target/arm: add support for multi-architecture gdb
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2018 by Liviu Ionescu *
12 * <ilg@livius.net> *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
26 ***************************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "arm.h"
33 #include "armv4_5.h"
34 #include "arm_jtag.h"
35 #include "breakpoints.h"
36 #include "arm_disassembler.h"
37 #include <helper/binarybuffer.h>
38 #include "algorithm.h"
39 #include "register.h"
40 #include "semihosting_common.h"
41
42 /* offsets into armv4_5 core register cache */
43 enum {
44 /* ARMV4_5_CPSR = 31, */
45 ARMV4_5_SPSR_FIQ = 32,
46 ARMV4_5_SPSR_IRQ = 33,
47 ARMV4_5_SPSR_SVC = 34,
48 ARMV4_5_SPSR_ABT = 35,
49 ARMV4_5_SPSR_UND = 36,
50 ARM_SPSR_MON = 41,
51 };
52
53 static const uint8_t arm_usr_indices[17] = {
54 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
55 };
56
57 static const uint8_t arm_fiq_indices[8] = {
58 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
59 };
60
61 static const uint8_t arm_irq_indices[3] = {
62 23, 24, ARMV4_5_SPSR_IRQ,
63 };
64
65 static const uint8_t arm_svc_indices[3] = {
66 25, 26, ARMV4_5_SPSR_SVC,
67 };
68
69 static const uint8_t arm_abt_indices[3] = {
70 27, 28, ARMV4_5_SPSR_ABT,
71 };
72
73 static const uint8_t arm_und_indices[3] = {
74 29, 30, ARMV4_5_SPSR_UND,
75 };
76
77 static const uint8_t arm_mon_indices[3] = {
78 39, 40, ARM_SPSR_MON,
79 };
80
81 static const struct {
82 const char *name;
83 unsigned short psr;
84 /* For user and system modes, these list indices for all registers.
85 * otherwise they're just indices for the shadow registers and SPSR.
86 */
87 unsigned short n_indices;
88 const uint8_t *indices;
89 } arm_mode_data[] = {
90 /* Seven modes are standard from ARM7 on. "System" and "User" share
91 * the same registers; other modes shadow from 3 to 8 registers.
92 */
93 {
94 .name = "User",
95 .psr = ARM_MODE_USR,
96 .n_indices = ARRAY_SIZE(arm_usr_indices),
97 .indices = arm_usr_indices,
98 },
99 {
100 .name = "FIQ",
101 .psr = ARM_MODE_FIQ,
102 .n_indices = ARRAY_SIZE(arm_fiq_indices),
103 .indices = arm_fiq_indices,
104 },
105 {
106 .name = "Supervisor",
107 .psr = ARM_MODE_SVC,
108 .n_indices = ARRAY_SIZE(arm_svc_indices),
109 .indices = arm_svc_indices,
110 },
111 {
112 .name = "Abort",
113 .psr = ARM_MODE_ABT,
114 .n_indices = ARRAY_SIZE(arm_abt_indices),
115 .indices = arm_abt_indices,
116 },
117 {
118 .name = "IRQ",
119 .psr = ARM_MODE_IRQ,
120 .n_indices = ARRAY_SIZE(arm_irq_indices),
121 .indices = arm_irq_indices,
122 },
123 {
124 .name = "Undefined instruction",
125 .psr = ARM_MODE_UND,
126 .n_indices = ARRAY_SIZE(arm_und_indices),
127 .indices = arm_und_indices,
128 },
129 {
130 .name = "System",
131 .psr = ARM_MODE_SYS,
132 .n_indices = ARRAY_SIZE(arm_usr_indices),
133 .indices = arm_usr_indices,
134 },
135 /* TrustZone "Security Extensions" add a secure monitor mode.
136 * This is distinct from a "debug monitor" which can support
137 * non-halting debug, in conjunction with some debuggers.
138 */
139 {
140 .name = "Secure Monitor",
141 .psr = ARM_MODE_MON,
142 .n_indices = ARRAY_SIZE(arm_mon_indices),
143 .indices = arm_mon_indices,
144 },
145 {
146 .name = "Secure Monitor ARM1176JZF-S",
147 .psr = ARM_MODE_1176_MON,
148 .n_indices = ARRAY_SIZE(arm_mon_indices),
149 .indices = arm_mon_indices,
150 },
151
152 /* These special modes are currently only supported
153 * by ARMv6M and ARMv7M profiles */
154 {
155 .name = "Thread",
156 .psr = ARM_MODE_THREAD,
157 },
158 {
159 .name = "Thread (User)",
160 .psr = ARM_MODE_USER_THREAD,
161 },
162 {
163 .name = "Handler",
164 .psr = ARM_MODE_HANDLER,
165 },
166 };
167
168 /** Map PSR mode bits to the name of an ARM processor operating mode. */
169 const char *arm_mode_name(unsigned psr_mode)
170 {
171 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
172 if (arm_mode_data[i].psr == psr_mode)
173 return arm_mode_data[i].name;
174 }
175 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
176 return "UNRECOGNIZED";
177 }
178
179 /** Return true iff the parameter denotes a valid ARM processor mode. */
180 bool is_arm_mode(unsigned psr_mode)
181 {
182 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
183 if (arm_mode_data[i].psr == psr_mode)
184 return true;
185 }
186 return false;
187 }
188
189 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
190 int arm_mode_to_number(enum arm_mode mode)
191 {
192 switch (mode) {
193 case ARM_MODE_ANY:
194 /* map MODE_ANY to user mode */
195 case ARM_MODE_USR:
196 return 0;
197 case ARM_MODE_FIQ:
198 return 1;
199 case ARM_MODE_IRQ:
200 return 2;
201 case ARM_MODE_SVC:
202 return 3;
203 case ARM_MODE_ABT:
204 return 4;
205 case ARM_MODE_UND:
206 return 5;
207 case ARM_MODE_SYS:
208 return 6;
209 case ARM_MODE_MON:
210 case ARM_MODE_1176_MON:
211 return 7;
212 default:
213 LOG_ERROR("invalid mode value encountered %d", mode);
214 return -1;
215 }
216 }
217
218 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
219 enum arm_mode armv4_5_number_to_mode(int number)
220 {
221 switch (number) {
222 case 0:
223 return ARM_MODE_USR;
224 case 1:
225 return ARM_MODE_FIQ;
226 case 2:
227 return ARM_MODE_IRQ;
228 case 3:
229 return ARM_MODE_SVC;
230 case 4:
231 return ARM_MODE_ABT;
232 case 5:
233 return ARM_MODE_UND;
234 case 6:
235 return ARM_MODE_SYS;
236 case 7:
237 return ARM_MODE_MON;
238 default:
239 LOG_ERROR("mode index out of bounds %d", number);
240 return ARM_MODE_ANY;
241 }
242 }
243
244 static const char *arm_state_strings[] = {
245 "ARM", "Thumb", "Jazelle", "ThumbEE",
246 };
247
248 /* Templates for ARM core registers.
249 *
250 * NOTE: offsets in this table are coupled to the arm_mode_data
251 * table above, the armv4_5_core_reg_map array below, and also to
252 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
253 */
254 static const struct {
255 /* The name is used for e.g. the "regs" command. */
256 const char *name;
257
258 /* The {cookie, mode} tuple uniquely identifies one register.
259 * In a given mode, cookies 0..15 map to registers R0..R15,
260 * with R13..R15 usually called SP, LR, PC.
261 *
262 * MODE_ANY is used as *input* to the mapping, and indicates
263 * various special cases (sigh) and errors.
264 *
265 * Cookie 16 is (currently) confusing, since it indicates
266 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
267 * (Exception modes have both CPSR and SPSR registers ...)
268 */
269 unsigned cookie;
270 unsigned gdb_index;
271 enum arm_mode mode;
272 } arm_core_regs[] = {
273 /* IMPORTANT: we guarantee that the first eight cached registers
274 * correspond to r0..r7, and the fifteenth to PC, so that callers
275 * don't need to map them.
276 */
277 { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
278 { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
279 { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
280 { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
281 { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
282 { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
283 { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
284 { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
285
286 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
287 * them as MODE_ANY creates special cases. (ANY means
288 * "not mapped" elsewhere; here it's "everything but FIQ".)
289 */
290 { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
291 { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
292 { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
293 { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
294 { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
295
296 /* Historical GDB mapping of indices:
297 * - 13-14 are sp and lr, but banked counterparts are used
298 * - 16-24 are left for deprecated 8 FPA + 1 FPS
299 * - 25 is the cpsr
300 */
301
302 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
303 { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
304 { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
305
306 /* guaranteed to be at index 15 */
307 { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
308 { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
309 { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
310 { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
311 { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
312 { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
313
314 { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
315 { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
316
317 { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
318 { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
319
320 { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
321 { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
322
323 { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
324 { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
325
326 { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
327 { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
328
329 { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
330 { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
331 { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
332 { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
333 { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
334 { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
335
336 /* These are only used for GDB target description, banked registers are accessed instead */
337 { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
338 { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
339
340 /* These exist only when the Security Extension (TrustZone) is present */
341 { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
342 { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
343 { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
344
345 };
346
347 static const struct {
348 unsigned int id;
349 const char *name;
350 uint32_t bits;
351 enum arm_mode mode;
352 enum reg_type type;
353 const char *group;
354 const char *feature;
355 } arm_vfp_v3_regs[] = {
356 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
357 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
358 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
359 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
360 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
361 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
362 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
363 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
364 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
365 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
366 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
367 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
368 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
369 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
370 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
371 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
372 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
373 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
374 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
375 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
376 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
389 };
390
391 /* map core mode (USR, FIQ, ...) and register number to
392 * indices into the register cache
393 */
394 const int armv4_5_core_reg_map[8][17] = {
395 { /* USR */
396 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
397 },
398 { /* FIQ (8 shadows of USR, vs normal 3) */
399 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
400 },
401 { /* IRQ */
402 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
403 },
404 { /* SVC */
405 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
406 },
407 { /* ABT */
408 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
409 },
410 { /* UND */
411 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
412 },
413 { /* SYS (same registers as USR) */
414 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
415 },
416 { /* MON */
417 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
418 }
419 };
420
421 /**
422 * Configures host-side ARM records to reflect the specified CPSR.
423 * Later, code can use arm_reg_current() to map register numbers
424 * according to how they are exposed by this mode.
425 */
426 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
427 {
428 enum arm_mode mode = cpsr & 0x1f;
429 int num;
430
431 /* NOTE: this may be called very early, before the register
432 * cache is set up. We can't defend against many errors, in
433 * particular against CPSRs that aren't valid *here* ...
434 */
435 if (arm->cpsr) {
436 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
437 arm->cpsr->valid = 1;
438 arm->cpsr->dirty = 0;
439 }
440
441 arm->core_mode = mode;
442
443 /* mode_to_number() warned; set up a somewhat-sane mapping */
444 num = arm_mode_to_number(mode);
445 if (num < 0) {
446 mode = ARM_MODE_USR;
447 num = 0;
448 }
449
450 arm->map = &armv4_5_core_reg_map[num][0];
451 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
452 ? NULL
453 : arm->core_cache->reg_list + arm->map[16];
454
455 /* Older ARMs won't have the J bit */
456 enum arm_state state;
457
458 if (cpsr & (1 << 5)) { /* T */
459 if (cpsr & (1 << 24)) { /* J */
460 LOG_WARNING("ThumbEE -- incomplete support");
461 state = ARM_STATE_THUMB_EE;
462 } else
463 state = ARM_STATE_THUMB;
464 } else {
465 if (cpsr & (1 << 24)) { /* J */
466 LOG_ERROR("Jazelle state handling is BROKEN!");
467 state = ARM_STATE_JAZELLE;
468 } else
469 state = ARM_STATE_ARM;
470 }
471 arm->core_state = state;
472
473 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
474 arm_mode_name(mode),
475 arm_state_strings[arm->core_state]);
476 }
477
478 /**
479 * Returns handle to the register currently mapped to a given number.
480 * Someone must have called arm_set_cpsr() before.
481 *
482 * \param arm This core's state and registers are used.
483 * \param regnum From 0..15 corresponding to R0..R14 and PC.
484 * Note that R0..R7 don't require mapping; you may access those
485 * as the first eight entries in the register cache. Likewise
486 * R15 (PC) doesn't need mapping; you may also access it directly.
487 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
488 * CPSR (arm->cpsr) is also not mapped.
489 */
490 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
491 {
492 struct reg *r;
493
494 if (regnum > 16)
495 return NULL;
496
497 if (!arm->map) {
498 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
499 r = arm->core_cache->reg_list + regnum;
500 } else
501 r = arm->core_cache->reg_list + arm->map[regnum];
502
503 /* e.g. invalid CPSR said "secure monitor" mode on a core
504 * that doesn't support it...
505 */
506 if (!r) {
507 LOG_ERROR("Invalid CPSR mode");
508 r = arm->core_cache->reg_list + regnum;
509 }
510
511 return r;
512 }
513
514 static const uint8_t arm_gdb_dummy_fp_value[12];
515
516 static struct reg_feature arm_gdb_dummy_fp_features = {
517 .name = "net.sourceforge.openocd.fake_fpa"
518 };
519
520 /**
521 * Dummy FPA registers are required to support GDB on ARM.
522 * Register packets require eight obsolete FPA register values.
523 * Modern ARM cores use Vector Floating Point (VFP), if they
524 * have any floating point support. VFP is not FPA-compatible.
525 */
526 struct reg arm_gdb_dummy_fp_reg = {
527 .name = "GDB dummy FPA register",
528 .value = (uint8_t *) arm_gdb_dummy_fp_value,
529 .valid = 1,
530 .size = 96,
531 .exist = false,
532 .number = 16,
533 .feature = &arm_gdb_dummy_fp_features,
534 .group = "fake_fpa",
535 };
536
537 static const uint8_t arm_gdb_dummy_fps_value[4];
538
539 /**
540 * Dummy FPA status registers are required to support GDB on ARM.
541 * Register packets require an obsolete FPA status register.
542 */
543 struct reg arm_gdb_dummy_fps_reg = {
544 .name = "GDB dummy FPA status register",
545 .value = (uint8_t *) arm_gdb_dummy_fps_value,
546 .valid = 1,
547 .size = 32,
548 .exist = false,
549 .number = 24,
550 .feature = &arm_gdb_dummy_fp_features,
551 .group = "fake_fpa",
552 };
553
554 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
555
556 static void arm_gdb_dummy_init(void)
557 {
558 register_init_dummy(&arm_gdb_dummy_fp_reg);
559 register_init_dummy(&arm_gdb_dummy_fps_reg);
560 }
561
562 static int armv4_5_get_core_reg(struct reg *reg)
563 {
564 int retval;
565 struct arm_reg *reg_arch_info = reg->arch_info;
566 struct target *target = reg_arch_info->target;
567
568 if (target->state != TARGET_HALTED) {
569 LOG_ERROR("Target not halted");
570 return ERROR_TARGET_NOT_HALTED;
571 }
572
573 retval = reg_arch_info->arm->read_core_reg(target, reg,
574 reg_arch_info->num, reg_arch_info->mode);
575 if (retval == ERROR_OK) {
576 reg->valid = 1;
577 reg->dirty = 0;
578 }
579
580 return retval;
581 }
582
583 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
584 {
585 struct arm_reg *reg_arch_info = reg->arch_info;
586 struct target *target = reg_arch_info->target;
587 struct arm *armv4_5_target = target_to_arm(target);
588 uint32_t value = buf_get_u32(buf, 0, 32);
589
590 if (target->state != TARGET_HALTED) {
591 LOG_ERROR("Target not halted");
592 return ERROR_TARGET_NOT_HALTED;
593 }
594
595 /* Except for CPSR, the "reg" command exposes a writeback model
596 * for the register cache.
597 */
598 if (reg == armv4_5_target->cpsr) {
599 arm_set_cpsr(armv4_5_target, value);
600
601 /* Older cores need help to be in ARM mode during halt
602 * mode debug, so we clear the J and T bits if we flush.
603 * For newer cores (v6/v7a/v7r) we don't need that, but
604 * it won't hurt since CPSR is always flushed anyway.
605 */
606 if (armv4_5_target->core_mode !=
607 (enum arm_mode)(value & 0x1f)) {
608 LOG_DEBUG("changing ARM core mode to '%s'",
609 arm_mode_name(value & 0x1f));
610 value &= ~((1 << 24) | (1 << 5));
611 uint8_t t[4];
612 buf_set_u32(t, 0, 32, value);
613 armv4_5_target->write_core_reg(target, reg,
614 16, ARM_MODE_ANY, t);
615 }
616 } else {
617 buf_set_u32(reg->value, 0, 32, value);
618 if (reg->size == 64) {
619 value = buf_get_u32(buf + 4, 0, 32);
620 buf_set_u32(reg->value + 4, 0, 32, value);
621 }
622 reg->valid = 1;
623 }
624 reg->dirty = 1;
625
626 return ERROR_OK;
627 }
628
629 static const struct reg_arch_type arm_reg_type = {
630 .get = armv4_5_get_core_reg,
631 .set = armv4_5_set_core_reg,
632 };
633
634 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
635 {
636 int num_regs = ARRAY_SIZE(arm_core_regs);
637 int num_core_regs = num_regs;
638 if (arm->arm_vfp_version == ARM_VFP_V3)
639 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
640
641 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
642 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
643 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
644 int i;
645
646 if (!cache || !reg_list || !reg_arch_info) {
647 free(cache);
648 free(reg_list);
649 free(reg_arch_info);
650 return NULL;
651 }
652
653 cache->name = "ARM registers";
654 cache->next = NULL;
655 cache->reg_list = reg_list;
656 cache->num_regs = 0;
657
658 for (i = 0; i < num_core_regs; i++) {
659 /* Skip registers this core doesn't expose */
660 if (arm_core_regs[i].mode == ARM_MODE_MON
661 && arm->core_type != ARM_MODE_MON)
662 continue;
663
664 /* REVISIT handle Cortex-M, which only shadows R13/SP */
665
666 reg_arch_info[i].num = arm_core_regs[i].cookie;
667 reg_arch_info[i].mode = arm_core_regs[i].mode;
668 reg_arch_info[i].target = target;
669 reg_arch_info[i].arm = arm;
670
671 reg_list[i].name = arm_core_regs[i].name;
672 reg_list[i].number = arm_core_regs[i].gdb_index;
673 reg_list[i].size = 32;
674 reg_list[i].value = reg_arch_info[i].value;
675 reg_list[i].type = &arm_reg_type;
676 reg_list[i].arch_info = &reg_arch_info[i];
677 reg_list[i].exist = true;
678
679 /* This really depends on the calling convention in use */
680 reg_list[i].caller_save = false;
681
682 /* Registers data type, as used by GDB target description */
683 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
684 switch (arm_core_regs[i].cookie) {
685 case 13:
686 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
687 break;
688 case 14:
689 case 15:
690 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
691 break;
692 default:
693 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
694 break;
695 }
696
697 /* let GDB shows banked registers only in "info all-reg" */
698 reg_list[i].feature = malloc(sizeof(struct reg_feature));
699 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
700 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
701 reg_list[i].group = "general";
702 } else {
703 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
704 reg_list[i].group = "banked";
705 }
706
707 cache->num_regs++;
708 }
709
710 int j;
711 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
712 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
713 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
714 reg_arch_info[i].target = target;
715 reg_arch_info[i].arm = arm;
716
717 reg_list[i].name = arm_vfp_v3_regs[j].name;
718 reg_list[i].number = arm_vfp_v3_regs[j].id;
719 reg_list[i].size = arm_vfp_v3_regs[j].bits;
720 reg_list[i].value = reg_arch_info[i].value;
721 reg_list[i].type = &arm_reg_type;
722 reg_list[i].arch_info = &reg_arch_info[i];
723 reg_list[i].exist = true;
724
725 reg_list[i].caller_save = false;
726
727 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
728 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
729
730 reg_list[i].feature = malloc(sizeof(struct reg_feature));
731 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
732
733 reg_list[i].group = arm_vfp_v3_regs[j].group;
734
735 cache->num_regs++;
736 }
737
738 arm->pc = reg_list + 15;
739 arm->cpsr = reg_list + ARMV4_5_CPSR;
740 arm->core_cache = cache;
741
742 return cache;
743 }
744
745 int arm_arch_state(struct target *target)
746 {
747 struct arm *arm = target_to_arm(target);
748
749 if (arm->common_magic != ARM_COMMON_MAGIC) {
750 LOG_ERROR("BUG: called for a non-ARM target");
751 return ERROR_FAIL;
752 }
753
754 /* avoid filling log waiting for fileio reply */
755 if (target->semihosting && target->semihosting->hit_fileio)
756 return ERROR_OK;
757
758 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
759 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
760 arm_state_strings[arm->core_state],
761 debug_reason_name(target),
762 arm_mode_name(arm->core_mode),
763 buf_get_u32(arm->cpsr->value, 0, 32),
764 buf_get_u32(arm->pc->value, 0, 32),
765 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
766 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
767
768 return ERROR_OK;
769 }
770
771 #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
772 (cache->reg_list[armv4_5_core_reg_map[mode][num]])
773
774 COMMAND_HANDLER(handle_armv4_5_reg_command)
775 {
776 struct target *target = get_current_target(CMD_CTX);
777 struct arm *arm = target_to_arm(target);
778 struct reg *regs;
779
780 if (!is_arm(arm)) {
781 command_print(CMD_CTX, "current target isn't an ARM");
782 return ERROR_FAIL;
783 }
784
785 if (target->state != TARGET_HALTED) {
786 command_print(CMD_CTX, "error: target must be halted for register accesses");
787 return ERROR_FAIL;
788 }
789
790 if (arm->core_type != ARM_MODE_ANY) {
791 command_print(CMD_CTX,
792 "Microcontroller Profile not supported - use standard reg cmd");
793 return ERROR_OK;
794 }
795
796 if (!is_arm_mode(arm->core_mode)) {
797 LOG_ERROR("not a valid arm core mode - communication failure?");
798 return ERROR_FAIL;
799 }
800
801 if (!arm->full_context) {
802 command_print(CMD_CTX, "error: target doesn't support %s",
803 CMD_NAME);
804 return ERROR_FAIL;
805 }
806
807 regs = arm->core_cache->reg_list;
808
809 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
810 const char *name;
811 char *sep = "\n";
812 char *shadow = "";
813
814 /* label this bank of registers (or shadows) */
815 switch (arm_mode_data[mode].psr) {
816 case ARM_MODE_SYS:
817 continue;
818 case ARM_MODE_USR:
819 name = "System and User";
820 sep = "";
821 break;
822 case ARM_MODE_MON:
823 if (arm->core_type != ARM_MODE_MON)
824 continue;
825 /* FALLTHROUGH */
826 default:
827 name = arm_mode_data[mode].name;
828 shadow = "shadow ";
829 break;
830 }
831 command_print(CMD_CTX, "%s%s mode %sregisters",
832 sep, name, shadow);
833
834 /* display N rows of up to 4 registers each */
835 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
836 char output[80];
837 int output_len = 0;
838
839 for (unsigned j = 0; j < 4; j++, i++) {
840 uint32_t value;
841 struct reg *reg = regs;
842
843 if (i >= arm_mode_data[mode].n_indices)
844 break;
845
846 reg += arm_mode_data[mode].indices[i];
847
848 /* REVISIT be smarter about faults... */
849 if (!reg->valid)
850 arm->full_context(target);
851
852 value = buf_get_u32(reg->value, 0, 32);
853 output_len += snprintf(output + output_len,
854 sizeof(output) - output_len,
855 "%8s: %8.8" PRIx32 " ",
856 reg->name, value);
857 }
858 command_print(CMD_CTX, "%s", output);
859 }
860 }
861
862 return ERROR_OK;
863 }
864
865 COMMAND_HANDLER(handle_armv4_5_core_state_command)
866 {
867 struct target *target = get_current_target(CMD_CTX);
868 struct arm *arm = target_to_arm(target);
869
870 if (!is_arm(arm)) {
871 command_print(CMD_CTX, "current target isn't an ARM");
872 return ERROR_FAIL;
873 }
874
875 if (arm->core_type == ARM_MODE_THREAD) {
876 /* armv7m not supported */
877 command_print(CMD_CTX, "Unsupported Command");
878 return ERROR_OK;
879 }
880
881 if (CMD_ARGC > 0) {
882 if (strcmp(CMD_ARGV[0], "arm") == 0)
883 arm->core_state = ARM_STATE_ARM;
884 if (strcmp(CMD_ARGV[0], "thumb") == 0)
885 arm->core_state = ARM_STATE_THUMB;
886 }
887
888 command_print(CMD_CTX, "core state: %s", arm_state_strings[arm->core_state]);
889
890 return ERROR_OK;
891 }
892
893 COMMAND_HANDLER(handle_arm_disassemble_command)
894 {
895 int retval = ERROR_OK;
896 struct target *target = get_current_target(CMD_CTX);
897
898 if (target == NULL) {
899 LOG_ERROR("No target selected");
900 return ERROR_FAIL;
901 }
902
903 struct arm *arm = target_to_arm(target);
904 target_addr_t address;
905 int count = 1;
906 int thumb = 0;
907
908 if (!is_arm(arm)) {
909 command_print(CMD_CTX, "current target isn't an ARM");
910 return ERROR_FAIL;
911 }
912
913 if (arm->core_type == ARM_MODE_THREAD) {
914 /* armv7m is always thumb mode */
915 thumb = 1;
916 }
917
918 switch (CMD_ARGC) {
919 case 3:
920 if (strcmp(CMD_ARGV[2], "thumb") != 0)
921 goto usage;
922 thumb = 1;
923 /* FALL THROUGH */
924 case 2:
925 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
926 /* FALL THROUGH */
927 case 1:
928 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
929 if (address & 0x01) {
930 if (!thumb) {
931 command_print(CMD_CTX, "Disassemble as Thumb");
932 thumb = 1;
933 }
934 address &= ~1;
935 }
936 break;
937 default:
938 usage:
939 count = 0;
940 retval = ERROR_COMMAND_SYNTAX_ERROR;
941 }
942
943 while (count-- > 0) {
944 struct arm_instruction cur_instruction;
945
946 if (thumb) {
947 /* Always use Thumb2 disassembly for best handling
948 * of 32-bit BL/BLX, and to work with newer cores
949 * (some ARMv6, all ARMv7) that use Thumb2.
950 */
951 retval = thumb2_opcode(target, address,
952 &cur_instruction);
953 if (retval != ERROR_OK)
954 break;
955 } else {
956 uint32_t opcode;
957
958 retval = target_read_u32(target, address, &opcode);
959 if (retval != ERROR_OK)
960 break;
961 retval = arm_evaluate_opcode(opcode, address,
962 &cur_instruction) != ERROR_OK;
963 if (retval != ERROR_OK)
964 break;
965 }
966 command_print(CMD_CTX, "%s", cur_instruction.text);
967 address += cur_instruction.instruction_size;
968 }
969
970 return retval;
971 }
972
973 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
974 {
975 struct command_context *context;
976 struct target *target;
977 struct arm *arm;
978 int retval;
979
980 context = current_command_context(interp);
981 assert(context != NULL);
982
983 target = get_current_target(context);
984 if (target == NULL) {
985 LOG_ERROR("%s: no current target", __func__);
986 return JIM_ERR;
987 }
988 if (!target_was_examined(target)) {
989 LOG_ERROR("%s: not yet examined", target_name(target));
990 return JIM_ERR;
991 }
992 arm = target_to_arm(target);
993 if (!is_arm(arm)) {
994 LOG_ERROR("%s: not an ARM", target_name(target));
995 return JIM_ERR;
996 }
997
998 if ((argc < 6) || (argc > 7)) {
999 /* FIXME use the command name to verify # params... */
1000 LOG_ERROR("%s: wrong number of arguments", __func__);
1001 return JIM_ERR;
1002 }
1003
1004 int cpnum;
1005 uint32_t op1;
1006 uint32_t op2;
1007 uint32_t CRn;
1008 uint32_t CRm;
1009 uint32_t value;
1010 long l;
1011
1012 /* NOTE: parameter sequence matches ARM instruction set usage:
1013 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1014 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1015 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1016 */
1017 retval = Jim_GetLong(interp, argv[1], &l);
1018 if (retval != JIM_OK)
1019 return retval;
1020 if (l & ~0xf) {
1021 LOG_ERROR("%s: %s %d out of range", __func__,
1022 "coprocessor", (int) l);
1023 return JIM_ERR;
1024 }
1025 cpnum = l;
1026
1027 retval = Jim_GetLong(interp, argv[2], &l);
1028 if (retval != JIM_OK)
1029 return retval;
1030 if (l & ~0x7) {
1031 LOG_ERROR("%s: %s %d out of range", __func__,
1032 "op1", (int) l);
1033 return JIM_ERR;
1034 }
1035 op1 = l;
1036
1037 retval = Jim_GetLong(interp, argv[3], &l);
1038 if (retval != JIM_OK)
1039 return retval;
1040 if (l & ~0xf) {
1041 LOG_ERROR("%s: %s %d out of range", __func__,
1042 "CRn", (int) l);
1043 return JIM_ERR;
1044 }
1045 CRn = l;
1046
1047 retval = Jim_GetLong(interp, argv[4], &l);
1048 if (retval != JIM_OK)
1049 return retval;
1050 if (l & ~0xf) {
1051 LOG_ERROR("%s: %s %d out of range", __func__,
1052 "CRm", (int) l);
1053 return JIM_ERR;
1054 }
1055 CRm = l;
1056
1057 retval = Jim_GetLong(interp, argv[5], &l);
1058 if (retval != JIM_OK)
1059 return retval;
1060 if (l & ~0x7) {
1061 LOG_ERROR("%s: %s %d out of range", __func__,
1062 "op2", (int) l);
1063 return JIM_ERR;
1064 }
1065 op2 = l;
1066
1067 value = 0;
1068
1069 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
1070 * that could easily be a typo! Check both...
1071 *
1072 * FIXME change the call syntax here ... simplest to just pass
1073 * the MRC() or MCR() instruction to be executed. That will also
1074 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1075 * if that's ever needed.
1076 */
1077 if (argc == 7) {
1078 retval = Jim_GetLong(interp, argv[6], &l);
1079 if (retval != JIM_OK)
1080 return retval;
1081 value = l;
1082
1083 /* NOTE: parameters reordered! */
1084 /* ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) */
1085 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
1086 if (retval != ERROR_OK)
1087 return JIM_ERR;
1088 } else {
1089 /* NOTE: parameters reordered! */
1090 /* ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) */
1091 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
1092 if (retval != ERROR_OK)
1093 return JIM_ERR;
1094
1095 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
1096 }
1097
1098 return JIM_OK;
1099 }
1100
1101 extern __COMMAND_HANDLER(handle_common_semihosting_command);
1102 extern __COMMAND_HANDLER(handle_common_semihosting_fileio_command);
1103 extern __COMMAND_HANDLER(handle_common_semihosting_resumable_exit_command);
1104 extern __COMMAND_HANDLER(handle_common_semihosting_cmdline);
1105
1106 static const struct command_registration arm_exec_command_handlers[] = {
1107 {
1108 .name = "reg",
1109 .handler = handle_armv4_5_reg_command,
1110 .mode = COMMAND_EXEC,
1111 .help = "display ARM core registers",
1112 .usage = "",
1113 },
1114 {
1115 .name = "core_state",
1116 .handler = handle_armv4_5_core_state_command,
1117 .mode = COMMAND_EXEC,
1118 .usage = "['arm'|'thumb']",
1119 .help = "display/change ARM core state",
1120 },
1121 {
1122 .name = "disassemble",
1123 .handler = handle_arm_disassemble_command,
1124 .mode = COMMAND_EXEC,
1125 .usage = "address [count ['thumb']]",
1126 .help = "disassemble instructions ",
1127 },
1128 {
1129 .name = "mcr",
1130 .mode = COMMAND_EXEC,
1131 .jim_handler = &jim_mcrmrc,
1132 .help = "write coprocessor register",
1133 .usage = "cpnum op1 CRn CRm op2 value",
1134 },
1135 {
1136 .name = "mrc",
1137 .jim_handler = &jim_mcrmrc,
1138 .help = "read coprocessor register",
1139 .usage = "cpnum op1 CRn CRm op2",
1140 },
1141 {
1142 "semihosting",
1143 .handler = handle_common_semihosting_command,
1144 .mode = COMMAND_EXEC,
1145 .usage = "['enable'|'disable']",
1146 .help = "activate support for semihosting operations",
1147 },
1148 {
1149 "semihosting_cmdline",
1150 .handler = handle_common_semihosting_cmdline,
1151 .mode = COMMAND_EXEC,
1152 .usage = "arguments",
1153 .help = "command line arguments to be passed to program",
1154 },
1155 {
1156 "semihosting_fileio",
1157 .handler = handle_common_semihosting_fileio_command,
1158 .mode = COMMAND_EXEC,
1159 .usage = "['enable'|'disable']",
1160 .help = "activate support for semihosting fileio operations",
1161 },
1162 {
1163 "semihosting_resexit",
1164 .handler = handle_common_semihosting_resumable_exit_command,
1165 .mode = COMMAND_EXEC,
1166 .usage = "['enable'|'disable']",
1167 .help = "activate support for semihosting resumable exit",
1168 },
1169 COMMAND_REGISTRATION_DONE
1170 };
1171 const struct command_registration arm_command_handlers[] = {
1172 {
1173 .name = "arm",
1174 .mode = COMMAND_ANY,
1175 .help = "ARM command group",
1176 .usage = "",
1177 .chain = arm_exec_command_handlers,
1178 },
1179 COMMAND_REGISTRATION_DONE
1180 };
1181
1182 /*
1183 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1184 * of arm architecture. You can list them using the autocompletion of gdb
1185 * command prompt by typing "set architecture " and then press TAB key.
1186 * The default, selected automatically, is "arm".
1187 * Let's use the default value, here, to make gdb-multiarch behave in the
1188 * same way as a gdb for arm. This can be changed later on. User can still
1189 * set the specific architecture variant with the gdb command.
1190 */
1191 const char *arm_get_gdb_arch(struct target *target)
1192 {
1193 return "arm";
1194 }
1195
1196 int arm_get_gdb_reg_list(struct target *target,
1197 struct reg **reg_list[], int *reg_list_size,
1198 enum target_register_class reg_class)
1199 {
1200 struct arm *arm = target_to_arm(target);
1201 unsigned int i;
1202
1203 if (!is_arm_mode(arm->core_mode)) {
1204 LOG_ERROR("not a valid arm core mode - communication failure?");
1205 return ERROR_FAIL;
1206 }
1207
1208 switch (reg_class) {
1209 case REG_CLASS_GENERAL:
1210 *reg_list_size = 26;
1211 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1212
1213 for (i = 0; i < 16; i++)
1214 (*reg_list)[i] = arm_reg_current(arm, i);
1215
1216 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1217 for (i = 16; i < 24; i++)
1218 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1219 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1220
1221 (*reg_list)[25] = arm->cpsr;
1222
1223 return ERROR_OK;
1224 break;
1225
1226 case REG_CLASS_ALL:
1227 *reg_list_size = (arm->core_type != ARM_MODE_MON ? 48 : 51);
1228 unsigned int list_size_core = *reg_list_size;
1229 if (arm->arm_vfp_version == ARM_VFP_V3)
1230 *reg_list_size += 33;
1231
1232 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1233
1234 for (i = 0; i < 16; i++)
1235 (*reg_list)[i] = arm_reg_current(arm, i);
1236
1237 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1238 int reg_index = arm->core_cache->reg_list[i].number;
1239 if (!(arm_core_regs[i].mode == ARM_MODE_MON
1240 && arm->core_type != ARM_MODE_MON))
1241 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1242 }
1243
1244 /* When we supply the target description, there is no need for fake FPA */
1245 for (i = 16; i < 24; i++) {
1246 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1247 (*reg_list)[i]->size = 0;
1248 }
1249 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1250 (*reg_list)[24]->size = 0;
1251
1252 if (arm->arm_vfp_version == ARM_VFP_V3) {
1253 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1254 for (i = 0; i < 33; i++)
1255 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1256 }
1257
1258 return ERROR_OK;
1259 break;
1260
1261 default:
1262 LOG_ERROR("not a valid register class type in query.");
1263 return ERROR_FAIL;
1264 break;
1265 }
1266 }
1267
1268 /* wait for execution to complete and check exit point */
1269 static int armv4_5_run_algorithm_completion(struct target *target,
1270 uint32_t exit_point,
1271 int timeout_ms,
1272 void *arch_info)
1273 {
1274 int retval;
1275 struct arm *arm = target_to_arm(target);
1276
1277 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1278 if (retval != ERROR_OK)
1279 return retval;
1280 if (target->state != TARGET_HALTED) {
1281 retval = target_halt(target);
1282 if (retval != ERROR_OK)
1283 return retval;
1284 retval = target_wait_state(target, TARGET_HALTED, 500);
1285 if (retval != ERROR_OK)
1286 return retval;
1287 return ERROR_TARGET_TIMEOUT;
1288 }
1289
1290 /* fast exit: ARMv5+ code can use BKPT */
1291 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1292 LOG_WARNING(
1293 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1294 buf_get_u32(arm->pc->value, 0, 32));
1295 return ERROR_TARGET_TIMEOUT;
1296 }
1297
1298 return ERROR_OK;
1299 }
1300
1301 int armv4_5_run_algorithm_inner(struct target *target,
1302 int num_mem_params, struct mem_param *mem_params,
1303 int num_reg_params, struct reg_param *reg_params,
1304 uint32_t entry_point, uint32_t exit_point,
1305 int timeout_ms, void *arch_info,
1306 int (*run_it)(struct target *target, uint32_t exit_point,
1307 int timeout_ms, void *arch_info))
1308 {
1309 struct arm *arm = target_to_arm(target);
1310 struct arm_algorithm *arm_algorithm_info = arch_info;
1311 enum arm_state core_state = arm->core_state;
1312 uint32_t context[17];
1313 uint32_t cpsr;
1314 int exit_breakpoint_size = 0;
1315 int i;
1316 int retval = ERROR_OK;
1317
1318 LOG_DEBUG("Running algorithm");
1319
1320 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1321 LOG_ERROR("current target isn't an ARMV4/5 target");
1322 return ERROR_TARGET_INVALID;
1323 }
1324
1325 if (target->state != TARGET_HALTED) {
1326 LOG_WARNING("target not halted");
1327 return ERROR_TARGET_NOT_HALTED;
1328 }
1329
1330 if (!is_arm_mode(arm->core_mode)) {
1331 LOG_ERROR("not a valid arm core mode - communication failure?");
1332 return ERROR_FAIL;
1333 }
1334
1335 /* armv5 and later can terminate with BKPT instruction; less overhead */
1336 if (!exit_point && arm->is_armv4) {
1337 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1338 return ERROR_FAIL;
1339 }
1340
1341 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1342 * they'll be restored later.
1343 */
1344 for (i = 0; i <= 16; i++) {
1345 struct reg *r;
1346
1347 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1348 arm_algorithm_info->core_mode, i);
1349 if (!r->valid)
1350 arm->read_core_reg(target, r, i,
1351 arm_algorithm_info->core_mode);
1352 context[i] = buf_get_u32(r->value, 0, 32);
1353 }
1354 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1355
1356 for (i = 0; i < num_mem_params; i++) {
1357 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1358 mem_params[i].value);
1359 if (retval != ERROR_OK)
1360 return retval;
1361 }
1362
1363 for (i = 0; i < num_reg_params; i++) {
1364 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
1365 if (!reg) {
1366 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1367 return ERROR_COMMAND_SYNTAX_ERROR;
1368 }
1369
1370 if (reg->size != reg_params[i].size) {
1371 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1372 reg_params[i].reg_name);
1373 return ERROR_COMMAND_SYNTAX_ERROR;
1374 }
1375
1376 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1377 if (retval != ERROR_OK)
1378 return retval;
1379 }
1380
1381 arm->core_state = arm_algorithm_info->core_state;
1382 if (arm->core_state == ARM_STATE_ARM)
1383 exit_breakpoint_size = 4;
1384 else if (arm->core_state == ARM_STATE_THUMB)
1385 exit_breakpoint_size = 2;
1386 else {
1387 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1388 return ERROR_COMMAND_SYNTAX_ERROR;
1389 }
1390
1391 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1392 LOG_DEBUG("setting core_mode: 0x%2.2x",
1393 arm_algorithm_info->core_mode);
1394 buf_set_u32(arm->cpsr->value, 0, 5,
1395 arm_algorithm_info->core_mode);
1396 arm->cpsr->dirty = 1;
1397 arm->cpsr->valid = 1;
1398 }
1399
1400 /* terminate using a hardware or (ARMv5+) software breakpoint */
1401 if (exit_point) {
1402 retval = breakpoint_add(target, exit_point,
1403 exit_breakpoint_size, BKPT_HARD);
1404 if (retval != ERROR_OK) {
1405 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1406 return ERROR_TARGET_FAILURE;
1407 }
1408 }
1409
1410 retval = target_resume(target, 0, entry_point, 1, 1);
1411 if (retval != ERROR_OK)
1412 return retval;
1413 retval = run_it(target, exit_point, timeout_ms, arch_info);
1414
1415 if (exit_point)
1416 breakpoint_remove(target, exit_point);
1417
1418 if (retval != ERROR_OK)
1419 return retval;
1420
1421 for (i = 0; i < num_mem_params; i++) {
1422 if (mem_params[i].direction != PARAM_OUT) {
1423 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1424 mem_params[i].size,
1425 mem_params[i].value);
1426 if (retvaltemp != ERROR_OK)
1427 retval = retvaltemp;
1428 }
1429 }
1430
1431 for (i = 0; i < num_reg_params; i++) {
1432 if (reg_params[i].direction != PARAM_OUT) {
1433
1434 struct reg *reg = register_get_by_name(arm->core_cache,
1435 reg_params[i].reg_name,
1436 0);
1437 if (!reg) {
1438 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1439 retval = ERROR_COMMAND_SYNTAX_ERROR;
1440 continue;
1441 }
1442
1443 if (reg->size != reg_params[i].size) {
1444 LOG_ERROR(
1445 "BUG: register '%s' size doesn't match reg_params[i].size",
1446 reg_params[i].reg_name);
1447 retval = ERROR_COMMAND_SYNTAX_ERROR;
1448 continue;
1449 }
1450
1451 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1452 }
1453 }
1454
1455 /* restore everything we saved before (17 or 18 registers) */
1456 for (i = 0; i <= 16; i++) {
1457 uint32_t regvalue;
1458 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1459 arm_algorithm_info->core_mode, i).value, 0, 32);
1460 if (regvalue != context[i]) {
1461 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1462 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1463 arm_algorithm_info->core_mode, i).name, context[i]);
1464 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1465 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1466 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1467 i).valid = 1;
1468 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1469 i).dirty = 1;
1470 }
1471 }
1472
1473 arm_set_cpsr(arm, cpsr);
1474 arm->cpsr->dirty = 1;
1475
1476 arm->core_state = core_state;
1477
1478 return retval;
1479 }
1480
1481 int armv4_5_run_algorithm(struct target *target,
1482 int num_mem_params,
1483 struct mem_param *mem_params,
1484 int num_reg_params,
1485 struct reg_param *reg_params,
1486 target_addr_t entry_point,
1487 target_addr_t exit_point,
1488 int timeout_ms,
1489 void *arch_info)
1490 {
1491 return armv4_5_run_algorithm_inner(target,
1492 num_mem_params,
1493 mem_params,
1494 num_reg_params,
1495 reg_params,
1496 (uint32_t)entry_point,
1497 (uint32_t)exit_point,
1498 timeout_ms,
1499 arch_info,
1500 armv4_5_run_algorithm_completion);
1501 }
1502
1503 /**
1504 * Runs ARM code in the target to calculate a CRC32 checksum.
1505 *
1506 */
1507 int arm_checksum_memory(struct target *target,
1508 target_addr_t address, uint32_t count, uint32_t *checksum)
1509 {
1510 struct working_area *crc_algorithm;
1511 struct arm_algorithm arm_algo;
1512 struct arm *arm = target_to_arm(target);
1513 struct reg_param reg_params[2];
1514 int retval;
1515 uint32_t i;
1516 uint32_t exit_var = 0;
1517
1518 static const uint8_t arm_crc_code_le[] = {
1519 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1520 };
1521
1522 assert(sizeof(arm_crc_code_le) % 4 == 0);
1523
1524 retval = target_alloc_working_area(target,
1525 sizeof(arm_crc_code_le), &crc_algorithm);
1526 if (retval != ERROR_OK)
1527 return retval;
1528
1529 /* convert code into a buffer in target endianness */
1530 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1531 retval = target_write_u32(target,
1532 crc_algorithm->address + i * sizeof(uint32_t),
1533 le_to_h_u32(&arm_crc_code_le[i * 4]));
1534 if (retval != ERROR_OK)
1535 goto cleanup;
1536 }
1537
1538 arm_algo.common_magic = ARM_COMMON_MAGIC;
1539 arm_algo.core_mode = ARM_MODE_SVC;
1540 arm_algo.core_state = ARM_STATE_ARM;
1541
1542 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1543 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1544
1545 buf_set_u32(reg_params[0].value, 0, 32, address);
1546 buf_set_u32(reg_params[1].value, 0, 32, count);
1547
1548 /* 20 second timeout/megabyte */
1549 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1550
1551 /* armv4 must exit using a hardware breakpoint */
1552 if (arm->is_armv4)
1553 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1554
1555 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1556 crc_algorithm->address,
1557 exit_var,
1558 timeout, &arm_algo);
1559
1560 if (retval == ERROR_OK)
1561 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1562 else
1563 LOG_ERROR("error executing ARM crc algorithm");
1564
1565 destroy_reg_param(&reg_params[0]);
1566 destroy_reg_param(&reg_params[1]);
1567
1568 cleanup:
1569 target_free_working_area(target, crc_algorithm);
1570
1571 return retval;
1572 }
1573
1574 /**
1575 * Runs ARM code in the target to check whether a memory block holds
1576 * all ones. NOR flash which has been erased, and thus may be written,
1577 * holds all ones.
1578 *
1579 */
1580 int arm_blank_check_memory(struct target *target,
1581 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1582 {
1583 struct working_area *check_algorithm;
1584 struct reg_param reg_params[3];
1585 struct arm_algorithm arm_algo;
1586 struct arm *arm = target_to_arm(target);
1587 int retval;
1588 uint32_t i;
1589 uint32_t exit_var = 0;
1590
1591 static const uint8_t check_code_le[] = {
1592 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1593 };
1594
1595 assert(sizeof(check_code_le) % 4 == 0);
1596
1597 if (erased_value != 0xff) {
1598 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1599 erased_value);
1600 return ERROR_FAIL;
1601 }
1602
1603 /* make sure we have a working area */
1604 retval = target_alloc_working_area(target,
1605 sizeof(check_code_le), &check_algorithm);
1606 if (retval != ERROR_OK)
1607 return retval;
1608
1609 /* convert code into a buffer in target endianness */
1610 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1611 retval = target_write_u32(target,
1612 check_algorithm->address
1613 + i * sizeof(uint32_t),
1614 le_to_h_u32(&check_code_le[i * 4]));
1615 if (retval != ERROR_OK)
1616 goto cleanup;
1617 }
1618
1619 arm_algo.common_magic = ARM_COMMON_MAGIC;
1620 arm_algo.core_mode = ARM_MODE_SVC;
1621 arm_algo.core_state = ARM_STATE_ARM;
1622
1623 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1624 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1625
1626 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1627 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1628
1629 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1630 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1631
1632 /* armv4 must exit using a hardware breakpoint */
1633 if (arm->is_armv4)
1634 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1635
1636 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1637 check_algorithm->address,
1638 exit_var,
1639 10000, &arm_algo);
1640
1641 if (retval == ERROR_OK)
1642 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1643
1644 destroy_reg_param(&reg_params[0]);
1645 destroy_reg_param(&reg_params[1]);
1646 destroy_reg_param(&reg_params[2]);
1647
1648 cleanup:
1649 target_free_working_area(target, check_algorithm);
1650
1651 if (retval != ERROR_OK)
1652 return retval;
1653
1654 return 1; /* only one block has been checked */
1655 }
1656
1657 static int arm_full_context(struct target *target)
1658 {
1659 struct arm *arm = target_to_arm(target);
1660 unsigned num_regs = arm->core_cache->num_regs;
1661 struct reg *reg = arm->core_cache->reg_list;
1662 int retval = ERROR_OK;
1663
1664 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1665 if (reg->valid)
1666 continue;
1667 retval = armv4_5_get_core_reg(reg);
1668 }
1669 return retval;
1670 }
1671
1672 static int arm_default_mrc(struct target *target, int cpnum,
1673 uint32_t op1, uint32_t op2,
1674 uint32_t CRn, uint32_t CRm,
1675 uint32_t *value)
1676 {
1677 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1678 return ERROR_FAIL;
1679 }
1680
1681 static int arm_default_mcr(struct target *target, int cpnum,
1682 uint32_t op1, uint32_t op2,
1683 uint32_t CRn, uint32_t CRm,
1684 uint32_t value)
1685 {
1686 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1687 return ERROR_FAIL;
1688 }
1689
1690 int arm_init_arch_info(struct target *target, struct arm *arm)
1691 {
1692 target->arch_info = arm;
1693 arm->target = target;
1694
1695 arm->common_magic = ARM_COMMON_MAGIC;
1696
1697 /* core_type may be overridden by subtype logic */
1698 if (arm->core_type != ARM_MODE_THREAD) {
1699 arm->core_type = ARM_MODE_ANY;
1700 arm_set_cpsr(arm, ARM_MODE_USR);
1701 }
1702
1703 /* default full_context() has no core-specific optimizations */
1704 if (!arm->full_context && arm->read_core_reg)
1705 arm->full_context = arm_full_context;
1706
1707 if (!arm->mrc)
1708 arm->mrc = arm_default_mrc;
1709 if (!arm->mcr)
1710 arm->mcr = arm_default_mcr;
1711
1712 return ERROR_OK;
1713 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)