ARM ADI-V5: cleanup CID/PID addressing
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107 if (select_apsel != dap->apsel)
108 {
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313
314 for (writecount = 0; writecount < blocksize; writecount++)
315 {
316 retval = dap_queue_ap_write(dap, AP_REG_DRW,
317 *(uint32_t *) (buffer + 4 * writecount));
318 if (retval != ERROR_OK)
319 break;
320 }
321
322 if (dap_run(dap) == ERROR_OK)
323 {
324 wcount = wcount - blocksize;
325 address = address + 4 * blocksize;
326 buffer = buffer + 4 * blocksize;
327 }
328 else
329 {
330 errorcount++;
331 }
332
333 if (errorcount > 1)
334 {
335 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
336 /* REVISIT return the *actual* fault code */
337 return ERROR_JTAG_DEVICE_ERROR;
338 }
339 }
340
341 return retval;
342 }
343
344 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
345 uint8_t *buffer, int count, uint32_t address)
346 {
347 int retval = ERROR_OK;
348 int wcount, blocksize, writecount, i;
349
350 wcount = count >> 1;
351
352 while (wcount > 0)
353 {
354 int nbytes;
355
356 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
357 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
358
359 if (wcount < blocksize)
360 blocksize = wcount;
361
362 /* handle unaligned data at 4k boundary */
363 if (blocksize == 0)
364 blocksize = 1;
365
366 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
367 writecount = blocksize;
368
369 do
370 {
371 nbytes = MIN((writecount << 1), 4);
372
373 if (nbytes < 4)
374 {
375 if (mem_ap_write_buf_u16(dap, buffer,
376 nbytes, address) != ERROR_OK)
377 {
378 LOG_WARNING("Block write error address "
379 "0x%" PRIx32 ", count 0x%x",
380 address, count);
381 return ERROR_JTAG_DEVICE_ERROR;
382 }
383
384 address += nbytes >> 1;
385 }
386 else
387 {
388 uint32_t outvalue;
389 memcpy(&outvalue, buffer, sizeof(uint32_t));
390
391 for (i = 0; i < nbytes; i++)
392 {
393 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
394 outvalue >>= 8;
395 address++;
396 }
397
398 memcpy(&outvalue, buffer, sizeof(uint32_t));
399 retval = dap_queue_ap_write(dap,
400 AP_REG_DRW, outvalue);
401 if (retval != ERROR_OK)
402 break;
403
404 if (dap_run(dap) != ERROR_OK)
405 {
406 LOG_WARNING("Block write error address "
407 "0x%" PRIx32 ", count 0x%x",
408 address, count);
409 /* REVISIT return *actual* fault code */
410 return ERROR_JTAG_DEVICE_ERROR;
411 }
412 }
413
414 buffer += nbytes >> 1;
415 writecount -= nbytes >> 1;
416
417 } while (writecount);
418 wcount -= blocksize;
419 }
420
421 return retval;
422 }
423
424 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
425 {
426 int retval = ERROR_OK;
427
428 if (count >= 4)
429 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
430
431 while (count > 0)
432 {
433 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
434 uint16_t svalue;
435 memcpy(&svalue, buffer, sizeof(uint16_t));
436 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
437 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
438 if (retval != ERROR_OK)
439 break;
440
441 retval = dap_run(dap);
442 if (retval != ERROR_OK)
443 break;
444
445 count -= 2;
446 address += 2;
447 buffer += 2;
448 }
449
450 return retval;
451 }
452
453 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
454 uint8_t *buffer, int count, uint32_t address)
455 {
456 int retval = ERROR_OK;
457 int wcount, blocksize, writecount, i;
458
459 wcount = count;
460
461 while (wcount > 0)
462 {
463 int nbytes;
464
465 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
466 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
467
468 if (wcount < blocksize)
469 blocksize = wcount;
470
471 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
472 writecount = blocksize;
473
474 do
475 {
476 nbytes = MIN(writecount, 4);
477
478 if (nbytes < 4)
479 {
480 if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
481 {
482 LOG_WARNING("Block write error address "
483 "0x%" PRIx32 ", count 0x%x",
484 address, count);
485 return ERROR_JTAG_DEVICE_ERROR;
486 }
487
488 address += nbytes;
489 }
490 else
491 {
492 uint32_t outvalue;
493 memcpy(&outvalue, buffer, sizeof(uint32_t));
494
495 for (i = 0; i < nbytes; i++)
496 {
497 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
498 outvalue >>= 8;
499 address++;
500 }
501
502 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 retval = dap_queue_ap_write(dap,
504 AP_REG_DRW, outvalue);
505 if (retval != ERROR_OK)
506 break;
507
508 if (dap_run(dap) != ERROR_OK)
509 {
510 LOG_WARNING("Block write error address "
511 "0x%" PRIx32 ", count 0x%x",
512 address, count);
513 /* REVISIT return *actual* fault code */
514 return ERROR_JTAG_DEVICE_ERROR;
515 }
516 }
517
518 buffer += nbytes;
519 writecount -= nbytes;
520
521 } while (writecount);
522 wcount -= blocksize;
523 }
524
525 return retval;
526 }
527
528 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
529 {
530 int retval = ERROR_OK;
531
532 if (count >= 4)
533 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
534
535 while (count > 0)
536 {
537 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
538 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
539 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
540 if (retval != ERROR_OK)
541 break;
542
543 retval = dap_run(dap);
544 if (retval != ERROR_OK)
545 break;
546
547 count--;
548 address++;
549 buffer++;
550 }
551
552 return retval;
553 }
554
555 /* FIXME don't import ... this is a temporary workaround for the
556 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
557 */
558 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
559 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
560 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
561
562 /**
563 * Synchronously read a block of 32-bit words into a buffer
564 * @param dap The DAP connected to the MEM-AP.
565 * @param buffer where the words will be stored (in host byte order).
566 * @param count How many words to read.
567 * @param address Memory address from which to read words; all the
568 * words must be readable by the currently selected MEM-AP.
569 */
570 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
571 int count, uint32_t address)
572 {
573 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
574 uint32_t adr = address;
575 uint8_t* pBuffer = buffer;
576
577 count >>= 2;
578 wcount = count;
579
580 while (wcount > 0)
581 {
582 /* Adjust to read blocks within boundaries aligned to the
583 * TAR autoincrement size (at least 2^10). Autoincrement
584 * mode avoids an extra per-word roundtrip to update TAR.
585 */
586 blocksize = max_tar_block_size(dap->tar_autoincr_block,
587 address);
588 if (wcount < blocksize)
589 blocksize = wcount;
590
591 /* handle unaligned data at 4k boundary */
592 if (blocksize == 0)
593 blocksize = 1;
594
595 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
596 address);
597
598 /* FIXME remove these three calls to adi_jtag_dp_scan(),
599 * so this routine becomes transport-neutral. Be careful
600 * not to cause performance problems with JTAG; would it
601 * suffice to loop over dap_queue_ap_read(), or would that
602 * be slower when JTAG is the chosen transport?
603 */
604
605 /* Scan out first read */
606 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
607 DPAP_READ, 0, NULL, NULL);
608 if (retval != ERROR_OK)
609 return retval;
610 for (readcount = 0; readcount < blocksize - 1; readcount++)
611 {
612 /* Scan out next read; scan in posted value for the
613 * previous one. Assumes read is acked "OK/FAULT",
614 * and CTRL_STAT says that meant "OK".
615 */
616 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
617 DPAP_READ, 0, buffer + 4 * readcount,
618 &dap->ack);
619 if (retval != ERROR_OK)
620 return retval;
621 }
622
623 /* Scan in last posted value; RDBUFF has no other effect,
624 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
625 */
626 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
627 DPAP_READ, 0, buffer + 4 * readcount,
628 &dap->ack);
629 if (retval != ERROR_OK)
630 return retval;
631
632 retval = dap_run(dap);
633 if (retval != ERROR_OK)
634 {
635 errorcount++;
636 if (errorcount <= 1)
637 {
638 /* try again */
639 continue;
640 }
641 LOG_WARNING("Block read error address 0x%" PRIx32, address);
642 return retval;
643 }
644 wcount = wcount - blocksize;
645 address += 4 * blocksize;
646 buffer += 4 * blocksize;
647 }
648
649 /* if we have an unaligned access - reorder data */
650 if (adr & 0x3u)
651 {
652 for (readcount = 0; readcount < count; readcount++)
653 {
654 int i;
655 uint32_t data;
656 memcpy(&data, pBuffer, sizeof(uint32_t));
657
658 for (i = 0; i < 4; i++)
659 {
660 *((uint8_t*)pBuffer) =
661 (data >> 8 * (adr & 0x3));
662 pBuffer++;
663 adr++;
664 }
665 }
666 }
667
668 return retval;
669 }
670
671 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
672 uint8_t *buffer, int count, uint32_t address)
673 {
674 uint32_t invalue;
675 int retval = ERROR_OK;
676 int wcount, blocksize, readcount, i;
677
678 wcount = count >> 1;
679
680 while (wcount > 0)
681 {
682 int nbytes;
683
684 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
685 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
686 if (wcount < blocksize)
687 blocksize = wcount;
688
689 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
690
691 /* handle unaligned data at 4k boundary */
692 if (blocksize == 0)
693 blocksize = 1;
694 readcount = blocksize;
695
696 do
697 {
698 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
699 if (dap_run(dap) != ERROR_OK)
700 {
701 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
702 /* REVISIT return the *actual* fault code */
703 return ERROR_JTAG_DEVICE_ERROR;
704 }
705
706 nbytes = MIN((readcount << 1), 4);
707
708 for (i = 0; i < nbytes; i++)
709 {
710 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
711 buffer++;
712 address++;
713 }
714
715 readcount -= (nbytes >> 1);
716 } while (readcount);
717 wcount -= blocksize;
718 }
719
720 return retval;
721 }
722
723 /**
724 * Synchronously read a block of 16-bit halfwords into a buffer
725 * @param dap The DAP connected to the MEM-AP.
726 * @param buffer where the halfwords will be stored (in host byte order).
727 * @param count How many halfwords to read.
728 * @param address Memory address from which to read words; all the
729 * words must be readable by the currently selected MEM-AP.
730 */
731 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
732 int count, uint32_t address)
733 {
734 uint32_t invalue, i;
735 int retval = ERROR_OK;
736
737 if (count >= 4)
738 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
739
740 while (count > 0)
741 {
742 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
743 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
744 if (retval != ERROR_OK)
745 break;
746
747 retval = dap_run(dap);
748 if (retval != ERROR_OK)
749 break;
750
751 if (address & 0x1)
752 {
753 for (i = 0; i < 2; i++)
754 {
755 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
756 buffer++;
757 address++;
758 }
759 }
760 else
761 {
762 uint16_t svalue = (invalue >> 8 * (address & 0x3));
763 memcpy(buffer, &svalue, sizeof(uint16_t));
764 address += 2;
765 buffer += 2;
766 }
767 count -= 2;
768 }
769
770 return retval;
771 }
772
773 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
774 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
775 *
776 * The solution is to arrange for a large out/in scan in this loop and
777 * and convert data afterwards.
778 */
779 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
780 uint8_t *buffer, int count, uint32_t address)
781 {
782 uint32_t invalue;
783 int retval = ERROR_OK;
784 int wcount, blocksize, readcount, i;
785
786 wcount = count;
787
788 while (wcount > 0)
789 {
790 int nbytes;
791
792 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
793 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
794
795 if (wcount < blocksize)
796 blocksize = wcount;
797
798 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
799 readcount = blocksize;
800
801 do
802 {
803 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
804 if (dap_run(dap) != ERROR_OK)
805 {
806 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
807 /* REVISIT return the *actual* fault code */
808 return ERROR_JTAG_DEVICE_ERROR;
809 }
810
811 nbytes = MIN(readcount, 4);
812
813 for (i = 0; i < nbytes; i++)
814 {
815 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
816 buffer++;
817 address++;
818 }
819
820 readcount -= nbytes;
821 } while (readcount);
822 wcount -= blocksize;
823 }
824
825 return retval;
826 }
827
828 /**
829 * Synchronously read a block of bytes into a buffer
830 * @param dap The DAP connected to the MEM-AP.
831 * @param buffer where the bytes will be stored.
832 * @param count How many bytes to read.
833 * @param address Memory address from which to read data; all the
834 * data must be readable by the currently selected MEM-AP.
835 */
836 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
837 int count, uint32_t address)
838 {
839 uint32_t invalue;
840 int retval = ERROR_OK;
841
842 if (count >= 4)
843 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
844
845 while (count > 0)
846 {
847 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
848 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
849 retval = dap_run(dap);
850 if (retval != ERROR_OK)
851 break;
852
853 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
854 count--;
855 address++;
856 buffer++;
857 }
858
859 return retval;
860 }
861
862 /*--------------------------------------------------------------------------*/
863
864
865 /* FIXME don't import ... just initialize as
866 * part of DAP transport setup
867 */
868 extern const struct dap_ops jtag_dp_ops;
869
870 /*--------------------------------------------------------------------------*/
871
872 /**
873 * Initialize a DAP. This sets up the power domains, prepares the DP
874 * for further use, and arranges to use AP #0 for all AP operations
875 * until dap_ap-select() changes that policy.
876 *
877 * @param dap The DAP being initialized.
878 *
879 * @todo Rename this. We also need an initialization scheme which account
880 * for SWD transports not just JTAG; that will need to address differences
881 * in layering. (JTAG is useful without any debug target; but not SWD.)
882 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
883 */
884 int ahbap_debugport_init(struct adiv5_dap *dap)
885 {
886 uint32_t idreg, romaddr, dummy;
887 uint32_t ctrlstat;
888 int cnt = 0;
889 int retval;
890
891 LOG_DEBUG(" ");
892
893 /* JTAG-DP or SWJ-DP, in JTAG mode */
894 dap->ops = &jtag_dp_ops;
895
896 /* Default MEM-AP setup.
897 *
898 * REVISIT AP #0 may be an inappropriate default for this.
899 * Should we probe, or take a hint from the caller?
900 * Presumably we can ignore the possibility of multiple APs.
901 */
902 dap->apsel = !0;
903 dap_ap_select(dap, 0);
904
905 /* DP initialization */
906
907 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
908 if (retval != ERROR_OK)
909 return retval;
910
911 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
912 if (retval != ERROR_OK)
913 return retval;
914
915 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
916 if (retval != ERROR_OK)
917 return retval;
918
919 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
920 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
921 if (retval != ERROR_OK)
922 return retval;
923
924 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
925 if (retval != ERROR_OK)
926 return retval;
927 if ((retval = dap_run(dap)) != ERROR_OK)
928 return retval;
929
930 /* Check that we have debug power domains activated */
931 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
932 {
933 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
934 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
935 if (retval != ERROR_OK)
936 return retval;
937 if ((retval = dap_run(dap)) != ERROR_OK)
938 return retval;
939 alive_sleep(10);
940 }
941
942 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
943 {
944 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
945 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
946 if (retval != ERROR_OK)
947 return retval;
948 if ((retval = dap_run(dap)) != ERROR_OK)
949 return retval;
950 alive_sleep(10);
951 }
952
953 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
954 if (retval != ERROR_OK)
955 return retval;
956 /* With debug power on we can activate OVERRUN checking */
957 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
958 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
962 if (retval != ERROR_OK)
963 return retval;
964
965 /*
966 * REVISIT this isn't actually *initializing* anything in an AP,
967 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
968 * Should it? If the ROM address is valid, is this the right
969 * place to scan the table and do any topology detection?
970 */
971 retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
972 retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
973
974 if ((retval = dap_run(dap)) != ERROR_OK)
975 return retval;
976
977 LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
978 ", Debug ROM Address 0x%" PRIx32,
979 dap->apsel, idreg, romaddr);
980
981 return ERROR_OK;
982 }
983
984 /* CID interpretation -- see ARM IHI 0029B section 3
985 * and ARM IHI 0031A table 13-3.
986 */
987 static const char *class_description[16] ={
988 "Reserved", "ROM table", "Reserved", "Reserved",
989 "Reserved", "Reserved", "Reserved", "Reserved",
990 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
991 "Reserved", "OptimoDE DESS",
992 "Generic IP component", "PrimeCell or System component"
993 };
994
995 static bool
996 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
997 {
998 return cid3 == 0xb1 && cid2 == 0x05
999 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1000 }
1001
1002 static int dap_info_command(struct command_context *cmd_ctx,
1003 struct adiv5_dap *dap, int apsel)
1004 {
1005 int retval;
1006 uint32_t dbgbase, apid;
1007 int romtable_present = 0;
1008 uint8_t mem_ap;
1009 uint32_t apselold;
1010
1011 /* AP address is in bits 31:24 of DP_SELECT */
1012 if (apsel >= 256)
1013 return ERROR_INVALID_ARGUMENTS;
1014
1015 apselold = dap->apsel;
1016 dap_ap_select(dap, apsel);
1017 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1018 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1019 retval = dap_run(dap);
1020 if (retval != ERROR_OK)
1021 return retval;
1022
1023 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1024 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1025 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1026 if (apid)
1027 {
1028 switch (apid&0x0F)
1029 {
1030 case 0:
1031 command_print(cmd_ctx, "\tType is JTAG-AP");
1032 break;
1033 case 1:
1034 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1035 break;
1036 case 2:
1037 command_print(cmd_ctx, "\tType is MEM-AP APB");
1038 break;
1039 default:
1040 command_print(cmd_ctx, "\tUnknown AP type");
1041 break;
1042 }
1043
1044 /* NOTE: a MEM-AP may have a single CoreSight component that's
1045 * not a ROM table ... or have no such components at all.
1046 */
1047 if (mem_ap)
1048 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1049 dbgbase);
1050 }
1051 else
1052 {
1053 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1054 }
1055
1056 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1057 if (romtable_present)
1058 {
1059 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1060 uint16_t entry_offset;
1061
1062 /* bit 16 of apid indicates a memory access port */
1063 if (dbgbase & 0x02)
1064 command_print(cmd_ctx, "\tValid ROM table present");
1065 else
1066 command_print(cmd_ctx, "\tROM table in legacy format");
1067
1068 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1069 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1070 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1071 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1072 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1073 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1074 retval = dap_run(dap);
1075 if (retval != ERROR_OK)
1076 return retval;
1077
1078 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1079 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1080 ", CID2 0x%2.2x"
1081 ", CID1 0x%2.2x"
1082 ", CID0 0x%2.2x",
1083 (unsigned) cid3, (unsigned)cid2,
1084 (unsigned) cid1, (unsigned) cid0);
1085 if (memtype & 0x01)
1086 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1087 else
1088 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1089 "Dedicated debug bus.");
1090
1091 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1092 entry_offset = 0;
1093 do
1094 {
1095 mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1096 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1097 if (romentry&0x01)
1098 {
1099 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1100 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1101 uint32_t component_base;
1102 unsigned part_num;
1103 char *type, *full;
1104
1105 component_base = (dbgbase & 0xFFFFF000)
1106 + (romentry & 0xFFFFF000);
1107
1108 /* IDs are in last 4K section */
1109
1110
1111 mem_ap_read_atomic_u32(dap,
1112 component_base + 0xFE0, &c_pid0);
1113 c_pid0 &= 0xff;
1114 mem_ap_read_atomic_u32(dap,
1115 component_base + 0xFE4, &c_pid1);
1116 c_pid1 &= 0xff;
1117 mem_ap_read_atomic_u32(dap,
1118 component_base + 0xFE8, &c_pid2);
1119 c_pid2 &= 0xff;
1120 mem_ap_read_atomic_u32(dap,
1121 component_base + 0xFEC, &c_pid3);
1122 c_pid3 &= 0xff;
1123 mem_ap_read_atomic_u32(dap,
1124 component_base + 0xFD0, &c_pid4);
1125 c_pid4 &= 0xff;
1126
1127 mem_ap_read_atomic_u32(dap,
1128 component_base + 0xFF0, &c_cid0);
1129 c_cid0 &= 0xff;
1130 mem_ap_read_atomic_u32(dap,
1131 component_base + 0xFF4, &c_cid1);
1132 c_cid1 &= 0xff;
1133 mem_ap_read_atomic_u32(dap,
1134 component_base + 0xFF8, &c_cid2);
1135 c_cid2 &= 0xff;
1136 mem_ap_read_atomic_u32(dap,
1137 component_base + 0xFFC, &c_cid3);
1138 c_cid3 &= 0xff;
1139
1140
1141 command_print(cmd_ctx,
1142 "\t\tComponent base address 0x%" PRIx32
1143 ", start address 0x%" PRIx32,
1144 component_base,
1145 /* component may take multiple 4K pages */
1146 component_base - 0x1000*(c_pid4 >> 4));
1147 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1148 (int) (c_cid1 >> 4) & 0xf,
1149 /* See ARM IHI 0029B Table 3-3 */
1150 class_description[(c_cid1 >> 4) & 0xf]);
1151
1152 /* CoreSight component? */
1153 if (((c_cid1 >> 4) & 0x0f) == 9) {
1154 uint32_t devtype;
1155 unsigned minor;
1156 char *major = "Reserved", *subtype = "Reserved";
1157
1158 mem_ap_read_atomic_u32(dap,
1159 (component_base & 0xfffff000) | 0xfcc,
1160 &devtype);
1161 minor = (devtype >> 4) & 0x0f;
1162 switch (devtype & 0x0f) {
1163 case 0:
1164 major = "Miscellaneous";
1165 switch (minor) {
1166 case 0:
1167 subtype = "other";
1168 break;
1169 case 4:
1170 subtype = "Validation component";
1171 break;
1172 }
1173 break;
1174 case 1:
1175 major = "Trace Sink";
1176 switch (minor) {
1177 case 0:
1178 subtype = "other";
1179 break;
1180 case 1:
1181 subtype = "Port";
1182 break;
1183 case 2:
1184 subtype = "Buffer";
1185 break;
1186 }
1187 break;
1188 case 2:
1189 major = "Trace Link";
1190 switch (minor) {
1191 case 0:
1192 subtype = "other";
1193 break;
1194 case 1:
1195 subtype = "Funnel, router";
1196 break;
1197 case 2:
1198 subtype = "Filter";
1199 break;
1200 case 3:
1201 subtype = "FIFO, buffer";
1202 break;
1203 }
1204 break;
1205 case 3:
1206 major = "Trace Source";
1207 switch (minor) {
1208 case 0:
1209 subtype = "other";
1210 break;
1211 case 1:
1212 subtype = "Processor";
1213 break;
1214 case 2:
1215 subtype = "DSP";
1216 break;
1217 case 3:
1218 subtype = "Engine/Coprocessor";
1219 break;
1220 case 4:
1221 subtype = "Bus";
1222 break;
1223 }
1224 break;
1225 case 4:
1226 major = "Debug Control";
1227 switch (minor) {
1228 case 0:
1229 subtype = "other";
1230 break;
1231 case 1:
1232 subtype = "Trigger Matrix";
1233 break;
1234 case 2:
1235 subtype = "Debug Auth";
1236 break;
1237 }
1238 break;
1239 case 5:
1240 major = "Debug Logic";
1241 switch (minor) {
1242 case 0:
1243 subtype = "other";
1244 break;
1245 case 1:
1246 subtype = "Processor";
1247 break;
1248 case 2:
1249 subtype = "DSP";
1250 break;
1251 case 3:
1252 subtype = "Engine/Coprocessor";
1253 break;
1254 }
1255 break;
1256 }
1257 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1258 (unsigned) (devtype & 0xff),
1259 major, subtype);
1260 /* REVISIT also show 0xfc8 DevId */
1261 }
1262
1263 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1264 command_print(cmd_ctx,
1265 "\t\tCID3 0%2.2x"
1266 ", CID2 0%2.2x"
1267 ", CID1 0%2.2x"
1268 ", CID0 0%2.2x",
1269 (int) c_cid3,
1270 (int) c_cid2,
1271 (int)c_cid1,
1272 (int)c_cid0);
1273 command_print(cmd_ctx,
1274 "\t\tPeripheral ID[4..0] = hex "
1275 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1276 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1277 (int) c_pid1, (int) c_pid0);
1278
1279 /* Part number interpretations are from Cortex
1280 * core specs, the CoreSight components TRM
1281 * (ARM DDI 0314H), and ETM specs; also from
1282 * chip observation (e.g. TI SDTI).
1283 */
1284 part_num = (c_pid0 & 0xff);
1285 part_num |= (c_pid1 & 0x0f) << 8;
1286 switch (part_num) {
1287 case 0x000:
1288 type = "Cortex-M3 NVIC";
1289 full = "(Interrupt Controller)";
1290 break;
1291 case 0x001:
1292 type = "Cortex-M3 ITM";
1293 full = "(Instrumentation Trace Module)";
1294 break;
1295 case 0x002:
1296 type = "Cortex-M3 DWT";
1297 full = "(Data Watchpoint and Trace)";
1298 break;
1299 case 0x003:
1300 type = "Cortex-M3 FBP";
1301 full = "(Flash Patch and Breakpoint)";
1302 break;
1303 case 0x00d:
1304 type = "CoreSight ETM11";
1305 full = "(Embedded Trace)";
1306 break;
1307 // case 0x113: what?
1308 case 0x120: /* from OMAP3 memmap */
1309 type = "TI SDTI";
1310 full = "(System Debug Trace Interface)";
1311 break;
1312 case 0x343: /* from OMAP3 memmap */
1313 type = "TI DAPCTL";
1314 full = "";
1315 break;
1316 case 0x906:
1317 type = "Coresight CTI";
1318 full = "(Cross Trigger)";
1319 break;
1320 case 0x907:
1321 type = "Coresight ETB";
1322 full = "(Trace Buffer)";
1323 break;
1324 case 0x908:
1325 type = "Coresight CSTF";
1326 full = "(Trace Funnel)";
1327 break;
1328 case 0x910:
1329 type = "CoreSight ETM9";
1330 full = "(Embedded Trace)";
1331 break;
1332 case 0x912:
1333 type = "Coresight TPIU";
1334 full = "(Trace Port Interface Unit)";
1335 break;
1336 case 0x921:
1337 type = "Cortex-A8 ETM";
1338 full = "(Embedded Trace)";
1339 break;
1340 case 0x922:
1341 type = "Cortex-A8 CTI";
1342 full = "(Cross Trigger)";
1343 break;
1344 case 0x923:
1345 type = "Cortex-M3 TPIU";
1346 full = "(Trace Port Interface Unit)";
1347 break;
1348 case 0x924:
1349 type = "Cortex-M3 ETM";
1350 full = "(Embedded Trace)";
1351 break;
1352 case 0xc08:
1353 type = "Cortex-A8 Debug";
1354 full = "(Debug Unit)";
1355 break;
1356 default:
1357 type = "-*- unrecognized -*-";
1358 full = "";
1359 break;
1360 }
1361 command_print(cmd_ctx, "\t\tPart is %s %s",
1362 type, full);
1363 }
1364 else
1365 {
1366 if (romentry)
1367 command_print(cmd_ctx, "\t\tComponent not present");
1368 else
1369 command_print(cmd_ctx, "\t\tEnd of ROM table");
1370 }
1371 entry_offset += 4;
1372 } while (romentry > 0);
1373 }
1374 else
1375 {
1376 command_print(cmd_ctx, "\tNo ROM table present");
1377 }
1378 dap_ap_select(dap, apselold);
1379
1380 return ERROR_OK;
1381 }
1382
1383 COMMAND_HANDLER(handle_dap_info_command)
1384 {
1385 struct target *target = get_current_target(CMD_CTX);
1386 struct arm *arm = target_to_arm(target);
1387 struct adiv5_dap *dap = arm->dap;
1388 uint32_t apsel;
1389
1390 switch (CMD_ARGC) {
1391 case 0:
1392 apsel = dap->apsel;
1393 break;
1394 case 1:
1395 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1396 break;
1397 default:
1398 return ERROR_COMMAND_SYNTAX_ERROR;
1399 }
1400
1401 return dap_info_command(CMD_CTX, dap, apsel);
1402 }
1403
1404 COMMAND_HANDLER(dap_baseaddr_command)
1405 {
1406 struct target *target = get_current_target(CMD_CTX);
1407 struct arm *arm = target_to_arm(target);
1408 struct adiv5_dap *dap = arm->dap;
1409
1410 uint32_t apsel, apselsave, baseaddr;
1411 int retval;
1412
1413 apselsave = dap->apsel;
1414 switch (CMD_ARGC) {
1415 case 0:
1416 apsel = dap->apsel;
1417 break;
1418 case 1:
1419 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1420 /* AP address is in bits 31:24 of DP_SELECT */
1421 if (apsel >= 256)
1422 return ERROR_INVALID_ARGUMENTS;
1423 break;
1424 default:
1425 return ERROR_COMMAND_SYNTAX_ERROR;
1426 }
1427
1428 if (apselsave != apsel)
1429 dap_ap_select(dap, apsel);
1430
1431 /* NOTE: assumes we're talking to a MEM-AP, which
1432 * has a base address. There are other kinds of AP,
1433 * though they're not common for now. This should
1434 * use the ID register to verify it's a MEM-AP.
1435 */
1436 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1437 retval = dap_run(dap);
1438 if (retval != ERROR_OK)
1439 return retval;
1440
1441 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1442
1443 if (apselsave != apsel)
1444 dap_ap_select(dap, apselsave);
1445
1446 return retval;
1447 }
1448
1449 COMMAND_HANDLER(dap_memaccess_command)
1450 {
1451 struct target *target = get_current_target(CMD_CTX);
1452 struct arm *arm = target_to_arm(target);
1453 struct adiv5_dap *dap = arm->dap;
1454
1455 uint32_t memaccess_tck;
1456
1457 switch (CMD_ARGC) {
1458 case 0:
1459 memaccess_tck = dap->memaccess_tck;
1460 break;
1461 case 1:
1462 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1463 break;
1464 default:
1465 return ERROR_COMMAND_SYNTAX_ERROR;
1466 }
1467 dap->memaccess_tck = memaccess_tck;
1468
1469 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1470 dap->memaccess_tck);
1471
1472 return ERROR_OK;
1473 }
1474
1475 COMMAND_HANDLER(dap_apsel_command)
1476 {
1477 struct target *target = get_current_target(CMD_CTX);
1478 struct arm *arm = target_to_arm(target);
1479 struct adiv5_dap *dap = arm->dap;
1480
1481 uint32_t apsel, apid;
1482 int retval;
1483
1484 switch (CMD_ARGC) {
1485 case 0:
1486 apsel = 0;
1487 break;
1488 case 1:
1489 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1490 /* AP address is in bits 31:24 of DP_SELECT */
1491 if (apsel >= 256)
1492 return ERROR_INVALID_ARGUMENTS;
1493 break;
1494 default:
1495 return ERROR_COMMAND_SYNTAX_ERROR;
1496 }
1497
1498 dap_ap_select(dap, apsel);
1499 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1500 retval = dap_run(dap);
1501 if (retval != ERROR_OK)
1502 return retval;
1503
1504 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1505 apsel, apid);
1506
1507 return retval;
1508 }
1509
1510 COMMAND_HANDLER(dap_apid_command)
1511 {
1512 struct target *target = get_current_target(CMD_CTX);
1513 struct arm *arm = target_to_arm(target);
1514 struct adiv5_dap *dap = arm->dap;
1515
1516 uint32_t apsel, apselsave, apid;
1517 int retval;
1518
1519 apselsave = dap->apsel;
1520 switch (CMD_ARGC) {
1521 case 0:
1522 apsel = dap->apsel;
1523 break;
1524 case 1:
1525 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1526 /* AP address is in bits 31:24 of DP_SELECT */
1527 if (apsel >= 256)
1528 return ERROR_INVALID_ARGUMENTS;
1529 break;
1530 default:
1531 return ERROR_COMMAND_SYNTAX_ERROR;
1532 }
1533
1534 if (apselsave != apsel)
1535 dap_ap_select(dap, apsel);
1536
1537 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1538 retval = dap_run(dap);
1539 if (retval != ERROR_OK)
1540 return retval;
1541
1542 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1543 if (apselsave != apsel)
1544 dap_ap_select(dap, apselsave);
1545
1546 return retval;
1547 }
1548
1549 static const struct command_registration dap_commands[] = {
1550 {
1551 .name = "info",
1552 .handler = handle_dap_info_command,
1553 .mode = COMMAND_EXEC,
1554 .help = "display ROM table for MEM-AP "
1555 "(default currently selected AP)",
1556 .usage = "[ap_num]",
1557 },
1558 {
1559 .name = "apsel",
1560 .handler = dap_apsel_command,
1561 .mode = COMMAND_EXEC,
1562 .help = "Set the currently selected AP (default 0) "
1563 "and display the result",
1564 .usage = "[ap_num]",
1565 },
1566 {
1567 .name = "apid",
1568 .handler = dap_apid_command,
1569 .mode = COMMAND_EXEC,
1570 .help = "return ID register from AP "
1571 "(default currently selected AP)",
1572 .usage = "[ap_num]",
1573 },
1574 {
1575 .name = "baseaddr",
1576 .handler = dap_baseaddr_command,
1577 .mode = COMMAND_EXEC,
1578 .help = "return debug base address from MEM-AP "
1579 "(default currently selected AP)",
1580 .usage = "[ap_num]",
1581 },
1582 {
1583 .name = "memaccess",
1584 .handler = dap_memaccess_command,
1585 .mode = COMMAND_EXEC,
1586 .help = "set/get number of extra tck for MEM-AP memory "
1587 "bus access [0-255]",
1588 .usage = "[cycles]",
1589 },
1590 COMMAND_REGISTRATION_DONE
1591 };
1592
1593 const struct command_registration dap_command_handlers[] = {
1594 {
1595 .name = "dap",
1596 .mode = COMMAND_EXEC,
1597 .help = "DAP command group",
1598 .chain = dap_commands,
1599 },
1600 COMMAND_REGISTRATION_DONE
1601 };
1602
1603

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)