ARM: keep a handle to the PC
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "arm.h"
31 #include "armv4_5.h"
32 #include "arm_jtag.h"
33 #include "breakpoints.h"
34 #include "arm_disassembler.h"
35 #include <helper/binarybuffer.h>
36 #include "algorithm.h"
37 #include "register.h"
38
39
40 /* offsets into armv4_5 core register cache */
41 enum {
42 // ARMV4_5_CPSR = 31,
43 ARMV4_5_SPSR_FIQ = 32,
44 ARMV4_5_SPSR_IRQ = 33,
45 ARMV4_5_SPSR_SVC = 34,
46 ARMV4_5_SPSR_ABT = 35,
47 ARMV4_5_SPSR_UND = 36,
48 ARM_SPSR_MON = 39,
49 };
50
51 static const uint8_t arm_usr_indices[17] = {
52 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
53 };
54
55 static const uint8_t arm_fiq_indices[8] = {
56 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
57 };
58
59 static const uint8_t arm_irq_indices[3] = {
60 23, 24, ARMV4_5_SPSR_IRQ,
61 };
62
63 static const uint8_t arm_svc_indices[3] = {
64 25, 26, ARMV4_5_SPSR_SVC,
65 };
66
67 static const uint8_t arm_abt_indices[3] = {
68 27, 28, ARMV4_5_SPSR_ABT,
69 };
70
71 static const uint8_t arm_und_indices[3] = {
72 29, 30, ARMV4_5_SPSR_UND,
73 };
74
75 static const uint8_t arm_mon_indices[3] = {
76 37, 38, ARM_SPSR_MON,
77 };
78
79 static const struct {
80 const char *name;
81 unsigned short psr;
82 /* For user and system modes, these list indices for all registers.
83 * otherwise they're just indices for the shadow registers and SPSR.
84 */
85 unsigned short n_indices;
86 const uint8_t *indices;
87 } arm_mode_data[] = {
88 /* Seven modes are standard from ARM7 on. "System" and "User" share
89 * the same registers; other modes shadow from 3 to 8 registers.
90 */
91 {
92 .name = "User",
93 .psr = ARM_MODE_USR,
94 .n_indices = ARRAY_SIZE(arm_usr_indices),
95 .indices = arm_usr_indices,
96 },
97 {
98 .name = "FIQ",
99 .psr = ARM_MODE_FIQ,
100 .n_indices = ARRAY_SIZE(arm_fiq_indices),
101 .indices = arm_fiq_indices,
102 },
103 {
104 .name = "Supervisor",
105 .psr = ARM_MODE_SVC,
106 .n_indices = ARRAY_SIZE(arm_svc_indices),
107 .indices = arm_svc_indices,
108 },
109 {
110 .name = "Abort",
111 .psr = ARM_MODE_ABT,
112 .n_indices = ARRAY_SIZE(arm_abt_indices),
113 .indices = arm_abt_indices,
114 },
115 {
116 .name = "IRQ",
117 .psr = ARM_MODE_IRQ,
118 .n_indices = ARRAY_SIZE(arm_irq_indices),
119 .indices = arm_irq_indices,
120 },
121 {
122 .name = "Undefined instruction",
123 .psr = ARM_MODE_UND,
124 .n_indices = ARRAY_SIZE(arm_und_indices),
125 .indices = arm_und_indices,
126 },
127 {
128 .name = "System",
129 .psr = ARM_MODE_SYS,
130 .n_indices = ARRAY_SIZE(arm_usr_indices),
131 .indices = arm_usr_indices,
132 },
133 /* TrustZone "Security Extensions" add a secure monitor mode.
134 * This is distinct from a "debug monitor" which can support
135 * non-halting debug, in conjunction with some debuggers.
136 */
137 {
138 .name = "Secure Monitor",
139 .psr = ARM_MODE_MON,
140 .n_indices = ARRAY_SIZE(arm_mon_indices),
141 .indices = arm_mon_indices,
142 },
143 };
144
145 /** Map PSR mode bits to the name of an ARM processor operating mode. */
146 const char *arm_mode_name(unsigned psr_mode)
147 {
148 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
149 if (arm_mode_data[i].psr == psr_mode)
150 return arm_mode_data[i].name;
151 }
152 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
153 return "UNRECOGNIZED";
154 }
155
156 /** Return true iff the parameter denotes a valid ARM processor mode. */
157 bool is_arm_mode(unsigned psr_mode)
158 {
159 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
160 if (arm_mode_data[i].psr == psr_mode)
161 return true;
162 }
163 return false;
164 }
165
166 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
167 int arm_mode_to_number(enum arm_mode mode)
168 {
169 switch (mode) {
170 case ARM_MODE_ANY:
171 /* map MODE_ANY to user mode */
172 case ARM_MODE_USR:
173 return 0;
174 case ARM_MODE_FIQ:
175 return 1;
176 case ARM_MODE_IRQ:
177 return 2;
178 case ARM_MODE_SVC:
179 return 3;
180 case ARM_MODE_ABT:
181 return 4;
182 case ARM_MODE_UND:
183 return 5;
184 case ARM_MODE_SYS:
185 return 6;
186 case ARM_MODE_MON:
187 return 7;
188 default:
189 LOG_ERROR("invalid mode value encountered %d", mode);
190 return -1;
191 }
192 }
193
194 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
195 enum arm_mode armv4_5_number_to_mode(int number)
196 {
197 switch (number) {
198 case 0:
199 return ARM_MODE_USR;
200 case 1:
201 return ARM_MODE_FIQ;
202 case 2:
203 return ARM_MODE_IRQ;
204 case 3:
205 return ARM_MODE_SVC;
206 case 4:
207 return ARM_MODE_ABT;
208 case 5:
209 return ARM_MODE_UND;
210 case 6:
211 return ARM_MODE_SYS;
212 case 7:
213 return ARM_MODE_MON;
214 default:
215 LOG_ERROR("mode index out of bounds %d", number);
216 return ARM_MODE_ANY;
217 }
218 }
219
220 const char *arm_state_strings[] =
221 {
222 "ARM", "Thumb", "Jazelle", "ThumbEE",
223 };
224
225 /* Templates for ARM core registers.
226 *
227 * NOTE: offsets in this table are coupled to the arm_mode_data
228 * table above, the armv4_5_core_reg_map array below, and also to
229 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
230 */
231 static const struct {
232 /* The name is used for e.g. the "regs" command. */
233 const char *name;
234
235 /* The {cookie, mode} tuple uniquely identifies one register.
236 * In a given mode, cookies 0..15 map to registers R0..R15,
237 * with R13..R15 usually called SP, LR, PC.
238 *
239 * MODE_ANY is used as *input* to the mapping, and indicates
240 * various special cases (sigh) and errors.
241 *
242 * Cookie 16 is (currently) confusing, since it indicates
243 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
244 * (Exception modes have both CPSR and SPSR registers ...)
245 */
246 unsigned cookie;
247 enum arm_mode mode;
248 } arm_core_regs[] = {
249 /* IMPORTANT: we guarantee that the first eight cached registers
250 * correspond to r0..r7, and the fifteenth to PC, so that callers
251 * don't need to map them.
252 */
253 { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, },
254 { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, },
255 { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, },
256 { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, },
257 { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, },
258 { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, },
259 { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, },
260 { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, },
261
262 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
263 * them as MODE_ANY creates special cases. (ANY means
264 * "not mapped" elsewhere; here it's "everything but FIQ".)
265 */
266 { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, },
267 { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, },
268 { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, },
269 { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, },
270 { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, },
271
272 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
273 { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, },
274 { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, },
275
276 /* guaranteed to be at index 15 */
277 { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, },
278
279 { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, },
280 { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, },
281 { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, },
282 { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, },
283 { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, },
284
285 { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, },
286 { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, },
287
288 { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, },
289 { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, },
290
291 { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, },
292 { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, },
293
294 { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, },
295 { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, },
296
297 { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, },
298 { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, },
299
300 { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, },
301 { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, },
302 { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, },
303 { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, },
304 { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, },
305 { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, },
306
307 { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, },
308 { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, },
309 { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, },
310 };
311
312 /* map core mode (USR, FIQ, ...) and register number to
313 * indices into the register cache
314 */
315 const int armv4_5_core_reg_map[8][17] =
316 {
317 { /* USR */
318 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
319 },
320 { /* FIQ (8 shadows of USR, vs normal 3) */
321 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
322 },
323 { /* IRQ */
324 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
325 },
326 { /* SVC */
327 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
328 },
329 { /* ABT */
330 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
331 },
332 { /* UND */
333 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
334 },
335 { /* SYS (same registers as USR) */
336 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
337 },
338 { /* MON */
339 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
340 }
341 };
342
343 /**
344 * Configures host-side ARM records to reflect the specified CPSR.
345 * Later, code can use arm_reg_current() to map register numbers
346 * according to how they are exposed by this mode.
347 */
348 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
349 {
350 enum arm_mode mode = cpsr & 0x1f;
351 int num;
352
353 /* NOTE: this may be called very early, before the register
354 * cache is set up. We can't defend against many errors, in
355 * particular against CPSRs that aren't valid *here* ...
356 */
357 if (arm->cpsr) {
358 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
359 arm->cpsr->valid = 1;
360 arm->cpsr->dirty = 0;
361 }
362
363 arm->core_mode = mode;
364
365 /* mode_to_number() warned; set up a somewhat-sane mapping */
366 num = arm_mode_to_number(mode);
367 if (num < 0) {
368 mode = ARM_MODE_USR;
369 num = 0;
370 }
371
372 arm->map = &armv4_5_core_reg_map[num][0];
373 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
374 ? NULL
375 : arm->core_cache->reg_list + arm->map[16];
376
377 /* Older ARMs won't have the J bit */
378 enum arm_state state;
379
380 if (cpsr & (1 << 5)) { /* T */
381 if (cpsr & (1 << 24)) { /* J */
382 LOG_WARNING("ThumbEE -- incomplete support");
383 state = ARM_STATE_THUMB_EE;
384 } else
385 state = ARM_STATE_THUMB;
386 } else {
387 if (cpsr & (1 << 24)) { /* J */
388 LOG_ERROR("Jazelle state handling is BROKEN!");
389 state = ARM_STATE_JAZELLE;
390 } else
391 state = ARM_STATE_ARM;
392 }
393 arm->core_state = state;
394
395 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
396 arm_mode_name(mode),
397 arm_state_strings[arm->core_state]);
398 }
399
400 /**
401 * Returns handle to the register currently mapped to a given number.
402 * Someone must have called arm_set_cpsr() before.
403 *
404 * \param arm This core's state and registers are used.
405 * \param regnum From 0..15 corresponding to R0..R14 and PC.
406 * Note that R0..R7 don't require mapping; you may access those
407 * as the first eight entries in the register cache. Likewise
408 * R15 (PC) doesn't need mapping; you may also access it directly.
409 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
410 * CPSR (arm->cpsr) is also not mapped.
411 */
412 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
413 {
414 struct reg *r;
415
416 if (regnum > 16)
417 return NULL;
418
419 r = arm->core_cache->reg_list + arm->map[regnum];
420
421 /* e.g. invalid CPSR said "secure monitor" mode on a core
422 * that doesn't support it...
423 */
424 if (!r) {
425 LOG_ERROR("Invalid CPSR mode");
426 r = arm->core_cache->reg_list + regnum;
427 }
428
429 return r;
430 }
431
432 static const uint8_t arm_gdb_dummy_fp_value[12];
433
434 /**
435 * Dummy FPA registers are required to support GDB on ARM.
436 * Register packets require eight obsolete FPA register values.
437 * Modern ARM cores use Vector Floating Point (VFP), if they
438 * have any floating point support. VFP is not FPA-compatible.
439 */
440 struct reg arm_gdb_dummy_fp_reg =
441 {
442 .name = "GDB dummy FPA register",
443 .value = (uint8_t *) arm_gdb_dummy_fp_value,
444 .valid = 1,
445 .size = 96,
446 };
447
448 static const uint8_t arm_gdb_dummy_fps_value[4];
449
450 /**
451 * Dummy FPA status registers are required to support GDB on ARM.
452 * Register packets require an obsolete FPA status register.
453 */
454 struct reg arm_gdb_dummy_fps_reg =
455 {
456 .name = "GDB dummy FPA status register",
457 .value = (uint8_t *) arm_gdb_dummy_fps_value,
458 .valid = 1,
459 .size = 32,
460 };
461
462 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
463
464 static void arm_gdb_dummy_init(void)
465 {
466 register_init_dummy(&arm_gdb_dummy_fp_reg);
467 register_init_dummy(&arm_gdb_dummy_fps_reg);
468 }
469
470 static int armv4_5_get_core_reg(struct reg *reg)
471 {
472 int retval;
473 struct arm_reg *armv4_5 = reg->arch_info;
474 struct target *target = armv4_5->target;
475
476 if (target->state != TARGET_HALTED)
477 {
478 LOG_ERROR("Target not halted");
479 return ERROR_TARGET_NOT_HALTED;
480 }
481
482 retval = armv4_5->armv4_5_common->read_core_reg(target, reg, armv4_5->num, armv4_5->mode);
483 if (retval == ERROR_OK) {
484 reg->valid = 1;
485 reg->dirty = 0;
486 }
487
488 return retval;
489 }
490
491 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
492 {
493 struct arm_reg *armv4_5 = reg->arch_info;
494 struct target *target = armv4_5->target;
495 struct arm *armv4_5_target = target_to_arm(target);
496 uint32_t value = buf_get_u32(buf, 0, 32);
497
498 if (target->state != TARGET_HALTED)
499 {
500 LOG_ERROR("Target not halted");
501 return ERROR_TARGET_NOT_HALTED;
502 }
503
504 /* Except for CPSR, the "reg" command exposes a writeback model
505 * for the register cache.
506 */
507 if (reg == armv4_5_target->cpsr) {
508 arm_set_cpsr(armv4_5_target, value);
509
510 /* Older cores need help to be in ARM mode during halt
511 * mode debug, so we clear the J and T bits if we flush.
512 * For newer cores (v6/v7a/v7r) we don't need that, but
513 * it won't hurt since CPSR is always flushed anyway.
514 */
515 if (armv4_5_target->core_mode !=
516 (enum arm_mode)(value & 0x1f)) {
517 LOG_DEBUG("changing ARM core mode to '%s'",
518 arm_mode_name(value & 0x1f));
519 value &= ~((1 << 24) | (1 << 5));
520 armv4_5_target->write_core_reg(target, reg,
521 16, ARM_MODE_ANY, value);
522 }
523 } else {
524 buf_set_u32(reg->value, 0, 32, value);
525 reg->valid = 1;
526 }
527 reg->dirty = 1;
528
529 return ERROR_OK;
530 }
531
532 static const struct reg_arch_type arm_reg_type = {
533 .get = armv4_5_get_core_reg,
534 .set = armv4_5_set_core_reg,
535 };
536
537 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
538 {
539 int num_regs = ARRAY_SIZE(arm_core_regs);
540 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
541 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
542 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
543 int i;
544
545 if (!cache || !reg_list || !arch_info) {
546 free(cache);
547 free(reg_list);
548 free(arch_info);
549 return NULL;
550 }
551
552 cache->name = "ARM registers";
553 cache->next = NULL;
554 cache->reg_list = reg_list;
555 cache->num_regs = 0;
556
557 for (i = 0; i < num_regs; i++)
558 {
559 /* Skip registers this core doesn't expose */
560 if (arm_core_regs[i].mode == ARM_MODE_MON
561 && arm->core_type != ARM_MODE_MON)
562 continue;
563
564 /* REVISIT handle Cortex-M, which only shadows R13/SP */
565
566 arch_info[i].num = arm_core_regs[i].cookie;
567 arch_info[i].mode = arm_core_regs[i].mode;
568 arch_info[i].target = target;
569 arch_info[i].armv4_5_common = arm;
570
571 reg_list[i].name = (char *) arm_core_regs[i].name;
572 reg_list[i].size = 32;
573 reg_list[i].value = &arch_info[i].value;
574 reg_list[i].type = &arm_reg_type;
575 reg_list[i].arch_info = &arch_info[i];
576
577 cache->num_regs++;
578 }
579
580 arm->pc = reg_list + 15;
581 arm->cpsr = reg_list + ARMV4_5_CPSR;
582 arm->core_cache = cache;
583 return cache;
584 }
585
586 int arm_arch_state(struct target *target)
587 {
588 struct arm *armv4_5 = target_to_arm(target);
589
590 if (armv4_5->common_magic != ARM_COMMON_MAGIC)
591 {
592 LOG_ERROR("BUG: called for a non-ARM target");
593 return ERROR_FAIL;
594 }
595
596 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
597 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
598 arm_state_strings[armv4_5->core_state],
599 debug_reason_name(target),
600 arm_mode_name(armv4_5->core_mode),
601 buf_get_u32(armv4_5->cpsr->value, 0, 32),
602 buf_get_u32(armv4_5->pc->value, 0, 32),
603 armv4_5->is_semihosting ? ", semihosting" : "");
604
605 return ERROR_OK;
606 }
607
608 #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
609 cache->reg_list[armv4_5_core_reg_map[mode][num]]
610
611 COMMAND_HANDLER(handle_armv4_5_reg_command)
612 {
613 struct target *target = get_current_target(CMD_CTX);
614 struct arm *armv4_5 = target_to_arm(target);
615 unsigned num_regs;
616 struct reg *regs;
617
618 if (!is_arm(armv4_5))
619 {
620 command_print(CMD_CTX, "current target isn't an ARM");
621 return ERROR_FAIL;
622 }
623
624 if (target->state != TARGET_HALTED)
625 {
626 command_print(CMD_CTX, "error: target must be halted for register accesses");
627 return ERROR_FAIL;
628 }
629
630 if (!is_arm_mode(armv4_5->core_mode))
631 return ERROR_FAIL;
632
633 if (!armv4_5->full_context) {
634 command_print(CMD_CTX, "error: target doesn't support %s",
635 CMD_NAME);
636 return ERROR_FAIL;
637 }
638
639 num_regs = armv4_5->core_cache->num_regs;
640 regs = armv4_5->core_cache->reg_list;
641
642 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
643 const char *name;
644 char *sep = "\n";
645 char *shadow = "";
646
647 /* label this bank of registers (or shadows) */
648 switch (arm_mode_data[mode].psr) {
649 case ARM_MODE_SYS:
650 continue;
651 case ARM_MODE_USR:
652 name = "System and User";
653 sep = "";
654 break;
655 case ARM_MODE_MON:
656 if (armv4_5->core_type != ARM_MODE_MON)
657 continue;
658 /* FALLTHROUGH */
659 default:
660 name = arm_mode_data[mode].name;
661 shadow = "shadow ";
662 break;
663 }
664 command_print(CMD_CTX, "%s%s mode %sregisters",
665 sep, name, shadow);
666
667 /* display N rows of up to 4 registers each */
668 for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) {
669 char output[80];
670 int output_len = 0;
671
672 for (unsigned j = 0; j < 4; j++, i++) {
673 uint32_t value;
674 struct reg *reg = regs;
675
676 if (i >= arm_mode_data[mode].n_indices)
677 break;
678
679 reg += arm_mode_data[mode].indices[i];
680
681 /* REVISIT be smarter about faults... */
682 if (!reg->valid)
683 armv4_5->full_context(target);
684
685 value = buf_get_u32(reg->value, 0, 32);
686 output_len += snprintf(output + output_len,
687 sizeof(output) - output_len,
688 "%8s: %8.8" PRIx32 " ",
689 reg->name, value);
690 }
691 command_print(CMD_CTX, "%s", output);
692 }
693 }
694
695 return ERROR_OK;
696 }
697
698 COMMAND_HANDLER(handle_armv4_5_core_state_command)
699 {
700 struct target *target = get_current_target(CMD_CTX);
701 struct arm *armv4_5 = target_to_arm(target);
702
703 if (!is_arm(armv4_5))
704 {
705 command_print(CMD_CTX, "current target isn't an ARM");
706 return ERROR_FAIL;
707 }
708
709 if (CMD_ARGC > 0)
710 {
711 if (strcmp(CMD_ARGV[0], "arm") == 0)
712 {
713 armv4_5->core_state = ARM_STATE_ARM;
714 }
715 if (strcmp(CMD_ARGV[0], "thumb") == 0)
716 {
717 armv4_5->core_state = ARM_STATE_THUMB;
718 }
719 }
720
721 command_print(CMD_CTX, "core state: %s", arm_state_strings[armv4_5->core_state]);
722
723 return ERROR_OK;
724 }
725
726 COMMAND_HANDLER(handle_armv4_5_disassemble_command)
727 {
728 int retval = ERROR_OK;
729 struct target *target = get_current_target(CMD_CTX);
730 struct arm *arm = target ? target_to_arm(target) : NULL;
731 uint32_t address;
732 int count = 1;
733 int thumb = 0;
734
735 if (!is_arm(arm)) {
736 command_print(CMD_CTX, "current target isn't an ARM");
737 return ERROR_FAIL;
738 }
739
740 switch (CMD_ARGC) {
741 case 3:
742 if (strcmp(CMD_ARGV[2], "thumb") != 0)
743 goto usage;
744 thumb = 1;
745 /* FALL THROUGH */
746 case 2:
747 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
748 /* FALL THROUGH */
749 case 1:
750 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
751 if (address & 0x01) {
752 if (!thumb) {
753 command_print(CMD_CTX, "Disassemble as Thumb");
754 thumb = 1;
755 }
756 address &= ~1;
757 }
758 break;
759 default:
760 usage:
761 command_print(CMD_CTX,
762 "usage: arm disassemble <address> [<count> ['thumb']]");
763 count = 0;
764 retval = ERROR_FAIL;
765 }
766
767 while (count-- > 0) {
768 struct arm_instruction cur_instruction;
769
770 if (thumb) {
771 /* Always use Thumb2 disassembly for best handling
772 * of 32-bit BL/BLX, and to work with newer cores
773 * (some ARMv6, all ARMv7) that use Thumb2.
774 */
775 retval = thumb2_opcode(target, address,
776 &cur_instruction);
777 if (retval != ERROR_OK)
778 break;
779 } else {
780 uint32_t opcode;
781
782 retval = target_read_u32(target, address, &opcode);
783 if (retval != ERROR_OK)
784 break;
785 retval = arm_evaluate_opcode(opcode, address,
786 &cur_instruction) != ERROR_OK;
787 if (retval != ERROR_OK)
788 break;
789 }
790 command_print(CMD_CTX, "%s", cur_instruction.text);
791 address += cur_instruction.instruction_size;
792 }
793
794 return retval;
795 }
796
797 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
798 {
799 struct command_context *context;
800 struct target *target;
801 struct arm *arm;
802 int retval;
803
804 context = Jim_GetAssocData(interp, "context");
805 if (context == NULL) {
806 LOG_ERROR("%s: no command context", __func__);
807 return JIM_ERR;
808 }
809 target = get_current_target(context);
810 if (target == NULL) {
811 LOG_ERROR("%s: no current target", __func__);
812 return JIM_ERR;
813 }
814 if (!target_was_examined(target)) {
815 LOG_ERROR("%s: not yet examined", target_name(target));
816 return JIM_ERR;
817 }
818 arm = target_to_arm(target);
819 if (!is_arm(arm)) {
820 LOG_ERROR("%s: not an ARM", target_name(target));
821 return JIM_ERR;
822 }
823
824 if ((argc < 6) || (argc > 7)) {
825 /* FIXME use the command name to verify # params... */
826 LOG_ERROR("%s: wrong number of arguments", __func__);
827 return JIM_ERR;
828 }
829
830 int cpnum;
831 uint32_t op1;
832 uint32_t op2;
833 uint32_t CRn;
834 uint32_t CRm;
835 uint32_t value;
836 long l;
837
838 /* NOTE: parameter sequence matches ARM instruction set usage:
839 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
840 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
841 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
842 */
843 retval = Jim_GetLong(interp, argv[1], &l);
844 if (retval != JIM_OK)
845 return retval;
846 if (l & ~0xf) {
847 LOG_ERROR("%s: %s %d out of range", __func__,
848 "coprocessor", (int) l);
849 return JIM_ERR;
850 }
851 cpnum = l;
852
853 retval = Jim_GetLong(interp, argv[2], &l);
854 if (retval != JIM_OK)
855 return retval;
856 if (l & ~0x7) {
857 LOG_ERROR("%s: %s %d out of range", __func__,
858 "op1", (int) l);
859 return JIM_ERR;
860 }
861 op1 = l;
862
863 retval = Jim_GetLong(interp, argv[3], &l);
864 if (retval != JIM_OK)
865 return retval;
866 if (l & ~0xf) {
867 LOG_ERROR("%s: %s %d out of range", __func__,
868 "CRn", (int) l);
869 return JIM_ERR;
870 }
871 CRn = l;
872
873 retval = Jim_GetLong(interp, argv[4], &l);
874 if (retval != JIM_OK)
875 return retval;
876 if (l & ~0xf) {
877 LOG_ERROR("%s: %s %d out of range", __func__,
878 "CRm", (int) l);
879 return JIM_ERR;
880 }
881 CRm = l;
882
883 retval = Jim_GetLong(interp, argv[5], &l);
884 if (retval != JIM_OK)
885 return retval;
886 if (l & ~0x7) {
887 LOG_ERROR("%s: %s %d out of range", __func__,
888 "op2", (int) l);
889 return JIM_ERR;
890 }
891 op2 = l;
892
893 value = 0;
894
895 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
896 * that could easily be a typo! Check both...
897 *
898 * FIXME change the call syntax here ... simplest to just pass
899 * the MRC() or MCR() instruction to be executed. That will also
900 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
901 * if that's ever needed.
902 */
903 if (argc == 7) {
904 retval = Jim_GetLong(interp, argv[6], &l);
905 if (retval != JIM_OK) {
906 return retval;
907 }
908 value = l;
909
910 /* NOTE: parameters reordered! */
911 // ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2)
912 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
913 if (retval != ERROR_OK)
914 return JIM_ERR;
915 } else {
916 /* NOTE: parameters reordered! */
917 // ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2)
918 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
919 if (retval != ERROR_OK)
920 return JIM_ERR;
921
922 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
923 }
924
925 return JIM_OK;
926 }
927
928 static const struct command_registration arm_exec_command_handlers[] = {
929 {
930 .name = "reg",
931 .handler = handle_armv4_5_reg_command,
932 .mode = COMMAND_EXEC,
933 .help = "display ARM core registers",
934 },
935 {
936 .name = "core_state",
937 .handler = handle_armv4_5_core_state_command,
938 .mode = COMMAND_EXEC,
939 .usage = "['arm'|'thumb']",
940 .help = "display/change ARM core state",
941 },
942 {
943 .name = "disassemble",
944 .handler = handle_armv4_5_disassemble_command,
945 .mode = COMMAND_EXEC,
946 .usage = "address [count ['thumb']]",
947 .help = "disassemble instructions ",
948 },
949 {
950 .name = "mcr",
951 .mode = COMMAND_EXEC,
952 .jim_handler = &jim_mcrmrc,
953 .help = "write coprocessor register",
954 .usage = "cpnum op1 CRn op2 CRm value",
955 },
956 {
957 .name = "mrc",
958 .jim_handler = &jim_mcrmrc,
959 .help = "read coprocessor register",
960 .usage = "cpnum op1 CRn op2 CRm",
961 },
962
963 COMMAND_REGISTRATION_DONE
964 };
965 const struct command_registration arm_command_handlers[] = {
966 {
967 .name = "arm",
968 .mode = COMMAND_ANY,
969 .help = "ARM command group",
970 .chain = arm_exec_command_handlers,
971 },
972 COMMAND_REGISTRATION_DONE
973 };
974
975 int arm_get_gdb_reg_list(struct target *target,
976 struct reg **reg_list[], int *reg_list_size)
977 {
978 struct arm *armv4_5 = target_to_arm(target);
979 int i;
980
981 if (!is_arm_mode(armv4_5->core_mode))
982 return ERROR_FAIL;
983
984 *reg_list_size = 26;
985 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
986
987 for (i = 0; i < 16; i++)
988 (*reg_list)[i] = arm_reg_current(armv4_5, i);
989
990 for (i = 16; i < 24; i++)
991 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
992
993 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
994 (*reg_list)[25] = armv4_5->cpsr;
995
996 return ERROR_OK;
997 }
998
999 /* wait for execution to complete and check exit point */
1000 static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
1001 {
1002 int retval;
1003 struct arm *armv4_5 = target_to_arm(target);
1004
1005 if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK)
1006 {
1007 return retval;
1008 }
1009 if (target->state != TARGET_HALTED)
1010 {
1011 if ((retval = target_halt(target)) != ERROR_OK)
1012 return retval;
1013 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
1014 {
1015 return retval;
1016 }
1017 return ERROR_TARGET_TIMEOUT;
1018 }
1019
1020 /* fast exit: ARMv5+ code can use BKPT */
1021 if (exit_point && buf_get_u32(armv4_5->pc->value, 0, 32) != exit_point)
1022 {
1023 LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1024 buf_get_u32(armv4_5->pc->value, 0, 32));
1025 return ERROR_TARGET_TIMEOUT;
1026 }
1027
1028 return ERROR_OK;
1029 }
1030
1031 int armv4_5_run_algorithm_inner(struct target *target,
1032 int num_mem_params, struct mem_param *mem_params,
1033 int num_reg_params, struct reg_param *reg_params,
1034 uint32_t entry_point, uint32_t exit_point,
1035 int timeout_ms, void *arch_info,
1036 int (*run_it)(struct target *target, uint32_t exit_point,
1037 int timeout_ms, void *arch_info))
1038 {
1039 struct arm *armv4_5 = target_to_arm(target);
1040 struct arm_algorithm *arm_algorithm_info = arch_info;
1041 enum arm_state core_state = armv4_5->core_state;
1042 uint32_t context[17];
1043 uint32_t cpsr;
1044 int exit_breakpoint_size = 0;
1045 int i;
1046 int retval = ERROR_OK;
1047
1048 LOG_DEBUG("Running algorithm");
1049
1050 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC)
1051 {
1052 LOG_ERROR("current target isn't an ARMV4/5 target");
1053 return ERROR_TARGET_INVALID;
1054 }
1055
1056 if (target->state != TARGET_HALTED)
1057 {
1058 LOG_WARNING("target not halted");
1059 return ERROR_TARGET_NOT_HALTED;
1060 }
1061
1062 if (!is_arm_mode(armv4_5->core_mode))
1063 return ERROR_FAIL;
1064
1065 /* armv5 and later can terminate with BKPT instruction; less overhead */
1066 if (!exit_point && armv4_5->is_armv4)
1067 {
1068 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1069 return ERROR_FAIL;
1070 }
1071
1072 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1073 * they'll be restored later.
1074 */
1075 for (i = 0; i <= 16; i++)
1076 {
1077 struct reg *r;
1078
1079 r = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1080 arm_algorithm_info->core_mode, i);
1081 if (!r->valid)
1082 armv4_5->read_core_reg(target, r, i,
1083 arm_algorithm_info->core_mode);
1084 context[i] = buf_get_u32(r->value, 0, 32);
1085 }
1086 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1087
1088 for (i = 0; i < num_mem_params; i++)
1089 {
1090 if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1091 {
1092 return retval;
1093 }
1094 }
1095
1096 for (i = 0; i < num_reg_params; i++)
1097 {
1098 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1099 if (!reg)
1100 {
1101 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1102 return ERROR_INVALID_ARGUMENTS;
1103 }
1104
1105 if (reg->size != reg_params[i].size)
1106 {
1107 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1108 return ERROR_INVALID_ARGUMENTS;
1109 }
1110
1111 if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK)
1112 {
1113 return retval;
1114 }
1115 }
1116
1117 armv4_5->core_state = arm_algorithm_info->core_state;
1118 if (armv4_5->core_state == ARM_STATE_ARM)
1119 exit_breakpoint_size = 4;
1120 else if (armv4_5->core_state == ARM_STATE_THUMB)
1121 exit_breakpoint_size = 2;
1122 else
1123 {
1124 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1125 return ERROR_INVALID_ARGUMENTS;
1126 }
1127
1128 if (arm_algorithm_info->core_mode != ARM_MODE_ANY)
1129 {
1130 LOG_DEBUG("setting core_mode: 0x%2.2x",
1131 arm_algorithm_info->core_mode);
1132 buf_set_u32(armv4_5->cpsr->value, 0, 5,
1133 arm_algorithm_info->core_mode);
1134 armv4_5->cpsr->dirty = 1;
1135 armv4_5->cpsr->valid = 1;
1136 }
1137
1138 /* terminate using a hardware or (ARMv5+) software breakpoint */
1139 if (exit_point && (retval = breakpoint_add(target, exit_point,
1140 exit_breakpoint_size, BKPT_HARD)) != ERROR_OK)
1141 {
1142 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1143 return ERROR_TARGET_FAILURE;
1144 }
1145
1146 if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
1147 {
1148 return retval;
1149 }
1150 int retvaltemp;
1151 retval = run_it(target, exit_point, timeout_ms, arch_info);
1152
1153 if (exit_point)
1154 breakpoint_remove(target, exit_point);
1155
1156 if (retval != ERROR_OK)
1157 return retval;
1158
1159 for (i = 0; i < num_mem_params; i++)
1160 {
1161 if (mem_params[i].direction != PARAM_OUT)
1162 if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1163 {
1164 retval = retvaltemp;
1165 }
1166 }
1167
1168 for (i = 0; i < num_reg_params; i++)
1169 {
1170 if (reg_params[i].direction != PARAM_OUT)
1171 {
1172
1173 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1174 if (!reg)
1175 {
1176 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1177 retval = ERROR_INVALID_ARGUMENTS;
1178 continue;
1179 }
1180
1181 if (reg->size != reg_params[i].size)
1182 {
1183 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1184 retval = ERROR_INVALID_ARGUMENTS;
1185 continue;
1186 }
1187
1188 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1189 }
1190 }
1191
1192 /* restore everything we saved before (17 or 18 registers) */
1193 for (i = 0; i <= 16; i++)
1194 {
1195 uint32_t regvalue;
1196 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32);
1197 if (regvalue != context[i])
1198 {
1199 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).name, context[i]);
1200 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1201 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).valid = 1;
1202 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).dirty = 1;
1203 }
1204 }
1205
1206 arm_set_cpsr(armv4_5, cpsr);
1207 armv4_5->cpsr->dirty = 1;
1208
1209 armv4_5->core_state = core_state;
1210
1211 return retval;
1212 }
1213
1214 int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
1215 {
1216 return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion);
1217 }
1218
1219 /**
1220 * Runs ARM code in the target to calculate a CRC32 checksum.
1221 *
1222 * \todo On ARMv5+, rely on BKPT termination for reduced overhead.
1223 */
1224 int arm_checksum_memory(struct target *target,
1225 uint32_t address, uint32_t count, uint32_t *checksum)
1226 {
1227 struct working_area *crc_algorithm;
1228 struct arm_algorithm armv4_5_info;
1229 struct reg_param reg_params[2];
1230 int retval;
1231 uint32_t i;
1232
1233 static const uint32_t arm_crc_code[] = {
1234 0xE1A02000, /* mov r2, r0 */
1235 0xE3E00000, /* mov r0, #0xffffffff */
1236 0xE1A03001, /* mov r3, r1 */
1237 0xE3A04000, /* mov r4, #0 */
1238 0xEA00000B, /* b ncomp */
1239 /* nbyte: */
1240 0xE7D21004, /* ldrb r1, [r2, r4] */
1241 0xE59F7030, /* ldr r7, CRC32XOR */
1242 0xE0200C01, /* eor r0, r0, r1, asl 24 */
1243 0xE3A05000, /* mov r5, #0 */
1244 /* loop: */
1245 0xE3500000, /* cmp r0, #0 */
1246 0xE1A06080, /* mov r6, r0, asl #1 */
1247 0xE2855001, /* add r5, r5, #1 */
1248 0xE1A00006, /* mov r0, r6 */
1249 0xB0260007, /* eorlt r0, r6, r7 */
1250 0xE3550008, /* cmp r5, #8 */
1251 0x1AFFFFF8, /* bne loop */
1252 0xE2844001, /* add r4, r4, #1 */
1253 /* ncomp: */
1254 0xE1540003, /* cmp r4, r3 */
1255 0x1AFFFFF1, /* bne nbyte */
1256 /* end: */
1257 0xEAFFFFFE, /* b end */
1258 /* CRC32XOR: */
1259 0x04C11DB7 /* .word 0x04C11DB7 */
1260 };
1261
1262 retval = target_alloc_working_area(target,
1263 sizeof(arm_crc_code), &crc_algorithm);
1264 if (retval != ERROR_OK)
1265 return retval;
1266
1267 /* convert code into a buffer in target endianness */
1268 for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) {
1269 retval = target_write_u32(target,
1270 crc_algorithm->address + i * sizeof(uint32_t),
1271 arm_crc_code[i]);
1272 if (retval != ERROR_OK)
1273 return retval;
1274 }
1275
1276 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1277 armv4_5_info.core_mode = ARM_MODE_SVC;
1278 armv4_5_info.core_state = ARM_STATE_ARM;
1279
1280 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1281 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1282
1283 buf_set_u32(reg_params[0].value, 0, 32, address);
1284 buf_set_u32(reg_params[1].value, 0, 32, count);
1285
1286 /* 20 second timeout/megabyte */
1287 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1288
1289 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1290 crc_algorithm->address,
1291 crc_algorithm->address + sizeof(arm_crc_code) - 8,
1292 timeout, &armv4_5_info);
1293 if (retval != ERROR_OK) {
1294 LOG_ERROR("error executing ARM crc algorithm");
1295 destroy_reg_param(&reg_params[0]);
1296 destroy_reg_param(&reg_params[1]);
1297 target_free_working_area(target, crc_algorithm);
1298 return retval;
1299 }
1300
1301 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1302
1303 destroy_reg_param(&reg_params[0]);
1304 destroy_reg_param(&reg_params[1]);
1305
1306 target_free_working_area(target, crc_algorithm);
1307
1308 return ERROR_OK;
1309 }
1310
1311 /**
1312 * Runs ARM code in the target to check whether a memory block holds
1313 * all ones. NOR flash which has been erased, and thus may be written,
1314 * holds all ones.
1315 *
1316 * \todo On ARMv5+, rely on BKPT termination for reduced overhead.
1317 */
1318 int arm_blank_check_memory(struct target *target,
1319 uint32_t address, uint32_t count, uint32_t *blank)
1320 {
1321 struct working_area *check_algorithm;
1322 struct reg_param reg_params[3];
1323 struct arm_algorithm armv4_5_info;
1324 int retval;
1325 uint32_t i;
1326
1327 static const uint32_t check_code[] = {
1328 /* loop: */
1329 0xe4d03001, /* ldrb r3, [r0], #1 */
1330 0xe0022003, /* and r2, r2, r3 */
1331 0xe2511001, /* subs r1, r1, #1 */
1332 0x1afffffb, /* bne loop */
1333 /* end: */
1334 0xeafffffe /* b end */
1335 };
1336
1337 /* make sure we have a working area */
1338 retval = target_alloc_working_area(target,
1339 sizeof(check_code), &check_algorithm);
1340 if (retval != ERROR_OK)
1341 return retval;
1342
1343 /* convert code into a buffer in target endianness */
1344 for (i = 0; i < ARRAY_SIZE(check_code); i++) {
1345 retval = target_write_u32(target,
1346 check_algorithm->address
1347 + i * sizeof(uint32_t),
1348 check_code[i]);
1349 if (retval != ERROR_OK)
1350 return retval;
1351 }
1352
1353 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1354 armv4_5_info.core_mode = ARM_MODE_SVC;
1355 armv4_5_info.core_state = ARM_STATE_ARM;
1356
1357 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1358 buf_set_u32(reg_params[0].value, 0, 32, address);
1359
1360 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1361 buf_set_u32(reg_params[1].value, 0, 32, count);
1362
1363 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1364 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
1365
1366 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1367 check_algorithm->address,
1368 check_algorithm->address + sizeof(check_code) - 4,
1369 10000, &armv4_5_info);
1370 if (retval != ERROR_OK) {
1371 destroy_reg_param(&reg_params[0]);
1372 destroy_reg_param(&reg_params[1]);
1373 destroy_reg_param(&reg_params[2]);
1374 target_free_working_area(target, check_algorithm);
1375 return retval;
1376 }
1377
1378 *blank = buf_get_u32(reg_params[2].value, 0, 32);
1379
1380 destroy_reg_param(&reg_params[0]);
1381 destroy_reg_param(&reg_params[1]);
1382 destroy_reg_param(&reg_params[2]);
1383
1384 target_free_working_area(target, check_algorithm);
1385
1386 return ERROR_OK;
1387 }
1388
1389 static int arm_full_context(struct target *target)
1390 {
1391 struct arm *armv4_5 = target_to_arm(target);
1392 unsigned num_regs = armv4_5->core_cache->num_regs;
1393 struct reg *reg = armv4_5->core_cache->reg_list;
1394 int retval = ERROR_OK;
1395
1396 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1397 if (reg->valid)
1398 continue;
1399 retval = armv4_5_get_core_reg(reg);
1400 }
1401 return retval;
1402 }
1403
1404 static int arm_default_mrc(struct target *target, int cpnum,
1405 uint32_t op1, uint32_t op2,
1406 uint32_t CRn, uint32_t CRm,
1407 uint32_t *value)
1408 {
1409 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1410 return ERROR_FAIL;
1411 }
1412
1413 static int arm_default_mcr(struct target *target, int cpnum,
1414 uint32_t op1, uint32_t op2,
1415 uint32_t CRn, uint32_t CRm,
1416 uint32_t value)
1417 {
1418 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1419 return ERROR_FAIL;
1420 }
1421
1422 int arm_init_arch_info(struct target *target, struct arm *armv4_5)
1423 {
1424 target->arch_info = armv4_5;
1425 armv4_5->target = target;
1426
1427 armv4_5->common_magic = ARM_COMMON_MAGIC;
1428
1429 /* core_type may be overridden by subtype logic */
1430 if (armv4_5->core_type != ARM_MODE_THREAD) {
1431 armv4_5->core_type = ARM_MODE_ANY;
1432 arm_set_cpsr(armv4_5, ARM_MODE_USR);
1433 }
1434
1435 /* default full_context() has no core-specific optimizations */
1436 if (!armv4_5->full_context && armv4_5->read_core_reg)
1437 armv4_5->full_context = arm_full_context;
1438
1439 if (!armv4_5->mrc)
1440 armv4_5->mrc = arm_default_mrc;
1441 if (!armv4_5->mcr)
1442 armv4_5->mcr = arm_default_mcr;
1443
1444 return ERROR_OK;
1445 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)