1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2006 by Magnus Lundin *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
14 * Copyright (C) 2010 Øyvind Harboe *
15 * oyvind.harboe@zylin.com *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
44 ***************************************************************************/
50 #include "breakpoints.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "transport/transport.h"
58 #include <helper/time_support.h>
60 static int cortex_a_poll(struct target
*target
);
61 static int cortex_a_debug_entry(struct target
*target
);
62 static int cortex_a_restore_context(struct target
*target
, bool bpwp
);
63 static int cortex_a_set_breakpoint(struct target
*target
,
64 struct breakpoint
*breakpoint
, uint8_t matchmode
);
65 static int cortex_a_set_context_breakpoint(struct target
*target
,
66 struct breakpoint
*breakpoint
, uint8_t matchmode
);
67 static int cortex_a_set_hybrid_breakpoint(struct target
*target
,
68 struct breakpoint
*breakpoint
);
69 static int cortex_a_unset_breakpoint(struct target
*target
,
70 struct breakpoint
*breakpoint
);
71 static int cortex_a_dap_read_coreregister_u32(struct target
*target
,
72 uint32_t *value
, int regnum
);
73 static int cortex_a_dap_write_coreregister_u32(struct target
*target
,
74 uint32_t value
, int regnum
);
75 static int cortex_a_mmu(struct target
*target
, int *enabled
);
76 static int cortex_a_mmu_modify(struct target
*target
, int enable
);
77 static int cortex_a_virt2phys(struct target
*target
,
78 target_addr_t virt
, target_addr_t
*phys
);
79 static int cortex_a_read_cpu_memory(struct target
*target
,
80 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
);
83 /* restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target
*target
)
86 int retval
= ERROR_OK
;
87 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
88 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
90 if (cortex_a
->cp15_control_reg
!= cortex_a
->cp15_control_reg_curr
) {
91 cortex_a
->cp15_control_reg_curr
= cortex_a
->cp15_control_reg
;
92 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93 retval
= armv7a
->arm
.mcr(target
, 15,
96 cortex_a
->cp15_control_reg
);
102 * Set up ARM core for memory access.
103 * If !phys_access, switch to SVC mode and make sure MMU is on
104 * If phys_access, switch off mmu
106 static int cortex_a_prep_memaccess(struct target
*target
, int phys_access
)
108 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
109 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
112 if (phys_access
== 0) {
113 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_SVC
);
114 cortex_a_mmu(target
, &mmu_enabled
);
116 cortex_a_mmu_modify(target
, 1);
117 if (cortex_a
->dacrfixup_mode
== CORTEX_A_DACRFIXUP_ON
) {
118 /* overwrite DACR to all-manager */
119 armv7a
->arm
.mcr(target
, 15,
124 cortex_a_mmu(target
, &mmu_enabled
);
126 cortex_a_mmu_modify(target
, 0);
132 * Restore ARM core after memory access.
133 * If !phys_access, switch to previous mode
134 * If phys_access, restore MMU setting
136 static int cortex_a_post_memaccess(struct target
*target
, int phys_access
)
138 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
139 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
141 if (phys_access
== 0) {
142 if (cortex_a
->dacrfixup_mode
== CORTEX_A_DACRFIXUP_ON
) {
144 armv7a
->arm
.mcr(target
, 15,
146 cortex_a
->cp15_dacr_reg
);
148 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_ANY
);
151 cortex_a_mmu(target
, &mmu_enabled
);
153 cortex_a_mmu_modify(target
, 1);
159 /* modify cp15_control_reg in order to enable or disable mmu for :
160 * - virt2phys address conversion
161 * - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target
*target
, int enable
)
164 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
165 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
166 int retval
= ERROR_OK
;
170 /* if mmu enabled at target stop and mmu not enable */
171 if (!(cortex_a
->cp15_control_reg
& 0x1U
)) {
172 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
175 if ((cortex_a
->cp15_control_reg_curr
& 0x1U
) == 0) {
176 cortex_a
->cp15_control_reg_curr
|= 0x1U
;
180 if ((cortex_a
->cp15_control_reg_curr
& 0x1U
) == 0x1U
) {
181 cortex_a
->cp15_control_reg_curr
&= ~0x1U
;
187 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32
,
188 enable
? "enable mmu" : "disable mmu",
189 cortex_a
->cp15_control_reg_curr
);
191 retval
= armv7a
->arm
.mcr(target
, 15,
194 cortex_a
->cp15_control_reg_curr
);
200 * Cortex-A Basic debug access, very low level assumes state is saved
202 static int cortex_a_init_debug_access(struct target
*target
)
204 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
207 /* lock memory-mapped access to debug registers to prevent
208 * software interference */
209 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
210 armv7a
->debug_base
+ CPUDBG_LOCKACCESS
, 0);
211 if (retval
!= ERROR_OK
)
214 /* Disable cacheline fills and force cache write-through in debug state */
215 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
216 armv7a
->debug_base
+ CPUDBG_DSCCR
, 0);
217 if (retval
!= ERROR_OK
)
220 /* Disable TLB lookup and refill/eviction in debug state */
221 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
222 armv7a
->debug_base
+ CPUDBG_DSMCR
, 0);
223 if (retval
!= ERROR_OK
)
226 retval
= dap_run(armv7a
->debug_ap
->dap
);
227 if (retval
!= ERROR_OK
)
230 /* Enabling of instruction execution in debug mode is done in debug_entry code */
232 /* Resync breakpoint registers */
234 /* Since this is likely called from init or reset, update target state information*/
235 return cortex_a_poll(target
);
238 static int cortex_a_wait_instrcmpl(struct target
*target
, uint32_t *dscr
, bool force
)
240 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
241 * Writes final value of DSCR into *dscr. Pass force to force always
242 * reading DSCR at least once. */
243 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
244 int64_t then
= timeval_ms();
245 while ((*dscr
& DSCR_INSTR_COMP
) == 0 || force
) {
247 int retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
248 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
249 if (retval
!= ERROR_OK
) {
250 LOG_ERROR("Could not read DSCR register");
253 if (timeval_ms() > then
+ 1000) {
254 LOG_ERROR("Timeout waiting for InstrCompl=1");
261 /* To reduce needless round-trips, pass in a pointer to the current
262 * DSCR value. Initialize it to zero if you just need to know the
263 * value on return from this function; or DSCR_INSTR_COMP if you
264 * happen to know that no instruction is pending.
266 static int cortex_a_exec_opcode(struct target
*target
,
267 uint32_t opcode
, uint32_t *dscr_p
)
271 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
273 dscr
= dscr_p
? *dscr_p
: 0;
275 LOG_DEBUG("exec opcode 0x%08" PRIx32
, opcode
);
277 /* Wait for InstrCompl bit to be set */
278 retval
= cortex_a_wait_instrcmpl(target
, dscr_p
, false);
279 if (retval
!= ERROR_OK
)
282 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
283 armv7a
->debug_base
+ CPUDBG_ITR
, opcode
);
284 if (retval
!= ERROR_OK
)
287 int64_t then
= timeval_ms();
289 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
290 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
291 if (retval
!= ERROR_OK
) {
292 LOG_ERROR("Could not read DSCR register");
295 if (timeval_ms() > then
+ 1000) {
296 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
299 } while ((dscr
& DSCR_INSTR_COMP
) == 0); /* Wait for InstrCompl bit to be set */
307 /**************************************************************************
308 Read core register with very few exec_opcode, fast but needs work_area.
309 This can cause problems with MMU active.
310 **************************************************************************/
311 static int cortex_a_read_regs_through_mem(struct target
*target
, uint32_t address
,
314 int retval
= ERROR_OK
;
315 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
317 retval
= cortex_a_dap_read_coreregister_u32(target
, regfile
, 0);
318 if (retval
!= ERROR_OK
)
320 retval
= cortex_a_dap_write_coreregister_u32(target
, address
, 0);
321 if (retval
!= ERROR_OK
)
323 retval
= cortex_a_exec_opcode(target
, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL
);
324 if (retval
!= ERROR_OK
)
327 retval
= mem_ap_read_buf(armv7a
->memory_ap
,
328 (uint8_t *)(®file
[1]), 4, 15, address
);
333 static int cortex_a_dap_read_coreregister_u32(struct target
*target
,
334 uint32_t *value
, int regnum
)
336 int retval
= ERROR_OK
;
337 uint8_t reg
= regnum
&0xFF;
339 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
345 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
346 retval
= cortex_a_exec_opcode(target
,
347 ARMV4_5_MCR(14, 0, reg
, 0, 5, 0),
349 if (retval
!= ERROR_OK
)
351 } else if (reg
== 15) {
352 /* "MOV r0, r15"; then move r0 to DCCTX */
353 retval
= cortex_a_exec_opcode(target
, 0xE1A0000F, &dscr
);
354 if (retval
!= ERROR_OK
)
356 retval
= cortex_a_exec_opcode(target
,
357 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
359 if (retval
!= ERROR_OK
)
362 /* "MRS r0, CPSR" or "MRS r0, SPSR"
363 * then move r0 to DCCTX
365 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRS(0, reg
& 1), &dscr
);
366 if (retval
!= ERROR_OK
)
368 retval
= cortex_a_exec_opcode(target
,
369 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
371 if (retval
!= ERROR_OK
)
375 /* Wait for DTRRXfull then read DTRRTX */
376 int64_t then
= timeval_ms();
377 while ((dscr
& DSCR_DTR_TX_FULL
) == 0) {
378 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
379 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
380 if (retval
!= ERROR_OK
)
382 if (timeval_ms() > then
+ 1000) {
383 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
388 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
389 armv7a
->debug_base
+ CPUDBG_DTRTX
, value
);
390 LOG_DEBUG("read DCC 0x%08" PRIx32
, *value
);
395 static int cortex_a_dap_write_coreregister_u32(struct target
*target
,
396 uint32_t value
, int regnum
)
398 int retval
= ERROR_OK
;
399 uint8_t Rd
= regnum
&0xFF;
401 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
403 LOG_DEBUG("register %i, value 0x%08" PRIx32
, regnum
, value
);
405 /* Check that DCCRX is not full */
406 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
407 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
408 if (retval
!= ERROR_OK
)
410 if (dscr
& DSCR_DTR_RX_FULL
) {
411 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
412 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
413 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
415 if (retval
!= ERROR_OK
)
422 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
423 LOG_DEBUG("write DCC 0x%08" PRIx32
, value
);
424 retval
= mem_ap_write_u32(armv7a
->debug_ap
,
425 armv7a
->debug_base
+ CPUDBG_DTRRX
, value
);
426 if (retval
!= ERROR_OK
)
430 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
431 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, Rd
, 0, 5, 0),
434 if (retval
!= ERROR_OK
)
436 } else if (Rd
== 15) {
437 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
440 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
442 if (retval
!= ERROR_OK
)
444 retval
= cortex_a_exec_opcode(target
, 0xE1A0F000, &dscr
);
445 if (retval
!= ERROR_OK
)
448 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
449 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
451 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
453 if (retval
!= ERROR_OK
)
455 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MSR_GP(0, 0xF, Rd
& 1),
457 if (retval
!= ERROR_OK
)
460 /* "Prefetch flush" after modifying execution status in CPSR */
462 retval
= cortex_a_exec_opcode(target
,
463 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
465 if (retval
!= ERROR_OK
)
473 /* Write to memory mapped registers directly with no cache or mmu handling */
474 static int cortex_a_dap_write_memap_register_u32(struct target
*target
,
479 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
481 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
, address
, value
);
487 * Cortex-A implementation of Debug Programmer's Model
489 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
490 * so there's no need to poll for it before executing an instruction.
492 * NOTE that in several of these cases the "stall" mode might be useful.
493 * It'd let us queue a few operations together... prepare/finish might
494 * be the places to enable/disable that mode.
497 static inline struct cortex_a_common
*dpm_to_a(struct arm_dpm
*dpm
)
499 return container_of(dpm
, struct cortex_a_common
, armv7a_common
.dpm
);
502 static int cortex_a_write_dcc(struct cortex_a_common
*a
, uint32_t data
)
504 LOG_DEBUG("write DCC 0x%08" PRIx32
, data
);
505 return mem_ap_write_u32(a
->armv7a_common
.debug_ap
,
506 a
->armv7a_common
.debug_base
+ CPUDBG_DTRRX
, data
);
509 static int cortex_a_read_dcc(struct cortex_a_common
*a
, uint32_t *data
,
512 uint32_t dscr
= DSCR_INSTR_COMP
;
518 /* Wait for DTRRXfull */
519 int64_t then
= timeval_ms();
520 while ((dscr
& DSCR_DTR_TX_FULL
) == 0) {
521 retval
= mem_ap_read_atomic_u32(a
->armv7a_common
.debug_ap
,
522 a
->armv7a_common
.debug_base
+ CPUDBG_DSCR
,
524 if (retval
!= ERROR_OK
)
526 if (timeval_ms() > then
+ 1000) {
527 LOG_ERROR("Timeout waiting for read dcc");
532 retval
= mem_ap_read_atomic_u32(a
->armv7a_common
.debug_ap
,
533 a
->armv7a_common
.debug_base
+ CPUDBG_DTRTX
, data
);
534 if (retval
!= ERROR_OK
)
536 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
544 static int cortex_a_dpm_prepare(struct arm_dpm
*dpm
)
546 struct cortex_a_common
*a
= dpm_to_a(dpm
);
550 /* set up invariant: INSTR_COMP is set after ever DPM operation */
551 int64_t then
= timeval_ms();
553 retval
= mem_ap_read_atomic_u32(a
->armv7a_common
.debug_ap
,
554 a
->armv7a_common
.debug_base
+ CPUDBG_DSCR
,
556 if (retval
!= ERROR_OK
)
558 if ((dscr
& DSCR_INSTR_COMP
) != 0)
560 if (timeval_ms() > then
+ 1000) {
561 LOG_ERROR("Timeout waiting for dpm prepare");
566 /* this "should never happen" ... */
567 if (dscr
& DSCR_DTR_RX_FULL
) {
568 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32
, dscr
);
570 retval
= cortex_a_exec_opcode(
571 a
->armv7a_common
.arm
.target
,
572 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
574 if (retval
!= ERROR_OK
)
581 static int cortex_a_dpm_finish(struct arm_dpm
*dpm
)
583 /* REVISIT what could be done here? */
587 static int cortex_a_instr_write_data_dcc(struct arm_dpm
*dpm
,
588 uint32_t opcode
, uint32_t data
)
590 struct cortex_a_common
*a
= dpm_to_a(dpm
);
592 uint32_t dscr
= DSCR_INSTR_COMP
;
594 retval
= cortex_a_write_dcc(a
, data
);
595 if (retval
!= ERROR_OK
)
598 return cortex_a_exec_opcode(
599 a
->armv7a_common
.arm
.target
,
604 static int cortex_a_instr_write_data_r0(struct arm_dpm
*dpm
,
605 uint32_t opcode
, uint32_t data
)
607 struct cortex_a_common
*a
= dpm_to_a(dpm
);
608 uint32_t dscr
= DSCR_INSTR_COMP
;
611 retval
= cortex_a_write_dcc(a
, data
);
612 if (retval
!= ERROR_OK
)
615 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
616 retval
= cortex_a_exec_opcode(
617 a
->armv7a_common
.arm
.target
,
618 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
620 if (retval
!= ERROR_OK
)
623 /* then the opcode, taking data from R0 */
624 retval
= cortex_a_exec_opcode(
625 a
->armv7a_common
.arm
.target
,
632 static int cortex_a_instr_cpsr_sync(struct arm_dpm
*dpm
)
634 struct target
*target
= dpm
->arm
->target
;
635 uint32_t dscr
= DSCR_INSTR_COMP
;
637 /* "Prefetch flush" after modifying execution status in CPSR */
638 return cortex_a_exec_opcode(target
,
639 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
643 static int cortex_a_instr_read_data_dcc(struct arm_dpm
*dpm
,
644 uint32_t opcode
, uint32_t *data
)
646 struct cortex_a_common
*a
= dpm_to_a(dpm
);
648 uint32_t dscr
= DSCR_INSTR_COMP
;
650 /* the opcode, writing data to DCC */
651 retval
= cortex_a_exec_opcode(
652 a
->armv7a_common
.arm
.target
,
655 if (retval
!= ERROR_OK
)
658 return cortex_a_read_dcc(a
, data
, &dscr
);
662 static int cortex_a_instr_read_data_r0(struct arm_dpm
*dpm
,
663 uint32_t opcode
, uint32_t *data
)
665 struct cortex_a_common
*a
= dpm_to_a(dpm
);
666 uint32_t dscr
= DSCR_INSTR_COMP
;
669 /* the opcode, writing data to R0 */
670 retval
= cortex_a_exec_opcode(
671 a
->armv7a_common
.arm
.target
,
674 if (retval
!= ERROR_OK
)
677 /* write R0 to DCC */
678 retval
= cortex_a_exec_opcode(
679 a
->armv7a_common
.arm
.target
,
680 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
682 if (retval
!= ERROR_OK
)
685 return cortex_a_read_dcc(a
, data
, &dscr
);
688 static int cortex_a_bpwp_enable(struct arm_dpm
*dpm
, unsigned index_t
,
689 uint32_t addr
, uint32_t control
)
691 struct cortex_a_common
*a
= dpm_to_a(dpm
);
692 uint32_t vr
= a
->armv7a_common
.debug_base
;
693 uint32_t cr
= a
->armv7a_common
.debug_base
;
697 case 0 ... 15: /* breakpoints */
698 vr
+= CPUDBG_BVR_BASE
;
699 cr
+= CPUDBG_BCR_BASE
;
701 case 16 ... 31: /* watchpoints */
702 vr
+= CPUDBG_WVR_BASE
;
703 cr
+= CPUDBG_WCR_BASE
;
712 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
713 (unsigned) vr
, (unsigned) cr
);
715 retval
= cortex_a_dap_write_memap_register_u32(dpm
->arm
->target
,
717 if (retval
!= ERROR_OK
)
719 retval
= cortex_a_dap_write_memap_register_u32(dpm
->arm
->target
,
724 static int cortex_a_bpwp_disable(struct arm_dpm
*dpm
, unsigned index_t
)
726 struct cortex_a_common
*a
= dpm_to_a(dpm
);
731 cr
= a
->armv7a_common
.debug_base
+ CPUDBG_BCR_BASE
;
734 cr
= a
->armv7a_common
.debug_base
+ CPUDBG_WCR_BASE
;
742 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr
);
744 /* clear control register */
745 return cortex_a_dap_write_memap_register_u32(dpm
->arm
->target
, cr
, 0);
748 static int cortex_a_dpm_setup(struct cortex_a_common
*a
, uint32_t didr
)
750 struct arm_dpm
*dpm
= &a
->armv7a_common
.dpm
;
753 dpm
->arm
= &a
->armv7a_common
.arm
;
756 dpm
->prepare
= cortex_a_dpm_prepare
;
757 dpm
->finish
= cortex_a_dpm_finish
;
759 dpm
->instr_write_data_dcc
= cortex_a_instr_write_data_dcc
;
760 dpm
->instr_write_data_r0
= cortex_a_instr_write_data_r0
;
761 dpm
->instr_cpsr_sync
= cortex_a_instr_cpsr_sync
;
763 dpm
->instr_read_data_dcc
= cortex_a_instr_read_data_dcc
;
764 dpm
->instr_read_data_r0
= cortex_a_instr_read_data_r0
;
766 dpm
->bpwp_enable
= cortex_a_bpwp_enable
;
767 dpm
->bpwp_disable
= cortex_a_bpwp_disable
;
769 retval
= arm_dpm_setup(dpm
);
770 if (retval
== ERROR_OK
)
771 retval
= arm_dpm_initialize(dpm
);
775 static struct target
*get_cortex_a(struct target
*target
, int32_t coreid
)
777 struct target_list
*head
;
781 while (head
!= (struct target_list
*)NULL
) {
783 if ((curr
->coreid
== coreid
) && (curr
->state
== TARGET_HALTED
))
789 static int cortex_a_halt(struct target
*target
);
791 static int cortex_a_halt_smp(struct target
*target
)
794 struct target_list
*head
;
797 while (head
!= (struct target_list
*)NULL
) {
799 if ((curr
!= target
) && (curr
->state
!= TARGET_HALTED
)
800 && target_was_examined(curr
))
801 retval
+= cortex_a_halt(curr
);
807 static int update_halt_gdb(struct target
*target
)
810 if (target
->gdb_service
&& target
->gdb_service
->core
[0] == -1) {
811 target
->gdb_service
->target
= target
;
812 target
->gdb_service
->core
[0] = target
->coreid
;
813 retval
+= cortex_a_halt_smp(target
);
819 * Cortex-A Run control
822 static int cortex_a_poll(struct target
*target
)
824 int retval
= ERROR_OK
;
826 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
827 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
828 enum target_state prev_target_state
= target
->state
;
829 /* toggle to another core is done by gdb as follow */
830 /* maint packet J core_id */
832 /* the next polling trigger an halt event sent to gdb */
833 if ((target
->state
== TARGET_HALTED
) && (target
->smp
) &&
834 (target
->gdb_service
) &&
835 (target
->gdb_service
->target
== NULL
)) {
836 target
->gdb_service
->target
=
837 get_cortex_a(target
, target
->gdb_service
->core
[1]);
838 target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
841 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
842 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
843 if (retval
!= ERROR_OK
)
845 cortex_a
->cpudbg_dscr
= dscr
;
847 if (DSCR_RUN_MODE(dscr
) == (DSCR_CORE_HALTED
| DSCR_CORE_RESTARTED
)) {
848 if (prev_target_state
!= TARGET_HALTED
) {
849 /* We have a halting debug event */
850 LOG_DEBUG("Target halted");
851 target
->state
= TARGET_HALTED
;
852 if ((prev_target_state
== TARGET_RUNNING
)
853 || (prev_target_state
== TARGET_UNKNOWN
)
854 || (prev_target_state
== TARGET_RESET
)) {
855 retval
= cortex_a_debug_entry(target
);
856 if (retval
!= ERROR_OK
)
859 retval
= update_halt_gdb(target
);
860 if (retval
!= ERROR_OK
)
864 if (arm_semihosting(target
, &retval
) != 0)
867 target_call_event_callbacks(target
,
868 TARGET_EVENT_HALTED
);
870 if (prev_target_state
== TARGET_DEBUG_RUNNING
) {
873 retval
= cortex_a_debug_entry(target
);
874 if (retval
!= ERROR_OK
)
877 retval
= update_halt_gdb(target
);
878 if (retval
!= ERROR_OK
)
882 target_call_event_callbacks(target
,
883 TARGET_EVENT_DEBUG_HALTED
);
887 target
->state
= TARGET_RUNNING
;
892 static int cortex_a_halt(struct target
*target
)
894 int retval
= ERROR_OK
;
896 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
899 * Tell the core to be halted by writing DRCR with 0x1
900 * and then wait for the core to be halted.
902 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
903 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_HALT
);
904 if (retval
!= ERROR_OK
)
908 * enter halting debug mode
910 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
911 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
912 if (retval
!= ERROR_OK
)
915 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
916 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
| DSCR_HALT_DBG_MODE
);
917 if (retval
!= ERROR_OK
)
920 int64_t then
= timeval_ms();
922 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
923 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
924 if (retval
!= ERROR_OK
)
926 if ((dscr
& DSCR_CORE_HALTED
) != 0)
928 if (timeval_ms() > then
+ 1000) {
929 LOG_ERROR("Timeout waiting for halt");
934 target
->debug_reason
= DBG_REASON_DBGRQ
;
939 static int cortex_a_internal_restore(struct target
*target
, int current
,
940 target_addr_t
*address
, int handle_breakpoints
, int debug_execution
)
942 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
943 struct arm
*arm
= &armv7a
->arm
;
947 if (!debug_execution
)
948 target_free_all_working_areas(target
);
951 if (debug_execution
) {
952 /* Disable interrupts */
953 /* We disable interrupts in the PRIMASK register instead of
954 * masking with C_MASKINTS,
955 * This is probably the same issue as Cortex-M3 Errata 377493:
956 * C_MASKINTS in parallel with disabled interrupts can cause
957 * local faults to not be taken. */
958 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].value
, 0, 32, 1);
959 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].dirty
= 1;
960 armv7m
->core_cache
->reg_list
[ARMV7M_PRIMASK
].valid
= 1;
962 /* Make sure we are in Thumb mode */
963 buf_set_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0, 32,
964 buf_get_u32(armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].value
, 0,
966 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].dirty
= 1;
967 armv7m
->core_cache
->reg_list
[ARMV7M_xPSR
].valid
= 1;
971 /* current = 1: continue on current pc, otherwise continue at <address> */
972 resume_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
974 resume_pc
= *address
;
976 *address
= resume_pc
;
978 /* Make sure that the Armv7 gdb thumb fixups does not
979 * kill the return address
981 switch (arm
->core_state
) {
983 resume_pc
&= 0xFFFFFFFC;
985 case ARM_STATE_THUMB
:
986 case ARM_STATE_THUMB_EE
:
987 /* When the return address is loaded into PC
988 * bit 0 must be 1 to stay in Thumb state
992 case ARM_STATE_JAZELLE
:
993 LOG_ERROR("How do I resume into Jazelle state??");
995 case ARM_STATE_AARCH64
:
996 LOG_ERROR("Shoudn't be in AARCH64 state");
999 LOG_DEBUG("resume pc = 0x%08" PRIx32
, resume_pc
);
1000 buf_set_u32(arm
->pc
->value
, 0, 32, resume_pc
);
1004 /* restore dpm_mode at system halt */
1005 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_ANY
);
1006 /* called it now before restoring context because it uses cpu
1007 * register r0 for restoring cp15 control register */
1008 retval
= cortex_a_restore_cp15_control_reg(target
);
1009 if (retval
!= ERROR_OK
)
1011 retval
= cortex_a_restore_context(target
, handle_breakpoints
);
1012 if (retval
!= ERROR_OK
)
1014 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1015 target
->state
= TARGET_RUNNING
;
1017 /* registers are now invalid */
1018 register_cache_invalidate(arm
->core_cache
);
1021 /* the front-end may request us not to handle breakpoints */
1022 if (handle_breakpoints
) {
1023 /* Single step past breakpoint at current address */
1024 breakpoint
= breakpoint_find(target
, resume_pc
);
1026 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint
->address
);
1027 cortex_m3_unset_breakpoint(target
, breakpoint
);
1028 cortex_m3_single_step_core(target
);
1029 cortex_m3_set_breakpoint(target
, breakpoint
);
1037 static int cortex_a_internal_restart(struct target
*target
)
1039 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1040 struct arm
*arm
= &armv7a
->arm
;
1044 * * Restart core and wait for it to be started. Clear ITRen and sticky
1045 * * exception flags: see ARMv7 ARM, C5.9.
1047 * REVISIT: for single stepping, we probably want to
1048 * disable IRQs by default, with optional override...
1051 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1052 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1053 if (retval
!= ERROR_OK
)
1056 if ((dscr
& DSCR_INSTR_COMP
) == 0)
1057 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1059 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1060 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
& ~DSCR_ITR_EN
);
1061 if (retval
!= ERROR_OK
)
1064 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1065 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_RESTART
|
1066 DRCR_CLEAR_EXCEPTIONS
);
1067 if (retval
!= ERROR_OK
)
1070 int64_t then
= timeval_ms();
1072 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1073 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1074 if (retval
!= ERROR_OK
)
1076 if ((dscr
& DSCR_CORE_RESTARTED
) != 0)
1078 if (timeval_ms() > then
+ 1000) {
1079 LOG_ERROR("Timeout waiting for resume");
1084 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1085 target
->state
= TARGET_RUNNING
;
1087 /* registers are now invalid */
1088 register_cache_invalidate(arm
->core_cache
);
1093 static int cortex_a_restore_smp(struct target
*target
, int handle_breakpoints
)
1096 struct target_list
*head
;
1097 struct target
*curr
;
1098 target_addr_t address
;
1099 head
= target
->head
;
1100 while (head
!= (struct target_list
*)NULL
) {
1101 curr
= head
->target
;
1102 if ((curr
!= target
) && (curr
->state
!= TARGET_RUNNING
)
1103 && target_was_examined(curr
)) {
1104 /* resume current address , not in step mode */
1105 retval
+= cortex_a_internal_restore(curr
, 1, &address
,
1106 handle_breakpoints
, 0);
1107 retval
+= cortex_a_internal_restart(curr
);
1115 static int cortex_a_resume(struct target
*target
, int current
,
1116 target_addr_t address
, int handle_breakpoints
, int debug_execution
)
1119 /* dummy resume for smp toggle in order to reduce gdb impact */
1120 if ((target
->smp
) && (target
->gdb_service
->core
[1] != -1)) {
1121 /* simulate a start and halt of target */
1122 target
->gdb_service
->target
= NULL
;
1123 target
->gdb_service
->core
[0] = target
->gdb_service
->core
[1];
1124 /* fake resume at next poll we play the target core[1], see poll*/
1125 target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1128 cortex_a_internal_restore(target
, current
, &address
, handle_breakpoints
, debug_execution
);
1130 target
->gdb_service
->core
[0] = -1;
1131 retval
= cortex_a_restore_smp(target
, handle_breakpoints
);
1132 if (retval
!= ERROR_OK
)
1135 cortex_a_internal_restart(target
);
1137 if (!debug_execution
) {
1138 target
->state
= TARGET_RUNNING
;
1139 target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1140 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT
, address
);
1142 target
->state
= TARGET_DEBUG_RUNNING
;
1143 target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
);
1144 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT
, address
);
1150 static int cortex_a_debug_entry(struct target
*target
)
1153 uint32_t regfile
[16], cpsr
, spsr
, dscr
;
1154 int retval
= ERROR_OK
;
1155 struct working_area
*regfile_working_area
= NULL
;
1156 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1157 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1158 struct arm
*arm
= &armv7a
->arm
;
1161 LOG_DEBUG("dscr = 0x%08" PRIx32
, cortex_a
->cpudbg_dscr
);
1163 /* REVISIT surely we should not re-read DSCR !! */
1164 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1165 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1166 if (retval
!= ERROR_OK
)
1169 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1170 * imprecise data aborts get discarded by issuing a Data
1171 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1174 /* Enable the ITR execution once we are in debug mode */
1175 dscr
|= DSCR_ITR_EN
;
1176 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1177 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
1178 if (retval
!= ERROR_OK
)
1181 /* Examine debug reason */
1182 arm_dpm_report_dscr(&armv7a
->dpm
, cortex_a
->cpudbg_dscr
);
1184 /* save address of instruction that triggered the watchpoint? */
1185 if (target
->debug_reason
== DBG_REASON_WATCHPOINT
) {
1188 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1189 armv7a
->debug_base
+ CPUDBG_WFAR
,
1191 if (retval
!= ERROR_OK
)
1193 arm_dpm_report_wfar(&armv7a
->dpm
, wfar
);
1196 /* REVISIT fast_reg_read is never set ... */
1198 /* Examine target state and mode */
1199 if (cortex_a
->fast_reg_read
)
1200 target_alloc_working_area(target
, 64, ®file_working_area
);
1203 /* First load register acessible through core debug port*/
1204 if (!regfile_working_area
)
1205 retval
= arm_dpm_read_current_registers(&armv7a
->dpm
);
1207 retval
= cortex_a_read_regs_through_mem(target
,
1208 regfile_working_area
->address
, regfile
);
1210 target_free_working_area(target
, regfile_working_area
);
1211 if (retval
!= ERROR_OK
)
1214 /* read Current PSR */
1215 retval
= cortex_a_dap_read_coreregister_u32(target
, &cpsr
, 16);
1216 /* store current cpsr */
1217 if (retval
!= ERROR_OK
)
1220 LOG_DEBUG("cpsr: %8.8" PRIx32
, cpsr
);
1222 arm_set_cpsr(arm
, cpsr
);
1225 for (i
= 0; i
<= ARM_PC
; i
++) {
1226 reg
= arm_reg_current(arm
, i
);
1228 buf_set_u32(reg
->value
, 0, 32, regfile
[i
]);
1233 /* Fixup PC Resume Address */
1234 if (cpsr
& (1 << 5)) {
1235 /* T bit set for Thumb or ThumbEE state */
1236 regfile
[ARM_PC
] -= 4;
1239 regfile
[ARM_PC
] -= 8;
1243 buf_set_u32(reg
->value
, 0, 32, regfile
[ARM_PC
]);
1244 reg
->dirty
= reg
->valid
;
1248 /* read Saved PSR */
1249 retval
= cortex_a_dap_read_coreregister_u32(target
, &spsr
, 17);
1250 /* store current spsr */
1251 if (retval
!= ERROR_OK
)
1255 buf_set_u32(reg
->value
, 0, 32, spsr
);
1261 /* TODO, Move this */
1262 uint32_t cp15_control_register
, cp15_cacr
, cp15_nacr
;
1263 cortex_a_read_cp(target
, &cp15_control_register
, 15, 0, 1, 0, 0);
1264 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register
);
1266 cortex_a_read_cp(target
, &cp15_cacr
, 15, 0, 1, 0, 2);
1267 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr
);
1269 cortex_a_read_cp(target
, &cp15_nacr
, 15, 0, 1, 1, 2);
1270 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr
);
1273 /* Are we in an exception handler */
1274 /* armv4_5->exception_number = 0; */
1275 if (armv7a
->post_debug_entry
) {
1276 retval
= armv7a
->post_debug_entry(target
);
1277 if (retval
!= ERROR_OK
)
1284 static int cortex_a_post_debug_entry(struct target
*target
)
1286 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1287 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1290 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1291 retval
= armv7a
->arm
.mrc(target
, 15,
1292 0, 0, /* op1, op2 */
1293 1, 0, /* CRn, CRm */
1294 &cortex_a
->cp15_control_reg
);
1295 if (retval
!= ERROR_OK
)
1297 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32
, cortex_a
->cp15_control_reg
);
1298 cortex_a
->cp15_control_reg_curr
= cortex_a
->cp15_control_reg
;
1300 if (!armv7a
->is_armv7r
)
1301 armv7a_read_ttbcr(target
);
1303 if (armv7a
->armv7a_mmu
.armv7a_cache
.info
== -1)
1304 armv7a_identify_cache(target
);
1306 if (armv7a
->is_armv7r
) {
1307 armv7a
->armv7a_mmu
.mmu_enabled
= 0;
1309 armv7a
->armv7a_mmu
.mmu_enabled
=
1310 (cortex_a
->cp15_control_reg
& 0x1U
) ? 1 : 0;
1312 armv7a
->armv7a_mmu
.armv7a_cache
.d_u_cache_enabled
=
1313 (cortex_a
->cp15_control_reg
& 0x4U
) ? 1 : 0;
1314 armv7a
->armv7a_mmu
.armv7a_cache
.i_cache_enabled
=
1315 (cortex_a
->cp15_control_reg
& 0x1000U
) ? 1 : 0;
1316 cortex_a
->curr_mode
= armv7a
->arm
.core_mode
;
1318 /* switch to SVC mode to read DACR */
1319 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_SVC
);
1320 armv7a
->arm
.mrc(target
, 15,
1322 &cortex_a
->cp15_dacr_reg
);
1324 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32
,
1325 cortex_a
->cp15_dacr_reg
);
1327 dpm_modeswitch(&armv7a
->dpm
, ARM_MODE_ANY
);
1331 int cortex_a_set_dscr_bits(struct target
*target
, unsigned long bit_mask
, unsigned long value
)
1333 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1337 int retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1338 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
1339 if (ERROR_OK
!= retval
)
1342 /* clear bitfield */
1345 dscr
|= value
& bit_mask
;
1347 /* write new DSCR */
1348 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1349 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
1353 static int cortex_a_step(struct target
*target
, int current
, target_addr_t address
,
1354 int handle_breakpoints
)
1356 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1357 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1358 struct arm
*arm
= &armv7a
->arm
;
1359 struct breakpoint
*breakpoint
= NULL
;
1360 struct breakpoint stepbreakpoint
;
1364 if (target
->state
!= TARGET_HALTED
) {
1365 LOG_WARNING("target not halted");
1366 return ERROR_TARGET_NOT_HALTED
;
1369 /* current = 1: continue on current pc, otherwise continue at <address> */
1372 buf_set_u32(r
->value
, 0, 32, address
);
1374 address
= buf_get_u32(r
->value
, 0, 32);
1376 /* The front-end may request us not to handle breakpoints.
1377 * But since Cortex-A uses breakpoint for single step,
1378 * we MUST handle breakpoints.
1380 handle_breakpoints
= 1;
1381 if (handle_breakpoints
) {
1382 breakpoint
= breakpoint_find(target
, address
);
1384 cortex_a_unset_breakpoint(target
, breakpoint
);
1387 /* Setup single step breakpoint */
1388 stepbreakpoint
.address
= address
;
1389 stepbreakpoint
.length
= (arm
->core_state
== ARM_STATE_THUMB
)
1391 stepbreakpoint
.type
= BKPT_HARD
;
1392 stepbreakpoint
.set
= 0;
1394 /* Disable interrupts during single step if requested */
1395 if (cortex_a
->isrmasking_mode
== CORTEX_A_ISRMASK_ON
) {
1396 retval
= cortex_a_set_dscr_bits(target
, DSCR_INT_DIS
, DSCR_INT_DIS
);
1397 if (ERROR_OK
!= retval
)
1401 /* Break on IVA mismatch */
1402 cortex_a_set_breakpoint(target
, &stepbreakpoint
, 0x04);
1404 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1406 retval
= cortex_a_resume(target
, 1, address
, 0, 0);
1407 if (retval
!= ERROR_OK
)
1410 int64_t then
= timeval_ms();
1411 while (target
->state
!= TARGET_HALTED
) {
1412 retval
= cortex_a_poll(target
);
1413 if (retval
!= ERROR_OK
)
1415 if (timeval_ms() > then
+ 1000) {
1416 LOG_ERROR("timeout waiting for target halt");
1421 cortex_a_unset_breakpoint(target
, &stepbreakpoint
);
1423 /* Re-enable interrupts if they were disabled */
1424 if (cortex_a
->isrmasking_mode
== CORTEX_A_ISRMASK_ON
) {
1425 retval
= cortex_a_set_dscr_bits(target
, DSCR_INT_DIS
, 0);
1426 if (ERROR_OK
!= retval
)
1431 target
->debug_reason
= DBG_REASON_BREAKPOINT
;
1434 cortex_a_set_breakpoint(target
, breakpoint
, 0);
1436 if (target
->state
!= TARGET_HALTED
)
1437 LOG_DEBUG("target stepped");
1442 static int cortex_a_restore_context(struct target
*target
, bool bpwp
)
1444 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1448 if (armv7a
->pre_restore_context
)
1449 armv7a
->pre_restore_context(target
);
1451 return arm_dpm_write_dirty_registers(&armv7a
->dpm
, bpwp
);
1455 * Cortex-A Breakpoint and watchpoint functions
1458 /* Setup hardware Breakpoint Register Pair */
1459 static int cortex_a_set_breakpoint(struct target
*target
,
1460 struct breakpoint
*breakpoint
, uint8_t matchmode
)
1465 uint8_t byte_addr_select
= 0x0F;
1466 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1467 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1468 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1470 if (breakpoint
->set
) {
1471 LOG_WARNING("breakpoint already set");
1475 if (breakpoint
->type
== BKPT_HARD
) {
1476 while (brp_list
[brp_i
].used
&& (brp_i
< cortex_a
->brp_num
))
1478 if (brp_i
>= cortex_a
->brp_num
) {
1479 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1480 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1482 breakpoint
->set
= brp_i
+ 1;
1483 if (breakpoint
->length
== 2)
1484 byte_addr_select
= (3 << (breakpoint
->address
& 0x02));
1485 control
= ((matchmode
& 0x7) << 20)
1486 | (byte_addr_select
<< 5)
1488 brp_list
[brp_i
].used
= 1;
1489 brp_list
[brp_i
].value
= (breakpoint
->address
& 0xFFFFFFFC);
1490 brp_list
[brp_i
].control
= control
;
1491 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1492 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1493 brp_list
[brp_i
].value
);
1494 if (retval
!= ERROR_OK
)
1496 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1497 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1498 brp_list
[brp_i
].control
);
1499 if (retval
!= ERROR_OK
)
1501 LOG_DEBUG("brp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1502 brp_list
[brp_i
].control
,
1503 brp_list
[brp_i
].value
);
1504 } else if (breakpoint
->type
== BKPT_SOFT
) {
1506 /* length == 2: Thumb breakpoint */
1507 if (breakpoint
->length
== 2)
1508 buf_set_u32(code
, 0, 32, ARMV5_T_BKPT(0x11));
1510 /* length == 3: Thumb-2 breakpoint, actual encoding is
1511 * a regular Thumb BKPT instruction but we replace a
1512 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1515 if (breakpoint
->length
== 3) {
1516 buf_set_u32(code
, 0, 32, ARMV5_T_BKPT(0x11));
1517 breakpoint
->length
= 4;
1519 /* length == 4, normal ARM breakpoint */
1520 buf_set_u32(code
, 0, 32, ARMV5_BKPT(0x11));
1522 retval
= target_read_memory(target
,
1523 breakpoint
->address
& 0xFFFFFFFE,
1524 breakpoint
->length
, 1,
1525 breakpoint
->orig_instr
);
1526 if (retval
!= ERROR_OK
)
1529 /* make sure data cache is cleaned & invalidated down to PoC */
1530 if (!armv7a
->armv7a_mmu
.armv7a_cache
.auto_cache_enabled
) {
1531 armv7a_cache_flush_virt(target
, breakpoint
->address
,
1532 breakpoint
->length
);
1535 retval
= target_write_memory(target
,
1536 breakpoint
->address
& 0xFFFFFFFE,
1537 breakpoint
->length
, 1, code
);
1538 if (retval
!= ERROR_OK
)
1541 /* update i-cache at breakpoint location */
1542 armv7a_l1_d_cache_inval_virt(target
, breakpoint
->address
,
1543 breakpoint
->length
);
1544 armv7a_l1_i_cache_inval_virt(target
, breakpoint
->address
,
1545 breakpoint
->length
);
1547 breakpoint
->set
= 0x11; /* Any nice value but 0 */
1553 static int cortex_a_set_context_breakpoint(struct target
*target
,
1554 struct breakpoint
*breakpoint
, uint8_t matchmode
)
1556 int retval
= ERROR_FAIL
;
1559 uint8_t byte_addr_select
= 0x0F;
1560 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1561 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1562 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1564 if (breakpoint
->set
) {
1565 LOG_WARNING("breakpoint already set");
1568 /*check available context BRPs*/
1569 while ((brp_list
[brp_i
].used
||
1570 (brp_list
[brp_i
].type
!= BRP_CONTEXT
)) && (brp_i
< cortex_a
->brp_num
))
1573 if (brp_i
>= cortex_a
->brp_num
) {
1574 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1578 breakpoint
->set
= brp_i
+ 1;
1579 control
= ((matchmode
& 0x7) << 20)
1580 | (byte_addr_select
<< 5)
1582 brp_list
[brp_i
].used
= 1;
1583 brp_list
[brp_i
].value
= (breakpoint
->asid
);
1584 brp_list
[brp_i
].control
= control
;
1585 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1586 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1587 brp_list
[brp_i
].value
);
1588 if (retval
!= ERROR_OK
)
1590 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1591 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1592 brp_list
[brp_i
].control
);
1593 if (retval
!= ERROR_OK
)
1595 LOG_DEBUG("brp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1596 brp_list
[brp_i
].control
,
1597 brp_list
[brp_i
].value
);
1602 static int cortex_a_set_hybrid_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1604 int retval
= ERROR_FAIL
;
1605 int brp_1
= 0; /* holds the contextID pair */
1606 int brp_2
= 0; /* holds the IVA pair */
1607 uint32_t control_CTX
, control_IVA
;
1608 uint8_t CTX_byte_addr_select
= 0x0F;
1609 uint8_t IVA_byte_addr_select
= 0x0F;
1610 uint8_t CTX_machmode
= 0x03;
1611 uint8_t IVA_machmode
= 0x01;
1612 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1613 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1614 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1616 if (breakpoint
->set
) {
1617 LOG_WARNING("breakpoint already set");
1620 /*check available context BRPs*/
1621 while ((brp_list
[brp_1
].used
||
1622 (brp_list
[brp_1
].type
!= BRP_CONTEXT
)) && (brp_1
< cortex_a
->brp_num
))
1625 printf("brp(CTX) found num: %d\n", brp_1
);
1626 if (brp_1
>= cortex_a
->brp_num
) {
1627 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1631 while ((brp_list
[brp_2
].used
||
1632 (brp_list
[brp_2
].type
!= BRP_NORMAL
)) && (brp_2
< cortex_a
->brp_num
))
1635 printf("brp(IVA) found num: %d\n", brp_2
);
1636 if (brp_2
>= cortex_a
->brp_num
) {
1637 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1641 breakpoint
->set
= brp_1
+ 1;
1642 breakpoint
->linked_BRP
= brp_2
;
1643 control_CTX
= ((CTX_machmode
& 0x7) << 20)
1646 | (CTX_byte_addr_select
<< 5)
1648 brp_list
[brp_1
].used
= 1;
1649 brp_list
[brp_1
].value
= (breakpoint
->asid
);
1650 brp_list
[brp_1
].control
= control_CTX
;
1651 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1652 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_1
].BRPn
,
1653 brp_list
[brp_1
].value
);
1654 if (retval
!= ERROR_OK
)
1656 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1657 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_1
].BRPn
,
1658 brp_list
[brp_1
].control
);
1659 if (retval
!= ERROR_OK
)
1662 control_IVA
= ((IVA_machmode
& 0x7) << 20)
1664 | (IVA_byte_addr_select
<< 5)
1666 brp_list
[brp_2
].used
= 1;
1667 brp_list
[brp_2
].value
= (breakpoint
->address
& 0xFFFFFFFC);
1668 brp_list
[brp_2
].control
= control_IVA
;
1669 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1670 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_2
].BRPn
,
1671 brp_list
[brp_2
].value
);
1672 if (retval
!= ERROR_OK
)
1674 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1675 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_2
].BRPn
,
1676 brp_list
[brp_2
].control
);
1677 if (retval
!= ERROR_OK
)
1683 static int cortex_a_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1686 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1687 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
1688 struct cortex_a_brp
*brp_list
= cortex_a
->brp_list
;
1690 if (!breakpoint
->set
) {
1691 LOG_WARNING("breakpoint not set");
1695 if (breakpoint
->type
== BKPT_HARD
) {
1696 if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
1697 int brp_i
= breakpoint
->set
- 1;
1698 int brp_j
= breakpoint
->linked_BRP
;
1699 if ((brp_i
< 0) || (brp_i
>= cortex_a
->brp_num
)) {
1700 LOG_DEBUG("Invalid BRP number in breakpoint");
1703 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1704 brp_list
[brp_i
].control
, brp_list
[brp_i
].value
);
1705 brp_list
[brp_i
].used
= 0;
1706 brp_list
[brp_i
].value
= 0;
1707 brp_list
[brp_i
].control
= 0;
1708 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1709 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1710 brp_list
[brp_i
].control
);
1711 if (retval
!= ERROR_OK
)
1713 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1714 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1715 brp_list
[brp_i
].value
);
1716 if (retval
!= ERROR_OK
)
1718 if ((brp_j
< 0) || (brp_j
>= cortex_a
->brp_num
)) {
1719 LOG_DEBUG("Invalid BRP number in breakpoint");
1722 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_j
,
1723 brp_list
[brp_j
].control
, brp_list
[brp_j
].value
);
1724 brp_list
[brp_j
].used
= 0;
1725 brp_list
[brp_j
].value
= 0;
1726 brp_list
[brp_j
].control
= 0;
1727 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1728 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_j
].BRPn
,
1729 brp_list
[brp_j
].control
);
1730 if (retval
!= ERROR_OK
)
1732 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1733 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_j
].BRPn
,
1734 brp_list
[brp_j
].value
);
1735 if (retval
!= ERROR_OK
)
1737 breakpoint
->linked_BRP
= 0;
1738 breakpoint
->set
= 0;
1742 int brp_i
= breakpoint
->set
- 1;
1743 if ((brp_i
< 0) || (brp_i
>= cortex_a
->brp_num
)) {
1744 LOG_DEBUG("Invalid BRP number in breakpoint");
1747 LOG_DEBUG("rbp %i control 0x%0" PRIx32
" value 0x%0" PRIx32
, brp_i
,
1748 brp_list
[brp_i
].control
, brp_list
[brp_i
].value
);
1749 brp_list
[brp_i
].used
= 0;
1750 brp_list
[brp_i
].value
= 0;
1751 brp_list
[brp_i
].control
= 0;
1752 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1753 + CPUDBG_BCR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1754 brp_list
[brp_i
].control
);
1755 if (retval
!= ERROR_OK
)
1757 retval
= cortex_a_dap_write_memap_register_u32(target
, armv7a
->debug_base
1758 + CPUDBG_BVR_BASE
+ 4 * brp_list
[brp_i
].BRPn
,
1759 brp_list
[brp_i
].value
);
1760 if (retval
!= ERROR_OK
)
1762 breakpoint
->set
= 0;
1767 /* make sure data cache is cleaned & invalidated down to PoC */
1768 if (!armv7a
->armv7a_mmu
.armv7a_cache
.auto_cache_enabled
) {
1769 armv7a_cache_flush_virt(target
, breakpoint
->address
,
1770 breakpoint
->length
);
1773 /* restore original instruction (kept in target endianness) */
1774 if (breakpoint
->length
== 4) {
1775 retval
= target_write_memory(target
,
1776 breakpoint
->address
& 0xFFFFFFFE,
1777 4, 1, breakpoint
->orig_instr
);
1778 if (retval
!= ERROR_OK
)
1781 retval
= target_write_memory(target
,
1782 breakpoint
->address
& 0xFFFFFFFE,
1783 2, 1, breakpoint
->orig_instr
);
1784 if (retval
!= ERROR_OK
)
1788 /* update i-cache at breakpoint location */
1789 armv7a_l1_d_cache_inval_virt(target
, breakpoint
->address
,
1790 breakpoint
->length
);
1791 armv7a_l1_i_cache_inval_virt(target
, breakpoint
->address
,
1792 breakpoint
->length
);
1794 breakpoint
->set
= 0;
1799 static int cortex_a_add_breakpoint(struct target
*target
,
1800 struct breakpoint
*breakpoint
)
1802 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1804 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a
->brp_num_available
< 1)) {
1805 LOG_INFO("no hardware breakpoint available");
1806 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1809 if (breakpoint
->type
== BKPT_HARD
)
1810 cortex_a
->brp_num_available
--;
1812 return cortex_a_set_breakpoint(target
, breakpoint
, 0x00); /* Exact match */
1815 static int cortex_a_add_context_breakpoint(struct target
*target
,
1816 struct breakpoint
*breakpoint
)
1818 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1820 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a
->brp_num_available
< 1)) {
1821 LOG_INFO("no hardware breakpoint available");
1822 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1825 if (breakpoint
->type
== BKPT_HARD
)
1826 cortex_a
->brp_num_available
--;
1828 return cortex_a_set_context_breakpoint(target
, breakpoint
, 0x02); /* asid match */
1831 static int cortex_a_add_hybrid_breakpoint(struct target
*target
,
1832 struct breakpoint
*breakpoint
)
1834 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1836 if ((breakpoint
->type
== BKPT_HARD
) && (cortex_a
->brp_num_available
< 1)) {
1837 LOG_INFO("no hardware breakpoint available");
1838 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1841 if (breakpoint
->type
== BKPT_HARD
)
1842 cortex_a
->brp_num_available
--;
1844 return cortex_a_set_hybrid_breakpoint(target
, breakpoint
); /* ??? */
1848 static int cortex_a_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
1850 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
1853 /* It is perfectly possible to remove breakpoints while the target is running */
1854 if (target
->state
!= TARGET_HALTED
) {
1855 LOG_WARNING("target not halted");
1856 return ERROR_TARGET_NOT_HALTED
;
1860 if (breakpoint
->set
) {
1861 cortex_a_unset_breakpoint(target
, breakpoint
);
1862 if (breakpoint
->type
== BKPT_HARD
)
1863 cortex_a
->brp_num_available
++;
1871 * Cortex-A Reset functions
1874 static int cortex_a_assert_reset(struct target
*target
)
1876 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1880 /* FIXME when halt is requested, make it work somehow... */
1882 /* This function can be called in "target not examined" state */
1884 /* Issue some kind of warm reset. */
1885 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
))
1886 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
1887 else if (jtag_get_reset_config() & RESET_HAS_SRST
) {
1888 /* REVISIT handle "pulls" cases, if there's
1889 * hardware that needs them to work.
1893 * FIXME: fix reset when transport is SWD. This is a temporary
1894 * work-around for release v0.10 that is not intended to stay!
1896 if (transport_is_swd() ||
1897 (target
->reset_halt
&& (jtag_get_reset_config() & RESET_SRST_NO_GATING
)))
1898 jtag_add_reset(0, 1);
1901 LOG_ERROR("%s: how to reset?", target_name(target
));
1905 /* registers are now invalid */
1906 if (target_was_examined(target
))
1907 register_cache_invalidate(armv7a
->arm
.core_cache
);
1909 target
->state
= TARGET_RESET
;
1914 static int cortex_a_deassert_reset(struct target
*target
)
1920 /* be certain SRST is off */
1921 jtag_add_reset(0, 0);
1923 if (target_was_examined(target
)) {
1924 retval
= cortex_a_poll(target
);
1925 if (retval
!= ERROR_OK
)
1929 if (target
->reset_halt
) {
1930 if (target
->state
!= TARGET_HALTED
) {
1931 LOG_WARNING("%s: ran after reset and before halt ...",
1932 target_name(target
));
1933 if (target_was_examined(target
)) {
1934 retval
= target_halt(target
);
1935 if (retval
!= ERROR_OK
)
1938 target
->state
= TARGET_UNKNOWN
;
1945 static int cortex_a_set_dcc_mode(struct target
*target
, uint32_t mode
, uint32_t *dscr
)
1947 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1948 * New desired mode must be in mode. Current value of DSCR must be in
1949 * *dscr, which is updated with new value.
1951 * This function elides actually sending the mode-change over the debug
1952 * interface if the mode is already set as desired.
1954 uint32_t new_dscr
= (*dscr
& ~DSCR_EXT_DCC_MASK
) | mode
;
1955 if (new_dscr
!= *dscr
) {
1956 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1957 int retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
1958 armv7a
->debug_base
+ CPUDBG_DSCR
, new_dscr
);
1959 if (retval
== ERROR_OK
)
1967 static int cortex_a_wait_dscr_bits(struct target
*target
, uint32_t mask
,
1968 uint32_t value
, uint32_t *dscr
)
1970 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1971 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1972 int64_t then
= timeval_ms();
1975 while ((*dscr
& mask
) != value
) {
1976 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
1977 armv7a
->debug_base
+ CPUDBG_DSCR
, dscr
);
1978 if (retval
!= ERROR_OK
)
1980 if (timeval_ms() > then
+ 1000) {
1981 LOG_ERROR("timeout waiting for DSCR bit change");
1988 static int cortex_a_read_copro(struct target
*target
, uint32_t opcode
,
1989 uint32_t *data
, uint32_t *dscr
)
1992 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
1994 /* Move from coprocessor to R0. */
1995 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
1996 if (retval
!= ERROR_OK
)
1999 /* Move from R0 to DTRTX. */
2000 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr
);
2001 if (retval
!= ERROR_OK
)
2004 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2005 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2006 * must also check TXfull_l). Most of the time this will be free
2007 * because TXfull_l will be set immediately and cached in dscr. */
2008 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRTX_FULL_LATCHED
,
2009 DSCR_DTRTX_FULL_LATCHED
, dscr
);
2010 if (retval
!= ERROR_OK
)
2013 /* Read the value transferred to DTRTX. */
2014 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2015 armv7a
->debug_base
+ CPUDBG_DTRTX
, data
);
2016 if (retval
!= ERROR_OK
)
2022 static int cortex_a_read_dfar_dfsr(struct target
*target
, uint32_t *dfar
,
2023 uint32_t *dfsr
, uint32_t *dscr
)
2028 retval
= cortex_a_read_copro(target
, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar
, dscr
);
2029 if (retval
!= ERROR_OK
)
2034 retval
= cortex_a_read_copro(target
, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr
, dscr
);
2035 if (retval
!= ERROR_OK
)
2042 static int cortex_a_write_copro(struct target
*target
, uint32_t opcode
,
2043 uint32_t data
, uint32_t *dscr
)
2046 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2048 /* Write the value into DTRRX. */
2049 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2050 armv7a
->debug_base
+ CPUDBG_DTRRX
, data
);
2051 if (retval
!= ERROR_OK
)
2054 /* Move from DTRRX to R0. */
2055 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr
);
2056 if (retval
!= ERROR_OK
)
2059 /* Move from R0 to coprocessor. */
2060 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
2061 if (retval
!= ERROR_OK
)
2064 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2065 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2066 * check RXfull_l). Most of the time this will be free because RXfull_l
2067 * will be cleared immediately and cached in dscr. */
2068 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRRX_FULL_LATCHED
, 0, dscr
);
2069 if (retval
!= ERROR_OK
)
2075 static int cortex_a_write_dfar_dfsr(struct target
*target
, uint32_t dfar
,
2076 uint32_t dfsr
, uint32_t *dscr
)
2080 retval
= cortex_a_write_copro(target
, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar
, dscr
);
2081 if (retval
!= ERROR_OK
)
2084 retval
= cortex_a_write_copro(target
, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr
, dscr
);
2085 if (retval
!= ERROR_OK
)
2091 static int cortex_a_dfsr_to_error_code(uint32_t dfsr
)
2093 uint32_t status
, upper4
;
2095 if (dfsr
& (1 << 9)) {
2097 status
= dfsr
& 0x3f;
2098 upper4
= status
>> 2;
2099 if (upper4
== 1 || upper4
== 2 || upper4
== 3 || upper4
== 15)
2100 return ERROR_TARGET_TRANSLATION_FAULT
;
2101 else if (status
== 33)
2102 return ERROR_TARGET_UNALIGNED_ACCESS
;
2104 return ERROR_TARGET_DATA_ABORT
;
2106 /* Normal format. */
2107 status
= ((dfsr
>> 6) & 0x10) | (dfsr
& 0xf);
2109 return ERROR_TARGET_UNALIGNED_ACCESS
;
2110 else if (status
== 5 || status
== 7 || status
== 3 || status
== 6 ||
2111 status
== 9 || status
== 11 || status
== 13 || status
== 15)
2112 return ERROR_TARGET_TRANSLATION_FAULT
;
2114 return ERROR_TARGET_DATA_ABORT
;
2118 static int cortex_a_write_cpu_memory_slow(struct target
*target
,
2119 uint32_t size
, uint32_t count
, const uint8_t *buffer
, uint32_t *dscr
)
2121 /* Writes count objects of size size from *buffer. Old value of DSCR must
2122 * be in *dscr; updated to new value. This is slow because it works for
2123 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2124 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2127 * - Address is in R0.
2128 * - R0 is marked dirty.
2130 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2131 struct arm
*arm
= &armv7a
->arm
;
2134 /* Mark register R1 as dirty, to use for transferring data. */
2135 arm_reg_current(arm
, 1)->dirty
= true;
2137 /* Switch to non-blocking mode if not already in that mode. */
2138 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2139 if (retval
!= ERROR_OK
)
2142 /* Go through the objects. */
2144 /* Write the value to store into DTRRX. */
2145 uint32_t data
, opcode
;
2149 data
= target_buffer_get_u16(target
, buffer
);
2151 data
= target_buffer_get_u32(target
, buffer
);
2152 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2153 armv7a
->debug_base
+ CPUDBG_DTRRX
, data
);
2154 if (retval
!= ERROR_OK
)
2157 /* Transfer the value from DTRRX to R1. */
2158 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr
);
2159 if (retval
!= ERROR_OK
)
2162 /* Write the value transferred to R1 into memory. */
2164 opcode
= ARMV4_5_STRB_IP(1, 0);
2166 opcode
= ARMV4_5_STRH_IP(1, 0);
2168 opcode
= ARMV4_5_STRW_IP(1, 0);
2169 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
2170 if (retval
!= ERROR_OK
)
2173 /* Check for faults and return early. */
2174 if (*dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
))
2175 return ERROR_OK
; /* A data fault is not considered a system failure. */
2177 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2178 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2179 * must also check RXfull_l). Most of the time this will be free
2180 * because RXfull_l will be cleared immediately and cached in dscr. */
2181 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRRX_FULL_LATCHED
, 0, dscr
);
2182 if (retval
!= ERROR_OK
)
2193 static int cortex_a_write_cpu_memory_fast(struct target
*target
,
2194 uint32_t count
, const uint8_t *buffer
, uint32_t *dscr
)
2196 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2197 * in *dscr; updated to new value. This is fast but only works for
2198 * word-sized objects at aligned addresses.
2200 * - Address is in R0 and must be a multiple of 4.
2201 * - R0 is marked dirty.
2203 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2206 /* Switch to fast mode if not already in that mode. */
2207 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_FAST_MODE
, dscr
);
2208 if (retval
!= ERROR_OK
)
2211 /* Latch STC instruction. */
2212 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2213 armv7a
->debug_base
+ CPUDBG_ITR
, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2214 if (retval
!= ERROR_OK
)
2217 /* Transfer all the data and issue all the instructions. */
2218 return mem_ap_write_buf_noincr(armv7a
->debug_ap
, buffer
,
2219 4, count
, armv7a
->debug_base
+ CPUDBG_DTRRX
);
2222 static int cortex_a_write_cpu_memory(struct target
*target
,
2223 uint32_t address
, uint32_t size
,
2224 uint32_t count
, const uint8_t *buffer
)
2226 /* Write memory through the CPU. */
2227 int retval
, final_retval
;
2228 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2229 struct arm
*arm
= &armv7a
->arm
;
2230 uint32_t dscr
, orig_dfar
, orig_dfsr
, fault_dscr
, fault_dfar
, fault_dfsr
;
2232 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32
" size %" PRIu32
" count %" PRIu32
,
2233 address
, size
, count
);
2234 if (target
->state
!= TARGET_HALTED
) {
2235 LOG_WARNING("target not halted");
2236 return ERROR_TARGET_NOT_HALTED
;
2242 /* Clear any abort. */
2243 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2244 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2245 if (retval
!= ERROR_OK
)
2249 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2250 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2251 if (retval
!= ERROR_OK
)
2254 /* Switch to non-blocking mode if not already in that mode. */
2255 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2256 if (retval
!= ERROR_OK
)
2259 /* Mark R0 as dirty. */
2260 arm_reg_current(arm
, 0)->dirty
= true;
2262 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2263 retval
= cortex_a_read_dfar_dfsr(target
, &orig_dfar
, &orig_dfsr
, &dscr
);
2264 if (retval
!= ERROR_OK
)
2267 /* Get the memory address into R0. */
2268 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2269 armv7a
->debug_base
+ CPUDBG_DTRRX
, address
);
2270 if (retval
!= ERROR_OK
)
2272 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr
);
2273 if (retval
!= ERROR_OK
)
2276 if (size
== 4 && (address
% 4) == 0) {
2277 /* We are doing a word-aligned transfer, so use fast mode. */
2278 retval
= cortex_a_write_cpu_memory_fast(target
, count
, buffer
, &dscr
);
2280 /* Use slow path. */
2281 retval
= cortex_a_write_cpu_memory_slow(target
, size
, count
, buffer
, &dscr
);
2285 final_retval
= retval
;
2287 /* Switch to non-blocking mode if not already in that mode. */
2288 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2289 if (final_retval
== ERROR_OK
)
2290 final_retval
= retval
;
2292 /* Wait for last issued instruction to complete. */
2293 retval
= cortex_a_wait_instrcmpl(target
, &dscr
, true);
2294 if (final_retval
== ERROR_OK
)
2295 final_retval
= retval
;
2297 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2298 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2299 * check RXfull_l). Most of the time this will be free because RXfull_l
2300 * will be cleared immediately and cached in dscr. However, don't do this
2301 * if there is fault, because then the instruction might not have completed
2303 if (!(dscr
& DSCR_STICKY_ABORT_PRECISE
)) {
2304 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRRX_FULL_LATCHED
, 0, &dscr
);
2305 if (retval
!= ERROR_OK
)
2309 /* If there were any sticky abort flags, clear them. */
2310 if (dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
)) {
2312 mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2313 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2314 dscr
&= ~(DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
);
2319 /* Handle synchronous data faults. */
2320 if (fault_dscr
& DSCR_STICKY_ABORT_PRECISE
) {
2321 if (final_retval
== ERROR_OK
) {
2322 /* Final return value will reflect cause of fault. */
2323 retval
= cortex_a_read_dfar_dfsr(target
, &fault_dfar
, &fault_dfsr
, &dscr
);
2324 if (retval
== ERROR_OK
) {
2325 LOG_ERROR("data abort at 0x%08" PRIx32
", dfsr = 0x%08" PRIx32
, fault_dfar
, fault_dfsr
);
2326 final_retval
= cortex_a_dfsr_to_error_code(fault_dfsr
);
2328 final_retval
= retval
;
2330 /* Fault destroyed DFAR/DFSR; restore them. */
2331 retval
= cortex_a_write_dfar_dfsr(target
, orig_dfar
, orig_dfsr
, &dscr
);
2332 if (retval
!= ERROR_OK
)
2333 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32
, dscr
);
2336 /* Handle asynchronous data faults. */
2337 if (fault_dscr
& DSCR_STICKY_ABORT_IMPRECISE
) {
2338 if (final_retval
== ERROR_OK
)
2339 /* No other error has been recorded so far, so keep this one. */
2340 final_retval
= ERROR_TARGET_DATA_ABORT
;
2343 /* If the DCC is nonempty, clear it. */
2344 if (dscr
& DSCR_DTRTX_FULL_LATCHED
) {
2346 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2347 armv7a
->debug_base
+ CPUDBG_DTRTX
, &dummy
);
2348 if (final_retval
== ERROR_OK
)
2349 final_retval
= retval
;
2351 if (dscr
& DSCR_DTRRX_FULL_LATCHED
) {
2352 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr
);
2353 if (final_retval
== ERROR_OK
)
2354 final_retval
= retval
;
2358 return final_retval
;
2361 static int cortex_a_read_cpu_memory_slow(struct target
*target
,
2362 uint32_t size
, uint32_t count
, uint8_t *buffer
, uint32_t *dscr
)
2364 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2365 * in *dscr; updated to new value. This is slow because it works for
2366 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2367 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2370 * - Address is in R0.
2371 * - R0 is marked dirty.
2373 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2374 struct arm
*arm
= &armv7a
->arm
;
2377 /* Mark register R1 as dirty, to use for transferring data. */
2378 arm_reg_current(arm
, 1)->dirty
= true;
2380 /* Switch to non-blocking mode if not already in that mode. */
2381 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2382 if (retval
!= ERROR_OK
)
2385 /* Go through the objects. */
2387 /* Issue a load of the appropriate size to R1. */
2388 uint32_t opcode
, data
;
2390 opcode
= ARMV4_5_LDRB_IP(1, 0);
2392 opcode
= ARMV4_5_LDRH_IP(1, 0);
2394 opcode
= ARMV4_5_LDRW_IP(1, 0);
2395 retval
= cortex_a_exec_opcode(target
, opcode
, dscr
);
2396 if (retval
!= ERROR_OK
)
2399 /* Issue a write of R1 to DTRTX. */
2400 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr
);
2401 if (retval
!= ERROR_OK
)
2404 /* Check for faults and return early. */
2405 if (*dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
))
2406 return ERROR_OK
; /* A data fault is not considered a system failure. */
2408 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2409 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2410 * must also check TXfull_l). Most of the time this will be free
2411 * because TXfull_l will be set immediately and cached in dscr. */
2412 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRTX_FULL_LATCHED
,
2413 DSCR_DTRTX_FULL_LATCHED
, dscr
);
2414 if (retval
!= ERROR_OK
)
2417 /* Read the value transferred to DTRTX into the buffer. */
2418 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2419 armv7a
->debug_base
+ CPUDBG_DTRTX
, &data
);
2420 if (retval
!= ERROR_OK
)
2423 *buffer
= (uint8_t) data
;
2425 target_buffer_set_u16(target
, buffer
, (uint16_t) data
);
2427 target_buffer_set_u32(target
, buffer
, data
);
2437 static int cortex_a_read_cpu_memory_fast(struct target
*target
,
2438 uint32_t count
, uint8_t *buffer
, uint32_t *dscr
)
2440 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2441 * *dscr; updated to new value. This is fast but only works for word-sized
2442 * objects at aligned addresses.
2444 * - Address is in R0 and must be a multiple of 4.
2445 * - R0 is marked dirty.
2447 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2451 /* Switch to non-blocking mode if not already in that mode. */
2452 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2453 if (retval
!= ERROR_OK
)
2456 /* Issue the LDC instruction via a write to ITR. */
2457 retval
= cortex_a_exec_opcode(target
, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr
);
2458 if (retval
!= ERROR_OK
)
2464 /* Switch to fast mode if not already in that mode. */
2465 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_FAST_MODE
, dscr
);
2466 if (retval
!= ERROR_OK
)
2469 /* Latch LDC instruction. */
2470 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2471 armv7a
->debug_base
+ CPUDBG_ITR
, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2472 if (retval
!= ERROR_OK
)
2475 /* Read the value transferred to DTRTX into the buffer. Due to fast
2476 * mode rules, this blocks until the instruction finishes executing and
2477 * then reissues the read instruction to read the next word from
2478 * memory. The last read of DTRTX in this call reads the second-to-last
2479 * word from memory and issues the read instruction for the last word.
2481 retval
= mem_ap_read_buf_noincr(armv7a
->debug_ap
, buffer
,
2482 4, count
, armv7a
->debug_base
+ CPUDBG_DTRTX
);
2483 if (retval
!= ERROR_OK
)
2487 buffer
+= count
* 4;
2490 /* Wait for last issued instruction to complete. */
2491 retval
= cortex_a_wait_instrcmpl(target
, dscr
, false);
2492 if (retval
!= ERROR_OK
)
2495 /* Switch to non-blocking mode if not already in that mode. */
2496 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, dscr
);
2497 if (retval
!= ERROR_OK
)
2500 /* Check for faults and return early. */
2501 if (*dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
))
2502 return ERROR_OK
; /* A data fault is not considered a system failure. */
2504 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2505 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2506 * check TXfull_l). Most of the time this will be free because TXfull_l
2507 * will be set immediately and cached in dscr. */
2508 retval
= cortex_a_wait_dscr_bits(target
, DSCR_DTRTX_FULL_LATCHED
,
2509 DSCR_DTRTX_FULL_LATCHED
, dscr
);
2510 if (retval
!= ERROR_OK
)
2513 /* Read the value transferred to DTRTX into the buffer. This is the last
2515 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2516 armv7a
->debug_base
+ CPUDBG_DTRTX
, &u32
);
2517 if (retval
!= ERROR_OK
)
2519 target_buffer_set_u32(target
, buffer
, u32
);
2524 static int cortex_a_read_cpu_memory(struct target
*target
,
2525 uint32_t address
, uint32_t size
,
2526 uint32_t count
, uint8_t *buffer
)
2528 /* Read memory through the CPU. */
2529 int retval
, final_retval
;
2530 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2531 struct arm
*arm
= &armv7a
->arm
;
2532 uint32_t dscr
, orig_dfar
, orig_dfsr
, fault_dscr
, fault_dfar
, fault_dfsr
;
2534 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32
" size %" PRIu32
" count %" PRIu32
,
2535 address
, size
, count
);
2536 if (target
->state
!= TARGET_HALTED
) {
2537 LOG_WARNING("target not halted");
2538 return ERROR_TARGET_NOT_HALTED
;
2544 /* Clear any abort. */
2545 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2546 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2547 if (retval
!= ERROR_OK
)
2551 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2552 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2553 if (retval
!= ERROR_OK
)
2556 /* Switch to non-blocking mode if not already in that mode. */
2557 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2558 if (retval
!= ERROR_OK
)
2561 /* Mark R0 as dirty. */
2562 arm_reg_current(arm
, 0)->dirty
= true;
2564 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2565 retval
= cortex_a_read_dfar_dfsr(target
, &orig_dfar
, &orig_dfsr
, &dscr
);
2566 if (retval
!= ERROR_OK
)
2569 /* Get the memory address into R0. */
2570 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2571 armv7a
->debug_base
+ CPUDBG_DTRRX
, address
);
2572 if (retval
!= ERROR_OK
)
2574 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr
);
2575 if (retval
!= ERROR_OK
)
2578 if (size
== 4 && (address
% 4) == 0) {
2579 /* We are doing a word-aligned transfer, so use fast mode. */
2580 retval
= cortex_a_read_cpu_memory_fast(target
, count
, buffer
, &dscr
);
2582 /* Use slow path. */
2583 retval
= cortex_a_read_cpu_memory_slow(target
, size
, count
, buffer
, &dscr
);
2587 final_retval
= retval
;
2589 /* Switch to non-blocking mode if not already in that mode. */
2590 retval
= cortex_a_set_dcc_mode(target
, DSCR_EXT_DCC_NON_BLOCKING
, &dscr
);
2591 if (final_retval
== ERROR_OK
)
2592 final_retval
= retval
;
2594 /* Wait for last issued instruction to complete. */
2595 retval
= cortex_a_wait_instrcmpl(target
, &dscr
, true);
2596 if (final_retval
== ERROR_OK
)
2597 final_retval
= retval
;
2599 /* If there were any sticky abort flags, clear them. */
2600 if (dscr
& (DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
)) {
2602 mem_ap_write_atomic_u32(armv7a
->debug_ap
,
2603 armv7a
->debug_base
+ CPUDBG_DRCR
, DRCR_CLEAR_EXCEPTIONS
);
2604 dscr
&= ~(DSCR_STICKY_ABORT_PRECISE
| DSCR_STICKY_ABORT_IMPRECISE
);
2609 /* Handle synchronous data faults. */
2610 if (fault_dscr
& DSCR_STICKY_ABORT_PRECISE
) {
2611 if (final_retval
== ERROR_OK
) {
2612 /* Final return value will reflect cause of fault. */
2613 retval
= cortex_a_read_dfar_dfsr(target
, &fault_dfar
, &fault_dfsr
, &dscr
);
2614 if (retval
== ERROR_OK
) {
2615 LOG_ERROR("data abort at 0x%08" PRIx32
", dfsr = 0x%08" PRIx32
, fault_dfar
, fault_dfsr
);
2616 final_retval
= cortex_a_dfsr_to_error_code(fault_dfsr
);
2618 final_retval
= retval
;
2620 /* Fault destroyed DFAR/DFSR; restore them. */
2621 retval
= cortex_a_write_dfar_dfsr(target
, orig_dfar
, orig_dfsr
, &dscr
);
2622 if (retval
!= ERROR_OK
)
2623 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32
, dscr
);
2626 /* Handle asynchronous data faults. */
2627 if (fault_dscr
& DSCR_STICKY_ABORT_IMPRECISE
) {
2628 if (final_retval
== ERROR_OK
)
2629 /* No other error has been recorded so far, so keep this one. */
2630 final_retval
= ERROR_TARGET_DATA_ABORT
;
2633 /* If the DCC is nonempty, clear it. */
2634 if (dscr
& DSCR_DTRTX_FULL_LATCHED
) {
2636 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2637 armv7a
->debug_base
+ CPUDBG_DTRTX
, &dummy
);
2638 if (final_retval
== ERROR_OK
)
2639 final_retval
= retval
;
2641 if (dscr
& DSCR_DTRRX_FULL_LATCHED
) {
2642 retval
= cortex_a_exec_opcode(target
, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr
);
2643 if (final_retval
== ERROR_OK
)
2644 final_retval
= retval
;
2648 return final_retval
;
2653 * Cortex-A Memory access
2655 * This is same Cortex-M3 but we must also use the correct
2656 * ap number for every access.
2659 static int cortex_a_read_phys_memory(struct target
*target
,
2660 target_addr_t address
, uint32_t size
,
2661 uint32_t count
, uint8_t *buffer
)
2663 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2664 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2665 uint8_t apsel
= swjdp
->apsel
;
2668 if (!count
|| !buffer
)
2669 return ERROR_COMMAND_SYNTAX_ERROR
;
2671 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2672 address
, size
, count
);
2674 if (armv7a
->memory_ap_available
&& (apsel
== armv7a
->memory_ap
->ap_num
))
2675 return mem_ap_read_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2677 /* read memory through the CPU */
2678 cortex_a_prep_memaccess(target
, 1);
2679 retval
= cortex_a_read_cpu_memory(target
, address
, size
, count
, buffer
);
2680 cortex_a_post_memaccess(target
, 1);
2685 static int cortex_a_read_memory(struct target
*target
, target_addr_t address
,
2686 uint32_t size
, uint32_t count
, uint8_t *buffer
)
2690 /* cortex_a handles unaligned memory access */
2691 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2692 address
, size
, count
);
2694 cortex_a_prep_memaccess(target
, 0);
2695 retval
= cortex_a_read_cpu_memory(target
, address
, size
, count
, buffer
);
2696 cortex_a_post_memaccess(target
, 0);
2701 static int cortex_a_read_memory_ahb(struct target
*target
, target_addr_t address
,
2702 uint32_t size
, uint32_t count
, uint8_t *buffer
)
2704 int mmu_enabled
= 0;
2705 target_addr_t virt
, phys
;
2707 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2708 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2709 uint8_t apsel
= swjdp
->apsel
;
2711 if (!armv7a
->memory_ap_available
|| (apsel
!= armv7a
->memory_ap
->ap_num
))
2712 return target_read_memory(target
, address
, size
, count
, buffer
);
2714 /* cortex_a handles unaligned memory access */
2715 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2716 address
, size
, count
);
2718 /* determine if MMU was enabled on target stop */
2719 if (!armv7a
->is_armv7r
) {
2720 retval
= cortex_a_mmu(target
, &mmu_enabled
);
2721 if (retval
!= ERROR_OK
)
2727 retval
= cortex_a_virt2phys(target
, virt
, &phys
);
2728 if (retval
!= ERROR_OK
)
2731 LOG_DEBUG("Reading at virtual address. "
2732 "Translating v:" TARGET_ADDR_FMT
" to r:" TARGET_ADDR_FMT
,
2737 if (!count
|| !buffer
)
2738 return ERROR_COMMAND_SYNTAX_ERROR
;
2740 retval
= mem_ap_read_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2745 static int cortex_a_write_phys_memory(struct target
*target
,
2746 target_addr_t address
, uint32_t size
,
2747 uint32_t count
, const uint8_t *buffer
)
2749 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2750 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2751 uint8_t apsel
= swjdp
->apsel
;
2754 if (!count
|| !buffer
)
2755 return ERROR_COMMAND_SYNTAX_ERROR
;
2757 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2758 address
, size
, count
);
2760 if (armv7a
->memory_ap_available
&& (apsel
== armv7a
->memory_ap
->ap_num
))
2761 return mem_ap_write_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2763 /* write memory through the CPU */
2764 cortex_a_prep_memaccess(target
, 1);
2765 retval
= cortex_a_write_cpu_memory(target
, address
, size
, count
, buffer
);
2766 cortex_a_post_memaccess(target
, 1);
2771 static int cortex_a_write_memory(struct target
*target
, target_addr_t address
,
2772 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2776 /* cortex_a handles unaligned memory access */
2777 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2778 address
, size
, count
);
2780 /* memory writes bypass the caches, must flush before writing */
2781 armv7a_cache_auto_flush_on_write(target
, address
, size
* count
);
2783 cortex_a_prep_memaccess(target
, 0);
2784 retval
= cortex_a_write_cpu_memory(target
, address
, size
, count
, buffer
);
2785 cortex_a_post_memaccess(target
, 0);
2789 static int cortex_a_write_memory_ahb(struct target
*target
, target_addr_t address
,
2790 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
2792 int mmu_enabled
= 0;
2793 target_addr_t virt
, phys
;
2795 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2796 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2797 uint8_t apsel
= swjdp
->apsel
;
2799 if (!armv7a
->memory_ap_available
|| (apsel
!= armv7a
->memory_ap
->ap_num
))
2800 return target_write_memory(target
, address
, size
, count
, buffer
);
2802 /* cortex_a handles unaligned memory access */
2803 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT
"; size %" PRId32
"; count %" PRId32
,
2804 address
, size
, count
);
2806 /* determine if MMU was enabled on target stop */
2807 if (!armv7a
->is_armv7r
) {
2808 retval
= cortex_a_mmu(target
, &mmu_enabled
);
2809 if (retval
!= ERROR_OK
)
2815 retval
= cortex_a_virt2phys(target
, virt
, &phys
);
2816 if (retval
!= ERROR_OK
)
2819 LOG_DEBUG("Writing to virtual address. "
2820 "Translating v:" TARGET_ADDR_FMT
" to r:" TARGET_ADDR_FMT
,
2826 if (!count
|| !buffer
)
2827 return ERROR_COMMAND_SYNTAX_ERROR
;
2829 retval
= mem_ap_write_buf(armv7a
->memory_ap
, buffer
, size
, count
, address
);
2834 static int cortex_a_read_buffer(struct target
*target
, target_addr_t address
,
2835 uint32_t count
, uint8_t *buffer
)
2839 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2840 * will have something to do with the size we leave to it. */
2841 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2842 if (address
& size
) {
2843 int retval
= cortex_a_read_memory_ahb(target
, address
, size
, 1, buffer
);
2844 if (retval
!= ERROR_OK
)
2852 /* Read the data with as large access size as possible. */
2853 for (; size
> 0; size
/= 2) {
2854 uint32_t aligned
= count
- count
% size
;
2856 int retval
= cortex_a_read_memory_ahb(target
, address
, size
, aligned
/ size
, buffer
);
2857 if (retval
!= ERROR_OK
)
2868 static int cortex_a_write_buffer(struct target
*target
, target_addr_t address
,
2869 uint32_t count
, const uint8_t *buffer
)
2873 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2874 * will have something to do with the size we leave to it. */
2875 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2876 if (address
& size
) {
2877 int retval
= cortex_a_write_memory_ahb(target
, address
, size
, 1, buffer
);
2878 if (retval
!= ERROR_OK
)
2886 /* Write the data with as large access size as possible. */
2887 for (; size
> 0; size
/= 2) {
2888 uint32_t aligned
= count
- count
% size
;
2890 int retval
= cortex_a_write_memory_ahb(target
, address
, size
, aligned
/ size
, buffer
);
2891 if (retval
!= ERROR_OK
)
2902 static int cortex_a_handle_target_request(void *priv
)
2904 struct target
*target
= priv
;
2905 struct armv7a_common
*armv7a
= target_to_armv7a(target
);
2908 if (!target_was_examined(target
))
2910 if (!target
->dbg_msg_enabled
)
2913 if (target
->state
== TARGET_RUNNING
) {
2916 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2917 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2919 /* check if we have data */
2920 int64_t then
= timeval_ms();
2921 while ((dscr
& DSCR_DTR_TX_FULL
) && (retval
== ERROR_OK
)) {
2922 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2923 armv7a
->debug_base
+ CPUDBG_DTRTX
, &request
);
2924 if (retval
== ERROR_OK
) {
2925 target_request(target
, request
);
2926 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
2927 armv7a
->debug_base
+ CPUDBG_DSCR
, &dscr
);
2929 if (timeval_ms() > then
+ 1000) {
2930 LOG_ERROR("Timeout waiting for dtr tx full");
2940 * Cortex-A target information and configuration
2943 static int cortex_a_examine_first(struct target
*target
)
2945 struct cortex_a_common
*cortex_a
= target_to_cortex_a(target
);
2946 struct armv7a_common
*armv7a
= &cortex_a
->armv7a_common
;
2947 struct adiv5_dap
*swjdp
= armv7a
->arm
.dap
;
2950 int retval
= ERROR_OK
;
2951 uint32_t didr
, cpuid
, dbg_osreg
;
2953 /* Search for the APB-AP - it is needed for access to debug registers */
2954 retval
= dap_find_ap(swjdp
, AP_TYPE_APB_AP
, &armv7a
->debug_ap
);
2955 if (retval
!= ERROR_OK
) {
2956 LOG_ERROR("Could not find APB-AP for debug access");
2960 retval
= mem_ap_init(armv7a
->debug_ap
);
2961 if (retval
!= ERROR_OK
) {
2962 LOG_ERROR("Could not initialize the APB-AP");
2966 armv7a
->debug_ap
->memaccess_tck
= 80;
2968 /* Search for the AHB-AB.
2969 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2970 * can access system memory. */
2971 armv7a
->memory_ap_available
= false;
2972 retval
= dap_find_ap(swjdp
, AP_TYPE_AHB_AP
, &armv7a
->memory_ap
);
2973 if (retval
== ERROR_OK
) {
2974 retval
= mem_ap_init(armv7a
->memory_ap
);
2975 if (retval
== ERROR_OK
)
2976 armv7a
->memory_ap_available
= true;
2978 if (retval
!= ERROR_OK
) {
2979 /* AHB-AP not found or unavailable - use the CPU */
2980 LOG_DEBUG("No AHB-AP available for memory access");
2983 if (!target
->dbgbase_set
) {
2985 /* Get ROM Table base */
2987 int32_t coreidx
= target
->coreid
;
2988 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2990 retval
= dap_get_debugbase(armv7a
->debug_ap
, &dbgbase
, &apid
);
2991 if (retval
!= ERROR_OK
)
2993 /* Lookup 0x15 -- Processor DAP */
2994 retval
= dap_lookup_cs_component(armv7a
->debug_ap
, dbgbase
, 0x15,
2995 &armv7a
->debug_base
, &coreidx
);
2996 if (retval
!= ERROR_OK
) {
2997 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
3001 LOG_DEBUG("Detected core %" PRId32
" dbgbase: %08" PRIx32
,
3002 target
->coreid
, armv7a
->debug_base
);
3004 armv7a
->debug_base
= target
->dbgbase
;
3006 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3007 armv7a
->debug_base
+ CPUDBG_DIDR
, &didr
);
3008 if (retval
!= ERROR_OK
) {
3009 LOG_DEBUG("Examine %s failed", "DIDR");
3013 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3014 armv7a
->debug_base
+ CPUDBG_CPUID
, &cpuid
);
3015 if (retval
!= ERROR_OK
) {
3016 LOG_DEBUG("Examine %s failed", "CPUID");
3020 LOG_DEBUG("didr = 0x%08" PRIx32
, didr
);
3021 LOG_DEBUG("cpuid = 0x%08" PRIx32
, cpuid
);
3023 cortex_a
->didr
= didr
;
3024 cortex_a
->cpuid
= cpuid
;
3026 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3027 armv7a
->debug_base
+ CPUDBG_PRSR
, &dbg_osreg
);
3028 if (retval
!= ERROR_OK
)
3030 LOG_DEBUG("target->coreid %" PRId32
" DBGPRSR 0x%" PRIx32
, target
->coreid
, dbg_osreg
);
3032 if ((dbg_osreg
& PRSR_POWERUP_STATUS
) == 0) {
3033 LOG_ERROR("target->coreid %" PRId32
" powered down!", target
->coreid
);
3034 target
->state
= TARGET_UNKNOWN
; /* TARGET_NO_POWER? */
3035 return ERROR_TARGET_INIT_FAILED
;
3038 if (dbg_osreg
& PRSR_STICKY_RESET_STATUS
)
3039 LOG_DEBUG("target->coreid %" PRId32
" was reset!", target
->coreid
);
3041 /* Read DBGOSLSR and check if OSLK is implemented */
3042 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3043 armv7a
->debug_base
+ CPUDBG_OSLSR
, &dbg_osreg
);
3044 if (retval
!= ERROR_OK
)
3046 LOG_DEBUG("target->coreid %" PRId32
" DBGOSLSR 0x%" PRIx32
, target
->coreid
, dbg_osreg
);
3048 /* check if OS Lock is implemented */
3049 if ((dbg_osreg
& OSLSR_OSLM
) == OSLSR_OSLM0
|| (dbg_osreg
& OSLSR_OSLM
) == OSLSR_OSLM1
) {
3050 /* check if OS Lock is set */
3051 if (dbg_osreg
& OSLSR_OSLK
) {
3052 LOG_DEBUG("target->coreid %" PRId32
" OSLock set! Trying to unlock", target
->coreid
);
3054 retval
= mem_ap_write_atomic_u32(armv7a
->debug_ap
,
3055 armv7a
->debug_base
+ CPUDBG_OSLAR
,
3057 if (retval
== ERROR_OK
)
3058 retval
= mem_ap_read_atomic_u32(armv7a
->debug_ap
,
3059 armv7a
->debug_base
+ CPUDBG_OSLSR
, &dbg_osreg
);
3061 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3062 if (retval
!= ERROR_OK
|| (dbg_osreg
& OSLSR_OSLK
) != 0) {
3063 LOG_ERROR("target->coreid %" PRId32
" OSLock sticky, core not powered?",
3065 target
->state
= TARGET_UNKNOWN
; /* TARGET_NO_POWER? */
3066 return ERROR_TARGET_INIT_FAILED
;
3071 armv7a
->arm
.core_type
= ARM_MODE_MON
;
3073 /* Avoid recreating the registers cache */
3074 if (!target_was_examined(target
)) {
3075 retval
= cortex_a_dpm_setup(cortex_a
, didr
);
3076 if (retval
!= ERROR_OK
)
3080 /* Setup Breakpoint Register Pairs */
3081 cortex_a
->brp_num
= ((didr
>> 24) & 0x0F) +