target: fix some minor typo
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
28 ***************************************************************************/
29
30 /**
31 * @file
32 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
33 * debugging architecture. Compared with previous versions, this includes
34 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
35 * transport, and focuses on memory mapped resources as defined by the
36 * CoreSight architecture.
37 *
38 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
39 * basic components: a Debug Port (DP) transporting messages to and from a
40 * debugger, and an Access Port (AP) accessing resources. Three types of DP
41 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
42 * One uses only SWD for communication, and is called SW-DP. The third can
43 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
44 * is used to access memory mapped resources and is called a MEM-AP. Also a
45 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 *
47 * This programming interface allows DAP pipelined operations through a
48 * transaction queue. This primarily affects AP operations (such as using
49 * a MEM-AP to access memory or registers). If the current transaction has
50 * not finished by the time the next one must begin, and the ORUNDETECT bit
51 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
52 * further AP operations will fail. There are two basic methods to avoid
53 * such overrun errors. One involves polling for status instead of using
54 * transaction pipelining. The other involves adding delays to ensure the
55 * AP has enough time to complete one operation before starting the next
56 * one. (For JTAG these delays are controlled by memaccess_tck.)
57 */
58
59 /*
60 * Relevant specifications from ARM include:
61 *
62 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
63 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 *
65 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
66 * Cortex-M3(tm) TRM, ARM DDI 0337G
67 */
68
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
72
73 #include "jtag/interface.h"
74 #include "arm.h"
75 #include "arm_adi_v5.h"
76 #include "jtag/swd.h"
77 #include "transport/transport.h"
78 #include <helper/jep106.h>
79 #include <helper/time_support.h>
80 #include <helper/list.h>
81 #include <helper/jim-nvp.h>
82
83 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
84
85 /*
86 uint32_t tar_block_size(uint32_t address)
87 Return the largest block starting at address that does not cross a tar block size alignment boundary
88 */
89 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
90 {
91 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
92 }
93
94 /***************************************************************************
95 * *
96 * DP and MEM-AP register access through APACC and DPACC *
97 * *
98 ***************************************************************************/
99
100 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
101 {
102 csw |= ap->csw_default;
103
104 if (csw != ap->csw_value) {
105 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
106 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
107 if (retval != ERROR_OK) {
108 ap->csw_value = 0;
109 return retval;
110 }
111 ap->csw_value = csw;
112 }
113 return ERROR_OK;
114 }
115
116 static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar)
117 {
118 if (!ap->tar_valid || tar != ap->tar_value) {
119 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
120 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar);
121 if (retval != ERROR_OK) {
122 ap->tar_valid = false;
123 return retval;
124 }
125 ap->tar_value = tar;
126 ap->tar_valid = true;
127 }
128 return ERROR_OK;
129 }
130
131 static int mem_ap_read_tar(struct adiv5_ap *ap, uint32_t *tar)
132 {
133 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, tar);
134 if (retval != ERROR_OK) {
135 ap->tar_valid = false;
136 return retval;
137 }
138
139 retval = dap_run(ap->dap);
140 if (retval != ERROR_OK) {
141 ap->tar_valid = false;
142 return retval;
143 }
144
145 ap->tar_value = *tar;
146 ap->tar_valid = true;
147 return ERROR_OK;
148 }
149
150 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
151 {
152 switch (ap->csw_value & CSW_ADDRINC_MASK) {
153 case CSW_ADDRINC_SINGLE:
154 switch (ap->csw_value & CSW_SIZE_MASK) {
155 case CSW_8BIT:
156 return 1;
157 case CSW_16BIT:
158 return 2;
159 case CSW_32BIT:
160 return 4;
161 default:
162 return 0;
163 }
164 case CSW_ADDRINC_PACKED:
165 return 4;
166 }
167 return 0;
168 }
169
170 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
171 */
172 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
173 {
174 if (!ap->tar_valid)
175 return;
176
177 uint32_t inc = mem_ap_get_tar_increment(ap);
178 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
179 ap->tar_valid = false;
180 else
181 ap->tar_value += inc;
182 }
183
184 /**
185 * Queue transactions setting up transfer parameters for the
186 * currently selected MEM-AP.
187 *
188 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
189 * initiate data reads or writes using memory or peripheral addresses.
190 * If the CSW is configured for it, the TAR may be automatically
191 * incremented after each transfer.
192 *
193 * @param ap The MEM-AP.
194 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
195 * matches the cached value, the register is not changed.
196 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
197 * matches the cached address, the register is not changed.
198 *
199 * @return ERROR_OK if the transaction was properly queued, else a fault code.
200 */
201 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar)
202 {
203 int retval;
204 retval = mem_ap_setup_csw(ap, csw);
205 if (retval != ERROR_OK)
206 return retval;
207 retval = mem_ap_setup_tar(ap, tar);
208 if (retval != ERROR_OK)
209 return retval;
210 return ERROR_OK;
211 }
212
213 /**
214 * Asynchronous (queued) read of a word from memory or a system register.
215 *
216 * @param ap The MEM-AP to access.
217 * @param address Address of the 32-bit word to read; it must be
218 * readable by the currently selected MEM-AP.
219 * @param value points to where the word will be stored when the
220 * transaction queue is flushed (assuming no errors).
221 *
222 * @return ERROR_OK for success. Otherwise a fault code.
223 */
224 int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address,
225 uint32_t *value)
226 {
227 int retval;
228
229 /* Use banked addressing (REG_BDx) to avoid some link traffic
230 * (updating TAR) when reading several consecutive addresses.
231 */
232 retval = mem_ap_setup_transfer(ap,
233 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
234 address & 0xFFFFFFF0);
235 if (retval != ERROR_OK)
236 return retval;
237
238 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
239 }
240
241 /**
242 * Synchronous read of a word from memory or a system register.
243 * As a side effect, this flushes any queued transactions.
244 *
245 * @param ap The MEM-AP to access.
246 * @param address Address of the 32-bit word to read; it must be
247 * readable by the currently selected MEM-AP.
248 * @param value points to where the result will be stored.
249 *
250 * @return ERROR_OK for success; *value holds the result.
251 * Otherwise a fault code.
252 */
253 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address,
254 uint32_t *value)
255 {
256 int retval;
257
258 retval = mem_ap_read_u32(ap, address, value);
259 if (retval != ERROR_OK)
260 return retval;
261
262 return dap_run(ap->dap);
263 }
264
265 /**
266 * Asynchronous (queued) write of a word to memory or a system register.
267 *
268 * @param ap The MEM-AP to access.
269 * @param address Address to be written; it must be writable by
270 * the currently selected MEM-AP.
271 * @param value Word that will be written to the address when transaction
272 * queue is flushed (assuming no errors).
273 *
274 * @return ERROR_OK for success. Otherwise a fault code.
275 */
276 int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address,
277 uint32_t value)
278 {
279 int retval;
280
281 /* Use banked addressing (REG_BDx) to avoid some link traffic
282 * (updating TAR) when writing several consecutive addresses.
283 */
284 retval = mem_ap_setup_transfer(ap,
285 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
286 address & 0xFFFFFFF0);
287 if (retval != ERROR_OK)
288 return retval;
289
290 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
291 value);
292 }
293
294 /**
295 * Synchronous write of a word to memory or a system register.
296 * As a side effect, this flushes any queued transactions.
297 *
298 * @param ap The MEM-AP to access.
299 * @param address Address to be written; it must be writable by
300 * the currently selected MEM-AP.
301 * @param value Word that will be written.
302 *
303 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
304 */
305 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address,
306 uint32_t value)
307 {
308 int retval = mem_ap_write_u32(ap, address, value);
309
310 if (retval != ERROR_OK)
311 return retval;
312
313 return dap_run(ap->dap);
314 }
315
316 /**
317 * Synchronous write of a block of memory, using a specific access size.
318 *
319 * @param ap The MEM-AP to access.
320 * @param buffer The data buffer to write. No particular alignment is assumed.
321 * @param size Which access size to use, in bytes. 1, 2 or 4.
322 * @param count The number of writes to do (in size units, not bytes).
323 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
324 * @param addrinc Whether the target address should be increased for each write or not. This
325 * should normally be true, except when writing to e.g. a FIFO.
326 * @return ERROR_OK on success, otherwise an error code.
327 */
328 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
329 uint32_t address, bool addrinc)
330 {
331 struct adiv5_dap *dap = ap->dap;
332 size_t nbytes = size * count;
333 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
334 uint32_t csw_size;
335 uint32_t addr_xor;
336 int retval = ERROR_OK;
337
338 /* TI BE-32 Quirks mode:
339 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
340 * size write address bytes written in order
341 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
342 * 2 TAR ^ 2 (val >> 8), (val)
343 * 1 TAR ^ 3 (val)
344 * For example, if you attempt to write a single byte to address 0, the processor
345 * will actually write a byte to address 3.
346 *
347 * To make writes of size < 4 work as expected, we xor a value with the address before
348 * setting the TAP, and we set the TAP after every transfer rather then relying on
349 * address increment. */
350
351 if (size == 4) {
352 csw_size = CSW_32BIT;
353 addr_xor = 0;
354 } else if (size == 2) {
355 csw_size = CSW_16BIT;
356 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
357 } else if (size == 1) {
358 csw_size = CSW_8BIT;
359 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
360 } else {
361 return ERROR_TARGET_UNALIGNED_ACCESS;
362 }
363
364 if (ap->unaligned_access_bad && (address % size != 0))
365 return ERROR_TARGET_UNALIGNED_ACCESS;
366
367 while (nbytes > 0) {
368 uint32_t this_size = size;
369
370 /* Select packed transfer if possible */
371 if (addrinc && ap->packed_transfers && nbytes >= 4
372 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
373 this_size = 4;
374 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
375 } else {
376 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
377 }
378
379 if (retval != ERROR_OK)
380 break;
381
382 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
383 if (retval != ERROR_OK)
384 return retval;
385
386 /* How many source bytes each transfer will consume, and their location in the DRW,
387 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
388 uint32_t outvalue = 0;
389 uint32_t drw_byte_idx = address;
390 if (dap->ti_be_32_quirks) {
391 switch (this_size) {
392 case 4:
393 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
394 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
395 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
396 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
397 break;
398 case 2:
399 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
400 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
401 break;
402 case 1:
403 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
404 break;
405 }
406 } else {
407 switch (this_size) {
408 case 4:
409 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
410 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
411 /* fallthrough */
412 case 2:
413 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
414 /* fallthrough */
415 case 1:
416 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
417 }
418 }
419
420 nbytes -= this_size;
421
422 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
423 if (retval != ERROR_OK)
424 break;
425
426 mem_ap_update_tar_cache(ap);
427 if (addrinc)
428 address += this_size;
429 }
430
431 /* REVISIT: Might want to have a queued version of this function that does not run. */
432 if (retval == ERROR_OK)
433 retval = dap_run(dap);
434
435 if (retval != ERROR_OK) {
436 uint32_t tar;
437 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
438 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
439 else
440 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
441 }
442
443 return retval;
444 }
445
446 /**
447 * Synchronous read of a block of memory, using a specific access size.
448 *
449 * @param ap The MEM-AP to access.
450 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
451 * @param size Which access size to use, in bytes. 1, 2 or 4.
452 * @param count The number of reads to do (in size units, not bytes).
453 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
454 * @param addrinc Whether the target address should be increased after each read or not. This
455 * should normally be true, except when reading from e.g. a FIFO.
456 * @return ERROR_OK on success, otherwise an error code.
457 */
458 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
459 uint32_t adr, bool addrinc)
460 {
461 struct adiv5_dap *dap = ap->dap;
462 size_t nbytes = size * count;
463 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
464 uint32_t csw_size;
465 uint32_t address = adr;
466 int retval = ERROR_OK;
467
468 /* TI BE-32 Quirks mode:
469 * Reads on big-endian TMS570 behave strangely differently than writes.
470 * They read from the physical address requested, but with DRW byte-reversed.
471 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
472 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
473 * so avoid them. */
474
475 if (size == 4)
476 csw_size = CSW_32BIT;
477 else if (size == 2)
478 csw_size = CSW_16BIT;
479 else if (size == 1)
480 csw_size = CSW_8BIT;
481 else
482 return ERROR_TARGET_UNALIGNED_ACCESS;
483
484 if (ap->unaligned_access_bad && (adr % size != 0))
485 return ERROR_TARGET_UNALIGNED_ACCESS;
486
487 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
488 * over-allocation if packed transfers are going to be used, but determining the real need at
489 * this point would be messy. */
490 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
491 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
492 uint32_t *read_ptr = read_buf;
493 if (read_buf == NULL) {
494 LOG_ERROR("Failed to allocate read buffer");
495 return ERROR_FAIL;
496 }
497
498 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
499 * useful bytes it contains, and their location in the word, depends on the type of transfer
500 * and alignment. */
501 while (nbytes > 0) {
502 uint32_t this_size = size;
503
504 /* Select packed transfer if possible */
505 if (addrinc && ap->packed_transfers && nbytes >= 4
506 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
507 this_size = 4;
508 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
509 } else {
510 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
511 }
512 if (retval != ERROR_OK)
513 break;
514
515 retval = mem_ap_setup_tar(ap, address);
516 if (retval != ERROR_OK)
517 break;
518
519 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
520 if (retval != ERROR_OK)
521 break;
522
523 nbytes -= this_size;
524 if (addrinc)
525 address += this_size;
526
527 mem_ap_update_tar_cache(ap);
528 }
529
530 if (retval == ERROR_OK)
531 retval = dap_run(dap);
532
533 /* Restore state */
534 address = adr;
535 nbytes = size * count;
536 read_ptr = read_buf;
537
538 /* If something failed, read TAR to find out how much data was successfully read, so we can
539 * at least give the caller what we have. */
540 if (retval != ERROR_OK) {
541 uint32_t tar;
542 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
543 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
544 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
545 if (nbytes > tar - address)
546 nbytes = tar - address;
547 } else {
548 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
549 nbytes = 0;
550 }
551 }
552
553 /* Replay loop to populate caller's buffer from the correct word and byte lane */
554 while (nbytes > 0) {
555 uint32_t this_size = size;
556
557 if (addrinc && ap->packed_transfers && nbytes >= 4
558 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
559 this_size = 4;
560 }
561
562 if (dap->ti_be_32_quirks) {
563 switch (this_size) {
564 case 4:
565 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
566 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
567 /* fallthrough */
568 case 2:
569 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
570 /* fallthrough */
571 case 1:
572 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
573 }
574 } else {
575 switch (this_size) {
576 case 4:
577 *buffer++ = *read_ptr >> 8 * (address++ & 3);
578 *buffer++ = *read_ptr >> 8 * (address++ & 3);
579 /* fallthrough */
580 case 2:
581 *buffer++ = *read_ptr >> 8 * (address++ & 3);
582 /* fallthrough */
583 case 1:
584 *buffer++ = *read_ptr >> 8 * (address++ & 3);
585 }
586 }
587
588 read_ptr++;
589 nbytes -= this_size;
590 }
591
592 free(read_buf);
593 return retval;
594 }
595
596 int mem_ap_read_buf(struct adiv5_ap *ap,
597 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
598 {
599 return mem_ap_read(ap, buffer, size, count, address, true);
600 }
601
602 int mem_ap_write_buf(struct adiv5_ap *ap,
603 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
604 {
605 return mem_ap_write(ap, buffer, size, count, address, true);
606 }
607
608 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
609 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
610 {
611 return mem_ap_read(ap, buffer, size, count, address, false);
612 }
613
614 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
615 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
616 {
617 return mem_ap_write(ap, buffer, size, count, address, false);
618 }
619
620 /*--------------------------------------------------------------------------*/
621
622
623 #define DAP_POWER_DOMAIN_TIMEOUT (10)
624
625 /*--------------------------------------------------------------------------*/
626
627 /**
628 * Invalidate cached DP select and cached TAR and CSW of all APs
629 */
630 void dap_invalidate_cache(struct adiv5_dap *dap)
631 {
632 dap->select = DP_SELECT_INVALID;
633 dap->last_read = NULL;
634
635 int i;
636 for (i = 0; i <= 255; i++) {
637 /* force csw and tar write on the next mem-ap access */
638 dap->ap[i].tar_valid = false;
639 dap->ap[i].csw_value = 0;
640 }
641 }
642
643 /**
644 * Initialize a DAP. This sets up the power domains, prepares the DP
645 * for further use and activates overrun checking.
646 *
647 * @param dap The DAP being initialized.
648 */
649 int dap_dp_init(struct adiv5_dap *dap)
650 {
651 int retval;
652
653 LOG_DEBUG("%s", adiv5_dap_name(dap));
654
655 dap->do_reconnect = false;
656 dap_invalidate_cache(dap);
657
658 /*
659 * Early initialize dap->dp_ctrl_stat.
660 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
661 * fails and sets the sticky error, it will trigger the clearing
662 * of the sticky. Without this initialization system and debug power
663 * would be disabled while clearing the sticky error bit.
664 */
665 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
666
667 /*
668 * This write operation clears the sticky error bit in jtag mode only and
669 * is ignored in swd mode. It also powers-up system and debug domains in
670 * both jtag and swd modes, if not done before.
671 */
672 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
673 if (retval != ERROR_OK)
674 return retval;
675
676 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
677 if (retval != ERROR_OK)
678 return retval;
679
680 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
681 if (retval != ERROR_OK)
682 return retval;
683
684 /* Check that we have debug power domains activated */
685 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
686 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
687 CDBGPWRUPACK, CDBGPWRUPACK,
688 DAP_POWER_DOMAIN_TIMEOUT);
689 if (retval != ERROR_OK)
690 return retval;
691
692 if (!dap->ignore_syspwrupack) {
693 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
694 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
695 CSYSPWRUPACK, CSYSPWRUPACK,
696 DAP_POWER_DOMAIN_TIMEOUT);
697 if (retval != ERROR_OK)
698 return retval;
699 }
700
701 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
702 if (retval != ERROR_OK)
703 return retval;
704
705 /* With debug power on we can activate OVERRUN checking */
706 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
707 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
708 if (retval != ERROR_OK)
709 return retval;
710 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
711 if (retval != ERROR_OK)
712 return retval;
713
714 retval = dap_run(dap);
715 if (retval != ERROR_OK)
716 return retval;
717
718 return retval;
719 }
720
721 /**
722 * Initialize a DAP or do reconnect if DAP is not accessible.
723 *
724 * @param dap The DAP being initialized.
725 */
726 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
727 {
728 LOG_DEBUG("%s", adiv5_dap_name(dap));
729
730 /*
731 * Early initialize dap->dp_ctrl_stat.
732 * In jtag mode only, if the following atomic reads fail and set the
733 * sticky error, it will trigger the clearing of the sticky. Without this
734 * initialization system and debug power would be disabled while clearing
735 * the sticky error bit.
736 */
737 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
738
739 dap->do_reconnect = false;
740
741 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
742 if (dap->do_reconnect) {
743 /* dap connect calls dap_dp_init() after transport dependent initialization */
744 return dap->ops->connect(dap);
745 } else {
746 return dap_dp_init(dap);
747 }
748 }
749
750 /**
751 * Initialize a DAP. This sets up the power domains, prepares the DP
752 * for further use, and arranges to use AP #0 for all AP operations
753 * until dap_ap-select() changes that policy.
754 *
755 * @param ap The MEM-AP being initialized.
756 */
757 int mem_ap_init(struct adiv5_ap *ap)
758 {
759 /* check that we support packed transfers */
760 uint32_t csw, cfg;
761 int retval;
762 struct adiv5_dap *dap = ap->dap;
763
764 ap->tar_valid = false;
765 ap->csw_value = 0; /* force csw and tar write */
766 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
767 if (retval != ERROR_OK)
768 return retval;
769
770 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
771 if (retval != ERROR_OK)
772 return retval;
773
774 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
775 if (retval != ERROR_OK)
776 return retval;
777
778 retval = dap_run(dap);
779 if (retval != ERROR_OK)
780 return retval;
781
782 if (csw & CSW_ADDRINC_PACKED)
783 ap->packed_transfers = true;
784 else
785 ap->packed_transfers = false;
786
787 /* Packed transfers on TI BE-32 processors do not work correctly in
788 * many cases. */
789 if (dap->ti_be_32_quirks)
790 ap->packed_transfers = false;
791
792 LOG_DEBUG("MEM_AP Packed Transfers: %s",
793 ap->packed_transfers ? "enabled" : "disabled");
794
795 /* The ARM ADI spec leaves implementation-defined whether unaligned
796 * memory accesses work, only work partially, or cause a sticky error.
797 * On TI BE-32 processors, reads seem to return garbage in some bytes
798 * and unaligned writes seem to cause a sticky error.
799 * TODO: it would be nice to have a way to detect whether unaligned
800 * operations are supported on other processors. */
801 ap->unaligned_access_bad = dap->ti_be_32_quirks;
802
803 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
804 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
805
806 return ERROR_OK;
807 }
808
809 /**
810 * Put the debug link into SWD mode, if the target supports it.
811 * The link's initial mode may be either JTAG (for example,
812 * with SWJ-DP after reset) or SWD.
813 *
814 * Note that targets using the JTAG-DP do not support SWD, and that
815 * some targets which could otherwise support it may have been
816 * configured to disable SWD signaling
817 *
818 * @param dap The DAP used
819 * @return ERROR_OK or else a fault code.
820 */
821 int dap_to_swd(struct adiv5_dap *dap)
822 {
823 LOG_DEBUG("Enter SWD mode");
824
825 return dap_send_sequence(dap, JTAG_TO_SWD);
826 }
827
828 /**
829 * Put the debug link into JTAG mode, if the target supports it.
830 * The link's initial mode may be either SWD or JTAG.
831 *
832 * Note that targets implemented with SW-DP do not support JTAG, and
833 * that some targets which could otherwise support it may have been
834 * configured to disable JTAG signaling
835 *
836 * @param dap The DAP used
837 * @return ERROR_OK or else a fault code.
838 */
839 int dap_to_jtag(struct adiv5_dap *dap)
840 {
841 LOG_DEBUG("Enter JTAG mode");
842
843 return dap_send_sequence(dap, SWD_TO_JTAG);
844 }
845
846 /* CID interpretation -- see ARM IHI 0029B section 3
847 * and ARM IHI 0031A table 13-3.
848 */
849 static const char *class_description[16] = {
850 "Reserved", "ROM table", "Reserved", "Reserved",
851 "Reserved", "Reserved", "Reserved", "Reserved",
852 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
853 "Reserved", "OptimoDE DESS",
854 "Generic IP component", "PrimeCell or System component"
855 };
856
857 static bool is_dap_cid_ok(uint32_t cid)
858 {
859 return (cid & 0xffff0fff) == 0xb105000d;
860 }
861
862 /*
863 * This function checks the ID for each access port to find the requested Access Port type
864 */
865 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
866 {
867 int ap_num;
868
869 /* Maximum AP number is 255 since the SELECT register is 8 bits */
870 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
871
872 /* read the IDR register of the Access Port */
873 uint32_t id_val = 0;
874
875 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
876 if (retval != ERROR_OK)
877 return retval;
878
879 retval = dap_run(dap);
880
881 /* IDR bits:
882 * 31-28 : Revision
883 * 27-24 : JEDEC bank (0x4 for ARM)
884 * 23-17 : JEDEC code (0x3B for ARM)
885 * 16-13 : Class (0b1000=Mem-AP)
886 * 12-8 : Reserved
887 * 7-4 : AP Variant (non-zero for JTAG-AP)
888 * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
889 */
890
891 /* Reading register for a non-existent AP should not cause an error,
892 * but just to be sure, try to continue searching if an error does happen.
893 */
894 if ((retval == ERROR_OK) && /* Register read success */
895 ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
896 ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
897
898 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
899 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
900 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
901 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
902 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
903 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
904 ap_num, id_val);
905
906 *ap_out = &dap->ap[ap_num];
907 return ERROR_OK;
908 }
909 }
910
911 LOG_DEBUG("No %s found",
912 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
913 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
914 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
915 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
916 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
917 return ERROR_FAIL;
918 }
919
920 int dap_get_debugbase(struct adiv5_ap *ap,
921 uint32_t *dbgbase, uint32_t *apid)
922 {
923 struct adiv5_dap *dap = ap->dap;
924 int retval;
925
926 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase);
927 if (retval != ERROR_OK)
928 return retval;
929 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
930 if (retval != ERROR_OK)
931 return retval;
932 retval = dap_run(dap);
933 if (retval != ERROR_OK)
934 return retval;
935
936 return ERROR_OK;
937 }
938
939 int dap_lookup_cs_component(struct adiv5_ap *ap,
940 uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
941 {
942 uint32_t romentry, entry_offset = 0, component_base, devtype;
943 int retval;
944
945 *addr = 0;
946
947 do {
948 retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) |
949 entry_offset, &romentry);
950 if (retval != ERROR_OK)
951 return retval;
952
953 component_base = (dbgbase & 0xFFFFF000)
954 + (romentry & 0xFFFFF000);
955
956 if (romentry & 0x1) {
957 uint32_t c_cid1;
958 retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
959 if (retval != ERROR_OK) {
960 LOG_ERROR("Can't read component with base address 0x%" PRIx32
961 ", the corresponding core might be turned off", component_base);
962 return retval;
963 }
964 if (((c_cid1 >> 4) & 0x0f) == 1) {
965 retval = dap_lookup_cs_component(ap, component_base,
966 type, addr, idx);
967 if (retval == ERROR_OK)
968 break;
969 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
970 return retval;
971 }
972
973 retval = mem_ap_read_atomic_u32(ap,
974 (component_base & 0xfffff000) | 0xfcc,
975 &devtype);
976 if (retval != ERROR_OK)
977 return retval;
978 if ((devtype & 0xff) == type) {
979 if (!*idx) {
980 *addr = component_base;
981 break;
982 } else
983 (*idx)--;
984 }
985 }
986 entry_offset += 4;
987 } while (romentry > 0);
988
989 if (!*addr)
990 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
991
992 return ERROR_OK;
993 }
994
995 static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid)
996 {
997 assert((component_base & 0xFFF) == 0);
998 assert(ap != NULL && cid != NULL && pid != NULL);
999
1000 uint32_t cid0, cid1, cid2, cid3;
1001 uint32_t pid0, pid1, pid2, pid3, pid4;
1002 int retval;
1003
1004 /* IDs are in last 4K section */
1005 retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
1006 if (retval != ERROR_OK)
1007 return retval;
1008 retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
1009 if (retval != ERROR_OK)
1010 return retval;
1011 retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
1012 if (retval != ERROR_OK)
1013 return retval;
1014 retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
1015 if (retval != ERROR_OK)
1016 return retval;
1017 retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
1024 if (retval != ERROR_OK)
1025 return retval;
1026 retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
1027 if (retval != ERROR_OK)
1028 return retval;
1029 retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
1030 if (retval != ERROR_OK)
1031 return retval;
1032
1033 retval = dap_run(ap->dap);
1034 if (retval != ERROR_OK)
1035 return retval;
1036
1037 *cid = (cid3 & 0xff) << 24
1038 | (cid2 & 0xff) << 16
1039 | (cid1 & 0xff) << 8
1040 | (cid0 & 0xff);
1041 *pid = (uint64_t)(pid4 & 0xff) << 32
1042 | (pid3 & 0xff) << 24
1043 | (pid2 & 0xff) << 16
1044 | (pid1 & 0xff) << 8
1045 | (pid0 & 0xff);
1046
1047 return ERROR_OK;
1048 }
1049
1050 /* The designer identity code is encoded as:
1051 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
1052 * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
1053 * a legacy ASCII Identity Code.
1054 * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
1055 * JEP106 is a standard available from jedec.org
1056 */
1057
1058 /* Part number interpretations are from Cortex
1059 * core specs, the CoreSight components TRM
1060 * (ARM DDI 0314H), CoreSight System Design
1061 * Guide (ARM DGI 0012D) and ETM specs; also
1062 * from chip observation (e.g. TI SDTI).
1063 */
1064
1065 /* The legacy code only used the part number field to identify CoreSight peripherals.
1066 * This meant that the same part number from two different manufacturers looked the same.
1067 * It is desirable for all future additions to identify with both part number and JEP106.
1068 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1069 */
1070
1071 #define ANY_ID 0x1000
1072
1073 #define ARM_ID 0x4BB
1074
1075 static const struct {
1076 uint16_t designer_id;
1077 uint16_t part_num;
1078 const char *type;
1079 const char *full;
1080 } dap_partnums[] = {
1081 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1082 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1083 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1084 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1085 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1086 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1087 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1088 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1089 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1090 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1091 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1092 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1093 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1094 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1095 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1096 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1097 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1098 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1099 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1100 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1101 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1102 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1103 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1104 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1105 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1106 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1107 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1108 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1109 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1110 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1111 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1112 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1113 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1114 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1115 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1116 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1117 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1118 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1119 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1120 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1121 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1122 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1123 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1124 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1125 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1126 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1127 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1128 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1129 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1130 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1131 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1132 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1133 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1134 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1135 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1136 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1137 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1138 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1139 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1140 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1141 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1142 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1143 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1144 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1145 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1146 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1147 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1148 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1149 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1150 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1151 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1152 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1153 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1154 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1155 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1156 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1157 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1158 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1159 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1160 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1161 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1162 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1163 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1164 { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" },
1165 { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1166 { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1167 { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1168 { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1169 { 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
1170 { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1171 { 0x3eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1172 { 0x3eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1173 { 0x3eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1174 { 0x3eb, 0x302, "Denver Debug", "(Debug Unit)", },
1175 { 0x3eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1176 /* legacy comment: 0x113: what? */
1177 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1178 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1179 };
1180
1181 static int dap_rom_display(struct command_invocation *cmd,
1182 struct adiv5_ap *ap, uint32_t dbgbase, int depth)
1183 {
1184 int retval;
1185 uint64_t pid;
1186 uint32_t cid;
1187 char tabs[16] = "";
1188
1189 if (depth > 16) {
1190 command_print(cmd, "\tTables too deep");
1191 return ERROR_FAIL;
1192 }
1193
1194 if (depth)
1195 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1196
1197 uint32_t base_addr = dbgbase & 0xFFFFF000;
1198 command_print(cmd, "\t\tComponent base address 0x%08" PRIx32, base_addr);
1199
1200 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1201 if (retval != ERROR_OK) {
1202 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1203 return ERROR_OK; /* Don't abort recursion */
1204 }
1205
1206 if (!is_dap_cid_ok(cid)) {
1207 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1208 return ERROR_OK; /* Don't abort recursion */
1209 }
1210
1211 /* component may take multiple 4K pages */
1212 uint32_t size = (pid >> 36) & 0xf;
1213 if (size > 0)
1214 command_print(cmd, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size));
1215
1216 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1217
1218 uint8_t class = (cid >> 12) & 0xf;
1219 uint16_t part_num = pid & 0xfff;
1220 uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
1221
1222 if (designer_id & 0x80) {
1223 /* JEP106 code */
1224 command_print(cmd, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1225 designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
1226 } else {
1227 /* Legacy ASCII ID, clear invalid bits */
1228 designer_id &= 0x7f;
1229 command_print(cmd, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1230 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1231 }
1232
1233 /* default values to be overwritten upon finding a match */
1234 const char *type = "Unrecognized";
1235 const char *full = "";
1236
1237 /* search dap_partnums[] array for a match */
1238 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1239
1240 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1241 continue;
1242
1243 if (dap_partnums[entry].part_num != part_num)
1244 continue;
1245
1246 type = dap_partnums[entry].type;
1247 full = dap_partnums[entry].full;
1248 break;
1249 }
1250
1251 command_print(cmd, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1252 command_print(cmd, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1253
1254 if (class == 1) { /* ROM Table */
1255 uint32_t memtype;
1256 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
1257 if (retval != ERROR_OK)
1258 return retval;
1259
1260 if (memtype & 0x01)
1261 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1262 else
1263 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1264
1265 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1266 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1267 uint32_t romentry;
1268 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1269 if (retval != ERROR_OK)
1270 return retval;
1271 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1272 tabs, entry_offset, romentry);
1273 if (romentry & 0x01) {
1274 /* Recurse */
1275 retval = dap_rom_display(cmd, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
1276 if (retval != ERROR_OK)
1277 return retval;
1278 } else if (romentry != 0) {
1279 command_print(cmd, "\t\tComponent not present");
1280 } else {
1281 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1282 break;
1283 }
1284 }
1285 } else if (class == 9) { /* CoreSight component */
1286 const char *major = "Reserved", *subtype = "Reserved";
1287
1288 uint32_t devtype;
1289 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
1290 if (retval != ERROR_OK)
1291 return retval;
1292 unsigned minor = (devtype >> 4) & 0x0f;
1293 switch (devtype & 0x0f) {
1294 case 0:
1295 major = "Miscellaneous";
1296 switch (minor) {
1297 case 0:
1298 subtype = "other";
1299 break;
1300 case 4:
1301 subtype = "Validation component";
1302 break;
1303 }
1304 break;
1305 case 1:
1306 major = "Trace Sink";
1307 switch (minor) {
1308 case 0:
1309 subtype = "other";
1310 break;
1311 case 1:
1312 subtype = "Port";
1313 break;
1314 case 2:
1315 subtype = "Buffer";
1316 break;
1317 case 3:
1318 subtype = "Router";
1319 break;
1320 }
1321 break;
1322 case 2:
1323 major = "Trace Link";
1324 switch (minor) {
1325 case 0:
1326 subtype = "other";
1327 break;
1328 case 1:
1329 subtype = "Funnel, router";
1330 break;
1331 case 2:
1332 subtype = "Filter";
1333 break;
1334 case 3:
1335 subtype = "FIFO, buffer";
1336 break;
1337 }
1338 break;
1339 case 3:
1340 major = "Trace Source";
1341 switch (minor) {
1342 case 0:
1343 subtype = "other";
1344 break;
1345 case 1:
1346 subtype = "Processor";
1347 break;
1348 case 2:
1349 subtype = "DSP";
1350 break;
1351 case 3:
1352 subtype = "Engine/Coprocessor";
1353 break;
1354 case 4:
1355 subtype = "Bus";
1356 break;
1357 case 6:
1358 subtype = "Software";
1359 break;
1360 }
1361 break;
1362 case 4:
1363 major = "Debug Control";
1364 switch (minor) {
1365 case 0:
1366 subtype = "other";
1367 break;
1368 case 1:
1369 subtype = "Trigger Matrix";
1370 break;
1371 case 2:
1372 subtype = "Debug Auth";
1373 break;
1374 case 3:
1375 subtype = "Power Requestor";
1376 break;
1377 }
1378 break;
1379 case 5:
1380 major = "Debug Logic";
1381 switch (minor) {
1382 case 0:
1383 subtype = "other";
1384 break;
1385 case 1:
1386 subtype = "Processor";
1387 break;
1388 case 2:
1389 subtype = "DSP";
1390 break;
1391 case 3:
1392 subtype = "Engine/Coprocessor";
1393 break;
1394 case 4:
1395 subtype = "Bus";
1396 break;
1397 case 5:
1398 subtype = "Memory";
1399 break;
1400 }
1401 break;
1402 case 6:
1403 major = "Performance Monitor";
1404 switch (minor) {
1405 case 0:
1406 subtype = "other";
1407 break;
1408 case 1:
1409 subtype = "Processor";
1410 break;
1411 case 2:
1412 subtype = "DSP";
1413 break;
1414 case 3:
1415 subtype = "Engine/Coprocessor";
1416 break;
1417 case 4:
1418 subtype = "Bus";
1419 break;
1420 case 5:
1421 subtype = "Memory";
1422 break;
1423 }
1424 break;
1425 }
1426 command_print(cmd, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1427 (uint8_t)(devtype & 0xff),
1428 major, subtype);
1429 /* REVISIT also show 0xfc8 DevId */
1430 }
1431
1432 return ERROR_OK;
1433 }
1434
1435 int dap_info_command(struct command_invocation *cmd,
1436 struct adiv5_ap *ap)
1437 {
1438 int retval;
1439 uint32_t dbgbase, apid;
1440 uint8_t mem_ap;
1441
1442 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1443 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1444 if (retval != ERROR_OK)
1445 return retval;
1446
1447 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1448 if (apid == 0) {
1449 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1450 return ERROR_FAIL;
1451 }
1452
1453 switch (apid & (IDR_JEP106 | IDR_TYPE)) {
1454 case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
1455 command_print(cmd, "\tType is JTAG-AP");
1456 break;
1457 case IDR_JEP106_ARM | AP_TYPE_AHB3_AP:
1458 command_print(cmd, "\tType is MEM-AP AHB3");
1459 break;
1460 case IDR_JEP106_ARM | AP_TYPE_AHB5_AP:
1461 command_print(cmd, "\tType is MEM-AP AHB5");
1462 break;
1463 case IDR_JEP106_ARM | AP_TYPE_APB_AP:
1464 command_print(cmd, "\tType is MEM-AP APB");
1465 break;
1466 case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
1467 command_print(cmd, "\tType is MEM-AP AXI");
1468 break;
1469 default:
1470 command_print(cmd, "\tUnknown AP type");
1471 break;
1472 }
1473
1474 /* NOTE: a MEM-AP may have a single CoreSight component that's
1475 * not a ROM table ... or have no such components at all.
1476 */
1477 mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
1478 if (mem_ap) {
1479 command_print(cmd, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase);
1480
1481 if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) {
1482 command_print(cmd, "\tNo ROM table present");
1483 } else {
1484 if (dbgbase & 0x01)
1485 command_print(cmd, "\tValid ROM table present");
1486 else
1487 command_print(cmd, "\tROM table in legacy format");
1488
1489 dap_rom_display(cmd, ap, dbgbase & 0xFFFFF000, 0);
1490 }
1491 }
1492
1493 return ERROR_OK;
1494 }
1495
1496 enum adiv5_cfg_param {
1497 CFG_DAP,
1498 CFG_AP_NUM,
1499 CFG_BASEADDR,
1500 CFG_CTIBASE, /* DEPRECATED */
1501 };
1502
1503 static const Jim_Nvp nvp_config_opts[] = {
1504 { .name = "-dap", .value = CFG_DAP },
1505 { .name = "-ap-num", .value = CFG_AP_NUM },
1506 { .name = "-baseaddr", .value = CFG_BASEADDR },
1507 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1508 { .name = NULL, .value = -1 }
1509 };
1510
1511 static int adiv5_jim_spot_configure(Jim_GetOptInfo *goi,
1512 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1513 {
1514 if (!goi->argc)
1515 return JIM_OK;
1516
1517 Jim_SetEmptyResult(goi->interp);
1518
1519 Jim_Nvp *n;
1520 int e = Jim_Nvp_name2value_obj(goi->interp, nvp_config_opts,
1521 goi->argv[0], &n);
1522 if (e != JIM_OK)
1523 return JIM_CONTINUE;
1524
1525 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1526 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1527 return JIM_CONTINUE;
1528
1529 e = Jim_GetOpt_Obj(goi, NULL);
1530 if (e != JIM_OK)
1531 return e;
1532
1533 switch (n->value) {
1534 case CFG_DAP:
1535 if (goi->isconfigure) {
1536 Jim_Obj *o_t;
1537 struct adiv5_dap *dap;
1538 e = Jim_GetOpt_Obj(goi, &o_t);
1539 if (e != JIM_OK)
1540 return e;
1541 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1542 if (!dap) {
1543 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1544 return JIM_ERR;
1545 }
1546 if (*dap_p && *dap_p != dap) {
1547 Jim_SetResultString(goi->interp,
1548 "DAP assignment cannot be changed!", -1);
1549 return JIM_ERR;
1550 }
1551 *dap_p = dap;
1552 } else {
1553 if (goi->argc)
1554 goto err_no_param;
1555 if (!*dap_p) {
1556 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1557 return JIM_ERR;
1558 }
1559 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1560 }
1561 break;
1562
1563 case CFG_AP_NUM:
1564 if (goi->isconfigure) {
1565 jim_wide ap_num;
1566 e = Jim_GetOpt_Wide(goi, &ap_num);
1567 if (e != JIM_OK)
1568 return e;
1569 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1570 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1571 return JIM_ERR;
1572 }
1573 *ap_num_p = ap_num;
1574 } else {
1575 if (goi->argc)
1576 goto err_no_param;
1577 if (*ap_num_p == DP_APSEL_INVALID) {
1578 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1579 return JIM_ERR;
1580 }
1581 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1582 }
1583 break;
1584
1585 case CFG_CTIBASE:
1586 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1587 /* fall through */
1588 case CFG_BASEADDR:
1589 if (goi->isconfigure) {
1590 jim_wide base;
1591 e = Jim_GetOpt_Wide(goi, &base);
1592 if (e != JIM_OK)
1593 return e;
1594 *base_p = (uint32_t)base;
1595 } else {
1596 if (goi->argc)
1597 goto err_no_param;
1598 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1599 }
1600 break;
1601 };
1602
1603 return JIM_OK;
1604
1605 err_no_param:
1606 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1607 return JIM_ERR;
1608 }
1609
1610 int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi)
1611 {
1612 struct adiv5_private_config *pc;
1613 int e;
1614
1615 pc = (struct adiv5_private_config *)target->private_config;
1616 if (pc == NULL) {
1617 pc = calloc(1, sizeof(struct adiv5_private_config));
1618 pc->ap_num = DP_APSEL_INVALID;
1619 target->private_config = pc;
1620 }
1621
1622 target->has_dap = true;
1623
1624 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1625 if (e != JIM_OK)
1626 return e;
1627
1628 if (pc->dap && !target->dap_configured) {
1629 if (target->tap_configured) {
1630 pc->dap = NULL;
1631 Jim_SetResultString(goi->interp,
1632 "-chain-position and -dap configparams are mutually exclusive!", -1);
1633 return JIM_ERR;
1634 }
1635 target->tap = pc->dap->tap;
1636 target->dap_configured = true;
1637 }
1638
1639 return JIM_OK;
1640 }
1641
1642 int adiv5_verify_config(struct adiv5_private_config *pc)
1643 {
1644 if (pc == NULL)
1645 return ERROR_FAIL;
1646
1647 if (pc->dap == NULL)
1648 return ERROR_FAIL;
1649
1650 return ERROR_OK;
1651 }
1652
1653 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1654 Jim_GetOptInfo *goi)
1655 {
1656 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1657 }
1658
1659 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1660 {
1661 p->dap = NULL;
1662 p->ap_num = DP_APSEL_INVALID;
1663 p->base = 0;
1664 return ERROR_OK;
1665 }
1666
1667 COMMAND_HANDLER(handle_dap_info_command)
1668 {
1669 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1670 uint32_t apsel;
1671
1672 switch (CMD_ARGC) {
1673 case 0:
1674 apsel = dap->apsel;
1675 break;
1676 case 1:
1677 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1678 if (apsel > DP_APSEL_MAX) {
1679 command_print(CMD, "Invalid AP number");
1680 return ERROR_COMMAND_ARGUMENT_INVALID;
1681 }
1682 break;
1683 default:
1684 return ERROR_COMMAND_SYNTAX_ERROR;
1685 }
1686
1687 return dap_info_command(CMD, &dap->ap[apsel]);
1688 }
1689
1690 COMMAND_HANDLER(dap_baseaddr_command)
1691 {
1692 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1693 uint32_t apsel, baseaddr;
1694 int retval;
1695
1696 switch (CMD_ARGC) {
1697 case 0:
1698 apsel = dap->apsel;
1699 break;
1700 case 1:
1701 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1702 /* AP address is in bits 31:24 of DP_SELECT */
1703 if (apsel > DP_APSEL_MAX) {
1704 command_print(CMD, "Invalid AP number");
1705 return ERROR_COMMAND_ARGUMENT_INVALID;
1706 }
1707 break;
1708 default:
1709 return ERROR_COMMAND_SYNTAX_ERROR;
1710 }
1711
1712 /* NOTE: assumes we're talking to a MEM-AP, which
1713 * has a base address. There are other kinds of AP,
1714 * though they're not common for now. This should
1715 * use the ID register to verify it's a MEM-AP.
1716 */
1717 retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr);
1718 if (retval != ERROR_OK)
1719 return retval;
1720 retval = dap_run(dap);
1721 if (retval != ERROR_OK)
1722 return retval;
1723
1724 command_print(CMD, "0x%8.8" PRIx32, baseaddr);
1725
1726 return retval;
1727 }
1728
1729 COMMAND_HANDLER(dap_memaccess_command)
1730 {
1731 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1732 uint32_t memaccess_tck;
1733
1734 switch (CMD_ARGC) {
1735 case 0:
1736 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1737 break;
1738 case 1:
1739 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1740 break;
1741 default:
1742 return ERROR_COMMAND_SYNTAX_ERROR;
1743 }
1744 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1745
1746 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1747 dap->ap[dap->apsel].memaccess_tck);
1748
1749 return ERROR_OK;
1750 }
1751
1752 COMMAND_HANDLER(dap_apsel_command)
1753 {
1754 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1755 uint32_t apsel;
1756
1757 switch (CMD_ARGC) {
1758 case 0:
1759 command_print(CMD, "%" PRIu32, dap->apsel);
1760 return ERROR_OK;
1761 case 1:
1762 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1763 /* AP address is in bits 31:24 of DP_SELECT */
1764 if (apsel > DP_APSEL_MAX) {
1765 command_print(CMD, "Invalid AP number");
1766 return ERROR_COMMAND_ARGUMENT_INVALID;
1767 }
1768 break;
1769 default:
1770 return ERROR_COMMAND_SYNTAX_ERROR;
1771 }
1772
1773 dap->apsel = apsel;
1774 return ERROR_OK;
1775 }
1776
1777 COMMAND_HANDLER(dap_apcsw_command)
1778 {
1779 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1780 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1781 uint32_t csw_val, csw_mask;
1782
1783 switch (CMD_ARGC) {
1784 case 0:
1785 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1786 dap->apsel, apcsw);
1787 return ERROR_OK;
1788 case 1:
1789 if (strcmp(CMD_ARGV[0], "default") == 0)
1790 csw_val = CSW_AHB_DEFAULT;
1791 else
1792 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1793
1794 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1795 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1796 return ERROR_COMMAND_ARGUMENT_INVALID;
1797 }
1798 apcsw = csw_val;
1799 break;
1800 case 2:
1801 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1802 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1803 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1804 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1805 return ERROR_COMMAND_ARGUMENT_INVALID;
1806 }
1807 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1808 break;
1809 default:
1810 return ERROR_COMMAND_SYNTAX_ERROR;
1811 }
1812 dap->ap[dap->apsel].csw_default = apcsw;
1813
1814 return 0;
1815 }
1816
1817
1818
1819 COMMAND_HANDLER(dap_apid_command)
1820 {
1821 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1822 uint32_t apsel, apid;
1823 int retval;
1824
1825 switch (CMD_ARGC) {
1826 case 0:
1827 apsel = dap->apsel;
1828 break;
1829 case 1:
1830 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1831 /* AP address is in bits 31:24 of DP_SELECT */
1832 if (apsel > DP_APSEL_MAX) {
1833 command_print(CMD, "Invalid AP number");
1834 return ERROR_COMMAND_ARGUMENT_INVALID;
1835 }
1836 break;
1837 default:
1838 return ERROR_COMMAND_SYNTAX_ERROR;
1839 }
1840
1841 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1842 if (retval != ERROR_OK)
1843 return retval;
1844 retval = dap_run(dap);
1845 if (retval != ERROR_OK)
1846 return retval;
1847
1848 command_print(CMD, "0x%8.8" PRIx32, apid);
1849
1850 return retval;
1851 }
1852
1853 COMMAND_HANDLER(dap_apreg_command)
1854 {
1855 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1856 uint32_t apsel, reg, value;
1857 struct adiv5_ap *ap;
1858 int retval;
1859
1860 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1861 return ERROR_COMMAND_SYNTAX_ERROR;
1862
1863 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1864 /* AP address is in bits 31:24 of DP_SELECT */
1865 if (apsel > DP_APSEL_MAX) {
1866 command_print(CMD, "Invalid AP number");
1867 return ERROR_COMMAND_ARGUMENT_INVALID;
1868 }
1869
1870 ap = dap_ap(dap, apsel);
1871
1872 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1873 if (reg >= 256 || (reg & 3)) {
1874 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1875 return ERROR_COMMAND_ARGUMENT_INVALID;
1876 }
1877
1878 if (CMD_ARGC == 3) {
1879 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1880 switch (reg) {
1881 case MEM_AP_REG_CSW:
1882 ap->csw_value = 0; /* invalid, in case write fails */
1883 retval = dap_queue_ap_write(ap, reg, value);
1884 if (retval == ERROR_OK)
1885 ap->csw_value = value;
1886 break;
1887 case MEM_AP_REG_TAR:
1888 ap->tar_valid = false; /* invalid, force write */
1889 retval = mem_ap_setup_tar(ap, value);
1890 break;
1891 default:
1892 retval = dap_queue_ap_write(ap, reg, value);
1893 break;
1894 }
1895 } else {
1896 retval = dap_queue_ap_read(ap, reg, &value);
1897 }
1898 if (retval == ERROR_OK)
1899 retval = dap_run(dap);
1900
1901 if (retval != ERROR_OK)
1902 return retval;
1903
1904 if (CMD_ARGC == 2)
1905 command_print(CMD, "0x%08" PRIx32, value);
1906
1907 return retval;
1908 }
1909
1910 COMMAND_HANDLER(dap_dpreg_command)
1911 {
1912 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1913 uint32_t reg, value;
1914 int retval;
1915
1916 if (CMD_ARGC < 1 || CMD_ARGC > 2)
1917 return ERROR_COMMAND_SYNTAX_ERROR;
1918
1919 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
1920 if (reg >= 256 || (reg & 3)) {
1921 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1922 return ERROR_COMMAND_ARGUMENT_INVALID;
1923 }
1924
1925 if (CMD_ARGC == 2) {
1926 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1927 retval = dap_queue_dp_write(dap, reg, value);
1928 } else {
1929 retval = dap_queue_dp_read(dap, reg, &value);
1930 }
1931 if (retval == ERROR_OK)
1932 retval = dap_run(dap);
1933
1934 if (retval != ERROR_OK)
1935 return retval;
1936
1937 if (CMD_ARGC == 1)
1938 command_print(CMD, "0x%08" PRIx32, value);
1939
1940 return retval;
1941 }
1942
1943 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1944 {
1945 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1946 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
1947 "TI BE-32 quirks mode");
1948 }
1949
1950 const struct command_registration dap_instance_commands[] = {
1951 {
1952 .name = "info",
1953 .handler = handle_dap_info_command,
1954 .mode = COMMAND_EXEC,
1955 .help = "display ROM table for MEM-AP "
1956 "(default currently selected AP)",
1957 .usage = "[ap_num]",
1958 },
1959 {
1960 .name = "apsel",
1961 .handler = dap_apsel_command,
1962 .mode = COMMAND_ANY,
1963 .help = "Set the currently selected AP (default 0) "
1964 "and display the result",
1965 .usage = "[ap_num]",
1966 },
1967 {
1968 .name = "apcsw",
1969 .handler = dap_apcsw_command,
1970 .mode = COMMAND_ANY,
1971 .help = "Set CSW default bits",
1972 .usage = "[value [mask]]",
1973 },
1974
1975 {
1976 .name = "apid",
1977 .handler = dap_apid_command,
1978 .mode = COMMAND_EXEC,
1979 .help = "return ID register from AP "
1980 "(default currently selected AP)",
1981 .usage = "[ap_num]",
1982 },
1983 {
1984 .name = "apreg",
1985 .handler = dap_apreg_command,
1986 .mode = COMMAND_EXEC,
1987 .help = "read/write a register from AP "
1988 "(reg is byte address of a word register, like 0 4 8...)",
1989 .usage = "ap_num reg [value]",
1990 },
1991 {
1992 .name = "dpreg",
1993 .handler = dap_dpreg_command,
1994 .mode = COMMAND_EXEC,
1995 .help = "read/write a register from DP "
1996 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
1997 .usage = "reg [value]",
1998 },
1999 {
2000 .name = "baseaddr",
2001 .handler = dap_baseaddr_command,
2002 .mode = COMMAND_EXEC,
2003 .help = "return debug base address from MEM-AP "
2004 "(default currently selected AP)",
2005 .usage = "[ap_num]",
2006 },
2007 {
2008 .name = "memaccess",
2009 .handler = dap_memaccess_command,
2010 .mode = COMMAND_EXEC,
2011 .help = "set/get number of extra tck for MEM-AP memory "
2012 "bus access [0-255]",
2013 .usage = "[cycles]",
2014 },
2015 {
2016 .name = "ti_be_32_quirks",
2017 .handler = dap_ti_be_32_quirks_command,
2018 .mode = COMMAND_CONFIG,
2019 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2020 .usage = "[enable]",
2021 },
2022 COMMAND_REGISTRATION_DONE
2023 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)