arm_adi_v5: Added Cortex-A76 identifiers
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "jtag/swd.h"
79 #include "transport/transport.h"
80 #include <helper/jep106.h>
81 #include <helper/time_support.h>
82 #include <helper/list.h>
83 #include <helper/jim-nvp.h>
84
85 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
86
87 /*
88 uint32_t tar_block_size(uint32_t address)
89 Return the largest block starting at address that does not cross a tar block size alignment boundary
90 */
91 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
92 {
93 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
94 }
95
96 /***************************************************************************
97 * *
98 * DP and MEM-AP register access through APACC and DPACC *
99 * *
100 ***************************************************************************/
101
102 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
103 {
104 csw |= ap->csw_default;
105
106 if (csw != ap->csw_value) {
107 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
108 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
109 if (retval != ERROR_OK) {
110 ap->csw_value = 0;
111 return retval;
112 }
113 ap->csw_value = csw;
114 }
115 return ERROR_OK;
116 }
117
118 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
119 {
120 if (!ap->tar_valid || tar != ap->tar_value) {
121 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
122 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
123 if (retval == ERROR_OK && is_64bit_ap(ap)) {
124 /* See if bits 63:32 of tar is different from last setting */
125 if ((ap->tar_value >> 32) != (tar >> 32))
126 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
127 }
128 if (retval != ERROR_OK) {
129 ap->tar_valid = false;
130 return retval;
131 }
132 ap->tar_value = tar;
133 ap->tar_valid = true;
134 }
135 return ERROR_OK;
136 }
137
138 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
139 {
140 uint32_t lower;
141 uint32_t upper = 0;
142
143 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
144 if (retval == ERROR_OK && is_64bit_ap(ap))
145 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
146
147 if (retval != ERROR_OK) {
148 ap->tar_valid = false;
149 return retval;
150 }
151
152 retval = dap_run(ap->dap);
153 if (retval != ERROR_OK) {
154 ap->tar_valid = false;
155 return retval;
156 }
157
158 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
159
160 ap->tar_value = *tar;
161 ap->tar_valid = true;
162 return ERROR_OK;
163 }
164
165 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
166 {
167 switch (ap->csw_value & CSW_ADDRINC_MASK) {
168 case CSW_ADDRINC_SINGLE:
169 switch (ap->csw_value & CSW_SIZE_MASK) {
170 case CSW_8BIT:
171 return 1;
172 case CSW_16BIT:
173 return 2;
174 case CSW_32BIT:
175 return 4;
176 default:
177 return 0;
178 }
179 case CSW_ADDRINC_PACKED:
180 return 4;
181 }
182 return 0;
183 }
184
185 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
186 */
187 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
188 {
189 if (!ap->tar_valid)
190 return;
191
192 uint32_t inc = mem_ap_get_tar_increment(ap);
193 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
194 ap->tar_valid = false;
195 else
196 ap->tar_value += inc;
197 }
198
199 /**
200 * Queue transactions setting up transfer parameters for the
201 * currently selected MEM-AP.
202 *
203 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
204 * initiate data reads or writes using memory or peripheral addresses.
205 * If the CSW is configured for it, the TAR may be automatically
206 * incremented after each transfer.
207 *
208 * @param ap The MEM-AP.
209 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
210 * matches the cached value, the register is not changed.
211 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
212 * matches the cached address, the register is not changed.
213 *
214 * @return ERROR_OK if the transaction was properly queued, else a fault code.
215 */
216 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
217 {
218 int retval;
219 retval = mem_ap_setup_csw(ap, csw);
220 if (retval != ERROR_OK)
221 return retval;
222 retval = mem_ap_setup_tar(ap, tar);
223 if (retval != ERROR_OK)
224 return retval;
225 return ERROR_OK;
226 }
227
228 /**
229 * Asynchronous (queued) read of a word from memory or a system register.
230 *
231 * @param ap The MEM-AP to access.
232 * @param address Address of the 32-bit word to read; it must be
233 * readable by the currently selected MEM-AP.
234 * @param value points to where the word will be stored when the
235 * transaction queue is flushed (assuming no errors).
236 *
237 * @return ERROR_OK for success. Otherwise a fault code.
238 */
239 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
240 uint32_t *value)
241 {
242 int retval;
243
244 /* Use banked addressing (REG_BDx) to avoid some link traffic
245 * (updating TAR) when reading several consecutive addresses.
246 */
247 retval = mem_ap_setup_transfer(ap,
248 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
249 address & 0xFFFFFFFFFFFFFFF0ull);
250 if (retval != ERROR_OK)
251 return retval;
252
253 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
254 }
255
256 /**
257 * Synchronous read of a word from memory or a system register.
258 * As a side effect, this flushes any queued transactions.
259 *
260 * @param ap The MEM-AP to access.
261 * @param address Address of the 32-bit word to read; it must be
262 * readable by the currently selected MEM-AP.
263 * @param value points to where the result will be stored.
264 *
265 * @return ERROR_OK for success; *value holds the result.
266 * Otherwise a fault code.
267 */
268 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
269 uint32_t *value)
270 {
271 int retval;
272
273 retval = mem_ap_read_u32(ap, address, value);
274 if (retval != ERROR_OK)
275 return retval;
276
277 return dap_run(ap->dap);
278 }
279
280 /**
281 * Asynchronous (queued) write of a word to memory or a system register.
282 *
283 * @param ap The MEM-AP to access.
284 * @param address Address to be written; it must be writable by
285 * the currently selected MEM-AP.
286 * @param value Word that will be written to the address when transaction
287 * queue is flushed (assuming no errors).
288 *
289 * @return ERROR_OK for success. Otherwise a fault code.
290 */
291 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
292 uint32_t value)
293 {
294 int retval;
295
296 /* Use banked addressing (REG_BDx) to avoid some link traffic
297 * (updating TAR) when writing several consecutive addresses.
298 */
299 retval = mem_ap_setup_transfer(ap,
300 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
301 address & 0xFFFFFFFFFFFFFFF0ull);
302 if (retval != ERROR_OK)
303 return retval;
304
305 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
306 value);
307 }
308
309 /**
310 * Synchronous write of a word to memory or a system register.
311 * As a side effect, this flushes any queued transactions.
312 *
313 * @param ap The MEM-AP to access.
314 * @param address Address to be written; it must be writable by
315 * the currently selected MEM-AP.
316 * @param value Word that will be written.
317 *
318 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
319 */
320 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
321 uint32_t value)
322 {
323 int retval = mem_ap_write_u32(ap, address, value);
324
325 if (retval != ERROR_OK)
326 return retval;
327
328 return dap_run(ap->dap);
329 }
330
331 /**
332 * Synchronous write of a block of memory, using a specific access size.
333 *
334 * @param ap The MEM-AP to access.
335 * @param buffer The data buffer to write. No particular alignment is assumed.
336 * @param size Which access size to use, in bytes. 1, 2 or 4.
337 * @param count The number of writes to do (in size units, not bytes).
338 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
339 * @param addrinc Whether the target address should be increased for each write or not. This
340 * should normally be true, except when writing to e.g. a FIFO.
341 * @return ERROR_OK on success, otherwise an error code.
342 */
343 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
344 target_addr_t address, bool addrinc)
345 {
346 struct adiv5_dap *dap = ap->dap;
347 size_t nbytes = size * count;
348 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
349 uint32_t csw_size;
350 target_addr_t addr_xor;
351 int retval = ERROR_OK;
352
353 /* TI BE-32 Quirks mode:
354 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
355 * size write address bytes written in order
356 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
357 * 2 TAR ^ 2 (val >> 8), (val)
358 * 1 TAR ^ 3 (val)
359 * For example, if you attempt to write a single byte to address 0, the processor
360 * will actually write a byte to address 3.
361 *
362 * To make writes of size < 4 work as expected, we xor a value with the address before
363 * setting the TAP, and we set the TAP after every transfer rather then relying on
364 * address increment. */
365
366 if (size == 4) {
367 csw_size = CSW_32BIT;
368 addr_xor = 0;
369 } else if (size == 2) {
370 csw_size = CSW_16BIT;
371 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
372 } else if (size == 1) {
373 csw_size = CSW_8BIT;
374 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
375 } else {
376 return ERROR_TARGET_UNALIGNED_ACCESS;
377 }
378
379 if (ap->unaligned_access_bad && (address % size != 0))
380 return ERROR_TARGET_UNALIGNED_ACCESS;
381
382 while (nbytes > 0) {
383 uint32_t this_size = size;
384
385 /* Select packed transfer if possible */
386 if (addrinc && ap->packed_transfers && nbytes >= 4
387 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
388 this_size = 4;
389 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
390 } else {
391 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
392 }
393
394 if (retval != ERROR_OK)
395 break;
396
397 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
398 if (retval != ERROR_OK)
399 return retval;
400
401 /* How many source bytes each transfer will consume, and their location in the DRW,
402 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
403 uint32_t outvalue = 0;
404 uint32_t drw_byte_idx = address;
405 if (dap->ti_be_32_quirks) {
406 switch (this_size) {
407 case 4:
408 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
409 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
412 break;
413 case 2:
414 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
415 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
416 break;
417 case 1:
418 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
419 break;
420 }
421 } else {
422 switch (this_size) {
423 case 4:
424 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
425 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
426 /* fallthrough */
427 case 2:
428 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
429 /* fallthrough */
430 case 1:
431 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
432 }
433 }
434
435 nbytes -= this_size;
436
437 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
438 if (retval != ERROR_OK)
439 break;
440
441 mem_ap_update_tar_cache(ap);
442 if (addrinc)
443 address += this_size;
444 }
445
446 /* REVISIT: Might want to have a queued version of this function that does not run. */
447 if (retval == ERROR_OK)
448 retval = dap_run(dap);
449
450 if (retval != ERROR_OK) {
451 target_addr_t tar;
452 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
453 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
454 else
455 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
456 }
457
458 return retval;
459 }
460
461 /**
462 * Synchronous read of a block of memory, using a specific access size.
463 *
464 * @param ap The MEM-AP to access.
465 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
466 * @param size Which access size to use, in bytes. 1, 2 or 4.
467 * @param count The number of reads to do (in size units, not bytes).
468 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
469 * @param addrinc Whether the target address should be increased after each read or not. This
470 * should normally be true, except when reading from e.g. a FIFO.
471 * @return ERROR_OK on success, otherwise an error code.
472 */
473 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
474 target_addr_t adr, bool addrinc)
475 {
476 struct adiv5_dap *dap = ap->dap;
477 size_t nbytes = size * count;
478 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
479 uint32_t csw_size;
480 target_addr_t address = adr;
481 int retval = ERROR_OK;
482
483 /* TI BE-32 Quirks mode:
484 * Reads on big-endian TMS570 behave strangely differently than writes.
485 * They read from the physical address requested, but with DRW byte-reversed.
486 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
487 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
488 * so avoid them. */
489
490 if (size == 4)
491 csw_size = CSW_32BIT;
492 else if (size == 2)
493 csw_size = CSW_16BIT;
494 else if (size == 1)
495 csw_size = CSW_8BIT;
496 else
497 return ERROR_TARGET_UNALIGNED_ACCESS;
498
499 if (ap->unaligned_access_bad && (adr % size != 0))
500 return ERROR_TARGET_UNALIGNED_ACCESS;
501
502 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
503 * over-allocation if packed transfers are going to be used, but determining the real need at
504 * this point would be messy. */
505 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
506 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
507 uint32_t *read_ptr = read_buf;
508 if (!read_buf) {
509 LOG_ERROR("Failed to allocate read buffer");
510 return ERROR_FAIL;
511 }
512
513 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
514 * useful bytes it contains, and their location in the word, depends on the type of transfer
515 * and alignment. */
516 while (nbytes > 0) {
517 uint32_t this_size = size;
518
519 /* Select packed transfer if possible */
520 if (addrinc && ap->packed_transfers && nbytes >= 4
521 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
522 this_size = 4;
523 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
524 } else {
525 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
526 }
527 if (retval != ERROR_OK)
528 break;
529
530 retval = mem_ap_setup_tar(ap, address);
531 if (retval != ERROR_OK)
532 break;
533
534 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
535 if (retval != ERROR_OK)
536 break;
537
538 nbytes -= this_size;
539 if (addrinc)
540 address += this_size;
541
542 mem_ap_update_tar_cache(ap);
543 }
544
545 if (retval == ERROR_OK)
546 retval = dap_run(dap);
547
548 /* Restore state */
549 address = adr;
550 nbytes = size * count;
551 read_ptr = read_buf;
552
553 /* If something failed, read TAR to find out how much data was successfully read, so we can
554 * at least give the caller what we have. */
555 if (retval != ERROR_OK) {
556 target_addr_t tar;
557 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
558 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
559 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
560 if (nbytes > tar - address)
561 nbytes = tar - address;
562 } else {
563 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
564 nbytes = 0;
565 }
566 }
567
568 /* Replay loop to populate caller's buffer from the correct word and byte lane */
569 while (nbytes > 0) {
570 uint32_t this_size = size;
571
572 if (addrinc && ap->packed_transfers && nbytes >= 4
573 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
574 this_size = 4;
575 }
576
577 if (dap->ti_be_32_quirks) {
578 switch (this_size) {
579 case 4:
580 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
581 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
582 /* fallthrough */
583 case 2:
584 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
585 /* fallthrough */
586 case 1:
587 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
588 }
589 } else {
590 switch (this_size) {
591 case 4:
592 *buffer++ = *read_ptr >> 8 * (address++ & 3);
593 *buffer++ = *read_ptr >> 8 * (address++ & 3);
594 /* fallthrough */
595 case 2:
596 *buffer++ = *read_ptr >> 8 * (address++ & 3);
597 /* fallthrough */
598 case 1:
599 *buffer++ = *read_ptr >> 8 * (address++ & 3);
600 }
601 }
602
603 read_ptr++;
604 nbytes -= this_size;
605 }
606
607 free(read_buf);
608 return retval;
609 }
610
611 int mem_ap_read_buf(struct adiv5_ap *ap,
612 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
613 {
614 return mem_ap_read(ap, buffer, size, count, address, true);
615 }
616
617 int mem_ap_write_buf(struct adiv5_ap *ap,
618 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
619 {
620 return mem_ap_write(ap, buffer, size, count, address, true);
621 }
622
623 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
624 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
625 {
626 return mem_ap_read(ap, buffer, size, count, address, false);
627 }
628
629 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
630 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
631 {
632 return mem_ap_write(ap, buffer, size, count, address, false);
633 }
634
635 /*--------------------------------------------------------------------------*/
636
637
638 #define DAP_POWER_DOMAIN_TIMEOUT (10)
639
640 /*--------------------------------------------------------------------------*/
641
642 /**
643 * Invalidate cached DP select and cached TAR and CSW of all APs
644 */
645 void dap_invalidate_cache(struct adiv5_dap *dap)
646 {
647 dap->select = DP_SELECT_INVALID;
648 dap->last_read = NULL;
649
650 int i;
651 for (i = 0; i <= 255; i++) {
652 /* force csw and tar write on the next mem-ap access */
653 dap->ap[i].tar_valid = false;
654 dap->ap[i].csw_value = 0;
655 }
656 }
657
658 /**
659 * Initialize a DAP. This sets up the power domains, prepares the DP
660 * for further use and activates overrun checking.
661 *
662 * @param dap The DAP being initialized.
663 */
664 int dap_dp_init(struct adiv5_dap *dap)
665 {
666 int retval;
667
668 LOG_DEBUG("%s", adiv5_dap_name(dap));
669
670 dap->do_reconnect = false;
671 dap_invalidate_cache(dap);
672
673 /*
674 * Early initialize dap->dp_ctrl_stat.
675 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
676 * fails and sets the sticky error, it will trigger the clearing
677 * of the sticky. Without this initialization system and debug power
678 * would be disabled while clearing the sticky error bit.
679 */
680 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
681
682 /*
683 * This write operation clears the sticky error bit in jtag mode only and
684 * is ignored in swd mode. It also powers-up system and debug domains in
685 * both jtag and swd modes, if not done before.
686 */
687 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
688 if (retval != ERROR_OK)
689 return retval;
690
691 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
692 if (retval != ERROR_OK)
693 return retval;
694
695 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
696 if (retval != ERROR_OK)
697 return retval;
698
699 /* Check that we have debug power domains activated */
700 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
701 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
702 CDBGPWRUPACK, CDBGPWRUPACK,
703 DAP_POWER_DOMAIN_TIMEOUT);
704 if (retval != ERROR_OK)
705 return retval;
706
707 if (!dap->ignore_syspwrupack) {
708 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
709 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
710 CSYSPWRUPACK, CSYSPWRUPACK,
711 DAP_POWER_DOMAIN_TIMEOUT);
712 if (retval != ERROR_OK)
713 return retval;
714 }
715
716 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
717 if (retval != ERROR_OK)
718 return retval;
719
720 /* With debug power on we can activate OVERRUN checking */
721 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
722 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
723 if (retval != ERROR_OK)
724 return retval;
725 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
726 if (retval != ERROR_OK)
727 return retval;
728
729 retval = dap_run(dap);
730 if (retval != ERROR_OK)
731 return retval;
732
733 return retval;
734 }
735
736 /**
737 * Initialize a DAP or do reconnect if DAP is not accessible.
738 *
739 * @param dap The DAP being initialized.
740 */
741 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
742 {
743 LOG_DEBUG("%s", adiv5_dap_name(dap));
744
745 /*
746 * Early initialize dap->dp_ctrl_stat.
747 * In jtag mode only, if the following atomic reads fail and set the
748 * sticky error, it will trigger the clearing of the sticky. Without this
749 * initialization system and debug power would be disabled while clearing
750 * the sticky error bit.
751 */
752 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
753
754 dap->do_reconnect = false;
755
756 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
757 if (dap->do_reconnect) {
758 /* dap connect calls dap_dp_init() after transport dependent initialization */
759 return dap->ops->connect(dap);
760 } else {
761 return dap_dp_init(dap);
762 }
763 }
764
765 /**
766 * Initialize a DAP. This sets up the power domains, prepares the DP
767 * for further use, and arranges to use AP #0 for all AP operations
768 * until dap_ap-select() changes that policy.
769 *
770 * @param ap The MEM-AP being initialized.
771 */
772 int mem_ap_init(struct adiv5_ap *ap)
773 {
774 /* check that we support packed transfers */
775 uint32_t csw, cfg;
776 int retval;
777 struct adiv5_dap *dap = ap->dap;
778
779 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
780 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
781 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
782 if (retval != ERROR_OK)
783 return retval;
784
785 retval = dap_run(dap);
786 if (retval != ERROR_OK)
787 return retval;
788
789 ap->cfg_reg = cfg;
790 ap->tar_valid = false;
791 ap->csw_value = 0; /* force csw and tar write */
792 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
793 if (retval != ERROR_OK)
794 return retval;
795
796 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
797 if (retval != ERROR_OK)
798 return retval;
799
800 retval = dap_run(dap);
801 if (retval != ERROR_OK)
802 return retval;
803
804 if (csw & CSW_ADDRINC_PACKED)
805 ap->packed_transfers = true;
806 else
807 ap->packed_transfers = false;
808
809 /* Packed transfers on TI BE-32 processors do not work correctly in
810 * many cases. */
811 if (dap->ti_be_32_quirks)
812 ap->packed_transfers = false;
813
814 LOG_DEBUG("MEM_AP Packed Transfers: %s",
815 ap->packed_transfers ? "enabled" : "disabled");
816
817 /* The ARM ADI spec leaves implementation-defined whether unaligned
818 * memory accesses work, only work partially, or cause a sticky error.
819 * On TI BE-32 processors, reads seem to return garbage in some bytes
820 * and unaligned writes seem to cause a sticky error.
821 * TODO: it would be nice to have a way to detect whether unaligned
822 * operations are supported on other processors. */
823 ap->unaligned_access_bad = dap->ti_be_32_quirks;
824
825 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
826 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
827
828 return ERROR_OK;
829 }
830
831 /**
832 * Put the debug link into SWD mode, if the target supports it.
833 * The link's initial mode may be either JTAG (for example,
834 * with SWJ-DP after reset) or SWD.
835 *
836 * Note that targets using the JTAG-DP do not support SWD, and that
837 * some targets which could otherwise support it may have been
838 * configured to disable SWD signaling
839 *
840 * @param dap The DAP used
841 * @return ERROR_OK or else a fault code.
842 */
843 int dap_to_swd(struct adiv5_dap *dap)
844 {
845 LOG_DEBUG("Enter SWD mode");
846
847 return dap_send_sequence(dap, JTAG_TO_SWD);
848 }
849
850 /**
851 * Put the debug link into JTAG mode, if the target supports it.
852 * The link's initial mode may be either SWD or JTAG.
853 *
854 * Note that targets implemented with SW-DP do not support JTAG, and
855 * that some targets which could otherwise support it may have been
856 * configured to disable JTAG signaling
857 *
858 * @param dap The DAP used
859 * @return ERROR_OK or else a fault code.
860 */
861 int dap_to_jtag(struct adiv5_dap *dap)
862 {
863 LOG_DEBUG("Enter JTAG mode");
864
865 return dap_send_sequence(dap, SWD_TO_JTAG);
866 }
867
868 /* CID interpretation -- see ARM IHI 0029B section 3
869 * and ARM IHI 0031A table 13-3.
870 */
871 static const char *class_description[16] = {
872 "Reserved", "ROM table", "Reserved", "Reserved",
873 "Reserved", "Reserved", "Reserved", "Reserved",
874 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
875 "Reserved", "OptimoDE DESS",
876 "Generic IP component", "PrimeCell or System component"
877 };
878
879 static bool is_dap_cid_ok(uint32_t cid)
880 {
881 return (cid & 0xffff0fff) == 0xb105000d;
882 }
883
884 /*
885 * This function checks the ID for each access port to find the requested Access Port type
886 */
887 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
888 {
889 int ap_num;
890
891 /* Maximum AP number is 255 since the SELECT register is 8 bits */
892 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
893
894 /* read the IDR register of the Access Port */
895 uint32_t id_val = 0;
896
897 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
898 if (retval != ERROR_OK)
899 return retval;
900
901 retval = dap_run(dap);
902
903 /* IDR bits:
904 * 31-28 : Revision
905 * 27-24 : JEDEC bank (0x4 for ARM)
906 * 23-17 : JEDEC code (0x3B for ARM)
907 * 16-13 : Class (0b1000=Mem-AP)
908 * 12-8 : Reserved
909 * 7-4 : AP Variant (non-zero for JTAG-AP)
910 * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
911 */
912
913 /* Reading register for a non-existent AP should not cause an error,
914 * but just to be sure, try to continue searching if an error does happen.
915 */
916 if ((retval == ERROR_OK) && /* Register read success */
917 ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
918 ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
919
920 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
921 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
922 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
923 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
924 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
925 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
926 ap_num, id_val);
927
928 *ap_out = &dap->ap[ap_num];
929 return ERROR_OK;
930 }
931 }
932
933 LOG_DEBUG("No %s found",
934 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
935 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
936 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
937 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
938 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
939 return ERROR_FAIL;
940 }
941
942 int dap_get_debugbase(struct adiv5_ap *ap,
943 target_addr_t *dbgbase, uint32_t *apid)
944 {
945 struct adiv5_dap *dap = ap->dap;
946 int retval;
947 uint32_t baseptr_upper, baseptr_lower;
948
949 baseptr_upper = 0;
950
951 if (is_64bit_ap(ap)) {
952 /* Read higher order 32-bits of base address */
953 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
954 if (retval != ERROR_OK)
955 return retval;
956 }
957
958 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
962 if (retval != ERROR_OK)
963 return retval;
964 retval = dap_run(dap);
965 if (retval != ERROR_OK)
966 return retval;
967
968 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
969
970 return ERROR_OK;
971 }
972
973 int dap_lookup_cs_component(struct adiv5_ap *ap,
974 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
975 {
976 uint32_t romentry, entry_offset = 0, devtype;
977 target_addr_t component_base;
978 int retval;
979
980 dbgbase &= 0xFFFFFFFFFFFFF000ull;
981 *addr = 0;
982
983 do {
984 retval = mem_ap_read_atomic_u32(ap, dbgbase |
985 entry_offset, &romentry);
986 if (retval != ERROR_OK)
987 return retval;
988
989 component_base = dbgbase + (target_addr_t)(romentry & 0xFFFFF000);
990
991 if (romentry & 0x1) {
992 uint32_t c_cid1;
993 retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
994 if (retval != ERROR_OK) {
995 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
996 ", the corresponding core might be turned off", component_base);
997 return retval;
998 }
999 if (((c_cid1 >> 4) & 0x0f) == 1) {
1000 retval = dap_lookup_cs_component(ap, component_base,
1001 type, addr, idx);
1002 if (retval == ERROR_OK)
1003 break;
1004 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1005 return retval;
1006 }
1007
1008 retval = mem_ap_read_atomic_u32(ap, component_base | 0xfcc, &devtype);
1009 if (retval != ERROR_OK)
1010 return retval;
1011 if ((devtype & 0xff) == type) {
1012 if (!*idx) {
1013 *addr = component_base;
1014 break;
1015 } else
1016 (*idx)--;
1017 }
1018 }
1019 entry_offset += 4;
1020 } while ((romentry > 0) && (entry_offset < 0xf00));
1021
1022 if (!*addr)
1023 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1024
1025 return ERROR_OK;
1026 }
1027
1028 static int dap_read_part_id(struct adiv5_ap *ap, target_addr_t component_base, uint32_t *cid, uint64_t *pid)
1029 {
1030 assert((component_base & 0xFFF) == 0);
1031 assert(ap && cid && pid);
1032
1033 uint32_t cid0, cid1, cid2, cid3;
1034 uint32_t pid0, pid1, pid2, pid3, pid4;
1035 int retval;
1036
1037 /* IDs are in last 4K section */
1038 retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
1039 if (retval != ERROR_OK)
1040 return retval;
1041 retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
1042 if (retval != ERROR_OK)
1043 return retval;
1044 retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
1045 if (retval != ERROR_OK)
1046 return retval;
1047 retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
1048 if (retval != ERROR_OK)
1049 return retval;
1050 retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
1051 if (retval != ERROR_OK)
1052 return retval;
1053 retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
1057 if (retval != ERROR_OK)
1058 return retval;
1059 retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
1060 if (retval != ERROR_OK)
1061 return retval;
1062 retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
1063 if (retval != ERROR_OK)
1064 return retval;
1065
1066 retval = dap_run(ap->dap);
1067 if (retval != ERROR_OK)
1068 return retval;
1069
1070 *cid = (cid3 & 0xff) << 24
1071 | (cid2 & 0xff) << 16
1072 | (cid1 & 0xff) << 8
1073 | (cid0 & 0xff);
1074 *pid = (uint64_t)(pid4 & 0xff) << 32
1075 | (pid3 & 0xff) << 24
1076 | (pid2 & 0xff) << 16
1077 | (pid1 & 0xff) << 8
1078 | (pid0 & 0xff);
1079
1080 return ERROR_OK;
1081 }
1082
1083 /* The designer identity code is encoded as:
1084 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
1085 * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
1086 * a legacy ASCII Identity Code.
1087 * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
1088 * JEP106 is a standard available from jedec.org
1089 */
1090
1091 /* Part number interpretations are from Cortex
1092 * core specs, the CoreSight components TRM
1093 * (ARM DDI 0314H), CoreSight System Design
1094 * Guide (ARM DGI 0012D) and ETM specs; also
1095 * from chip observation (e.g. TI SDTI).
1096 */
1097
1098 /* The legacy code only used the part number field to identify CoreSight peripherals.
1099 * This meant that the same part number from two different manufacturers looked the same.
1100 * It is desirable for all future additions to identify with both part number and JEP106.
1101 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1102 */
1103
1104 #define ANY_ID 0x1000
1105
1106 #define ARM_ID 0x4BB
1107
1108 static const struct {
1109 uint16_t designer_id;
1110 uint16_t part_num;
1111 const char *type;
1112 const char *full;
1113 } dap_partnums[] = {
1114 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1115 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1116 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1117 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1118 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1119 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1120 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1121 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1122 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1123 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1124 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1125 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1126 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1127 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1128 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1129 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1130 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1131 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1132 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1133 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1134 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1135 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1136 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1137 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1138 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1139 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1140 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1141 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1142 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1143 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1144 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1145 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1146 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1147 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1148 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1149 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1150 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1151 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1152 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1153 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1154 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1155 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1156 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1157 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1158 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1159 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1160 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1161 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1162 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1163 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1164 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1165 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1166 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1167 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1168 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1169 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1170 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1171 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1172 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1173 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1174 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1175 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1176 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1177 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1178 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1179 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1180 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1181 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1182 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1183 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1184 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1185 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1186 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1187 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1188 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1189 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1190 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1191 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1192 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1193 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1194 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1195 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1196 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1197 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1198 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1199 { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" },
1200 { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1201 { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1202 { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1203 { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1204 { 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
1205 { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1206 { 0x1bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1207 { 0x1bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1208 { 0x1bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1209 { 0x1bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1210 { 0x3eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1211 { 0x3eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1212 { 0x3eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1213 { 0x3eb, 0x302, "Denver Debug", "(Debug Unit)", },
1214 { 0x3eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1215 /* legacy comment: 0x113: what? */
1216 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1217 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1218 };
1219
1220 static int dap_rom_display(struct command_invocation *cmd,
1221 struct adiv5_ap *ap, target_addr_t dbgbase, int depth)
1222 {
1223 int retval;
1224 uint64_t pid;
1225 uint32_t cid;
1226 char tabs[16] = "";
1227
1228 if (depth > 16) {
1229 command_print(cmd, "\tTables too deep");
1230 return ERROR_FAIL;
1231 }
1232
1233 if (depth)
1234 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1235
1236 target_addr_t base_addr = dbgbase & 0xFFFFFFFFFFFFF000ull;
1237 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_addr);
1238
1239 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1240 if (retval != ERROR_OK) {
1241 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1242 return ERROR_OK; /* Don't abort recursion */
1243 }
1244
1245 if (!is_dap_cid_ok(cid)) {
1246 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1247 return ERROR_OK; /* Don't abort recursion */
1248 }
1249
1250 /* component may take multiple 4K pages */
1251 uint32_t size = (pid >> 36) & 0xf;
1252 if (size > 0)
1253 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_addr - 0x1000 * size);
1254
1255 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1256
1257 uint8_t class = (cid >> 12) & 0xf;
1258 uint16_t part_num = pid & 0xfff;
1259 uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
1260
1261 if (designer_id & 0x80) {
1262 /* JEP106 code */
1263 command_print(cmd, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1264 designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
1265 } else {
1266 /* Legacy ASCII ID, clear invalid bits */
1267 designer_id &= 0x7f;
1268 command_print(cmd, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1269 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1270 }
1271
1272 /* default values to be overwritten upon finding a match */
1273 const char *type = "Unrecognized";
1274 const char *full = "";
1275
1276 /* search dap_partnums[] array for a match */
1277 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1278
1279 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1280 continue;
1281
1282 if (dap_partnums[entry].part_num != part_num)
1283 continue;
1284
1285 type = dap_partnums[entry].type;
1286 full = dap_partnums[entry].full;
1287 break;
1288 }
1289
1290 command_print(cmd, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1291 command_print(cmd, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1292
1293 if (class == 1) { /* ROM Table */
1294 uint32_t memtype;
1295 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
1296 if (retval != ERROR_OK)
1297 return retval;
1298
1299 if (memtype & 0x01)
1300 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1301 else
1302 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1303
1304 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1305 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1306 uint32_t romentry;
1307 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1308 if (retval != ERROR_OK)
1309 return retval;
1310 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1311 tabs, entry_offset, romentry);
1312 if (romentry & 0x01) {
1313 /* Recurse */
1314 retval = dap_rom_display(cmd, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
1315 if (retval != ERROR_OK)
1316 return retval;
1317 } else if (romentry != 0) {
1318 command_print(cmd, "\t\tComponent not present");
1319 } else {
1320 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1321 break;
1322 }
1323 }
1324 } else if (class == 9) { /* CoreSight component */
1325 const char *major = "Reserved", *subtype = "Reserved";
1326
1327 uint32_t devtype;
1328 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
1329 if (retval != ERROR_OK)
1330 return retval;
1331 unsigned minor = (devtype >> 4) & 0x0f;
1332 switch (devtype & 0x0f) {
1333 case 0:
1334 major = "Miscellaneous";
1335 switch (minor) {
1336 case 0:
1337 subtype = "other";
1338 break;
1339 case 4:
1340 subtype = "Validation component";
1341 break;
1342 }
1343 break;
1344 case 1:
1345 major = "Trace Sink";
1346 switch (minor) {
1347 case 0:
1348 subtype = "other";
1349 break;
1350 case 1:
1351 subtype = "Port";
1352 break;
1353 case 2:
1354 subtype = "Buffer";
1355 break;
1356 case 3:
1357 subtype = "Router";
1358 break;
1359 }
1360 break;
1361 case 2:
1362 major = "Trace Link";
1363 switch (minor) {
1364 case 0:
1365 subtype = "other";
1366 break;
1367 case 1:
1368 subtype = "Funnel, router";
1369 break;
1370 case 2:
1371 subtype = "Filter";
1372 break;
1373 case 3:
1374 subtype = "FIFO, buffer";
1375 break;
1376 }
1377 break;
1378 case 3:
1379 major = "Trace Source";
1380 switch (minor) {
1381 case 0:
1382 subtype = "other";
1383 break;
1384 case 1:
1385 subtype = "Processor";
1386 break;
1387 case 2:
1388 subtype = "DSP";
1389 break;
1390 case 3:
1391 subtype = "Engine/Coprocessor";
1392 break;
1393 case 4:
1394 subtype = "Bus";
1395 break;
1396 case 6:
1397 subtype = "Software";
1398 break;
1399 }
1400 break;
1401 case 4:
1402 major = "Debug Control";
1403 switch (minor) {
1404 case 0:
1405 subtype = "other";
1406 break;
1407 case 1:
1408 subtype = "Trigger Matrix";
1409 break;
1410 case 2:
1411 subtype = "Debug Auth";
1412 break;
1413 case 3:
1414 subtype = "Power Requestor";
1415 break;
1416 }
1417 break;
1418 case 5:
1419 major = "Debug Logic";
1420 switch (minor) {
1421 case 0:
1422 subtype = "other";
1423 break;
1424 case 1:
1425 subtype = "Processor";
1426 break;
1427 case 2:
1428 subtype = "DSP";
1429 break;
1430 case 3:
1431 subtype = "Engine/Coprocessor";
1432 break;
1433 case 4:
1434 subtype = "Bus";
1435 break;
1436 case 5:
1437 subtype = "Memory";
1438 break;
1439 }
1440 break;
1441 case 6:
1442 major = "Performance Monitor";
1443 switch (minor) {
1444 case 0:
1445 subtype = "other";
1446 break;
1447 case 1:
1448 subtype = "Processor";
1449 break;
1450 case 2:
1451 subtype = "DSP";
1452 break;
1453 case 3:
1454 subtype = "Engine/Coprocessor";
1455 break;
1456 case 4:
1457 subtype = "Bus";
1458 break;
1459 case 5:
1460 subtype = "Memory";
1461 break;
1462 }
1463 break;
1464 }
1465 command_print(cmd, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1466 (uint8_t)(devtype & 0xff),
1467 major, subtype);
1468 /* REVISIT also show 0xfc8 DevId */
1469 }
1470
1471 return ERROR_OK;
1472 }
1473
1474 int dap_info_command(struct command_invocation *cmd,
1475 struct adiv5_ap *ap)
1476 {
1477 int retval;
1478 uint32_t apid;
1479 target_addr_t dbgbase;
1480 target_addr_t dbgaddr;
1481 uint8_t mem_ap;
1482
1483 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1484 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1485 if (retval != ERROR_OK)
1486 return retval;
1487
1488 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1489 if (apid == 0) {
1490 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1491 return ERROR_FAIL;
1492 }
1493
1494 switch (apid & (IDR_JEP106 | IDR_TYPE)) {
1495 case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
1496 command_print(cmd, "\tType is JTAG-AP");
1497 break;
1498 case IDR_JEP106_ARM | AP_TYPE_AHB3_AP:
1499 command_print(cmd, "\tType is MEM-AP AHB3");
1500 break;
1501 case IDR_JEP106_ARM | AP_TYPE_AHB5_AP:
1502 command_print(cmd, "\tType is MEM-AP AHB5");
1503 break;
1504 case IDR_JEP106_ARM | AP_TYPE_APB_AP:
1505 command_print(cmd, "\tType is MEM-AP APB");
1506 break;
1507 case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
1508 command_print(cmd, "\tType is MEM-AP AXI");
1509 break;
1510 default:
1511 command_print(cmd, "\tUnknown AP type");
1512 break;
1513 }
1514
1515 /* NOTE: a MEM-AP may have a single CoreSight component that's
1516 * not a ROM table ... or have no such components at all.
1517 */
1518 mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
1519 if (mem_ap) {
1520 if (is_64bit_ap(ap))
1521 dbgaddr = 0xFFFFFFFFFFFFFFFFull;
1522 else
1523 dbgaddr = 0xFFFFFFFFul;
1524
1525 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1526
1527 if (dbgbase == dbgaddr || (dbgbase & 0x3) == 0x2) {
1528 command_print(cmd, "\tNo ROM table present");
1529 } else {
1530 if (dbgbase & 0x01)
1531 command_print(cmd, "\tValid ROM table present");
1532 else
1533 command_print(cmd, "\tROM table in legacy format");
1534
1535 dap_rom_display(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1536 }
1537 }
1538
1539 return ERROR_OK;
1540 }
1541
1542 enum adiv5_cfg_param {
1543 CFG_DAP,
1544 CFG_AP_NUM,
1545 CFG_BASEADDR,
1546 CFG_CTIBASE, /* DEPRECATED */
1547 };
1548
1549 static const struct jim_nvp nvp_config_opts[] = {
1550 { .name = "-dap", .value = CFG_DAP },
1551 { .name = "-ap-num", .value = CFG_AP_NUM },
1552 { .name = "-baseaddr", .value = CFG_BASEADDR },
1553 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1554 { .name = NULL, .value = -1 }
1555 };
1556
1557 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1558 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1559 {
1560 if (!goi->argc)
1561 return JIM_OK;
1562
1563 Jim_SetEmptyResult(goi->interp);
1564
1565 struct jim_nvp *n;
1566 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1567 goi->argv[0], &n);
1568 if (e != JIM_OK)
1569 return JIM_CONTINUE;
1570
1571 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1572 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1573 return JIM_CONTINUE;
1574
1575 e = jim_getopt_obj(goi, NULL);
1576 if (e != JIM_OK)
1577 return e;
1578
1579 switch (n->value) {
1580 case CFG_DAP:
1581 if (goi->isconfigure) {
1582 Jim_Obj *o_t;
1583 struct adiv5_dap *dap;
1584 e = jim_getopt_obj(goi, &o_t);
1585 if (e != JIM_OK)
1586 return e;
1587 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1588 if (!dap) {
1589 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1590 return JIM_ERR;
1591 }
1592 if (*dap_p && *dap_p != dap) {
1593 Jim_SetResultString(goi->interp,
1594 "DAP assignment cannot be changed!", -1);
1595 return JIM_ERR;
1596 }
1597 *dap_p = dap;
1598 } else {
1599 if (goi->argc)
1600 goto err_no_param;
1601 if (!*dap_p) {
1602 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1603 return JIM_ERR;
1604 }
1605 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1606 }
1607 break;
1608
1609 case CFG_AP_NUM:
1610 if (goi->isconfigure) {
1611 jim_wide ap_num;
1612 e = jim_getopt_wide(goi, &ap_num);
1613 if (e != JIM_OK)
1614 return e;
1615 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1616 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1617 return JIM_ERR;
1618 }
1619 *ap_num_p = ap_num;
1620 } else {
1621 if (goi->argc)
1622 goto err_no_param;
1623 if (*ap_num_p == DP_APSEL_INVALID) {
1624 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1625 return JIM_ERR;
1626 }
1627 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1628 }
1629 break;
1630
1631 case CFG_CTIBASE:
1632 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1633 /* fall through */
1634 case CFG_BASEADDR:
1635 if (goi->isconfigure) {
1636 jim_wide base;
1637 e = jim_getopt_wide(goi, &base);
1638 if (e != JIM_OK)
1639 return e;
1640 *base_p = (uint32_t)base;
1641 } else {
1642 if (goi->argc)
1643 goto err_no_param;
1644 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1645 }
1646 break;
1647 };
1648
1649 return JIM_OK;
1650
1651 err_no_param:
1652 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1653 return JIM_ERR;
1654 }
1655
1656 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1657 {
1658 struct adiv5_private_config *pc;
1659 int e;
1660
1661 pc = (struct adiv5_private_config *)target->private_config;
1662 if (!pc) {
1663 pc = calloc(1, sizeof(struct adiv5_private_config));
1664 pc->ap_num = DP_APSEL_INVALID;
1665 target->private_config = pc;
1666 }
1667
1668 target->has_dap = true;
1669
1670 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1671 if (e != JIM_OK)
1672 return e;
1673
1674 if (pc->dap && !target->dap_configured) {
1675 if (target->tap_configured) {
1676 pc->dap = NULL;
1677 Jim_SetResultString(goi->interp,
1678 "-chain-position and -dap configparams are mutually exclusive!", -1);
1679 return JIM_ERR;
1680 }
1681 target->tap = pc->dap->tap;
1682 target->dap_configured = true;
1683 }
1684
1685 return JIM_OK;
1686 }
1687
1688 int adiv5_verify_config(struct adiv5_private_config *pc)
1689 {
1690 if (!pc)
1691 return ERROR_FAIL;
1692
1693 if (!pc->dap)
1694 return ERROR_FAIL;
1695
1696 return ERROR_OK;
1697 }
1698
1699 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1700 struct jim_getopt_info *goi)
1701 {
1702 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1703 }
1704
1705 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1706 {
1707 p->dap = NULL;
1708 p->ap_num = DP_APSEL_INVALID;
1709 p->base = 0;
1710 return ERROR_OK;
1711 }
1712
1713 COMMAND_HANDLER(handle_dap_info_command)
1714 {
1715 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1716 uint32_t apsel;
1717
1718 switch (CMD_ARGC) {
1719 case 0:
1720 apsel = dap->apsel;
1721 break;
1722 case 1:
1723 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1724 if (apsel > DP_APSEL_MAX) {
1725 command_print(CMD, "Invalid AP number");
1726 return ERROR_COMMAND_ARGUMENT_INVALID;
1727 }
1728 break;
1729 default:
1730 return ERROR_COMMAND_SYNTAX_ERROR;
1731 }
1732
1733 return dap_info_command(CMD, &dap->ap[apsel]);
1734 }
1735
1736 COMMAND_HANDLER(dap_baseaddr_command)
1737 {
1738 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1739 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1740 struct adiv5_ap *ap;
1741 target_addr_t baseaddr;
1742 int retval;
1743
1744 baseaddr_upper = 0;
1745
1746 switch (CMD_ARGC) {
1747 case 0:
1748 apsel = dap->apsel;
1749 break;
1750 case 1:
1751 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1752 /* AP address is in bits 31:24 of DP_SELECT */
1753 if (apsel > DP_APSEL_MAX) {
1754 command_print(CMD, "Invalid AP number");
1755 return ERROR_COMMAND_ARGUMENT_INVALID;
1756 }
1757 break;
1758 default:
1759 return ERROR_COMMAND_SYNTAX_ERROR;
1760 }
1761
1762 /* NOTE: assumes we're talking to a MEM-AP, which
1763 * has a base address. There are other kinds of AP,
1764 * though they're not common for now. This should
1765 * use the ID register to verify it's a MEM-AP.
1766 */
1767
1768 ap = dap_ap(dap, apsel);
1769 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1770
1771 if (is_64bit_ap(ap) && retval == ERROR_OK)
1772 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1773 if (retval != ERROR_OK)
1774 return retval;
1775 retval = dap_run(dap);
1776 if (retval != ERROR_OK)
1777 return retval;
1778 if (is_64bit_ap(ap)) {
1779 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1780 command_print(CMD, "0x%016" PRIx64, baseaddr);
1781 } else
1782 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1783
1784 return retval;
1785 }
1786
1787 COMMAND_HANDLER(dap_memaccess_command)
1788 {
1789 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1790 uint32_t memaccess_tck;
1791
1792 switch (CMD_ARGC) {
1793 case 0:
1794 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1795 break;
1796 case 1:
1797 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1798 break;
1799 default:
1800 return ERROR_COMMAND_SYNTAX_ERROR;
1801 }
1802 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1803
1804 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1805 dap->ap[dap->apsel].memaccess_tck);
1806
1807 return ERROR_OK;
1808 }
1809
1810 COMMAND_HANDLER(dap_apsel_command)
1811 {
1812 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1813 uint32_t apsel;
1814
1815 switch (CMD_ARGC) {
1816 case 0:
1817 command_print(CMD, "%" PRIu32, dap->apsel);
1818 return ERROR_OK;
1819 case 1:
1820 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1821 /* AP address is in bits 31:24 of DP_SELECT */
1822 if (apsel > DP_APSEL_MAX) {
1823 command_print(CMD, "Invalid AP number");
1824 return ERROR_COMMAND_ARGUMENT_INVALID;
1825 }
1826 break;
1827 default:
1828 return ERROR_COMMAND_SYNTAX_ERROR;
1829 }
1830
1831 dap->apsel = apsel;
1832 return ERROR_OK;
1833 }
1834
1835 COMMAND_HANDLER(dap_apcsw_command)
1836 {
1837 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1838 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1839 uint32_t csw_val, csw_mask;
1840
1841 switch (CMD_ARGC) {
1842 case 0:
1843 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1844 dap->apsel, apcsw);
1845 return ERROR_OK;
1846 case 1:
1847 if (strcmp(CMD_ARGV[0], "default") == 0)
1848 csw_val = CSW_AHB_DEFAULT;
1849 else
1850 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1851
1852 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1853 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1854 return ERROR_COMMAND_ARGUMENT_INVALID;
1855 }
1856 apcsw = csw_val;
1857 break;
1858 case 2:
1859 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1860 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1861 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1862 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1863 return ERROR_COMMAND_ARGUMENT_INVALID;
1864 }
1865 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1866 break;
1867 default:
1868 return ERROR_COMMAND_SYNTAX_ERROR;
1869 }
1870 dap->ap[dap->apsel].csw_default = apcsw;
1871
1872 return 0;
1873 }
1874
1875
1876
1877 COMMAND_HANDLER(dap_apid_command)
1878 {
1879 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1880 uint32_t apsel, apid;
1881 int retval;
1882
1883 switch (CMD_ARGC) {
1884 case 0:
1885 apsel = dap->apsel;
1886 break;
1887 case 1:
1888 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1889 /* AP address is in bits 31:24 of DP_SELECT */
1890 if (apsel > DP_APSEL_MAX) {
1891 command_print(CMD, "Invalid AP number");
1892 return ERROR_COMMAND_ARGUMENT_INVALID;
1893 }
1894 break;
1895 default:
1896 return ERROR_COMMAND_SYNTAX_ERROR;
1897 }
1898
1899 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1900 if (retval != ERROR_OK)
1901 return retval;
1902 retval = dap_run(dap);
1903 if (retval != ERROR_OK)
1904 return retval;
1905
1906 command_print(CMD, "0x%8.8" PRIx32, apid);
1907
1908 return retval;
1909 }
1910
1911 COMMAND_HANDLER(dap_apreg_command)
1912 {
1913 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1914 uint32_t apsel, reg, value;
1915 struct adiv5_ap *ap;
1916 int retval;
1917
1918 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1919 return ERROR_COMMAND_SYNTAX_ERROR;
1920
1921 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1922 /* AP address is in bits 31:24 of DP_SELECT */
1923 if (apsel > DP_APSEL_MAX) {
1924 command_print(CMD, "Invalid AP number");
1925 return ERROR_COMMAND_ARGUMENT_INVALID;
1926 }
1927
1928 ap = dap_ap(dap, apsel);
1929
1930 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1931 if (reg >= 256 || (reg & 3)) {
1932 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1933 return ERROR_COMMAND_ARGUMENT_INVALID;
1934 }
1935
1936 if (CMD_ARGC == 3) {
1937 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1938 switch (reg) {
1939 case MEM_AP_REG_CSW:
1940 ap->csw_value = 0; /* invalid, in case write fails */
1941 retval = dap_queue_ap_write(ap, reg, value);
1942 if (retval == ERROR_OK)
1943 ap->csw_value = value;
1944 break;
1945 case MEM_AP_REG_TAR:
1946 retval = dap_queue_ap_write(ap, reg, value);
1947 if (retval == ERROR_OK)
1948 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
1949 else {
1950 /* To track independent writes to TAR and TAR64, two tar_valid flags */
1951 /* should be used. To keep it simple, tar_valid is only invalidated on a */
1952 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
1953 /* if tar_valid is false. */
1954 ap->tar_valid = false;
1955 }
1956 break;
1957 case MEM_AP_REG_TAR64:
1958 retval = dap_queue_ap_write(ap, reg, value);
1959 if (retval == ERROR_OK)
1960 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
1961 else {
1962 /* See above comment for the MEM_AP_REG_TAR failed write case */
1963 ap->tar_valid = false;
1964 }
1965 break;
1966 default:
1967 retval = dap_queue_ap_write(ap, reg, value);
1968 break;
1969 }
1970 } else {
1971 retval = dap_queue_ap_read(ap, reg, &value);
1972 }
1973 if (retval == ERROR_OK)
1974 retval = dap_run(dap);
1975
1976 if (retval != ERROR_OK)
1977 return retval;
1978
1979 if (CMD_ARGC == 2)
1980 command_print(CMD, "0x%08" PRIx32, value);
1981
1982 return retval;
1983 }
1984
1985 COMMAND_HANDLER(dap_dpreg_command)
1986 {
1987 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1988 uint32_t reg, value;
1989 int retval;
1990
1991 if (CMD_ARGC < 1 || CMD_ARGC > 2)
1992 return ERROR_COMMAND_SYNTAX_ERROR;
1993
1994 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
1995 if (reg >= 256 || (reg & 3)) {
1996 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1997 return ERROR_COMMAND_ARGUMENT_INVALID;
1998 }
1999
2000 if (CMD_ARGC == 2) {
2001 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2002 retval = dap_queue_dp_write(dap, reg, value);
2003 } else {
2004 retval = dap_queue_dp_read(dap, reg, &value);
2005 }
2006 if (retval == ERROR_OK)
2007 retval = dap_run(dap);
2008
2009 if (retval != ERROR_OK)
2010 return retval;
2011
2012 if (CMD_ARGC == 1)
2013 command_print(CMD, "0x%08" PRIx32, value);
2014
2015 return retval;
2016 }
2017
2018 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2019 {
2020 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2021 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2022 "TI BE-32 quirks mode");
2023 }
2024
2025 const struct command_registration dap_instance_commands[] = {
2026 {
2027 .name = "info",
2028 .handler = handle_dap_info_command,
2029 .mode = COMMAND_EXEC,
2030 .help = "display ROM table for MEM-AP "
2031 "(default currently selected AP)",
2032 .usage = "[ap_num]",
2033 },
2034 {
2035 .name = "apsel",
2036 .handler = dap_apsel_command,
2037 .mode = COMMAND_ANY,
2038 .help = "Set the currently selected AP (default 0) "
2039 "and display the result",
2040 .usage = "[ap_num]",
2041 },
2042 {
2043 .name = "apcsw",
2044 .handler = dap_apcsw_command,
2045 .mode = COMMAND_ANY,
2046 .help = "Set CSW default bits",
2047 .usage = "[value [mask]]",
2048 },
2049
2050 {
2051 .name = "apid",
2052 .handler = dap_apid_command,
2053 .mode = COMMAND_EXEC,
2054 .help = "return ID register from AP "
2055 "(default currently selected AP)",
2056 .usage = "[ap_num]",
2057 },
2058 {
2059 .name = "apreg",
2060 .handler = dap_apreg_command,
2061 .mode = COMMAND_EXEC,
2062 .help = "read/write a register from AP "
2063 "(reg is byte address of a word register, like 0 4 8...)",
2064 .usage = "ap_num reg [value]",
2065 },
2066 {
2067 .name = "dpreg",
2068 .handler = dap_dpreg_command,
2069 .mode = COMMAND_EXEC,
2070 .help = "read/write a register from DP "
2071 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2072 .usage = "reg [value]",
2073 },
2074 {
2075 .name = "baseaddr",
2076 .handler = dap_baseaddr_command,
2077 .mode = COMMAND_EXEC,
2078 .help = "return debug base address from MEM-AP "
2079 "(default currently selected AP)",
2080 .usage = "[ap_num]",
2081 },
2082 {
2083 .name = "memaccess",
2084 .handler = dap_memaccess_command,
2085 .mode = COMMAND_EXEC,
2086 .help = "set/get number of extra tck for MEM-AP memory "
2087 "bus access [0-255]",
2088 .usage = "[cycles]",
2089 },
2090 {
2091 .name = "ti_be_32_quirks",
2092 .handler = dap_ti_be_32_quirks_command,
2093 .mode = COMMAND_CONFIG,
2094 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2095 .usage = "[enable]",
2096 },
2097 COMMAND_REGISTRATION_DONE
2098 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)