armv4_5: add algorithms instruction breakpoint support
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include "arm.h"
31 #include "armv4_5.h"
32 #include "arm_jtag.h"
33 #include "breakpoints.h"
34 #include "arm_disassembler.h"
35 #include <helper/binarybuffer.h>
36 #include "algorithm.h"
37 #include "register.h"
38
39
40 /* offsets into armv4_5 core register cache */
41 enum {
42 // ARMV4_5_CPSR = 31,
43 ARMV4_5_SPSR_FIQ = 32,
44 ARMV4_5_SPSR_IRQ = 33,
45 ARMV4_5_SPSR_SVC = 34,
46 ARMV4_5_SPSR_ABT = 35,
47 ARMV4_5_SPSR_UND = 36,
48 ARM_SPSR_MON = 39,
49 };
50
51 static const uint8_t arm_usr_indices[17] = {
52 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
53 };
54
55 static const uint8_t arm_fiq_indices[8] = {
56 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
57 };
58
59 static const uint8_t arm_irq_indices[3] = {
60 23, 24, ARMV4_5_SPSR_IRQ,
61 };
62
63 static const uint8_t arm_svc_indices[3] = {
64 25, 26, ARMV4_5_SPSR_SVC,
65 };
66
67 static const uint8_t arm_abt_indices[3] = {
68 27, 28, ARMV4_5_SPSR_ABT,
69 };
70
71 static const uint8_t arm_und_indices[3] = {
72 29, 30, ARMV4_5_SPSR_UND,
73 };
74
75 static const uint8_t arm_mon_indices[3] = {
76 37, 38, ARM_SPSR_MON,
77 };
78
79 static const struct {
80 const char *name;
81 unsigned short psr;
82 /* For user and system modes, these list indices for all registers.
83 * otherwise they're just indices for the shadow registers and SPSR.
84 */
85 unsigned short n_indices;
86 const uint8_t *indices;
87 } arm_mode_data[] = {
88 /* Seven modes are standard from ARM7 on. "System" and "User" share
89 * the same registers; other modes shadow from 3 to 8 registers.
90 */
91 {
92 .name = "User",
93 .psr = ARM_MODE_USR,
94 .n_indices = ARRAY_SIZE(arm_usr_indices),
95 .indices = arm_usr_indices,
96 },
97 {
98 .name = "FIQ",
99 .psr = ARM_MODE_FIQ,
100 .n_indices = ARRAY_SIZE(arm_fiq_indices),
101 .indices = arm_fiq_indices,
102 },
103 {
104 .name = "Supervisor",
105 .psr = ARM_MODE_SVC,
106 .n_indices = ARRAY_SIZE(arm_svc_indices),
107 .indices = arm_svc_indices,
108 },
109 {
110 .name = "Abort",
111 .psr = ARM_MODE_ABT,
112 .n_indices = ARRAY_SIZE(arm_abt_indices),
113 .indices = arm_abt_indices,
114 },
115 {
116 .name = "IRQ",
117 .psr = ARM_MODE_IRQ,
118 .n_indices = ARRAY_SIZE(arm_irq_indices),
119 .indices = arm_irq_indices,
120 },
121 {
122 .name = "Undefined instruction",
123 .psr = ARM_MODE_UND,
124 .n_indices = ARRAY_SIZE(arm_und_indices),
125 .indices = arm_und_indices,
126 },
127 {
128 .name = "System",
129 .psr = ARM_MODE_SYS,
130 .n_indices = ARRAY_SIZE(arm_usr_indices),
131 .indices = arm_usr_indices,
132 },
133 /* TrustZone "Security Extensions" add a secure monitor mode.
134 * This is distinct from a "debug monitor" which can support
135 * non-halting debug, in conjunction with some debuggers.
136 */
137 {
138 .name = "Secure Monitor",
139 .psr = ARM_MODE_MON,
140 .n_indices = ARRAY_SIZE(arm_mon_indices),
141 .indices = arm_mon_indices,
142 },
143 };
144
145 /** Map PSR mode bits to the name of an ARM processor operating mode. */
146 const char *arm_mode_name(unsigned psr_mode)
147 {
148 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
149 if (arm_mode_data[i].psr == psr_mode)
150 return arm_mode_data[i].name;
151 }
152 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
153 return "UNRECOGNIZED";
154 }
155
156 /** Return true iff the parameter denotes a valid ARM processor mode. */
157 bool is_arm_mode(unsigned psr_mode)
158 {
159 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
160 if (arm_mode_data[i].psr == psr_mode)
161 return true;
162 }
163 return false;
164 }
165
166 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
167 int arm_mode_to_number(enum arm_mode mode)
168 {
169 switch (mode) {
170 case ARM_MODE_ANY:
171 /* map MODE_ANY to user mode */
172 case ARM_MODE_USR:
173 return 0;
174 case ARM_MODE_FIQ:
175 return 1;
176 case ARM_MODE_IRQ:
177 return 2;
178 case ARM_MODE_SVC:
179 return 3;
180 case ARM_MODE_ABT:
181 return 4;
182 case ARM_MODE_UND:
183 return 5;
184 case ARM_MODE_SYS:
185 return 6;
186 case ARM_MODE_MON:
187 return 7;
188 default:
189 LOG_ERROR("invalid mode value encountered %d", mode);
190 return -1;
191 }
192 }
193
194 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
195 enum arm_mode armv4_5_number_to_mode(int number)
196 {
197 switch (number) {
198 case 0:
199 return ARM_MODE_USR;
200 case 1:
201 return ARM_MODE_FIQ;
202 case 2:
203 return ARM_MODE_IRQ;
204 case 3:
205 return ARM_MODE_SVC;
206 case 4:
207 return ARM_MODE_ABT;
208 case 5:
209 return ARM_MODE_UND;
210 case 6:
211 return ARM_MODE_SYS;
212 case 7:
213 return ARM_MODE_MON;
214 default:
215 LOG_ERROR("mode index out of bounds %d", number);
216 return ARM_MODE_ANY;
217 }
218 }
219
220 static const char *arm_state_strings[] =
221 {
222 "ARM", "Thumb", "Jazelle", "ThumbEE",
223 };
224
225 /* Templates for ARM core registers.
226 *
227 * NOTE: offsets in this table are coupled to the arm_mode_data
228 * table above, the armv4_5_core_reg_map array below, and also to
229 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
230 */
231 static const struct {
232 /* The name is used for e.g. the "regs" command. */
233 const char *name;
234
235 /* The {cookie, mode} tuple uniquely identifies one register.
236 * In a given mode, cookies 0..15 map to registers R0..R15,
237 * with R13..R15 usually called SP, LR, PC.
238 *
239 * MODE_ANY is used as *input* to the mapping, and indicates
240 * various special cases (sigh) and errors.
241 *
242 * Cookie 16 is (currently) confusing, since it indicates
243 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
244 * (Exception modes have both CPSR and SPSR registers ...)
245 */
246 unsigned cookie;
247 enum arm_mode mode;
248 } arm_core_regs[] = {
249 /* IMPORTANT: we guarantee that the first eight cached registers
250 * correspond to r0..r7, and the fifteenth to PC, so that callers
251 * don't need to map them.
252 */
253 { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, },
254 { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, },
255 { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, },
256 { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, },
257 { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, },
258 { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, },
259 { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, },
260 { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, },
261
262 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
263 * them as MODE_ANY creates special cases. (ANY means
264 * "not mapped" elsewhere; here it's "everything but FIQ".)
265 */
266 { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, },
267 { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, },
268 { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, },
269 { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, },
270 { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, },
271
272 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
273 { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, },
274 { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, },
275
276 /* guaranteed to be at index 15 */
277 { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, },
278
279 { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, },
280 { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, },
281 { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, },
282 { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, },
283 { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, },
284
285 { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, },
286 { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, },
287
288 { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, },
289 { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, },
290
291 { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, },
292 { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, },
293
294 { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, },
295 { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, },
296
297 { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, },
298 { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, },
299
300 { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, },
301 { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, },
302 { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, },
303 { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, },
304 { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, },
305 { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, },
306
307 { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, },
308 { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, },
309 { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, },
310 };
311
312 /* map core mode (USR, FIQ, ...) and register number to
313 * indices into the register cache
314 */
315 const int armv4_5_core_reg_map[8][17] =
316 {
317 { /* USR */
318 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
319 },
320 { /* FIQ (8 shadows of USR, vs normal 3) */
321 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
322 },
323 { /* IRQ */
324 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
325 },
326 { /* SVC */
327 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
328 },
329 { /* ABT */
330 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
331 },
332 { /* UND */
333 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
334 },
335 { /* SYS (same registers as USR) */
336 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
337 },
338 { /* MON */
339 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 15, 39,
340 }
341 };
342
343 /**
344 * Configures host-side ARM records to reflect the specified CPSR.
345 * Later, code can use arm_reg_current() to map register numbers
346 * according to how they are exposed by this mode.
347 */
348 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
349 {
350 enum arm_mode mode = cpsr & 0x1f;
351 int num;
352
353 /* NOTE: this may be called very early, before the register
354 * cache is set up. We can't defend against many errors, in
355 * particular against CPSRs that aren't valid *here* ...
356 */
357 if (arm->cpsr) {
358 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
359 arm->cpsr->valid = 1;
360 arm->cpsr->dirty = 0;
361 }
362
363 arm->core_mode = mode;
364
365 /* mode_to_number() warned; set up a somewhat-sane mapping */
366 num = arm_mode_to_number(mode);
367 if (num < 0) {
368 mode = ARM_MODE_USR;
369 num = 0;
370 }
371
372 arm->map = &armv4_5_core_reg_map[num][0];
373 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
374 ? NULL
375 : arm->core_cache->reg_list + arm->map[16];
376
377 /* Older ARMs won't have the J bit */
378 enum arm_state state;
379
380 if (cpsr & (1 << 5)) { /* T */
381 if (cpsr & (1 << 24)) { /* J */
382 LOG_WARNING("ThumbEE -- incomplete support");
383 state = ARM_STATE_THUMB_EE;
384 } else
385 state = ARM_STATE_THUMB;
386 } else {
387 if (cpsr & (1 << 24)) { /* J */
388 LOG_ERROR("Jazelle state handling is BROKEN!");
389 state = ARM_STATE_JAZELLE;
390 } else
391 state = ARM_STATE_ARM;
392 }
393 arm->core_state = state;
394
395 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
396 arm_mode_name(mode),
397 arm_state_strings[arm->core_state]);
398 }
399
400 /**
401 * Returns handle to the register currently mapped to a given number.
402 * Someone must have called arm_set_cpsr() before.
403 *
404 * \param arm This core's state and registers are used.
405 * \param regnum From 0..15 corresponding to R0..R14 and PC.
406 * Note that R0..R7 don't require mapping; you may access those
407 * as the first eight entries in the register cache. Likewise
408 * R15 (PC) doesn't need mapping; you may also access it directly.
409 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
410 * CPSR (arm->cpsr) is also not mapped.
411 */
412 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
413 {
414 struct reg *r;
415
416 if (regnum > 16)
417 return NULL;
418
419 r = arm->core_cache->reg_list + arm->map[regnum];
420
421 /* e.g. invalid CPSR said "secure monitor" mode on a core
422 * that doesn't support it...
423 */
424 if (!r) {
425 LOG_ERROR("Invalid CPSR mode");
426 r = arm->core_cache->reg_list + regnum;
427 }
428
429 return r;
430 }
431
432 static const uint8_t arm_gdb_dummy_fp_value[12];
433
434 /**
435 * Dummy FPA registers are required to support GDB on ARM.
436 * Register packets require eight obsolete FPA register values.
437 * Modern ARM cores use Vector Floating Point (VFP), if they
438 * have any floating point support. VFP is not FPA-compatible.
439 */
440 struct reg arm_gdb_dummy_fp_reg =
441 {
442 .name = "GDB dummy FPA register",
443 .value = (uint8_t *) arm_gdb_dummy_fp_value,
444 .valid = 1,
445 .size = 96,
446 };
447
448 static const uint8_t arm_gdb_dummy_fps_value[4];
449
450 /**
451 * Dummy FPA status registers are required to support GDB on ARM.
452 * Register packets require an obsolete FPA status register.
453 */
454 struct reg arm_gdb_dummy_fps_reg =
455 {
456 .name = "GDB dummy FPA status register",
457 .value = (uint8_t *) arm_gdb_dummy_fps_value,
458 .valid = 1,
459 .size = 32,
460 };
461
462 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
463
464 static void arm_gdb_dummy_init(void)
465 {
466 register_init_dummy(&arm_gdb_dummy_fp_reg);
467 register_init_dummy(&arm_gdb_dummy_fps_reg);
468 }
469
470 static int armv4_5_get_core_reg(struct reg *reg)
471 {
472 int retval;
473 struct arm_reg *armv4_5 = reg->arch_info;
474 struct target *target = armv4_5->target;
475
476 if (target->state != TARGET_HALTED)
477 {
478 LOG_ERROR("Target not halted");
479 return ERROR_TARGET_NOT_HALTED;
480 }
481
482 retval = armv4_5->armv4_5_common->read_core_reg(target, reg, armv4_5->num, armv4_5->mode);
483 if (retval == ERROR_OK) {
484 reg->valid = 1;
485 reg->dirty = 0;
486 }
487
488 return retval;
489 }
490
491 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
492 {
493 struct arm_reg *armv4_5 = reg->arch_info;
494 struct target *target = armv4_5->target;
495 struct arm *armv4_5_target = target_to_arm(target);
496 uint32_t value = buf_get_u32(buf, 0, 32);
497
498 if (target->state != TARGET_HALTED)
499 {
500 LOG_ERROR("Target not halted");
501 return ERROR_TARGET_NOT_HALTED;
502 }
503
504 /* Except for CPSR, the "reg" command exposes a writeback model
505 * for the register cache.
506 */
507 if (reg == armv4_5_target->cpsr) {
508 arm_set_cpsr(armv4_5_target, value);
509
510 /* Older cores need help to be in ARM mode during halt
511 * mode debug, so we clear the J and T bits if we flush.
512 * For newer cores (v6/v7a/v7r) we don't need that, but
513 * it won't hurt since CPSR is always flushed anyway.
514 */
515 if (armv4_5_target->core_mode !=
516 (enum arm_mode)(value & 0x1f)) {
517 LOG_DEBUG("changing ARM core mode to '%s'",
518 arm_mode_name(value & 0x1f));
519 value &= ~((1 << 24) | (1 << 5));
520 armv4_5_target->write_core_reg(target, reg,
521 16, ARM_MODE_ANY, value);
522 }
523 } else {
524 buf_set_u32(reg->value, 0, 32, value);
525 reg->valid = 1;
526 }
527 reg->dirty = 1;
528
529 return ERROR_OK;
530 }
531
532 static const struct reg_arch_type arm_reg_type = {
533 .get = armv4_5_get_core_reg,
534 .set = armv4_5_set_core_reg,
535 };
536
537 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
538 {
539 int num_regs = ARRAY_SIZE(arm_core_regs);
540 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
541 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
542 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
543 int i;
544
545 if (!cache || !reg_list || !arch_info) {
546 free(cache);
547 free(reg_list);
548 free(arch_info);
549 return NULL;
550 }
551
552 cache->name = "ARM registers";
553 cache->next = NULL;
554 cache->reg_list = reg_list;
555 cache->num_regs = 0;
556
557 for (i = 0; i < num_regs; i++)
558 {
559 /* Skip registers this core doesn't expose */
560 if (arm_core_regs[i].mode == ARM_MODE_MON
561 && arm->core_type != ARM_MODE_MON)
562 continue;
563
564 /* REVISIT handle Cortex-M, which only shadows R13/SP */
565
566 arch_info[i].num = arm_core_regs[i].cookie;
567 arch_info[i].mode = arm_core_regs[i].mode;
568 arch_info[i].target = target;
569 arch_info[i].armv4_5_common = arm;
570
571 reg_list[i].name = (char *) arm_core_regs[i].name;
572 reg_list[i].size = 32;
573 reg_list[i].value = &arch_info[i].value;
574 reg_list[i].type = &arm_reg_type;
575 reg_list[i].arch_info = &arch_info[i];
576
577 cache->num_regs++;
578 }
579
580 arm->pc = reg_list + 15;
581 arm->cpsr = reg_list + ARMV4_5_CPSR;
582 arm->core_cache = cache;
583 return cache;
584 }
585
586 int arm_arch_state(struct target *target)
587 {
588 struct arm *armv4_5 = target_to_arm(target);
589
590 if (armv4_5->common_magic != ARM_COMMON_MAGIC)
591 {
592 LOG_ERROR("BUG: called for a non-ARM target");
593 return ERROR_FAIL;
594 }
595
596 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
597 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s",
598 arm_state_strings[armv4_5->core_state],
599 debug_reason_name(target),
600 arm_mode_name(armv4_5->core_mode),
601 buf_get_u32(armv4_5->cpsr->value, 0, 32),
602 buf_get_u32(armv4_5->pc->value, 0, 32),
603 armv4_5->is_semihosting ? ", semihosting" : "");
604
605 return ERROR_OK;
606 }
607
608 #define ARMV4_5_CORE_REG_MODENUM(cache, mode, num) \
609 cache->reg_list[armv4_5_core_reg_map[mode][num]]
610
611 COMMAND_HANDLER(handle_armv4_5_reg_command)
612 {
613 struct target *target = get_current_target(CMD_CTX);
614 struct arm *armv4_5 = target_to_arm(target);
615 unsigned num_regs;
616 struct reg *regs;
617
618 if (!is_arm(armv4_5))
619 {
620 command_print(CMD_CTX, "current target isn't an ARM");
621 return ERROR_FAIL;
622 }
623
624 if (target->state != TARGET_HALTED)
625 {
626 command_print(CMD_CTX, "error: target must be halted for register accesses");
627 return ERROR_FAIL;
628 }
629
630 if (armv4_5->core_type != ARM_MODE_ANY)
631 {
632 command_print(CMD_CTX, "Microcontroller Profile not supported - use standard reg cmd");
633 return ERROR_OK;
634 }
635
636 if (!is_arm_mode(armv4_5->core_mode))
637 return ERROR_FAIL;
638
639 if (!armv4_5->full_context) {
640 command_print(CMD_CTX, "error: target doesn't support %s",
641 CMD_NAME);
642 return ERROR_FAIL;
643 }
644
645 num_regs = armv4_5->core_cache->num_regs;
646 regs = armv4_5->core_cache->reg_list;
647
648 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
649 const char *name;
650 char *sep = "\n";
651 char *shadow = "";
652
653 /* label this bank of registers (or shadows) */
654 switch (arm_mode_data[mode].psr) {
655 case ARM_MODE_SYS:
656 continue;
657 case ARM_MODE_USR:
658 name = "System and User";
659 sep = "";
660 break;
661 case ARM_MODE_MON:
662 if (armv4_5->core_type != ARM_MODE_MON)
663 continue;
664 /* FALLTHROUGH */
665 default:
666 name = arm_mode_data[mode].name;
667 shadow = "shadow ";
668 break;
669 }
670 command_print(CMD_CTX, "%s%s mode %sregisters",
671 sep, name, shadow);
672
673 /* display N rows of up to 4 registers each */
674 for (unsigned i = 0; i < arm_mode_data[mode].n_indices;) {
675 char output[80];
676 int output_len = 0;
677
678 for (unsigned j = 0; j < 4; j++, i++) {
679 uint32_t value;
680 struct reg *reg = regs;
681
682 if (i >= arm_mode_data[mode].n_indices)
683 break;
684
685 reg += arm_mode_data[mode].indices[i];
686
687 /* REVISIT be smarter about faults... */
688 if (!reg->valid)
689 armv4_5->full_context(target);
690
691 value = buf_get_u32(reg->value, 0, 32);
692 output_len += snprintf(output + output_len,
693 sizeof(output) - output_len,
694 "%8s: %8.8" PRIx32 " ",
695 reg->name, value);
696 }
697 command_print(CMD_CTX, "%s", output);
698 }
699 }
700
701 return ERROR_OK;
702 }
703
704 COMMAND_HANDLER(handle_armv4_5_core_state_command)
705 {
706 struct target *target = get_current_target(CMD_CTX);
707 struct arm *armv4_5 = target_to_arm(target);
708
709 if (!is_arm(armv4_5))
710 {
711 command_print(CMD_CTX, "current target isn't an ARM");
712 return ERROR_FAIL;
713 }
714
715 if (armv4_5->core_type == ARM_MODE_THREAD)
716 {
717 /* armv7m not supported */
718 command_print(CMD_CTX, "Unsupported Command");
719 return ERROR_OK;
720 }
721
722 if (CMD_ARGC > 0)
723 {
724 if (strcmp(CMD_ARGV[0], "arm") == 0)
725 {
726 armv4_5->core_state = ARM_STATE_ARM;
727 }
728 if (strcmp(CMD_ARGV[0], "thumb") == 0)
729 {
730 armv4_5->core_state = ARM_STATE_THUMB;
731 }
732 }
733
734 command_print(CMD_CTX, "core state: %s", arm_state_strings[armv4_5->core_state]);
735
736 return ERROR_OK;
737 }
738
739 COMMAND_HANDLER(handle_arm_disassemble_command)
740 {
741 int retval = ERROR_OK;
742 struct target *target = get_current_target(CMD_CTX);
743 struct arm *arm = target ? target_to_arm(target) : NULL;
744 uint32_t address;
745 int count = 1;
746 int thumb = 0;
747
748 if (!is_arm(arm)) {
749 command_print(CMD_CTX, "current target isn't an ARM");
750 return ERROR_FAIL;
751 }
752
753 if (arm->core_type == ARM_MODE_THREAD)
754 {
755 /* armv7m is always thumb mode */
756 thumb = 1;
757 }
758
759 switch (CMD_ARGC) {
760 case 3:
761 if (strcmp(CMD_ARGV[2], "thumb") != 0)
762 goto usage;
763 thumb = 1;
764 /* FALL THROUGH */
765 case 2:
766 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
767 /* FALL THROUGH */
768 case 1:
769 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
770 if (address & 0x01) {
771 if (!thumb) {
772 command_print(CMD_CTX, "Disassemble as Thumb");
773 thumb = 1;
774 }
775 address &= ~1;
776 }
777 break;
778 default:
779 usage:
780 command_print(CMD_CTX,
781 "usage: arm disassemble <address> [<count> ['thumb']]");
782 count = 0;
783 retval = ERROR_FAIL;
784 }
785
786 while (count-- > 0) {
787 struct arm_instruction cur_instruction;
788
789 if (thumb) {
790 /* Always use Thumb2 disassembly for best handling
791 * of 32-bit BL/BLX, and to work with newer cores
792 * (some ARMv6, all ARMv7) that use Thumb2.
793 */
794 retval = thumb2_opcode(target, address,
795 &cur_instruction);
796 if (retval != ERROR_OK)
797 break;
798 } else {
799 uint32_t opcode;
800
801 retval = target_read_u32(target, address, &opcode);
802 if (retval != ERROR_OK)
803 break;
804 retval = arm_evaluate_opcode(opcode, address,
805 &cur_instruction) != ERROR_OK;
806 if (retval != ERROR_OK)
807 break;
808 }
809 command_print(CMD_CTX, "%s", cur_instruction.text);
810 address += cur_instruction.instruction_size;
811 }
812
813 return retval;
814 }
815
816 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
817 {
818 struct command_context *context;
819 struct target *target;
820 struct arm *arm;
821 int retval;
822
823 context = current_command_context(interp);
824 assert( context != NULL);
825
826 target = get_current_target(context);
827 if (target == NULL) {
828 LOG_ERROR("%s: no current target", __func__);
829 return JIM_ERR;
830 }
831 if (!target_was_examined(target)) {
832 LOG_ERROR("%s: not yet examined", target_name(target));
833 return JIM_ERR;
834 }
835 arm = target_to_arm(target);
836 if (!is_arm(arm)) {
837 LOG_ERROR("%s: not an ARM", target_name(target));
838 return JIM_ERR;
839 }
840
841 if ((argc < 6) || (argc > 7)) {
842 /* FIXME use the command name to verify # params... */
843 LOG_ERROR("%s: wrong number of arguments", __func__);
844 return JIM_ERR;
845 }
846
847 int cpnum;
848 uint32_t op1;
849 uint32_t op2;
850 uint32_t CRn;
851 uint32_t CRm;
852 uint32_t value;
853 long l;
854
855 /* NOTE: parameter sequence matches ARM instruction set usage:
856 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
857 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
858 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
859 */
860 retval = Jim_GetLong(interp, argv[1], &l);
861 if (retval != JIM_OK)
862 return retval;
863 if (l & ~0xf) {
864 LOG_ERROR("%s: %s %d out of range", __func__,
865 "coprocessor", (int) l);
866 return JIM_ERR;
867 }
868 cpnum = l;
869
870 retval = Jim_GetLong(interp, argv[2], &l);
871 if (retval != JIM_OK)
872 return retval;
873 if (l & ~0x7) {
874 LOG_ERROR("%s: %s %d out of range", __func__,
875 "op1", (int) l);
876 return JIM_ERR;
877 }
878 op1 = l;
879
880 retval = Jim_GetLong(interp, argv[3], &l);
881 if (retval != JIM_OK)
882 return retval;
883 if (l & ~0xf) {
884 LOG_ERROR("%s: %s %d out of range", __func__,
885 "CRn", (int) l);
886 return JIM_ERR;
887 }
888 CRn = l;
889
890 retval = Jim_GetLong(interp, argv[4], &l);
891 if (retval != JIM_OK)
892 return retval;
893 if (l & ~0xf) {
894 LOG_ERROR("%s: %s %d out of range", __func__,
895 "CRm", (int) l);
896 return JIM_ERR;
897 }
898 CRm = l;
899
900 retval = Jim_GetLong(interp, argv[5], &l);
901 if (retval != JIM_OK)
902 return retval;
903 if (l & ~0x7) {
904 LOG_ERROR("%s: %s %d out of range", __func__,
905 "op2", (int) l);
906 return JIM_ERR;
907 }
908 op2 = l;
909
910 value = 0;
911
912 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
913 * that could easily be a typo! Check both...
914 *
915 * FIXME change the call syntax here ... simplest to just pass
916 * the MRC() or MCR() instruction to be executed. That will also
917 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
918 * if that's ever needed.
919 */
920 if (argc == 7) {
921 retval = Jim_GetLong(interp, argv[6], &l);
922 if (retval != JIM_OK) {
923 return retval;
924 }
925 value = l;
926
927 /* NOTE: parameters reordered! */
928 // ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2)
929 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
930 if (retval != ERROR_OK)
931 return JIM_ERR;
932 } else {
933 /* NOTE: parameters reordered! */
934 // ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2)
935 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
936 if (retval != ERROR_OK)
937 return JIM_ERR;
938
939 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
940 }
941
942 return JIM_OK;
943 }
944
945 COMMAND_HANDLER(handle_arm_semihosting_command)
946 {
947 struct target *target = get_current_target(CMD_CTX);
948 struct arm *arm = target ? target_to_arm(target) : NULL;
949
950 if (!is_arm(arm)) {
951 command_print(CMD_CTX, "current target isn't an ARM");
952 return ERROR_FAIL;
953 }
954
955 if (!arm->setup_semihosting)
956 {
957 command_print(CMD_CTX, "semihosting not supported for current target");
958 }
959
960 if (CMD_ARGC > 0)
961 {
962 int semihosting;
963
964 COMMAND_PARSE_ENABLE(CMD_ARGV[0], semihosting);
965
966 if (!target_was_examined(target))
967 {
968 LOG_ERROR("Target not examined yet");
969 return ERROR_FAIL;
970 }
971
972 if (arm->setup_semihosting(target, semihosting) != ERROR_OK) {
973 LOG_ERROR("Failed to Configure semihosting");
974 return ERROR_FAIL;
975 }
976
977 /* FIXME never let that "catch" be dropped! */
978 arm->is_semihosting = semihosting;
979 }
980
981 command_print(CMD_CTX, "semihosting is %s",
982 arm->is_semihosting
983 ? "enabled" : "disabled");
984
985 return ERROR_OK;
986 }
987
988 static const struct command_registration arm_exec_command_handlers[] = {
989 {
990 .name = "reg",
991 .handler = handle_armv4_5_reg_command,
992 .mode = COMMAND_EXEC,
993 .help = "display ARM core registers",
994 },
995 {
996 .name = "core_state",
997 .handler = handle_armv4_5_core_state_command,
998 .mode = COMMAND_EXEC,
999 .usage = "['arm'|'thumb']",
1000 .help = "display/change ARM core state",
1001 },
1002 {
1003 .name = "disassemble",
1004 .handler = handle_arm_disassemble_command,
1005 .mode = COMMAND_EXEC,
1006 .usage = "address [count ['thumb']]",
1007 .help = "disassemble instructions ",
1008 },
1009 {
1010 .name = "mcr",
1011 .mode = COMMAND_EXEC,
1012 .jim_handler = &jim_mcrmrc,
1013 .help = "write coprocessor register",
1014 .usage = "cpnum op1 CRn op2 CRm value",
1015 },
1016 {
1017 .name = "mrc",
1018 .jim_handler = &jim_mcrmrc,
1019 .help = "read coprocessor register",
1020 .usage = "cpnum op1 CRn op2 CRm",
1021 },
1022 {
1023 "semihosting",
1024 .handler = handle_arm_semihosting_command,
1025 .mode = COMMAND_EXEC,
1026 .usage = "['enable'|'disable']",
1027 .help = "activate support for semihosting operations",
1028 },
1029
1030 COMMAND_REGISTRATION_DONE
1031 };
1032 const struct command_registration arm_command_handlers[] = {
1033 {
1034 .name = "arm",
1035 .mode = COMMAND_ANY,
1036 .help = "ARM command group",
1037 .chain = arm_exec_command_handlers,
1038 },
1039 COMMAND_REGISTRATION_DONE
1040 };
1041
1042 int arm_get_gdb_reg_list(struct target *target,
1043 struct reg **reg_list[], int *reg_list_size)
1044 {
1045 struct arm *armv4_5 = target_to_arm(target);
1046 int i;
1047
1048 if (!is_arm_mode(armv4_5->core_mode))
1049 return ERROR_FAIL;
1050
1051 *reg_list_size = 26;
1052 *reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
1053
1054 for (i = 0; i < 16; i++)
1055 (*reg_list)[i] = arm_reg_current(armv4_5, i);
1056
1057 for (i = 16; i < 24; i++)
1058 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1059
1060 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1061 (*reg_list)[25] = armv4_5->cpsr;
1062
1063 return ERROR_OK;
1064 }
1065
1066 /* wait for execution to complete and check exit point */
1067 static int armv4_5_run_algorithm_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
1068 {
1069 int retval;
1070 struct arm *armv4_5 = target_to_arm(target);
1071
1072 if ((retval = target_wait_state(target, TARGET_HALTED, timeout_ms)) != ERROR_OK)
1073 {
1074 return retval;
1075 }
1076 if (target->state != TARGET_HALTED)
1077 {
1078 if ((retval = target_halt(target)) != ERROR_OK)
1079 return retval;
1080 if ((retval = target_wait_state(target, TARGET_HALTED, 500)) != ERROR_OK)
1081 {
1082 return retval;
1083 }
1084 return ERROR_TARGET_TIMEOUT;
1085 }
1086
1087 /* fast exit: ARMv5+ code can use BKPT */
1088 if (exit_point && buf_get_u32(armv4_5->pc->value, 0, 32) != exit_point)
1089 {
1090 LOG_WARNING("target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1091 buf_get_u32(armv4_5->pc->value, 0, 32));
1092 return ERROR_TARGET_TIMEOUT;
1093 }
1094
1095 return ERROR_OK;
1096 }
1097
1098 int armv4_5_run_algorithm_inner(struct target *target,
1099 int num_mem_params, struct mem_param *mem_params,
1100 int num_reg_params, struct reg_param *reg_params,
1101 uint32_t entry_point, uint32_t exit_point,
1102 int timeout_ms, void *arch_info,
1103 int (*run_it)(struct target *target, uint32_t exit_point,
1104 int timeout_ms, void *arch_info))
1105 {
1106 struct arm *armv4_5 = target_to_arm(target);
1107 struct arm_algorithm *arm_algorithm_info = arch_info;
1108 enum arm_state core_state = armv4_5->core_state;
1109 uint32_t context[17];
1110 uint32_t cpsr;
1111 int exit_breakpoint_size = 0;
1112 int i;
1113 int retval = ERROR_OK;
1114
1115 LOG_DEBUG("Running algorithm");
1116
1117 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC)
1118 {
1119 LOG_ERROR("current target isn't an ARMV4/5 target");
1120 return ERROR_TARGET_INVALID;
1121 }
1122
1123 if (target->state != TARGET_HALTED)
1124 {
1125 LOG_WARNING("target not halted");
1126 return ERROR_TARGET_NOT_HALTED;
1127 }
1128
1129 if (!is_arm_mode(armv4_5->core_mode))
1130 return ERROR_FAIL;
1131
1132 /* armv5 and later can terminate with BKPT instruction; less overhead */
1133 if (!exit_point && armv4_5->is_armv4)
1134 {
1135 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1136 return ERROR_FAIL;
1137 }
1138
1139 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1140 * they'll be restored later.
1141 */
1142 for (i = 0; i <= 16; i++)
1143 {
1144 struct reg *r;
1145
1146 r = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
1147 arm_algorithm_info->core_mode, i);
1148 if (!r->valid)
1149 armv4_5->read_core_reg(target, r, i,
1150 arm_algorithm_info->core_mode);
1151 context[i] = buf_get_u32(r->value, 0, 32);
1152 }
1153 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1154
1155 for (i = 0; i < num_mem_params; i++)
1156 {
1157 if ((retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1158 {
1159 return retval;
1160 }
1161 }
1162
1163 for (i = 0; i < num_reg_params; i++)
1164 {
1165 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1166 if (!reg)
1167 {
1168 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1169 return ERROR_INVALID_ARGUMENTS;
1170 }
1171
1172 if (reg->size != reg_params[i].size)
1173 {
1174 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1175 return ERROR_INVALID_ARGUMENTS;
1176 }
1177
1178 if ((retval = armv4_5_set_core_reg(reg, reg_params[i].value)) != ERROR_OK)
1179 {
1180 return retval;
1181 }
1182 }
1183
1184 armv4_5->core_state = arm_algorithm_info->core_state;
1185 if (armv4_5->core_state == ARM_STATE_ARM)
1186 exit_breakpoint_size = 4;
1187 else if (armv4_5->core_state == ARM_STATE_THUMB)
1188 exit_breakpoint_size = 2;
1189 else
1190 {
1191 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1192 return ERROR_INVALID_ARGUMENTS;
1193 }
1194
1195 if (arm_algorithm_info->core_mode != ARM_MODE_ANY)
1196 {
1197 LOG_DEBUG("setting core_mode: 0x%2.2x",
1198 arm_algorithm_info->core_mode);
1199 buf_set_u32(armv4_5->cpsr->value, 0, 5,
1200 arm_algorithm_info->core_mode);
1201 armv4_5->cpsr->dirty = 1;
1202 armv4_5->cpsr->valid = 1;
1203 }
1204
1205 /* terminate using a hardware or (ARMv5+) software breakpoint */
1206 if (exit_point && (retval = breakpoint_add(target, exit_point,
1207 exit_breakpoint_size, BKPT_HARD)) != ERROR_OK)
1208 {
1209 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1210 return ERROR_TARGET_FAILURE;
1211 }
1212
1213 if ((retval = target_resume(target, 0, entry_point, 1, 1)) != ERROR_OK)
1214 {
1215 return retval;
1216 }
1217 int retvaltemp;
1218 retval = run_it(target, exit_point, timeout_ms, arch_info);
1219
1220 if (exit_point)
1221 breakpoint_remove(target, exit_point);
1222
1223 if (retval != ERROR_OK)
1224 return retval;
1225
1226 for (i = 0; i < num_mem_params; i++)
1227 {
1228 if (mem_params[i].direction != PARAM_OUT)
1229 if ((retvaltemp = target_read_buffer(target, mem_params[i].address, mem_params[i].size, mem_params[i].value)) != ERROR_OK)
1230 {
1231 retval = retvaltemp;
1232 }
1233 }
1234
1235 for (i = 0; i < num_reg_params; i++)
1236 {
1237 if (reg_params[i].direction != PARAM_OUT)
1238 {
1239
1240 struct reg *reg = register_get_by_name(armv4_5->core_cache, reg_params[i].reg_name, 0);
1241 if (!reg)
1242 {
1243 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1244 retval = ERROR_INVALID_ARGUMENTS;
1245 continue;
1246 }
1247
1248 if (reg->size != reg_params[i].size)
1249 {
1250 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size", reg_params[i].reg_name);
1251 retval = ERROR_INVALID_ARGUMENTS;
1252 continue;
1253 }
1254
1255 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1256 }
1257 }
1258
1259 /* restore everything we saved before (17 or 18 registers) */
1260 for (i = 0; i <= 16; i++)
1261 {
1262 uint32_t regvalue;
1263 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32);
1264 if (regvalue != context[i])
1265 {
1266 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "", ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).name, context[i]);
1267 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1268 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).valid = 1;
1269 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, arm_algorithm_info->core_mode, i).dirty = 1;
1270 }
1271 }
1272
1273 arm_set_cpsr(armv4_5, cpsr);
1274 armv4_5->cpsr->dirty = 1;
1275
1276 armv4_5->core_state = core_state;
1277
1278 return retval;
1279 }
1280
1281 int armv4_5_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
1282 {
1283 return armv4_5_run_algorithm_inner(target, num_mem_params, mem_params, num_reg_params, reg_params, entry_point, exit_point, timeout_ms, arch_info, armv4_5_run_algorithm_completion);
1284 }
1285
1286 /**
1287 * Runs ARM code in the target to calculate a CRC32 checksum.
1288 *
1289 */
1290 int arm_checksum_memory(struct target *target,
1291 uint32_t address, uint32_t count, uint32_t *checksum)
1292 {
1293 struct working_area *crc_algorithm;
1294 struct arm_algorithm armv4_5_info;
1295 struct arm *armv4_5 = target_to_arm(target);
1296 struct reg_param reg_params[2];
1297 int retval;
1298 uint32_t i;
1299 uint32_t exit_var = 0;
1300
1301 static const uint32_t arm_crc_code[] = {
1302 0xE1A02000, /* mov r2, r0 */
1303 0xE3E00000, /* mov r0, #0xffffffff */
1304 0xE1A03001, /* mov r3, r1 */
1305 0xE3A04000, /* mov r4, #0 */
1306 0xEA00000B, /* b ncomp */
1307 /* nbyte: */
1308 0xE7D21004, /* ldrb r1, [r2, r4] */
1309 0xE59F7030, /* ldr r7, CRC32XOR */
1310 0xE0200C01, /* eor r0, r0, r1, asl 24 */
1311 0xE3A05000, /* mov r5, #0 */
1312 /* loop: */
1313 0xE3500000, /* cmp r0, #0 */
1314 0xE1A06080, /* mov r6, r0, asl #1 */
1315 0xE2855001, /* add r5, r5, #1 */
1316 0xE1A00006, /* mov r0, r6 */
1317 0xB0260007, /* eorlt r0, r6, r7 */
1318 0xE3550008, /* cmp r5, #8 */
1319 0x1AFFFFF8, /* bne loop */
1320 0xE2844001, /* add r4, r4, #1 */
1321 /* ncomp: */
1322 0xE1540003, /* cmp r4, r3 */
1323 0x1AFFFFF1, /* bne nbyte */
1324 /* end: */
1325 0xe1200070, /* bkpt #0 */
1326 /* CRC32XOR: */
1327 0x04C11DB7 /* .word 0x04C11DB7 */
1328 };
1329
1330 retval = target_alloc_working_area(target,
1331 sizeof(arm_crc_code), &crc_algorithm);
1332 if (retval != ERROR_OK)
1333 return retval;
1334
1335 /* convert code into a buffer in target endianness */
1336 for (i = 0; i < ARRAY_SIZE(arm_crc_code); i++) {
1337 retval = target_write_u32(target,
1338 crc_algorithm->address + i * sizeof(uint32_t),
1339 arm_crc_code[i]);
1340 if (retval != ERROR_OK)
1341 return retval;
1342 }
1343
1344 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1345 armv4_5_info.core_mode = ARM_MODE_SVC;
1346 armv4_5_info.core_state = ARM_STATE_ARM;
1347
1348 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1349 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1350
1351 buf_set_u32(reg_params[0].value, 0, 32, address);
1352 buf_set_u32(reg_params[1].value, 0, 32, count);
1353
1354 /* 20 second timeout/megabyte */
1355 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1356
1357 /* armv4 must exit using a hardware breakpoint */
1358 if (armv4_5->is_armv4)
1359 exit_var = crc_algorithm->address + sizeof(arm_crc_code) - 8;
1360
1361 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1362 crc_algorithm->address,
1363 exit_var,
1364 timeout, &armv4_5_info);
1365 if (retval != ERROR_OK) {
1366 LOG_ERROR("error executing ARM crc algorithm");
1367 destroy_reg_param(&reg_params[0]);
1368 destroy_reg_param(&reg_params[1]);
1369 target_free_working_area(target, crc_algorithm);
1370 return retval;
1371 }
1372
1373 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1374
1375 destroy_reg_param(&reg_params[0]);
1376 destroy_reg_param(&reg_params[1]);
1377
1378 target_free_working_area(target, crc_algorithm);
1379
1380 return ERROR_OK;
1381 }
1382
1383 /**
1384 * Runs ARM code in the target to check whether a memory block holds
1385 * all ones. NOR flash which has been erased, and thus may be written,
1386 * holds all ones.
1387 *
1388 */
1389 int arm_blank_check_memory(struct target *target,
1390 uint32_t address, uint32_t count, uint32_t *blank)
1391 {
1392 struct working_area *check_algorithm;
1393 struct reg_param reg_params[3];
1394 struct arm_algorithm armv4_5_info;
1395 struct arm *armv4_5 = target_to_arm(target);
1396 int retval;
1397 uint32_t i;
1398 uint32_t exit_var = 0;
1399
1400 static const uint32_t check_code[] = {
1401 /* loop: */
1402 0xe4d03001, /* ldrb r3, [r0], #1 */
1403 0xe0022003, /* and r2, r2, r3 */
1404 0xe2511001, /* subs r1, r1, #1 */
1405 0x1afffffb, /* bne loop */
1406 /* end: */
1407 0xe1200070, /* bkpt #0 */
1408 };
1409
1410 /* make sure we have a working area */
1411 retval = target_alloc_working_area(target,
1412 sizeof(check_code), &check_algorithm);
1413 if (retval != ERROR_OK)
1414 return retval;
1415
1416 /* convert code into a buffer in target endianness */
1417 for (i = 0; i < ARRAY_SIZE(check_code); i++) {
1418 retval = target_write_u32(target,
1419 check_algorithm->address
1420 + i * sizeof(uint32_t),
1421 check_code[i]);
1422 if (retval != ERROR_OK)
1423 return retval;
1424 }
1425
1426 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1427 armv4_5_info.core_mode = ARM_MODE_SVC;
1428 armv4_5_info.core_state = ARM_STATE_ARM;
1429
1430 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1431 buf_set_u32(reg_params[0].value, 0, 32, address);
1432
1433 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1434 buf_set_u32(reg_params[1].value, 0, 32, count);
1435
1436 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1437 buf_set_u32(reg_params[2].value, 0, 32, 0xff);
1438
1439 /* armv4 must exit using a hardware breakpoint */
1440 if (armv4_5->is_armv4)
1441 exit_var = check_algorithm->address + sizeof(check_code) - 4;
1442
1443 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1444 check_algorithm->address,
1445 exit_var,
1446 10000, &armv4_5_info);
1447 if (retval != ERROR_OK) {
1448 destroy_reg_param(&reg_params[0]);
1449 destroy_reg_param(&reg_params[1]);
1450 destroy_reg_param(&reg_params[2]);
1451 target_free_working_area(target, check_algorithm);
1452 return retval;
1453 }
1454
1455 *blank = buf_get_u32(reg_params[2].value, 0, 32);
1456
1457 destroy_reg_param(&reg_params[0]);
1458 destroy_reg_param(&reg_params[1]);
1459 destroy_reg_param(&reg_params[2]);
1460
1461 target_free_working_area(target, check_algorithm);
1462
1463 return ERROR_OK;
1464 }
1465
1466 static int arm_full_context(struct target *target)
1467 {
1468 struct arm *armv4_5 = target_to_arm(target);
1469 unsigned num_regs = armv4_5->core_cache->num_regs;
1470 struct reg *reg = armv4_5->core_cache->reg_list;
1471 int retval = ERROR_OK;
1472
1473 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1474 if (reg->valid)
1475 continue;
1476 retval = armv4_5_get_core_reg(reg);
1477 }
1478 return retval;
1479 }
1480
1481 static int arm_default_mrc(struct target *target, int cpnum,
1482 uint32_t op1, uint32_t op2,
1483 uint32_t CRn, uint32_t CRm,
1484 uint32_t *value)
1485 {
1486 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1487 return ERROR_FAIL;
1488 }
1489
1490 static int arm_default_mcr(struct target *target, int cpnum,
1491 uint32_t op1, uint32_t op2,
1492 uint32_t CRn, uint32_t CRm,
1493 uint32_t value)
1494 {
1495 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1496 return ERROR_FAIL;
1497 }
1498
1499 int arm_init_arch_info(struct target *target, struct arm *armv4_5)
1500 {
1501 target->arch_info = armv4_5;
1502 armv4_5->target = target;
1503
1504 armv4_5->common_magic = ARM_COMMON_MAGIC;
1505
1506 /* core_type may be overridden by subtype logic */
1507 if (armv4_5->core_type != ARM_MODE_THREAD) {
1508 armv4_5->core_type = ARM_MODE_ANY;
1509 arm_set_cpsr(armv4_5, ARM_MODE_USR);
1510 }
1511
1512 /* default full_context() has no core-specific optimizations */
1513 if (!armv4_5->full_context && armv4_5->read_core_reg)
1514 armv4_5->full_context = arm_full_context;
1515
1516 if (!armv4_5->mrc)
1517 armv4_5->mrc = arm_default_mrc;
1518 if (!armv4_5->mcr)
1519 armv4_5->mcr = arm_default_mcr;
1520
1521 return ERROR_OK;
1522 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)