jtag_info->tap;
723
724 while (tap != NULL) {
725 if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
726 LOG_DEBUG("DAP: mdmap_init for idcode: %08" PRIx32, tap->idcode);
727 dap_syssec_filter_data[i].dap_init(dap);
728 }
729 tap = tap->next_tap;
730 }
731 }
732
733 return ERROR_OK;
734 }
735
736 /*--------------------------------------------------------------------------*/
737
738
739 /* FIXME don't import ... just initialize as
740 * part of DAP transport setup
741 */
742 extern const struct dap_ops jtag_dp_ops;
743
744 /*--------------------------------------------------------------------------*/
745
746 /**
747 * Initialize a DAP. This sets up the power domains, prepares the DP
748 * for further use, and arranges to use AP #0 for all AP operations
749 * until dap_ap-select() changes that policy.
750 *
751 * @param dap The DAP being initialized.
752 *
753 * @todo Rename this. We also need an initialization scheme which account
754 * for SWD transports not just JTAG; that will need to address differences
755 * in layering. (JTAG is useful without any debug target; but not SWD.)
756 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
757 */
758 int ahbap_debugport_init(struct adiv5_dap *dap)
759 {
760 uint32_t ctrlstat;
761 int cnt = 0;
762 int retval;
763
764 LOG_DEBUG(" ");
765
766 /* JTAG-DP or SWJ-DP, in JTAG mode
767 * ... for SWD mode this is patched as part
768 * of link switchover
769 */
770 if (!dap->ops)
771 dap->ops = &jtag_dp_ops;
772
773 /* Default MEM-AP setup.
774 *
775 * REVISIT AP #0 may be an inappropriate default for this.
776 * Should we probe, or take a hint from the caller?
777 * Presumably we can ignore the possibility of multiple APs.
778 */
779 dap->ap_current = !0;
780 dap_ap_select(dap, 0);
781
782 /* DP initialization */
783
784 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
785 if (retval != ERROR_OK)
786 return retval;
787
788 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
789 if (retval != ERROR_OK)
790 return retval;
791
792 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
793 if (retval != ERROR_OK)
794 return retval;
795
796 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
797 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
798 if (retval != ERROR_OK)
799 return retval;
800
801 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
802 if (retval != ERROR_OK)
803 return retval;
804 retval = dap_run(dap);
805 if (retval != ERROR_OK)
806 return retval;
807
808 /* Check that we have debug power domains activated */
809 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
810 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
811 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
812 if (retval != ERROR_OK)
813 return retval;
814 retval = dap_run(dap);
815 if (retval != ERROR_OK)
816 return retval;
817 alive_sleep(10);
818 }
819
820 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
821 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
822 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
823 if (retval != ERROR_OK)
824 return retval;
825 retval = dap_run(dap);
826 if (retval != ERROR_OK)
827 return retval;
828 alive_sleep(10);
829 }
830
831 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
832 if (retval != ERROR_OK)
833 return retval;
834 /* With debug power on we can activate OVERRUN checking */
835 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
836 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
837 if (retval != ERROR_OK)
838 return retval;
839 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
840 if (retval != ERROR_OK)
841 return retval;
842
843 dap_syssec(dap);
844
845 /* check that we support packed transfers */
846 uint32_t csw;
847
848 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
849 if (retval != ERROR_OK)
850 return retval;
851
852 retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw);
853 if (retval != ERROR_OK)
854 return retval;
855
856 retval = dap_run(dap);
857 if (retval != ERROR_OK)
858 return retval;
859
860 if (csw & CSW_ADDRINC_PACKED)
861 dap->packed_transfers = true;
862 else
863 dap->packed_transfers = false;
864
865 LOG_DEBUG("MEM_AP Packed Transfers: %s",
866 dap->packed_transfers ? "enabled" : "disabled");
867
868 return ERROR_OK;
869 }
870
871 /* CID interpretation -- see ARM IHI 0029B section 3
872 * and ARM IHI 0031A table 13-3.
873 */
874 static const char *class_description[16] = {
875 "Reserved", "ROM table", "Reserved", "Reserved",
876 "Reserved", "Reserved", "Reserved", "Reserved",
877 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
878 "Reserved", "OptimoDE DESS",
879 "Generic IP component", "PrimeCell or System component"
880 };
881
882 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
883 {
884 return cid3 == 0xb1 && cid2 == 0x05
885 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
886 }
887
888 /*
889 * This function checks the ID for each access port to find the requested Access Port type
890 */
891 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
892 {
893 int ap;
894
895 /* Maximum AP number is 255 since the SELECT register is 8 bits */
896 for (ap = 0; ap <= 255; ap++) {
897
898 /* read the IDR register of the Access Port */
899 uint32_t id_val = 0;
900 dap_ap_select(dap, ap);
901
902 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
903 if (retval != ERROR_OK)
904 return retval;
905
906 retval = dap_run(dap);
907
908 /* IDR bits:
909 * 31-28 : Revision
910 * 27-24 : JEDEC bank (0x4 for ARM)
911 * 23-17 : JEDEC code (0x3B for ARM)
912 * 16 : Mem-AP
913 * 15-8 : Reserved
914 * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
915 */
916
917 /* Reading register for a non-existant AP should not cause an error,
918 * but just to be sure, try to continue searching if an error does happen.
919 */
920 if ((retval == ERROR_OK) && /* Register read success */
921 ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
922 ((id_val & 0xFF) == type_to_find)) { /* type matches*/
923
924 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
925 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
926 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
927 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
928 ap, id_val);
929
930 *ap_num_out = ap;
931 return ERROR_OK;
932 }
933 }
934
935 LOG_DEBUG("No %s found",
936 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
937 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
938 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
939 return ERROR_FAIL;
940 }
941
942 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
943 uint32_t *out_dbgbase, uint32_t *out_apid)
944 {
945 uint32_t ap_old;
946 int retval;
947 uint32_t dbgbase, apid;
948
949 /* AP address is in bits 31:24 of DP_SELECT */
950 if (ap >= 256)
951 return ERROR_COMMAND_SYNTAX_ERROR;
952
953 ap_old = dap->ap_current;
954 dap_ap_select(dap, ap);
955
956 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
957 if (retval != ERROR_OK)
958 return retval;
959 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
960 if (retval != ERROR_OK)
961 return retval;
962 retval = dap_run(dap);
963 if (retval != ERROR_OK)
964 return retval;
965
966 /* Excavate the device ID code */
967 struct jtag_tap *tap = dap->jtag_info->tap;
968 while (tap != NULL) {
969 if (tap->hasidcode)
970 break;
971 tap = tap->next_tap;
972 }
973 if (tap == NULL || !tap->hasidcode)
974 return ERROR_OK;
975
976 dap_ap_select(dap, ap_old);
977
978 /* The asignment happens only here to prevent modification of these
979 * values before they are certain. */
980 *out_dbgbase = dbgbase;
981 *out_apid = apid;
982
983 return ERROR_OK;
984 }
985
986 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
987 uint32_t dbgbase, uint8_t type, uint32_t *addr)
988 {
989 uint32_t ap_old;
990 uint32_t romentry, entry_offset = 0, component_base, devtype;
991 int retval = ERROR_FAIL;
992
993 if (ap >= 256)
994 return ERROR_COMMAND_SYNTAX_ERROR;
995
996 ap_old = dap->ap_current;
997 dap_ap_select(dap, ap);
998
999 do {
1000 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1001 entry_offset, &romentry);
1002 if (retval != ERROR_OK)
1003 return retval;
1004
1005 component_base = (dbgbase & 0xFFFFF000)
1006 + (romentry & 0xFFFFF000);
1007
1008 if (romentry & 0x1) {
1009 retval = mem_ap_read_atomic_u32(dap,
1010 (component_base & 0xfffff000) | 0xfcc,
1011 &devtype);
1012 if (retval != ERROR_OK)
1013 return retval;
1014 if ((devtype & 0xff) == type) {
1015 *addr = component_base;
1016 retval = ERROR_OK;
1017 break;
1018 }
1019 }
1020 entry_offset += 4;
1021 } while (romentry > 0);
1022
1023 dap_ap_select(dap, ap_old);
1024
1025 return retval;
1026 }
1027
1028 static int dap_rom_display(struct command_context *cmd_ctx,
1029 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
1030 {
1031 int retval;
1032 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
1033 uint16_t entry_offset;
1034 int i;
1035 char tabs[16 + 1];
1036
1037 if (depth > 16) {
1038 command_print(cmd_ctx, "\tTables too deep");
1039 return ERROR_FAIL;
1040 }
1041
1042 for (i = 0; i < depth; ++i)
1043 tabs[i] = '\t';
1044 tabs[i] = '\0';
1045
1046 /* bit 16 of apid indicates a memory access port */
1047 if (dbgbase & 0x02)
1048 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
1049 else
1050 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
1051
1052 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1053 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1057 if (retval != ERROR_OK)
1058 return retval;
1059 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1060 if (retval != ERROR_OK)
1061 return retval;
1062 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1063 if (retval != ERROR_OK)
1064 return retval;
1065 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1066 if (retval != ERROR_OK)
1067 return retval;
1068 retval = dap_run(dap);
1069 if (retval != ERROR_OK)
1070 return retval;
1071
1072 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1073 command_print(cmd_ctx, "\t%sCID3 0x%02x"
1074 ", CID2 0x%02x"
1075 ", CID1 0x%02x"
1076 ", CID0 0x%02x",
1077 tabs,
1078 (unsigned)cid3, (unsigned)cid2,
1079 (unsigned)cid1, (unsigned)cid0);
1080 if (memtype & 0x01)
1081 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
1082 else
1083 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
1084
1085 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1086 for (entry_offset = 0; ; entry_offset += 4) {
1087 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1088 if (retval != ERROR_OK)
1089 return retval;
1090 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1091 tabs, entry_offset, romentry);
1092 if (romentry & 0x01) {
1093 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1094 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1095 uint32_t component_base;
1096 unsigned part_num;
1097 char *type, *full;
1098
1099 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1100
1101 /* IDs are in last 4K section */
1102 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1103 if (retval != ERROR_OK) {
1104 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
1105 ", the corresponding core might be turned off", tabs, component_base);
1106 continue;
1107 }
1108 c_pid0 &= 0xff;
1109 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1110 if (retval != ERROR_OK)
1111 return retval;
1112 c_pid1 &= 0xff;
1113 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1114 if (retval != ERROR_OK)
1115 return retval;
1116 c_pid2 &= 0xff;
1117 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1118 if (retval != ERROR_OK)
1119 return retval;
1120 c_pid3 &= 0xff;
1121 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1122 if (retval != ERROR_OK)
1123 return retval;
1124 c_pid4 &= 0xff;
1125
1126 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1127 if (retval != ERROR_OK)
1128 return retval;
1129 c_cid0 &= 0xff;
1130 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1131 if (retval != ERROR_OK)
1132 return retval;
1133 c_cid1 &= 0xff;
1134 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1135 if (retval != ERROR_OK)
1136 return retval;
1137 c_cid2 &= 0xff;
1138 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1139 if (retval != ERROR_OK)
1140 return retval;
1141 c_cid3 &= 0xff;
1142
1143 command_print(cmd_ctx, "\t%s\tComponent base address 0x%" PRIx32 ", "
1144 "start address 0x%" PRIx32, tabs, component_base,
1145 /* component may take multiple 4K pages */
1146 (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1147 command_print(cmd_ctx, "\t%s\tComponent class is 0x%x, %s",
1148 tabs, (c_cid1 >> 4) & 0xf,
1149 /* See ARM IHI 0029B Table 3-3 */
1150 class_description[(c_cid1 >> 4) & 0xf]);
1151
1152 /* CoreSight component? */
1153 if (((c_cid1 >> 4) & 0x0f) == 9) {
1154 uint32_t devtype;
1155 unsigned minor;
1156 char *major = "Reserved", *subtype = "Reserved";
1157
1158 retval = mem_ap_read_atomic_u32(dap,
1159 (component_base & 0xfffff000) | 0xfcc,
1160 &devtype);
1161 if (retval != ERROR_OK)
1162 return retval;
1163 minor = (devtype >> 4) & 0x0f;
1164 switch (devtype & 0x0f) {
1165 case 0:
1166 major = "Miscellaneous";
1167 switch (minor) {
1168 case 0:
1169 subtype = "other";
1170 break;
1171 case 4:
1172 subtype = "Validation component";
1173 break;
1174 }
1175 break;
1176 case 1:
1177 major = "Trace Sink";
1178 switch (minor) {
1179 case 0:
1180 subtype = "other";
1181 break;
1182 case 1:
1183 subtype = "Port";
1184 break;
1185 case 2:
1186 subtype = "Buffer";
1187 break;
1188 }
1189 break;
1190 case 2:
1191 major = "Trace Link";
1192 switch (minor) {
1193 case 0:
1194 subtype = "other";
1195 break;
1196 case 1:
1197 subtype = "Funnel, router";
1198 break;
1199 case 2:
1200 subtype = "Filter";
1201 break;
1202 case 3:
1203 subtype = "FIFO, buffer";
1204 break;
1205 }
1206 break;
1207 case 3:
1208 major = "Trace Source";
1209 switch (minor) {
1210 case 0:
1211 subtype = "other";
1212 break;
1213 case 1:
1214 subtype = "Processor";
1215 break;
1216 case 2:
1217 subtype = "DSP";
1218 break;
1219 case 3:
1220 subtype = "Engine/Coprocessor";
1221 break;
1222 case 4:
1223 subtype = "Bus";
1224 break;
1225 }
1226 break;
1227 case 4:
1228 major = "Debug Control";
1229 switch (minor) {
1230 case 0:
1231 subtype = "other";
1232 break;
1233 case 1:
1234 subtype = "Trigger Matrix";
1235 break;
1236 case 2:
1237 subtype = "Debug Auth";
1238 break;
1239 }
1240 break;
1241 case 5:
1242 major = "Debug Logic";
1243 switch (minor) {
1244 case 0:
1245 subtype = "other";
1246 break;
1247 case 1:
1248 subtype = "Processor";
1249 break;
1250 case 2:
1251 subtype = "DSP";
1252 break;
1253 case 3:
1254 subtype = "Engine/Coprocessor";
1255 break;
1256 }
1257 break;
1258 }
1259 command_print(cmd_ctx, "\t%s\tType is 0x%02x, %s, %s",
1260 tabs, devtype & 0xff,
1261 major, subtype);
1262 /* REVISIT also show 0xfc8 DevId */
1263 }
1264
1265 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1266 command_print(cmd_ctx,
1267 "\t%s\tCID3 0%02x"
1268 ", CID2 0%02x"
1269 ", CID1 0%02x"
1270 ", CID0 0%02x",
1271 tabs,
1272 (int)c_cid3,
1273 (int)c_cid2,
1274 (int)c_cid1,
1275 (int)c_cid0);
1276 command_print(cmd_ctx,
1277 "\t%s\tPeripheral ID[4..0] = hex "
1278 "%02x %02x %02x %02x %02x", tabs,
1279 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1280 (int)c_pid1, (int)c_pid0);
1281
1282 /* Part number interpretations are from Cortex
1283 * core specs, the CoreSight components TRM
1284 * (ARM DDI 0314H), CoreSight System Design
1285 * Guide (ARM DGI 0012D) and ETM specs; also
1286 * from chip observation (e.g. TI SDTI).
1287 */
1288 part_num = (c_pid0 & 0xff);
1289 part_num |= (c_pid1 & 0x0f) << 8;
1290 switch (part_num) {
1291 case 0x000:
1292 type = "Cortex-M3 NVIC";
1293 full = "(Interrupt Controller)";
1294 break;
1295 case 0x001:
1296 type = "Cortex-M3 ITM";
1297 full = "(Instrumentation Trace Module)";
1298 break;
1299 case 0x002:
1300 type = "Cortex-M3 DWT";
1301 full = "(Data Watchpoint and Trace)";
1302 break;
1303 case 0x003:
1304 type = "Cortex-M3 FBP";
1305 full = "(Flash Patch and Breakpoint)";
1306 break;
1307 case 0x00c:
1308 type = "Cortex-M4 SCS";
1309 full = "(System Control Space)";
1310 break;
1311 case 0x00d:
1312 type = "CoreSight ETM11";
1313 full = "(Embedded Trace)";
1314 break;
1315 /* case 0x113: what? */
1316 case 0x120: /* from OMAP3 memmap */
1317 type = "TI SDTI";
1318 full = "(System Debug Trace Interface)";
1319 break;
1320 case 0x343: /* from OMAP3 memmap */
1321 type = "TI DAPCTL";
1322 full = "";
1323 break;
1324 case 0x906:
1325 type = "Coresight CTI";
1326 full = "(Cross Trigger)";
1327 break;
1328 case 0x907:
1329 type = "Coresight ETB";
1330 full = "(Trace Buffer)";
1331 break;
1332 case 0x908:
1333 type = "Coresight CSTF";
1334 full = "(Trace Funnel)";
1335 break;
1336 case 0x910:
1337 type = "CoreSight ETM9";
1338 full = "(Embedded Trace)";
1339 break;
1340 case 0x912:
1341 type = "Coresight TPIU";
1342 full = "(Trace Port Interface Unit)";
1343 break;
1344 case 0x913:
1345 type = "Coresight ITM";
1346 full = "(Instrumentation Trace Macrocell)";
1347 break;
1348 case 0x921:
1349 type = "Cortex-A8 ETM";
1350 full = "(Embedded Trace)";
1351 break;
1352 case 0x922:
1353 type = "Cortex-A8 CTI";
1354 full = "(Cross Trigger)";
1355 break;
1356 case 0x923:
1357 type = "Cortex-M3 TPIU";
1358 full = "(Trace Port Interface Unit)";
1359 break;
1360 case 0x924:
1361 type = "Cortex-M3 ETM";
1362 full = "(Embedded Trace)";
1363 break;
1364 case 0x925:
1365 type = "Cortex-M4 ETM";
1366 full = "(Embedded Trace)";
1367 break;
1368 case 0x930:
1369 type = "Cortex-R4 ETM";
1370 full = "(Embedded Trace)";
1371 break;
1372 case 0x9a1:
1373 type = "Cortex-M4 TPUI";
1374 full = "(Trace Port Interface Unit)";
1375 break;
1376 case 0xc08:
1377 type = "Cortex-A8 Debug";
1378 full = "(Debug Unit)";
1379 break;
1380 case 0xc09:
1381 type = "Cortex-A9 Debug";
1382 full = "(Debug Unit)";
1383 break;
1384 default:
1385 type = "-*- unrecognized -*-";
1386 full = "";
1387 break;
1388 }
1389 command_print(cmd_ctx, "\t%s\tPart is %s %s",
1390 tabs, type, full);
1391
1392 /* ROM Table? */
1393 if (((c_cid1 >> 4) & 0x0f) == 1) {
1394 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1395 if (retval != ERROR_OK)
1396 return retval;
1397 }
1398 } else {
1399 if (romentry)
1400 command_print(cmd_ctx, "\t%s\tComponent not present", tabs);
1401 else
1402 break;
1403 }
1404 }
1405 command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1406 return ERROR_OK;
1407 }
1408
1409 static int dap_info_command(struct command_context *cmd_ctx,
1410 struct adiv5_dap *dap, int ap)
1411 {
1412 int retval;
1413 uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1414 int romtable_present = 0;
1415 uint8_t mem_ap;
1416 uint32_t ap_old;
1417
1418 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1419 if (retval != ERROR_OK)
1420 return retval;
1421
1422 ap_old = dap->ap_current;
1423 dap_ap_select(dap, ap);
1424
1425 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1426 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1427 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1428 if (apid) {
1429 switch (apid&0x0F) {
1430 case 0:
1431 command_print(cmd_ctx, "\tType is JTAG-AP");
1432 break;
1433 case 1:
1434 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1435 break;
1436 case 2:
1437 command_print(cmd_ctx, "\tType is MEM-AP APB");
1438 break;
1439 default:
1440 command_print(cmd_ctx, "\tUnknown AP type");
1441 break;
1442 }
1443
1444 /* NOTE: a MEM-AP may have a single CoreSight component that's
1445 * not a ROM table ... or have no such components at all.
1446 */
1447 if (mem_ap)
1448 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1449 } else
1450 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1451
1452 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1453 if (romtable_present) {
1454 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1455 } else
1456 command_print(cmd_ctx, "\tNo ROM table present");
1457 dap_ap_select(dap, ap_old);
1458
1459 return ERROR_OK;
1460 }
1461
1462 COMMAND_HANDLER(handle_dap_info_command)
1463 {
1464 struct target *target = get_current_target(CMD_CTX);
1465 struct arm *arm = target_to_arm(target);
1466 struct adiv5_dap *dap = arm->dap;
1467 uint32_t apsel;
1468
1469 switch (CMD_ARGC) {
1470 case 0:
1471 apsel = dap->apsel;
1472 break;
1473 case 1:
1474 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1475 break;
1476 default:
1477 return ERROR_COMMAND_SYNTAX_ERROR;
1478 }
1479
1480 return dap_info_command(CMD_CTX, dap, apsel);
1481 }
1482
1483 COMMAND_HANDLER(dap_baseaddr_command)
1484 {
1485 struct target *target = get_current_target(CMD_CTX);
1486 struct arm *arm = target_to_arm(target);
1487 struct adiv5_dap *dap = arm->dap;
1488
1489 uint32_t apsel, baseaddr;
1490 int retval;
1491
1492 switch (CMD_ARGC) {
1493 case 0:
1494 apsel = dap->apsel;
1495 break;
1496 case 1:
1497 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1498 /* AP address is in bits 31:24 of DP_SELECT */
1499 if (apsel >= 256)
1500 return ERROR_COMMAND_SYNTAX_ERROR;
1501 break;
1502 default:
1503 return ERROR_COMMAND_SYNTAX_ERROR;
1504 }
1505
1506 dap_ap_select(dap, apsel);
1507
1508 /* NOTE: assumes we're talking to a MEM-AP, which
1509 * has a base address. There are other kinds of AP,
1510 * though they're not common for now. This should
1511 * use the ID register to verify it's a MEM-AP.
1512 */
1513 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1514 if (retval != ERROR_OK)
1515 return retval;
1516 retval = dap_run(dap);
1517 if (retval != ERROR_OK)
1518 return retval;
1519
1520 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1521
1522 return retval;
1523 }
1524
1525 COMMAND_HANDLER(dap_memaccess_command)
1526 {
1527 struct target *target = get_current_target(CMD_CTX);
1528 struct arm *arm = target_to_arm(target);
1529 struct adiv5_dap *dap = arm->dap;
1530
1531 uint32_t memaccess_tck;
1532
1533 switch (CMD_ARGC) {
1534 case 0:
1535 memaccess_tck = dap->memaccess_tck;
1536 break;
1537 case 1:
1538 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1539 break;
1540 default:
1541 return ERROR_COMMAND_SYNTAX_ERROR;
1542 }
1543 dap->memaccess_tck = memaccess_tck;
1544
1545 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1546 dap->memaccess_tck);
1547
1548 return ERROR_OK;
1549 }
1550
1551 COMMAND_HANDLER(dap_apsel_command)
1552 {
1553 struct target *target = get_current_target(CMD_CTX);
1554 struct arm *arm = target_to_arm(target);
1555 struct adiv5_dap *dap = arm->dap;
1556
1557 uint32_t apsel, apid;
1558 int retval;
1559
1560 switch (CMD_ARGC) {
1561 case 0:
1562 apsel = 0;
1563 break;
1564 case 1:
1565 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1566 /* AP address is in bits 31:24 of DP_SELECT */
1567 if (apsel >= 256)
1568 return ERROR_COMMAND_SYNTAX_ERROR;
1569 break;
1570 default:
1571 return ERROR_COMMAND_SYNTAX_ERROR;
1572 }
1573
1574 dap->apsel = apsel;
1575 dap_ap_select(dap, apsel);
1576
1577 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1578 if (retval != ERROR_OK)
1579 return retval;
1580 retval = dap_run(dap);
1581 if (retval != ERROR_OK)
1582 return retval;
1583
1584 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1585 apsel, apid);
1586
1587 return retval;
1588 }
1589
1590 COMMAND_HANDLER(dap_apcsw_command)
1591 {
1592 struct target *target = get_current_target(CMD_CTX);
1593 struct arm *arm = target_to_arm(target);
1594 struct adiv5_dap *dap = arm->dap;
1595
1596 uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
1597
1598 switch (CMD_ARGC) {
1599 case 0:
1600 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1601 (dap->apsel), apcsw);
1602 break;
1603 case 1:
1604 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1605 /* AP address is in bits 31:24 of DP_SELECT */
1606 if (sprot > 1)
1607 return ERROR_COMMAND_SYNTAX_ERROR;
1608 if (sprot)
1609 apcsw |= CSW_SPROT;
1610 else
1611 apcsw &= ~CSW_SPROT;
1612 break;
1613 default:
1614 return ERROR_COMMAND_SYNTAX_ERROR;
1615 }
1616 dap->apcsw[dap->apsel] = apcsw;
1617
1618 return 0;
1619 }
1620
1621
1622
1623 COMMAND_HANDLER(dap_apid_command)
1624 {
1625 struct target *target = get_current_target(CMD_CTX);
1626 struct arm *arm = target_to_arm(target);
1627 struct adiv5_dap *dap = arm->dap;
1628
1629 uint32_t apsel, apid;
1630 int retval;
1631
1632 switch (CMD_ARGC) {
1633 case 0:
1634 apsel = dap->apsel;
1635 break;
1636 case 1:
1637 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1638 /* AP address is in bits 31:24 of DP_SELECT */
1639 if (apsel >= 256)
1640 return ERROR_COMMAND_SYNTAX_ERROR;
1641 break;
1642 default:
1643 return ERROR_COMMAND_SYNTAX_ERROR;
1644 }
1645
1646 dap_ap_select(dap, apsel);
1647
1648 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1649 if (retval != ERROR_OK)
1650 return retval;
1651 retval = dap_run(dap);
1652 if (retval != ERROR_OK)
1653 return retval;
1654
1655 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1656
1657 return retval;
1658 }
1659
1660 static const struct command_registration dap_commands[] = {
1661 {
1662 .name = "info",
1663 .handler = handle_dap_info_command,
1664 .mode = COMMAND_EXEC,
1665 .help = "display ROM table for MEM-AP "
1666 "(default currently selected AP)",
1667 .usage = "[ap_num]",
1668 },
1669 {
1670 .name = "apsel",
1671 .handler = dap_apsel_command,
1672 .mode = COMMAND_EXEC,
1673 .help = "Set the currently selected AP (default 0) "
1674 "and display the result",
1675 .usage = "[ap_num]",
1676 },
1677 {
1678 .name = "apcsw",
1679 .handler = dap_apcsw_command,
1680 .mode = COMMAND_EXEC,
1681 .help = "Set csw access bit ",
1682 .usage = "[sprot]",
1683 },
1684
1685 {
1686 .name = "apid",
1687 .handler = dap_apid_command,
1688 .mode = COMMAND_EXEC,
1689 .help = "return ID register from AP "
1690 "(default currently selected AP)",
1691 .usage = "[ap_num]",
1692 },
1693 {
1694 .name = "baseaddr",
1695 .handler = dap_baseaddr_command,
1696 .mode = COMMAND_EXEC,
1697 .help = "return debug base address from MEM-AP "
1698 "(default currently selected AP)",
1699 .usage = "[ap_num]",
1700 },
1701 {
1702 .name = "memaccess",
1703 .handler = dap_memaccess_command,
1704 .mode = COMMAND_EXEC,
1705 .help = "set/get number of extra tck for MEM-AP memory "
1706 "bus access [0-255]",
1707 .usage = "[cycles]",
1708 },
1709 COMMAND_REGISTRATION_DONE
1710 };
1711
1712 const struct command_registration dap_command_handlers[] = {
1713 {
1714 .name = "dap",
1715 .mode = COMMAND_EXEC,
1716 .help = "DAP command group",
1717 .usage = "",
1718 .chain = dap_commands,
1719 },
1720 COMMAND_REGISTRATION_DONE
1721 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)