arm_adi_v5: move in a separate function devtype decode/display
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 static const struct {
897 enum ap_type type;
898 const char *description;
899 } ap_types[] = {
900 { AP_TYPE_JTAG_AP, "JTAG-AP" },
901 { AP_TYPE_COM_AP, "COM-AP" },
902 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
903 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
904 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
905 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
906 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
907 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
908 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
909 };
910
911 static const char *ap_type_to_description(enum ap_type type)
912 {
913 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
914 if (type == ap_types[i].type)
915 return ap_types[i].description;
916
917 return "Unknown";
918 }
919
920 /*
921 * This function checks the ID for each access port to find the requested Access Port type
922 */
923 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
924 {
925 int ap_num;
926
927 /* Maximum AP number is 255 since the SELECT register is 8 bits */
928 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
929
930 /* read the IDR register of the Access Port */
931 uint32_t id_val = 0;
932
933 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
934 if (retval != ERROR_OK)
935 return retval;
936
937 retval = dap_run(dap);
938
939 /* Reading register for a non-existent AP should not cause an error,
940 * but just to be sure, try to continue searching if an error does happen.
941 */
942 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
943 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
944 ap_type_to_description(type_to_find),
945 ap_num, id_val);
946
947 *ap_out = &dap->ap[ap_num];
948 return ERROR_OK;
949 }
950 }
951
952 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
953 return ERROR_FAIL;
954 }
955
956 int dap_get_debugbase(struct adiv5_ap *ap,
957 target_addr_t *dbgbase, uint32_t *apid)
958 {
959 struct adiv5_dap *dap = ap->dap;
960 int retval;
961 uint32_t baseptr_upper, baseptr_lower;
962
963 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
964 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
965 if (retval != ERROR_OK)
966 return retval;
967 }
968 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
969 if (retval != ERROR_OK)
970 return retval;
971 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
972 if (retval != ERROR_OK)
973 return retval;
974 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
975 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
976 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
977 if (retval != ERROR_OK)
978 return retval;
979 }
980
981 retval = dap_run(dap);
982 if (retval != ERROR_OK)
983 return retval;
984
985 if (!is_64bit_ap(ap))
986 baseptr_upper = 0;
987 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
988
989 return ERROR_OK;
990 }
991
992 int dap_lookup_cs_component(struct adiv5_ap *ap,
993 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
994 {
995 uint32_t romentry, entry_offset = 0, devtype;
996 target_addr_t component_base;
997 int retval;
998
999 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1000 *addr = 0;
1001
1002 do {
1003 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1004 entry_offset, &romentry);
1005 if (retval != ERROR_OK)
1006 return retval;
1007
1008 component_base = dbgbase + (target_addr_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1009
1010 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1011 uint32_t c_cid1;
1012 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_CIDR1, &c_cid1);
1013 if (retval != ERROR_OK) {
1014 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1015 ", the corresponding core might be turned off", component_base);
1016 return retval;
1017 }
1018 unsigned int class = (c_cid1 & ARM_CS_CIDR1_CLASS_MASK) >> ARM_CS_CIDR1_CLASS_SHIFT;
1019 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1020 retval = dap_lookup_cs_component(ap, component_base,
1021 type, addr, idx);
1022 if (retval == ERROR_OK)
1023 break;
1024 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1025 return retval;
1026 }
1027
1028 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &devtype);
1029 if (retval != ERROR_OK)
1030 return retval;
1031 if ((devtype & ARM_CS_C9_DEVTYPE_MASK) == type) {
1032 if (!*idx) {
1033 *addr = component_base;
1034 break;
1035 } else
1036 (*idx)--;
1037 }
1038 }
1039 entry_offset += 4;
1040 } while ((romentry > 0) && (entry_offset < 0xf00));
1041
1042 if (!*addr)
1043 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1044
1045 return ERROR_OK;
1046 }
1047
1048 static int dap_read_part_id(struct adiv5_ap *ap, target_addr_t component_base, uint32_t *cid, uint64_t *pid)
1049 {
1050 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1051 assert(ap && cid && pid);
1052
1053 uint32_t cid0, cid1, cid2, cid3;
1054 uint32_t pid0, pid1, pid2, pid3, pid4;
1055 int retval;
1056
1057 /* IDs are in last 4K section */
1058 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1062 if (retval != ERROR_OK)
1063 return retval;
1064 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1065 if (retval != ERROR_OK)
1066 return retval;
1067 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1068 if (retval != ERROR_OK)
1069 return retval;
1070 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1071 if (retval != ERROR_OK)
1072 return retval;
1073 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1074 if (retval != ERROR_OK)
1075 return retval;
1076 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1077 if (retval != ERROR_OK)
1078 return retval;
1079 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1080 if (retval != ERROR_OK)
1081 return retval;
1082 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1083 if (retval != ERROR_OK)
1084 return retval;
1085
1086 retval = dap_run(ap->dap);
1087 if (retval != ERROR_OK)
1088 return retval;
1089
1090 *cid = (cid3 & 0xff) << 24
1091 | (cid2 & 0xff) << 16
1092 | (cid1 & 0xff) << 8
1093 | (cid0 & 0xff);
1094 *pid = (uint64_t)(pid4 & 0xff) << 32
1095 | (pid3 & 0xff) << 24
1096 | (pid2 & 0xff) << 16
1097 | (pid1 & 0xff) << 8
1098 | (pid0 & 0xff);
1099
1100 return ERROR_OK;
1101 }
1102
1103 /* Part number interpretations are from Cortex
1104 * core specs, the CoreSight components TRM
1105 * (ARM DDI 0314H), CoreSight System Design
1106 * Guide (ARM DGI 0012D) and ETM specs; also
1107 * from chip observation (e.g. TI SDTI).
1108 */
1109
1110 /* The legacy code only used the part number field to identify CoreSight peripherals.
1111 * This meant that the same part number from two different manufacturers looked the same.
1112 * It is desirable for all future additions to identify with both part number and JEP106.
1113 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1114 */
1115
1116 #define ANY_ID 0x1000
1117
1118 static const struct {
1119 uint16_t designer_id;
1120 uint16_t part_num;
1121 const char *type;
1122 const char *full;
1123 } dap_partnums[] = {
1124 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1125 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1126 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1127 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1128 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1129 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1130 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1131 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1132 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1133 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1134 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1135 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1136 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1137 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1138 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1139 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1140 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1141 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1142 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1143 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1144 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1145 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1146 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1147 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1148 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1149 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1150 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1151 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1152 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1153 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1154 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1155 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1156 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1157 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1158 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1159 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1160 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1161 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1162 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1163 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1164 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1165 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1166 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1167 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1168 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1169 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1170 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1171 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1172 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1173 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1174 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1175 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1176 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1177 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1178 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1179 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1180 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1181 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1182 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1183 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1184 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1185 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1186 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1187 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1188 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1189 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1190 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1191 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1192 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1193 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1194 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1195 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1196 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1197 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1198 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1199 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1200 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1201 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1202 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1203 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1204 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1205 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1206 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1207 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1208 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1209 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1210 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1211 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1212 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1213 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1214 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1215 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1216 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1217 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1218 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1219 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1220 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1221 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1222 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1223 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1224 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1225 /* legacy comment: 0x113: what? */
1226 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1227 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1228 };
1229
1230 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1231 {
1232 const char *major = "Reserved", *subtype = "Reserved";
1233 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1234 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1235 switch (devtype_major) {
1236 case 0:
1237 major = "Miscellaneous";
1238 switch (minor) {
1239 case 0:
1240 subtype = "other";
1241 break;
1242 case 4:
1243 subtype = "Validation component";
1244 break;
1245 }
1246 break;
1247 case 1:
1248 major = "Trace Sink";
1249 switch (minor) {
1250 case 0:
1251 subtype = "other";
1252 break;
1253 case 1:
1254 subtype = "Port";
1255 break;
1256 case 2:
1257 subtype = "Buffer";
1258 break;
1259 case 3:
1260 subtype = "Router";
1261 break;
1262 }
1263 break;
1264 case 2:
1265 major = "Trace Link";
1266 switch (minor) {
1267 case 0:
1268 subtype = "other";
1269 break;
1270 case 1:
1271 subtype = "Funnel, router";
1272 break;
1273 case 2:
1274 subtype = "Filter";
1275 break;
1276 case 3:
1277 subtype = "FIFO, buffer";
1278 break;
1279 }
1280 break;
1281 case 3:
1282 major = "Trace Source";
1283 switch (minor) {
1284 case 0:
1285 subtype = "other";
1286 break;
1287 case 1:
1288 subtype = "Processor";
1289 break;
1290 case 2:
1291 subtype = "DSP";
1292 break;
1293 case 3:
1294 subtype = "Engine/Coprocessor";
1295 break;
1296 case 4:
1297 subtype = "Bus";
1298 break;
1299 case 6:
1300 subtype = "Software";
1301 break;
1302 }
1303 break;
1304 case 4:
1305 major = "Debug Control";
1306 switch (minor) {
1307 case 0:
1308 subtype = "other";
1309 break;
1310 case 1:
1311 subtype = "Trigger Matrix";
1312 break;
1313 case 2:
1314 subtype = "Debug Auth";
1315 break;
1316 case 3:
1317 subtype = "Power Requestor";
1318 break;
1319 }
1320 break;
1321 case 5:
1322 major = "Debug Logic";
1323 switch (minor) {
1324 case 0:
1325 subtype = "other";
1326 break;
1327 case 1:
1328 subtype = "Processor";
1329 break;
1330 case 2:
1331 subtype = "DSP";
1332 break;
1333 case 3:
1334 subtype = "Engine/Coprocessor";
1335 break;
1336 case 4:
1337 subtype = "Bus";
1338 break;
1339 case 5:
1340 subtype = "Memory";
1341 break;
1342 }
1343 break;
1344 case 6:
1345 major = "Performance Monitor";
1346 switch (minor) {
1347 case 0:
1348 subtype = "other";
1349 break;
1350 case 1:
1351 subtype = "Processor";
1352 break;
1353 case 2:
1354 subtype = "DSP";
1355 break;
1356 case 3:
1357 subtype = "Engine/Coprocessor";
1358 break;
1359 case 4:
1360 subtype = "Bus";
1361 break;
1362 case 5:
1363 subtype = "Memory";
1364 break;
1365 }
1366 break;
1367 }
1368 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1369 devtype & ARM_CS_C9_DEVTYPE_MASK,
1370 major, subtype);
1371 return ERROR_OK;
1372 }
1373
1374 static int dap_rom_display(struct command_invocation *cmd,
1375 struct adiv5_ap *ap, target_addr_t dbgbase, int depth)
1376 {
1377 int retval;
1378 uint64_t pid;
1379 uint32_t cid;
1380 char tabs[16] = "";
1381
1382 if (depth > 16) {
1383 command_print(cmd, "\tTables too deep");
1384 return ERROR_FAIL;
1385 }
1386
1387 if (depth)
1388 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1389
1390 target_addr_t base_addr = dbgbase & 0xFFFFFFFFFFFFF000ull;
1391 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_addr);
1392
1393 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1394 if (retval != ERROR_OK) {
1395 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1396 return ERROR_OK; /* Don't abort recursion */
1397 }
1398
1399 if (!is_valid_arm_cs_cidr(cid)) {
1400 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1401 return ERROR_OK; /* Don't abort recursion */
1402 }
1403
1404 /* component may take multiple 4K pages */
1405 uint32_t size = ARM_CS_PIDR_SIZE(pid);
1406 if (size > 0)
1407 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_addr - 0x1000 * size);
1408
1409 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1410
1411 uint8_t class = (cid & ARM_CS_CIDR_CLASS_MASK) >> ARM_CS_CIDR_CLASS_SHIFT;
1412 uint16_t part_num = ARM_CS_PIDR_PART(pid);
1413 uint16_t designer_id = ARM_CS_PIDR_DESIGNER(pid);
1414
1415 if (pid & ARM_CS_PIDR_JEDEC) {
1416 /* JEP106 code */
1417 command_print(cmd, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1418 designer_id, jep106_manufacturer(designer_id));
1419 } else {
1420 /* Legacy ASCII ID, clear invalid bits */
1421 designer_id &= 0x7f;
1422 command_print(cmd, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1423 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1424 }
1425
1426 /* default values to be overwritten upon finding a match */
1427 const char *type = "Unrecognized";
1428 const char *full = "";
1429
1430 /* search dap_partnums[] array for a match */
1431 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1432
1433 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1434 continue;
1435
1436 if (dap_partnums[entry].part_num != part_num)
1437 continue;
1438
1439 type = dap_partnums[entry].type;
1440 full = dap_partnums[entry].full;
1441 break;
1442 }
1443
1444 command_print(cmd, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1445 command_print(cmd, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1446
1447 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1448 uint32_t memtype;
1449 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C1_MEMTYPE, &memtype);
1450 if (retval != ERROR_OK)
1451 return retval;
1452
1453 if (memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1454 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1455 else
1456 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1457
1458 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1459 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1460 uint32_t romentry;
1461 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1462 if (retval != ERROR_OK)
1463 return retval;
1464 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1465 tabs, entry_offset, romentry);
1466 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1467 /* Recurse. "romentry" is signed */
1468 retval = dap_rom_display(cmd, ap, base_addr + (int32_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK),
1469 depth + 1);
1470 if (retval != ERROR_OK)
1471 return retval;
1472 } else if (romentry != 0) {
1473 command_print(cmd, "\t\tComponent not present");
1474 } else {
1475 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1476 break;
1477 }
1478 }
1479 } else if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1480 uint32_t devtype;
1481 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C9_DEVTYPE, &devtype);
1482 if (retval != ERROR_OK)
1483 return retval;
1484
1485 retval = dap_devtype_display(cmd, devtype);
1486 if (retval != ERROR_OK)
1487 return retval;
1488
1489 /* REVISIT also show ARM_CS_C9_DEVID */
1490 }
1491
1492 return ERROR_OK;
1493 }
1494
1495 int dap_info_command(struct command_invocation *cmd,
1496 struct adiv5_ap *ap)
1497 {
1498 int retval;
1499 uint32_t apid;
1500 target_addr_t dbgbase;
1501 target_addr_t dbgaddr;
1502
1503 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1504 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1505 if (retval != ERROR_OK)
1506 return retval;
1507
1508 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1509 if (apid == 0) {
1510 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1511 return ERROR_FAIL;
1512 }
1513
1514 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1515
1516 /* NOTE: a MEM-AP may have a single CoreSight component that's
1517 * not a ROM table ... or have no such components at all.
1518 */
1519 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1520
1521 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1522 if (is_64bit_ap(ap))
1523 dbgaddr = 0xFFFFFFFFFFFFFFFFull;
1524 else
1525 dbgaddr = 0xFFFFFFFFul;
1526
1527 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1528
1529 if (dbgbase == dbgaddr || (dbgbase & 0x3) == 0x2) {
1530 command_print(cmd, "\tNo ROM table present");
1531 } else {
1532 if (dbgbase & 0x01)
1533 command_print(cmd, "\tValid ROM table present");
1534 else
1535 command_print(cmd, "\tROM table in legacy format");
1536
1537 dap_rom_display(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1538 }
1539 }
1540
1541 return ERROR_OK;
1542 }
1543
1544 enum adiv5_cfg_param {
1545 CFG_DAP,
1546 CFG_AP_NUM,
1547 CFG_BASEADDR,
1548 CFG_CTIBASE, /* DEPRECATED */
1549 };
1550
1551 static const struct jim_nvp nvp_config_opts[] = {
1552 { .name = "-dap", .value = CFG_DAP },
1553 { .name = "-ap-num", .value = CFG_AP_NUM },
1554 { .name = "-baseaddr", .value = CFG_BASEADDR },
1555 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1556 { .name = NULL, .value = -1 }
1557 };
1558
1559 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1560 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1561 {
1562 if (!goi->argc)
1563 return JIM_OK;
1564
1565 Jim_SetEmptyResult(goi->interp);
1566
1567 struct jim_nvp *n;
1568 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1569 goi->argv[0], &n);
1570 if (e != JIM_OK)
1571 return JIM_CONTINUE;
1572
1573 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1574 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1575 return JIM_CONTINUE;
1576
1577 e = jim_getopt_obj(goi, NULL);
1578 if (e != JIM_OK)
1579 return e;
1580
1581 switch (n->value) {
1582 case CFG_DAP:
1583 if (goi->isconfigure) {
1584 Jim_Obj *o_t;
1585 struct adiv5_dap *dap;
1586 e = jim_getopt_obj(goi, &o_t);
1587 if (e != JIM_OK)
1588 return e;
1589 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1590 if (!dap) {
1591 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1592 return JIM_ERR;
1593 }
1594 if (*dap_p && *dap_p != dap) {
1595 Jim_SetResultString(goi->interp,
1596 "DAP assignment cannot be changed!", -1);
1597 return JIM_ERR;
1598 }
1599 *dap_p = dap;
1600 } else {
1601 if (goi->argc)
1602 goto err_no_param;
1603 if (!*dap_p) {
1604 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1605 return JIM_ERR;
1606 }
1607 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1608 }
1609 break;
1610
1611 case CFG_AP_NUM:
1612 if (goi->isconfigure) {
1613 jim_wide ap_num;
1614 e = jim_getopt_wide(goi, &ap_num);
1615 if (e != JIM_OK)
1616 return e;
1617 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1618 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1619 return JIM_ERR;
1620 }
1621 *ap_num_p = ap_num;
1622 } else {
1623 if (goi->argc)
1624 goto err_no_param;
1625 if (*ap_num_p == DP_APSEL_INVALID) {
1626 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1627 return JIM_ERR;
1628 }
1629 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1630 }
1631 break;
1632
1633 case CFG_CTIBASE:
1634 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1635 /* fall through */
1636 case CFG_BASEADDR:
1637 if (goi->isconfigure) {
1638 jim_wide base;
1639 e = jim_getopt_wide(goi, &base);
1640 if (e != JIM_OK)
1641 return e;
1642 *base_p = (uint32_t)base;
1643 } else {
1644 if (goi->argc)
1645 goto err_no_param;
1646 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1647 }
1648 break;
1649 };
1650
1651 return JIM_OK;
1652
1653 err_no_param:
1654 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1655 return JIM_ERR;
1656 }
1657
1658 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1659 {
1660 struct adiv5_private_config *pc;
1661 int e;
1662
1663 pc = (struct adiv5_private_config *)target->private_config;
1664 if (!pc) {
1665 pc = calloc(1, sizeof(struct adiv5_private_config));
1666 pc->ap_num = DP_APSEL_INVALID;
1667 target->private_config = pc;
1668 }
1669
1670 target->has_dap = true;
1671
1672 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1673 if (e != JIM_OK)
1674 return e;
1675
1676 if (pc->dap && !target->dap_configured) {
1677 if (target->tap_configured) {
1678 pc->dap = NULL;
1679 Jim_SetResultString(goi->interp,
1680 "-chain-position and -dap configparams are mutually exclusive!", -1);
1681 return JIM_ERR;
1682 }
1683 target->tap = pc->dap->tap;
1684 target->dap_configured = true;
1685 }
1686
1687 return JIM_OK;
1688 }
1689
1690 int adiv5_verify_config(struct adiv5_private_config *pc)
1691 {
1692 if (!pc)
1693 return ERROR_FAIL;
1694
1695 if (!pc->dap)
1696 return ERROR_FAIL;
1697
1698 return ERROR_OK;
1699 }
1700
1701 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1702 struct jim_getopt_info *goi)
1703 {
1704 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1705 }
1706
1707 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1708 {
1709 p->dap = NULL;
1710 p->ap_num = DP_APSEL_INVALID;
1711 p->base = 0;
1712 return ERROR_OK;
1713 }
1714
1715 COMMAND_HANDLER(handle_dap_info_command)
1716 {
1717 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1718 uint32_t apsel;
1719
1720 switch (CMD_ARGC) {
1721 case 0:
1722 apsel = dap->apsel;
1723 break;
1724 case 1:
1725 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1726 if (apsel > DP_APSEL_MAX) {
1727 command_print(CMD, "Invalid AP number");
1728 return ERROR_COMMAND_ARGUMENT_INVALID;
1729 }
1730 break;
1731 default:
1732 return ERROR_COMMAND_SYNTAX_ERROR;
1733 }
1734
1735 return dap_info_command(CMD, &dap->ap[apsel]);
1736 }
1737
1738 COMMAND_HANDLER(dap_baseaddr_command)
1739 {
1740 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1741 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1742 struct adiv5_ap *ap;
1743 target_addr_t baseaddr;
1744 int retval;
1745
1746 baseaddr_upper = 0;
1747
1748 switch (CMD_ARGC) {
1749 case 0:
1750 apsel = dap->apsel;
1751 break;
1752 case 1:
1753 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1754 /* AP address is in bits 31:24 of DP_SELECT */
1755 if (apsel > DP_APSEL_MAX) {
1756 command_print(CMD, "Invalid AP number");
1757 return ERROR_COMMAND_ARGUMENT_INVALID;
1758 }
1759 break;
1760 default:
1761 return ERROR_COMMAND_SYNTAX_ERROR;
1762 }
1763
1764 /* NOTE: assumes we're talking to a MEM-AP, which
1765 * has a base address. There are other kinds of AP,
1766 * though they're not common for now. This should
1767 * use the ID register to verify it's a MEM-AP.
1768 */
1769
1770 ap = dap_ap(dap, apsel);
1771 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1772
1773 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
1774 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1775
1776 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
1777 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1778 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1779 }
1780
1781 if (retval == ERROR_OK)
1782 retval = dap_run(dap);
1783 if (retval != ERROR_OK)
1784 return retval;
1785
1786 if (is_64bit_ap(ap)) {
1787 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1788 command_print(CMD, "0x%016" PRIx64, baseaddr);
1789 } else
1790 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1791
1792 return ERROR_OK;
1793 }
1794
1795 COMMAND_HANDLER(dap_memaccess_command)
1796 {
1797 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1798 uint32_t memaccess_tck;
1799
1800 switch (CMD_ARGC) {
1801 case 0:
1802 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1803 break;
1804 case 1:
1805 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1806 break;
1807 default:
1808 return ERROR_COMMAND_SYNTAX_ERROR;
1809 }
1810 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1811
1812 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1813 dap->ap[dap->apsel].memaccess_tck);
1814
1815 return ERROR_OK;
1816 }
1817
1818 COMMAND_HANDLER(dap_apsel_command)
1819 {
1820 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1821 uint32_t apsel;
1822
1823 switch (CMD_ARGC) {
1824 case 0:
1825 command_print(CMD, "%" PRIu32, dap->apsel);
1826 return ERROR_OK;
1827 case 1:
1828 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1829 /* AP address is in bits 31:24 of DP_SELECT */
1830 if (apsel > DP_APSEL_MAX) {
1831 command_print(CMD, "Invalid AP number");
1832 return ERROR_COMMAND_ARGUMENT_INVALID;
1833 }
1834 break;
1835 default:
1836 return ERROR_COMMAND_SYNTAX_ERROR;
1837 }
1838
1839 dap->apsel = apsel;
1840 return ERROR_OK;
1841 }
1842
1843 COMMAND_HANDLER(dap_apcsw_command)
1844 {
1845 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1846 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1847 uint32_t csw_val, csw_mask;
1848
1849 switch (CMD_ARGC) {
1850 case 0:
1851 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1852 dap->apsel, apcsw);
1853 return ERROR_OK;
1854 case 1:
1855 if (strcmp(CMD_ARGV[0], "default") == 0)
1856 csw_val = CSW_AHB_DEFAULT;
1857 else
1858 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1859
1860 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1861 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1862 return ERROR_COMMAND_ARGUMENT_INVALID;
1863 }
1864 apcsw = csw_val;
1865 break;
1866 case 2:
1867 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1868 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1869 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1870 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1871 return ERROR_COMMAND_ARGUMENT_INVALID;
1872 }
1873 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1874 break;
1875 default:
1876 return ERROR_COMMAND_SYNTAX_ERROR;
1877 }
1878 dap->ap[dap->apsel].csw_default = apcsw;
1879
1880 return 0;
1881 }
1882
1883
1884
1885 COMMAND_HANDLER(dap_apid_command)
1886 {
1887 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1888 uint32_t apsel, apid;
1889 int retval;
1890
1891 switch (CMD_ARGC) {
1892 case 0:
1893 apsel = dap->apsel;
1894 break;
1895 case 1:
1896 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1897 /* AP address is in bits 31:24 of DP_SELECT */
1898 if (apsel > DP_APSEL_MAX) {
1899 command_print(CMD, "Invalid AP number");
1900 return ERROR_COMMAND_ARGUMENT_INVALID;
1901 }
1902 break;
1903 default:
1904 return ERROR_COMMAND_SYNTAX_ERROR;
1905 }
1906
1907 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1908 if (retval != ERROR_OK)
1909 return retval;
1910 retval = dap_run(dap);
1911 if (retval != ERROR_OK)
1912 return retval;
1913
1914 command_print(CMD, "0x%8.8" PRIx32, apid);
1915
1916 return retval;
1917 }
1918
1919 COMMAND_HANDLER(dap_apreg_command)
1920 {
1921 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1922 uint32_t apsel, reg, value;
1923 struct adiv5_ap *ap;
1924 int retval;
1925
1926 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1927 return ERROR_COMMAND_SYNTAX_ERROR;
1928
1929 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1930 /* AP address is in bits 31:24 of DP_SELECT */
1931 if (apsel > DP_APSEL_MAX) {
1932 command_print(CMD, "Invalid AP number");
1933 return ERROR_COMMAND_ARGUMENT_INVALID;
1934 }
1935
1936 ap = dap_ap(dap, apsel);
1937
1938 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1939 if (reg >= 256 || (reg & 3)) {
1940 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1941 return ERROR_COMMAND_ARGUMENT_INVALID;
1942 }
1943
1944 if (CMD_ARGC == 3) {
1945 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1946 switch (reg) {
1947 case MEM_AP_REG_CSW:
1948 ap->csw_value = 0; /* invalid, in case write fails */
1949 retval = dap_queue_ap_write(ap, reg, value);
1950 if (retval == ERROR_OK)
1951 ap->csw_value = value;
1952 break;
1953 case MEM_AP_REG_TAR:
1954 retval = dap_queue_ap_write(ap, reg, value);
1955 if (retval == ERROR_OK)
1956 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
1957 else {
1958 /* To track independent writes to TAR and TAR64, two tar_valid flags */
1959 /* should be used. To keep it simple, tar_valid is only invalidated on a */
1960 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
1961 /* if tar_valid is false. */
1962 ap->tar_valid = false;
1963 }
1964 break;
1965 case MEM_AP_REG_TAR64:
1966 retval = dap_queue_ap_write(ap, reg, value);
1967 if (retval == ERROR_OK)
1968 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
1969 else {
1970 /* See above comment for the MEM_AP_REG_TAR failed write case */
1971 ap->tar_valid = false;
1972 }
1973 break;
1974 default:
1975 retval = dap_queue_ap_write(ap, reg, value);
1976 break;
1977 }
1978 } else {
1979 retval = dap_queue_ap_read(ap, reg, &value);
1980 }
1981 if (retval == ERROR_OK)
1982 retval = dap_run(dap);
1983
1984 if (retval != ERROR_OK)
1985 return retval;
1986
1987 if (CMD_ARGC == 2)
1988 command_print(CMD, "0x%08" PRIx32, value);
1989
1990 return retval;
1991 }
1992
1993 COMMAND_HANDLER(dap_dpreg_command)
1994 {
1995 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1996 uint32_t reg, value;
1997 int retval;
1998
1999 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2000 return ERROR_COMMAND_SYNTAX_ERROR;
2001
2002 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2003 if (reg >= 256 || (reg & 3)) {
2004 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2005 return ERROR_COMMAND_ARGUMENT_INVALID;
2006 }
2007
2008 if (CMD_ARGC == 2) {
2009 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2010 retval = dap_queue_dp_write(dap, reg, value);
2011 } else {
2012 retval = dap_queue_dp_read(dap, reg, &value);
2013 }
2014 if (retval == ERROR_OK)
2015 retval = dap_run(dap);
2016
2017 if (retval != ERROR_OK)
2018 return retval;
2019
2020 if (CMD_ARGC == 1)
2021 command_print(CMD, "0x%08" PRIx32, value);
2022
2023 return retval;
2024 }
2025
2026 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2027 {
2028 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2029 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2030 "TI BE-32 quirks mode");
2031 }
2032
2033 const struct command_registration dap_instance_commands[] = {
2034 {
2035 .name = "info",
2036 .handler = handle_dap_info_command,
2037 .mode = COMMAND_EXEC,
2038 .help = "display ROM table for MEM-AP "
2039 "(default currently selected AP)",
2040 .usage = "[ap_num]",
2041 },
2042 {
2043 .name = "apsel",
2044 .handler = dap_apsel_command,
2045 .mode = COMMAND_ANY,
2046 .help = "Set the currently selected AP (default 0) "
2047 "and display the result",
2048 .usage = "[ap_num]",
2049 },
2050 {
2051 .name = "apcsw",
2052 .handler = dap_apcsw_command,
2053 .mode = COMMAND_ANY,
2054 .help = "Set CSW default bits",
2055 .usage = "[value [mask]]",
2056 },
2057
2058 {
2059 .name = "apid",
2060 .handler = dap_apid_command,
2061 .mode = COMMAND_EXEC,
2062 .help = "return ID register from AP "
2063 "(default currently selected AP)",
2064 .usage = "[ap_num]",
2065 },
2066 {
2067 .name = "apreg",
2068 .handler = dap_apreg_command,
2069 .mode = COMMAND_EXEC,
2070 .help = "read/write a register from AP "
2071 "(reg is byte address of a word register, like 0 4 8...)",
2072 .usage = "ap_num reg [value]",
2073 },
2074 {
2075 .name = "dpreg",
2076 .handler = dap_dpreg_command,
2077 .mode = COMMAND_EXEC,
2078 .help = "read/write a register from DP "
2079 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2080 .usage = "reg [value]",
2081 },
2082 {
2083 .name = "baseaddr",
2084 .handler = dap_baseaddr_command,
2085 .mode = COMMAND_EXEC,
2086 .help = "return debug base address from MEM-AP "
2087 "(default currently selected AP)",
2088 .usage = "[ap_num]",
2089 },
2090 {
2091 .name = "memaccess",
2092 .handler = dap_memaccess_command,
2093 .mode = COMMAND_EXEC,
2094 .help = "set/get number of extra tck for MEM-AP memory "
2095 "bus access [0-255]",
2096 .usage = "[cycles]",
2097 },
2098 {
2099 .name = "ti_be_32_quirks",
2100 .handler = dap_ti_be_32_quirks_command,
2101 .mode = COMMAND_CONFIG,
2102 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2103 .usage = "[enable]",
2104 },
2105 COMMAND_REGISTRATION_DONE
2106 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)