target/arm_dpm: uniform names of exported functions
[openocd.git] / src / target / cortex_a.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 √ėyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 * *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
43 * *
44 ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "transport/transport.h"
58 #include <helper/time_support.h>
59
60 #define foreach_smp_target(pos, head) \
61 for (pos = head; (pos != NULL); pos = pos->next)
62
63 static int cortex_a_poll(struct target *target);
64 static int cortex_a_debug_entry(struct target *target);
65 static int cortex_a_restore_context(struct target *target, bool bpwp);
66 static int cortex_a_set_breakpoint(struct target *target,
67 struct breakpoint *breakpoint, uint8_t matchmode);
68 static int cortex_a_set_context_breakpoint(struct target *target,
69 struct breakpoint *breakpoint, uint8_t matchmode);
70 static int cortex_a_set_hybrid_breakpoint(struct target *target,
71 struct breakpoint *breakpoint);
72 static int cortex_a_unset_breakpoint(struct target *target,
73 struct breakpoint *breakpoint);
74 static int cortex_a_dap_read_coreregister_u32(struct target *target,
75 uint32_t *value, int regnum);
76 static int cortex_a_dap_write_coreregister_u32(struct target *target,
77 uint32_t value, int regnum);
78 static int cortex_a_mmu(struct target *target, int *enabled);
79 static int cortex_a_mmu_modify(struct target *target, int enable);
80 static int cortex_a_virt2phys(struct target *target,
81 target_addr_t virt, target_addr_t *phys);
82 static int cortex_a_read_cpu_memory(struct target *target,
83 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
84
85
86 /* restore cp15_control_reg at resume */
87 static int cortex_a_restore_cp15_control_reg(struct target *target)
88 {
89 int retval = ERROR_OK;
90 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
91 struct armv7a_common *armv7a = target_to_armv7a(target);
92
93 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
94 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
95 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
96 retval = armv7a->arm.mcr(target, 15,
97 0, 0, /* op1, op2 */
98 1, 0, /* CRn, CRm */
99 cortex_a->cp15_control_reg);
100 }
101 return retval;
102 }
103
104 /*
105 * Set up ARM core for memory access.
106 * If !phys_access, switch to SVC mode and make sure MMU is on
107 * If phys_access, switch off mmu
108 */
109 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
110 {
111 struct armv7a_common *armv7a = target_to_armv7a(target);
112 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
113 int mmu_enabled = 0;
114
115 if (phys_access == 0) {
116 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
117 cortex_a_mmu(target, &mmu_enabled);
118 if (mmu_enabled)
119 cortex_a_mmu_modify(target, 1);
120 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
121 /* overwrite DACR to all-manager */
122 armv7a->arm.mcr(target, 15,
123 0, 0, 3, 0,
124 0xFFFFFFFF);
125 }
126 } else {
127 cortex_a_mmu(target, &mmu_enabled);
128 if (mmu_enabled)
129 cortex_a_mmu_modify(target, 0);
130 }
131 return ERROR_OK;
132 }
133
134 /*
135 * Restore ARM core after memory access.
136 * If !phys_access, switch to previous mode
137 * If phys_access, restore MMU setting
138 */
139 static int cortex_a_post_memaccess(struct target *target, int phys_access)
140 {
141 struct armv7a_common *armv7a = target_to_armv7a(target);
142 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
143
144 if (phys_access == 0) {
145 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
146 /* restore */
147 armv7a->arm.mcr(target, 15,
148 0, 0, 3, 0,
149 cortex_a->cp15_dacr_reg);
150 }
151 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
152 } else {
153 int mmu_enabled = 0;
154 cortex_a_mmu(target, &mmu_enabled);
155 if (mmu_enabled)
156 cortex_a_mmu_modify(target, 1);
157 }
158 return ERROR_OK;
159 }
160
161
162 /* modify cp15_control_reg in order to enable or disable mmu for :
163 * - virt2phys address conversion
164 * - read or write memory in phys or virt address */
165 static int cortex_a_mmu_modify(struct target *target, int enable)
166 {
167 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
168 struct armv7a_common *armv7a = target_to_armv7a(target);
169 int retval = ERROR_OK;
170 int need_write = 0;
171
172 if (enable) {
173 /* if mmu enabled at target stop and mmu not enable */
174 if (!(cortex_a->cp15_control_reg & 0x1U)) {
175 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
176 return ERROR_FAIL;
177 }
178 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
179 cortex_a->cp15_control_reg_curr |= 0x1U;
180 need_write = 1;
181 }
182 } else {
183 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
184 cortex_a->cp15_control_reg_curr &= ~0x1U;
185 need_write = 1;
186 }
187 }
188
189 if (need_write) {
190 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
191 enable ? "enable mmu" : "disable mmu",
192 cortex_a->cp15_control_reg_curr);
193
194 retval = armv7a->arm.mcr(target, 15,
195 0, 0, /* op1, op2 */
196 1, 0, /* CRn, CRm */
197 cortex_a->cp15_control_reg_curr);
198 }
199 return retval;
200 }
201
202 /*
203 * Cortex-A Basic debug access, very low level assumes state is saved
204 */
205 static int cortex_a_init_debug_access(struct target *target)
206 {
207 struct armv7a_common *armv7a = target_to_armv7a(target);
208 int retval;
209
210 /* lock memory-mapped access to debug registers to prevent
211 * software interference */
212 retval = mem_ap_write_u32(armv7a->debug_ap,
213 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
214 if (retval != ERROR_OK)
215 return retval;
216
217 /* Disable cacheline fills and force cache write-through in debug state */
218 retval = mem_ap_write_u32(armv7a->debug_ap,
219 armv7a->debug_base + CPUDBG_DSCCR, 0);
220 if (retval != ERROR_OK)
221 return retval;
222
223 /* Disable TLB lookup and refill/eviction in debug state */
224 retval = mem_ap_write_u32(armv7a->debug_ap,
225 armv7a->debug_base + CPUDBG_DSMCR, 0);
226 if (retval != ERROR_OK)
227 return retval;
228
229 retval = dap_run(armv7a->debug_ap->dap);
230 if (retval != ERROR_OK)
231 return retval;
232
233 /* Enabling of instruction execution in debug mode is done in debug_entry code */
234
235 /* Resync breakpoint registers */
236
237 /* Since this is likely called from init or reset, update target state information*/
238 return cortex_a_poll(target);
239 }
240
241 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
242 {
243 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
244 * Writes final value of DSCR into *dscr. Pass force to force always
245 * reading DSCR at least once. */
246 struct armv7a_common *armv7a = target_to_armv7a(target);
247 int64_t then = timeval_ms();
248 while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
249 force = false;
250 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
251 armv7a->debug_base + CPUDBG_DSCR, dscr);
252 if (retval != ERROR_OK) {
253 LOG_ERROR("Could not read DSCR register");
254 return retval;
255 }
256 if (timeval_ms() > then + 1000) {
257 LOG_ERROR("Timeout waiting for InstrCompl=1");
258 return ERROR_FAIL;
259 }
260 }
261 return ERROR_OK;
262 }
263
264 /* To reduce needless round-trips, pass in a pointer to the current
265 * DSCR value. Initialize it to zero if you just need to know the
266 * value on return from this function; or DSCR_INSTR_COMP if you
267 * happen to know that no instruction is pending.
268 */
269 static int cortex_a_exec_opcode(struct target *target,
270 uint32_t opcode, uint32_t *dscr_p)
271 {
272 uint32_t dscr;
273 int retval;
274 struct armv7a_common *armv7a = target_to_armv7a(target);
275
276 dscr = dscr_p ? *dscr_p : 0;
277
278 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
279
280 /* Wait for InstrCompl bit to be set */
281 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
282 if (retval != ERROR_OK)
283 return retval;
284
285 retval = mem_ap_write_u32(armv7a->debug_ap,
286 armv7a->debug_base + CPUDBG_ITR, opcode);
287 if (retval != ERROR_OK)
288 return retval;
289
290 int64_t then = timeval_ms();
291 do {
292 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
293 armv7a->debug_base + CPUDBG_DSCR, &dscr);
294 if (retval != ERROR_OK) {
295 LOG_ERROR("Could not read DSCR register");
296 return retval;
297 }
298 if (timeval_ms() > then + 1000) {
299 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
300 return ERROR_FAIL;
301 }
302 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
303
304 if (dscr_p)
305 *dscr_p = dscr;
306
307 return retval;
308 }
309
310 static int cortex_a_dap_read_coreregister_u32(struct target *target,
311 uint32_t *value, int regnum)
312 {
313 int retval = ERROR_OK;
314 uint8_t reg = regnum&0xFF;
315 uint32_t dscr = 0;
316 struct armv7a_common *armv7a = target_to_armv7a(target);
317
318 if (reg > 17)
319 return retval;
320
321 if (reg < 15) {
322 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
323 retval = cortex_a_exec_opcode(target,
324 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
325 &dscr);
326 if (retval != ERROR_OK)
327 return retval;
328 } else if (reg == 15) {
329 /* "MOV r0, r15"; then move r0 to DCCTX */
330 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
331 if (retval != ERROR_OK)
332 return retval;
333 retval = cortex_a_exec_opcode(target,
334 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
335 &dscr);
336 if (retval != ERROR_OK)
337 return retval;
338 } else {
339 /* "MRS r0, CPSR" or "MRS r0, SPSR"
340 * then move r0 to DCCTX
341 */
342 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
343 if (retval != ERROR_OK)
344 return retval;
345 retval = cortex_a_exec_opcode(target,
346 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
347 &dscr);
348 if (retval != ERROR_OK)
349 return retval;
350 }
351
352 /* Wait for DTRRXfull then read DTRRTX */
353 int64_t then = timeval_ms();
354 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
355 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
356 armv7a->debug_base + CPUDBG_DSCR, &dscr);
357 if (retval != ERROR_OK)
358 return retval;
359 if (timeval_ms() > then + 1000) {
360 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
361 return ERROR_FAIL;
362 }
363 }
364
365 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
366 armv7a->debug_base + CPUDBG_DTRTX, value);
367 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
368
369 return retval;
370 }
371
372 __attribute__((unused))
373 static int cortex_a_dap_write_coreregister_u32(struct target *target,
374 uint32_t value, int regnum)
375 {
376 int retval = ERROR_OK;
377 uint8_t Rd = regnum&0xFF;
378 uint32_t dscr;
379 struct armv7a_common *armv7a = target_to_armv7a(target);
380
381 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
382
383 /* Check that DCCRX is not full */
384 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
385 armv7a->debug_base + CPUDBG_DSCR, &dscr);
386 if (retval != ERROR_OK)
387 return retval;
388 if (dscr & DSCR_DTR_RX_FULL) {
389 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
390 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
391 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
392 &dscr);
393 if (retval != ERROR_OK)
394 return retval;
395 }
396
397 if (Rd > 17)
398 return retval;
399
400 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
401 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
402 retval = mem_ap_write_u32(armv7a->debug_ap,
403 armv7a->debug_base + CPUDBG_DTRRX, value);
404 if (retval != ERROR_OK)
405 return retval;
406
407 if (Rd < 15) {
408 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
409 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
410 &dscr);
411
412 if (retval != ERROR_OK)
413 return retval;
414 } else if (Rd == 15) {
415 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
416 * then "mov r15, r0"
417 */
418 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
419 &dscr);
420 if (retval != ERROR_OK)
421 return retval;
422 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
423 if (retval != ERROR_OK)
424 return retval;
425 } else {
426 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
427 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
428 */
429 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
430 &dscr);
431 if (retval != ERROR_OK)
432 return retval;
433 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
434 &dscr);
435 if (retval != ERROR_OK)
436 return retval;
437
438 /* "Prefetch flush" after modifying execution status in CPSR */
439 if (Rd == 16) {
440 retval = cortex_a_exec_opcode(target,
441 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
442 &dscr);
443 if (retval != ERROR_OK)
444 return retval;
445 }
446 }
447
448 return retval;
449 }
450
451 /* Write to memory mapped registers directly with no cache or mmu handling */
452 static int cortex_a_dap_write_memap_register_u32(struct target *target,
453 uint32_t address,
454 uint32_t value)
455 {
456 int retval;
457 struct armv7a_common *armv7a = target_to_armv7a(target);
458
459 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
460
461 return retval;
462 }
463
464 /*
465 * Cortex-A implementation of Debug Programmer's Model
466 *
467 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
468 * so there's no need to poll for it before executing an instruction.
469 *
470 * NOTE that in several of these cases the "stall" mode might be useful.
471 * It'd let us queue a few operations together... prepare/finish might
472 * be the places to enable/disable that mode.
473 */
474
475 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
476 {
477 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
478 }
479
480 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
481 {
482 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
483 return mem_ap_write_u32(a->armv7a_common.debug_ap,
484 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
485 }
486
487 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
488 uint32_t *dscr_p)
489 {
490 uint32_t dscr = DSCR_INSTR_COMP;
491 int retval;
492
493 if (dscr_p)
494 dscr = *dscr_p;
495
496 /* Wait for DTRRXfull */
497 int64_t then = timeval_ms();
498 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
499 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
500 a->armv7a_common.debug_base + CPUDBG_DSCR,
501 &dscr);
502 if (retval != ERROR_OK)
503 return retval;
504 if (timeval_ms() > then + 1000) {
505 LOG_ERROR("Timeout waiting for read dcc");
506 return ERROR_FAIL;
507 }
508 }
509
510 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
511 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
512 if (retval != ERROR_OK)
513 return retval;
514 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
515
516 if (dscr_p)
517 *dscr_p = dscr;
518
519 return retval;
520 }
521
522 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
523 {
524 struct cortex_a_common *a = dpm_to_a(dpm);
525 uint32_t dscr;
526 int retval;
527
528 /* set up invariant: INSTR_COMP is set after ever DPM operation */
529 int64_t then = timeval_ms();
530 for (;; ) {
531 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
532 a->armv7a_common.debug_base + CPUDBG_DSCR,
533 &dscr);
534 if (retval != ERROR_OK)
535 return retval;
536 if ((dscr & DSCR_INSTR_COMP) != 0)
537 break;
538 if (timeval_ms() > then + 1000) {
539 LOG_ERROR("Timeout waiting for dpm prepare");
540 return ERROR_FAIL;
541 }
542 }
543
544 /* this "should never happen" ... */
545 if (dscr & DSCR_DTR_RX_FULL) {
546 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
547 /* Clear DCCRX */
548 retval = cortex_a_exec_opcode(
549 a->armv7a_common.arm.target,
550 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
551 &dscr);
552 if (retval != ERROR_OK)
553 return retval;
554 }
555
556 return retval;
557 }
558
559 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
560 {
561 /* REVISIT what could be done here? */
562 return ERROR_OK;
563 }
564
565 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
566 uint32_t opcode, uint32_t data)
567 {
568 struct cortex_a_common *a = dpm_to_a(dpm);
569 int retval;
570 uint32_t dscr = DSCR_INSTR_COMP;
571
572 retval = cortex_a_write_dcc(a, data);
573 if (retval != ERROR_OK)
574 return retval;
575
576 return cortex_a_exec_opcode(
577 a->armv7a_common.arm.target,
578 opcode,
579 &dscr);
580 }
581
582 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
583 uint32_t opcode, uint32_t data)
584 {
585 struct cortex_a_common *a = dpm_to_a(dpm);
586 uint32_t dscr = DSCR_INSTR_COMP;
587 int retval;
588
589 retval = cortex_a_write_dcc(a, data);
590 if (retval != ERROR_OK)
591 return retval;
592
593 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
594 retval = cortex_a_exec_opcode(
595 a->armv7a_common.arm.target,
596 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
597 &dscr);
598 if (retval != ERROR_OK)
599 return retval;
600
601 /* then the opcode, taking data from R0 */
602 retval = cortex_a_exec_opcode(
603 a->armv7a_common.arm.target,
604 opcode,
605 &dscr);
606
607 return retval;
608 }
609
610 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
611 {
612 struct target *target = dpm->arm->target;
613 uint32_t dscr = DSCR_INSTR_COMP;
614
615 /* "Prefetch flush" after modifying execution status in CPSR */
616 return cortex_a_exec_opcode(target,
617 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
618 &dscr);
619 }
620
621 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
622 uint32_t opcode, uint32_t *data)
623 {
624 struct cortex_a_common *a = dpm_to_a(dpm);
625 int retval;
626 uint32_t dscr = DSCR_INSTR_COMP;
627
628 /* the opcode, writing data to DCC */
629 retval = cortex_a_exec_opcode(
630 a->armv7a_common.arm.target,
631 opcode,
632 &dscr);
633 if (retval != ERROR_OK)
634 return retval;
635
636 return cortex_a_read_dcc(a, data, &dscr);
637 }
638
639
640 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
641 uint32_t opcode, uint32_t *data)
642 {
643 struct cortex_a_common *a = dpm_to_a(dpm);
644 uint32_t dscr = DSCR_INSTR_COMP;
645 int retval;
646
647 /* the opcode, writing data to R0 */
648 retval = cortex_a_exec_opcode(
649 a->armv7a_common.arm.target,
650 opcode,
651 &dscr);
652 if (retval != ERROR_OK)
653 return retval;
654
655 /* write R0 to DCC */
656 retval = cortex_a_exec_opcode(
657 a->armv7a_common.arm.target,
658 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
659 &dscr);
660 if (retval != ERROR_OK)
661 return retval;
662
663 return cortex_a_read_dcc(a, data, &dscr);
664 }
665
666 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
667 uint32_t addr, uint32_t control)
668 {
669 struct cortex_a_common *a = dpm_to_a(dpm);
670 uint32_t vr = a->armv7a_common.debug_base;
671 uint32_t cr = a->armv7a_common.debug_base;
672 int retval;
673
674 switch (index_t) {
675 case 0 ... 15: /* breakpoints */
676 vr += CPUDBG_BVR_BASE;
677 cr += CPUDBG_BCR_BASE;
678 break;
679 case 16 ... 31: /* watchpoints */
680 vr += CPUDBG_WVR_BASE;
681 cr += CPUDBG_WCR_BASE;
682 index_t -= 16;
683 break;
684 default:
685 return ERROR_FAIL;
686 }
687 vr += 4 * index_t;
688 cr += 4 * index_t;
689
690 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
691 (unsigned) vr, (unsigned) cr);
692
693 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
694 vr, addr);
695 if (retval != ERROR_OK)
696 return retval;
697 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
698 cr, control);
699 return retval;
700 }
701
702 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
703 {
704 struct cortex_a_common *a = dpm_to_a(dpm);
705 uint32_t cr;
706
707 switch (index_t) {
708 case 0 ... 15:
709 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
710 break;
711 case 16 ... 31:
712 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
713 index_t -= 16;
714 break;
715 default:
716 return ERROR_FAIL;
717 }
718 cr += 4 * index_t;
719
720 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
721
722 /* clear control register */
723 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
724 }
725
726 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
727 {
728 struct arm_dpm *dpm = &a->armv7a_common.dpm;
729 int retval;
730
731 dpm->arm = &a->armv7a_common.arm;
732 dpm->didr = didr;
733
734 dpm->prepare = cortex_a_dpm_prepare;
735 dpm->finish = cortex_a_dpm_finish;
736
737 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
738 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
739 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
740
741 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
742 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
743
744 dpm->bpwp_enable = cortex_a_bpwp_enable;
745 dpm->bpwp_disable = cortex_a_bpwp_disable;
746
747 retval = arm_dpm_setup(dpm);
748 if (retval == ERROR_OK)
749 retval = arm_dpm_initialize(dpm);
750
751 return retval;
752 }
753 static struct target *get_cortex_a(struct target *target, int32_t coreid)
754 {
755 struct target_list *head;
756 struct target *curr;
757
758 head = target->head;
759 while (head != (struct target_list *)NULL) {
760 curr = head->target;
761 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
762 return curr;
763 head = head->next;
764 }
765 return target;
766 }
767 static int cortex_a_halt(struct target *target);
768
769 static int cortex_a_halt_smp(struct target *target)
770 {
771 int retval = 0;
772 struct target_list *head;
773 struct target *curr;
774 head = target->head;
775 while (head != (struct target_list *)NULL) {
776 curr = head->target;
777 if ((curr != target) && (curr->state != TARGET_HALTED)
778 && target_was_examined(curr))
779 retval += cortex_a_halt(curr);
780 head = head->next;
781 }
782 return retval;
783 }
784
785 static int update_halt_gdb(struct target *target)
786 {
787 struct target *gdb_target = NULL;
788 struct target_list *head;
789 struct target *curr;
790 int retval = 0;
791
792 if (target->gdb_service && target->gdb_service->core[0] == -1) {
793 target->gdb_service->target = target;
794 target->gdb_service->core[0] = target->coreid;
795 retval += cortex_a_halt_smp(target);
796 }
797
798 if (target->gdb_service)
799 gdb_target = target->gdb_service->target;
800
801 foreach_smp_target(head, target->head) {
802 curr = head->target;
803 /* skip calling context */
804 if (curr == target)
805 continue;
806 if (!target_was_examined(curr))
807 continue;
808 /* skip targets that were already halted */
809 if (curr->state == TARGET_HALTED)
810 continue;
811 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
812 if (curr == gdb_target)
813 continue;
814
815 /* avoid recursion in cortex_a_poll() */
816 curr->smp = 0;
817 cortex_a_poll(curr);
818 curr->smp = 1;
819 }
820
821 /* after all targets were updated, poll the gdb serving target */
822 if (gdb_target != NULL && gdb_target != target)
823 cortex_a_poll(gdb_target);
824 return retval;
825 }
826
827 /*
828 * Cortex-A Run control
829 */
830
831 static int cortex_a_poll(struct target *target)
832 {
833 int retval = ERROR_OK;
834 uint32_t dscr;
835 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
836 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
837 enum target_state prev_target_state = target->state;
838 /* toggle to another core is done by gdb as follow */
839 /* maint packet J core_id */
840 /* continue */
841 /* the next polling trigger an halt event sent to gdb */
842 if ((target->state == TARGET_HALTED) && (target->smp) &&
843 (target->gdb_service) &&
844 (target->gdb_service->target == NULL)) {
845 target->gdb_service->target =
846 get_cortex_a(target, target->gdb_service->core[1]);
847 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
848 return retval;
849 }
850 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
851 armv7a->debug_base + CPUDBG_DSCR, &dscr);
852 if (retval != ERROR_OK)
853 return retval;
854 cortex_a->cpudbg_dscr = dscr;
855
856 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
857 if (prev_target_state != TARGET_HALTED) {
858 /* We have a halting debug event */
859 LOG_DEBUG("Target halted");
860 target->state = TARGET_HALTED;
861 if ((prev_target_state == TARGET_RUNNING)
862 || (prev_target_state == TARGET_UNKNOWN)
863 || (prev_target_state == TARGET_RESET)) {
864 retval = cortex_a_debug_entry(target);
865 if (retval != ERROR_OK)
866 return retval;
867 if (target->smp) {
868 retval = update_halt_gdb(target);
869 if (retval != ERROR_OK)
870 return retval;
871 }
872
873 if (arm_semihosting(target, &retval) != 0)
874 return retval;
875
876 target_call_event_callbacks(target,
877 TARGET_EVENT_HALTED);
878 }
879 if (prev_target_state == TARGET_DEBUG_RUNNING) {
880 LOG_DEBUG(" ");
881
882 retval = cortex_a_debug_entry(target);
883 if (retval != ERROR_OK)
884 return retval;
885 if (target->smp) {
886 retval = update_halt_gdb(target);
887 if (retval != ERROR_OK)
888 return retval;
889 }
890
891 target_call_event_callbacks(target,
892 TARGET_EVENT_DEBUG_HALTED);
893 }
894 }
895 } else
896 target->state = TARGET_RUNNING;
897
898 return retval;
899 }
900
901 static int cortex_a_halt(struct target *target)
902 {
903 int retval = ERROR_OK;
904 uint32_t dscr;
905 struct armv7a_common *armv7a = target_to_armv7a(target);
906
907 /*
908 * Tell the core to be halted by writing DRCR with 0x1
909 * and then wait for the core to be halted.
910 */
911 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
912 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
913 if (retval != ERROR_OK)
914 return retval;
915
916 /*
917 * enter halting debug mode
918 */
919 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
920 armv7a->debug_base + CPUDBG_DSCR, &dscr);
921 if (retval != ERROR_OK)
922 return retval;
923
924 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
925 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
926 if (retval != ERROR_OK)
927 return retval;
928
929 int64_t then = timeval_ms();
930 for (;; ) {
931 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
932 armv7a->debug_base + CPUDBG_DSCR, &dscr);
933 if (retval != ERROR_OK)
934 return retval;
935 if ((dscr & DSCR_CORE_HALTED) != 0)
936 break;
937 if (timeval_ms() > then + 1000) {
938 LOG_ERROR("Timeout waiting for halt");
939 return ERROR_FAIL;
940 }
941 }
942
943 target->debug_reason = DBG_REASON_DBGRQ;
944
945 return ERROR_OK;
946 }
947
948 static int cortex_a_internal_restore(struct target *target, int current,
949 target_addr_t *address, int handle_breakpoints, int debug_execution)
950 {
951 struct armv7a_common *armv7a = target_to_armv7a(target);
952 struct arm *arm = &armv7a->arm;
953 int retval;
954 uint32_t resume_pc;
955
956 if (!debug_execution)
957 target_free_all_working_areas(target);
958
959 #if 0
960 if (debug_execution) {
961 /* Disable interrupts */
962 /* We disable interrupts in the PRIMASK register instead of
963 * masking with C_MASKINTS,
964 * This is probably the same issue as Cortex-M3 Errata 377493:
965 * C_MASKINTS in parallel with disabled interrupts can cause
966 * local faults to not be taken. */
967 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
968 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
969 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
970
971 /* Make sure we are in Thumb mode */
972 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
973 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
974 32) | (1 << 24));
975 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
976 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
977 }
978 #endif
979
980 /* current = 1: continue on current pc, otherwise continue at <address> */
981 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
982 if (!current)
983 resume_pc = *address;
984 else
985 *address = resume_pc;
986
987 /* Make sure that the Armv7 gdb thumb fixups does not
988 * kill the return address
989 */
990 switch (arm->core_state) {
991 case ARM_STATE_ARM:
992 resume_pc &= 0xFFFFFFFC;
993 break;
994 case ARM_STATE_THUMB:
995 case ARM_STATE_THUMB_EE:
996 /* When the return address is loaded into PC
997 * bit 0 must be 1 to stay in Thumb state
998 */
999 resume_pc |= 0x1;
1000 break;
1001 case ARM_STATE_JAZELLE:
1002 LOG_ERROR("How do I resume into Jazelle state??");
1003 return ERROR_FAIL;
1004 case ARM_STATE_AARCH64:
1005 LOG_ERROR("Shoudn't be in AARCH64 state");
1006 return ERROR_FAIL;
1007 }
1008 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1009 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1010 arm->pc->dirty = 1;
1011 arm->pc->valid = 1;
1012
1013 /* restore dpm_mode at system halt */
1014 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1015 /* called it now before restoring context because it uses cpu
1016 * register r0 for restoring cp15 control register */
1017 retval = cortex_a_restore_cp15_control_reg(target);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = cortex_a_restore_context(target, handle_breakpoints);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 target->debug_reason = DBG_REASON_NOTHALTED;
1024 target->state = TARGET_RUNNING;
1025
1026 /* registers are now invalid */
1027 register_cache_invalidate(arm->core_cache);
1028
1029 #if 0
1030 /* the front-end may request us not to handle breakpoints */
1031 if (handle_breakpoints) {
1032 /* Single step past breakpoint at current address */
1033 breakpoint = breakpoint_find(target, resume_pc);
1034 if (breakpoint) {
1035 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1036 cortex_m3_unset_breakpoint(target, breakpoint);
1037 cortex_m3_single_step_core(target);
1038 cortex_m3_set_breakpoint(target, breakpoint);
1039 }
1040 }
1041
1042 #endif
1043 return retval;
1044 }
1045
1046 static int cortex_a_internal_restart(struct target *target)
1047 {
1048 struct armv7a_common *armv7a = target_to_armv7a(target);
1049 struct arm *arm = &armv7a->arm;
1050 int retval;
1051 uint32_t dscr;
1052 /*
1053 * * Restart core and wait for it to be started. Clear ITRen and sticky
1054 * * exception flags: see ARMv7 ARM, C5.9.
1055 *
1056 * REVISIT: for single stepping, we probably want to
1057 * disable IRQs by default, with optional override...
1058 */
1059
1060 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1061 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 if ((dscr & DSCR_INSTR_COMP) == 0)
1066 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1067
1068 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1069 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1070 if (retval != ERROR_OK)
1071 return retval;
1072
1073 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1074 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1075 DRCR_CLEAR_EXCEPTIONS);
1076 if (retval != ERROR_OK)
1077 return retval;
1078
1079 int64_t then = timeval_ms();
1080 for (;; ) {
1081 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1082 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1083 if (retval != ERROR_OK)
1084 return retval;
1085 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1086 break;
1087 if (timeval_ms() > then + 1000) {
1088 LOG_ERROR("Timeout waiting for resume");
1089 return ERROR_FAIL;
1090 }
1091 }
1092
1093 target->debug_reason = DBG_REASON_NOTHALTED;
1094 target->state = TARGET_RUNNING;
1095
1096 /* registers are now invalid */
1097 register_cache_invalidate(arm->core_cache);
1098
1099 return ERROR_OK;
1100 }
1101
1102 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1103 {
1104 int retval = 0;
1105 struct target_list *head;
1106 struct target *curr;
1107 target_addr_t address;
1108 head = target->head;
1109 while (head != (struct target_list *)NULL) {
1110 curr = head->target;
1111 if ((curr != target) && (curr->state != TARGET_RUNNING)
1112 && target_was_examined(curr)) {
1113 /* resume current address , not in step mode */
1114 retval += cortex_a_internal_restore(curr, 1, &address,
1115 handle_breakpoints, 0);
1116 retval += cortex_a_internal_restart(curr);
1117 }
1118 head = head->next;
1119
1120 }
1121 return retval;
1122 }
1123
1124 static int cortex_a_resume(struct target *target, int current,
1125 target_addr_t address, int handle_breakpoints, int debug_execution)
1126 {
1127 int retval = 0;
1128 /* dummy resume for smp toggle in order to reduce gdb impact */
1129 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1130 /* simulate a start and halt of target */
1131 target->gdb_service->target = NULL;
1132 target->gdb_service->core[0] = target->gdb_service->core[1];
1133 /* fake resume at next poll we play the target core[1], see poll*/
1134 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1135 return 0;
1136 }
1137 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1138 if (target->smp) {
1139 target->gdb_service->core[0] = -1;
1140 retval = cortex_a_restore_smp(target, handle_breakpoints);
1141 if (retval != ERROR_OK)
1142 return retval;
1143 }
1144 cortex_a_internal_restart(target);
1145
1146 if (!debug_execution) {
1147 target->state = TARGET_RUNNING;
1148 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1149 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1150 } else {
1151 target->state = TARGET_DEBUG_RUNNING;
1152 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1153 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1154 }
1155
1156 return ERROR_OK;
1157 }
1158
1159 static int cortex_a_debug_entry(struct target *target)
1160 {
1161 uint32_t spsr, dscr;
1162 int retval = ERROR_OK;
1163 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1164 struct armv7a_common *armv7a = target_to_armv7a(target);
1165 struct arm *arm = &armv7a->arm;
1166 struct reg *reg;
1167
1168 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1169
1170 /* REVISIT surely we should not re-read DSCR !! */
1171 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1172 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1173 if (retval != ERROR_OK)
1174 return retval;
1175
1176 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1177 * imprecise data aborts get discarded by issuing a Data
1178 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1179 */
1180
1181 /* Enable the ITR execution once we are in debug mode */
1182 dscr |= DSCR_ITR_EN;
1183 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1184 armv7a->debug_base + CPUDBG_DSCR, dscr);
1185 if (retval != ERROR_OK)
1186 return retval;
1187
1188 /* Examine debug reason */
1189 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1190
1191 /* save address of instruction that triggered the watchpoint? */
1192 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1193 uint32_t wfar;
1194
1195 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1196 armv7a->debug_base + CPUDBG_WFAR,
1197 &wfar);
1198 if (retval != ERROR_OK)
1199 return retval;
1200 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1201 }
1202
1203 /* First load register accessible through core debug port */
1204 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1205 if (retval != ERROR_OK)
1206 return retval;
1207
1208 if (arm->spsr) {
1209 /* read Saved PSR */
1210 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1211 /* store current spsr */
1212 if (retval != ERROR_OK)
1213 return retval;
1214
1215 reg = arm->spsr;
1216 buf_set_u32(reg->value, 0, 32, spsr);
1217 reg->valid = 1;
1218 reg->dirty = 0;
1219 }
1220
1221 #if 0
1222 /* TODO, Move this */
1223 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1224 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1225 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1226
1227 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1228 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1229
1230 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1231 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1232 #endif
1233
1234 /* Are we in an exception handler */
1235 /* armv4_5->exception_number = 0; */
1236 if (armv7a->post_debug_entry) {
1237 retval = armv7a->post_debug_entry(target);
1238 if (retval != ERROR_OK)
1239 return retval;
1240 }
1241
1242 return retval;
1243 }
1244
1245 static int cortex_a_post_debug_entry(struct target *target)
1246 {
1247 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1248 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1249 int retval;
1250
1251 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1252 retval = armv7a->arm.mrc(target, 15,
1253 0, 0, /* op1, op2 */
1254 1, 0, /* CRn, CRm */
1255 &cortex_a->cp15_control_reg);
1256 if (retval != ERROR_OK)
1257 return retval;
1258 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1259 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1260
1261 if (!armv7a->is_armv7r)
1262 armv7a_read_ttbcr(target);
1263
1264 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1265 armv7a_identify_cache(target);
1266
1267 if (armv7a->is_armv7r) {
1268 armv7a->armv7a_mmu.mmu_enabled = 0;
1269 } else {
1270 armv7a->armv7a_mmu.mmu_enabled =
1271 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1272 }
1273 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1274 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1275 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1276 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1277 cortex_a->curr_mode = armv7a->arm.core_mode;
1278
1279 /* switch to SVC mode to read DACR */
1280 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1281 armv7a->arm.mrc(target, 15,
1282 0, 0, 3, 0,
1283 &cortex_a->cp15_dacr_reg);
1284
1285 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1286 cortex_a->cp15_dacr_reg);
1287
1288 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1289 return ERROR_OK;
1290 }
1291
1292 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1293 {
1294 struct armv7a_common *armv7a = target_to_armv7a(target);
1295 uint32_t dscr;
1296
1297 /* Read DSCR */
1298 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1299 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1300 if (ERROR_OK != retval)
1301 return retval;
1302
1303 /* clear bitfield */
1304 dscr &= ~bit_mask;
1305 /* put new value */
1306 dscr |= value & bit_mask;
1307
1308 /* write new DSCR */
1309 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1310 armv7a->debug_base + CPUDBG_DSCR, dscr);
1311 return retval;
1312 }
1313
1314 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1315 int handle_breakpoints)
1316 {
1317 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1318 struct armv7a_common *armv7a = target_to_armv7a(target);
1319 struct arm *arm = &armv7a->arm;
1320 struct breakpoint *breakpoint = NULL;
1321 struct breakpoint stepbreakpoint;
1322 struct reg *r;
1323 int retval;
1324
1325 if (target->state != TARGET_HALTED) {
1326 LOG_WARNING("target not halted");
1327 return ERROR_TARGET_NOT_HALTED;
1328 }
1329
1330 /* current = 1: continue on current pc, otherwise continue at <address> */
1331 r = arm->pc;
1332 if (!current)
1333 buf_set_u32(r->value, 0, 32, address);
1334 else
1335 address = buf_get_u32(r->value, 0, 32);
1336
1337 /* The front-end may request us not to handle breakpoints.
1338 * But since Cortex-A uses breakpoint for single step,
1339 * we MUST handle breakpoints.
1340 */
1341 handle_breakpoints = 1;
1342 if (handle_breakpoints) {
1343 breakpoint = breakpoint_find(target, address);
1344 if (breakpoint)
1345 cortex_a_unset_breakpoint(target, breakpoint);
1346 }
1347
1348 /* Setup single step breakpoint */
1349 stepbreakpoint.address = address;
1350 stepbreakpoint.asid = 0;
1351 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1352 ? 2 : 4;
1353 stepbreakpoint.type = BKPT_HARD;
1354 stepbreakpoint.set = 0;
1355
1356 /* Disable interrupts during single step if requested */
1357 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1358 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1359 if (ERROR_OK != retval)
1360 return retval;
1361 }
1362
1363 /* Break on IVA mismatch */
1364 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1365
1366 target->debug_reason = DBG_REASON_SINGLESTEP;
1367
1368 retval = cortex_a_resume(target, 1, address, 0, 0);
1369 if (retval != ERROR_OK)
1370 return retval;
1371
1372 int64_t then = timeval_ms();
1373 while (target->state != TARGET_HALTED) {
1374 retval = cortex_a_poll(target);
1375 if (retval != ERROR_OK)
1376 return retval;
1377 if (timeval_ms() > then + 1000) {
1378 LOG_ERROR("timeout waiting for target halt");
1379 return ERROR_FAIL;
1380 }
1381 }
1382
1383 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1384
1385 /* Re-enable interrupts if they were disabled */
1386 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1387 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1388 if (ERROR_OK != retval)
1389 return retval;
1390 }
1391
1392
1393 target->debug_reason = DBG_REASON_BREAKPOINT;
1394
1395 if (breakpoint)
1396 cortex_a_set_breakpoint(target, breakpoint, 0);
1397
1398 if (target->state != TARGET_HALTED)
1399 LOG_DEBUG("target stepped");
1400
1401 return ERROR_OK;
1402 }
1403
1404 static int cortex_a_restore_context(struct target *target, bool bpwp)
1405 {
1406 struct armv7a_common *armv7a = target_to_armv7a(target);
1407
1408 LOG_DEBUG(" ");
1409
1410 if (armv7a->pre_restore_context)
1411 armv7a->pre_restore_context(target);
1412
1413 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1414 }
1415
1416 /*
1417 * Cortex-A Breakpoint and watchpoint functions
1418 */
1419
1420 /* Setup hardware Breakpoint Register Pair */
1421 static int cortex_a_set_breakpoint(struct target *target,
1422 struct breakpoint *breakpoint, uint8_t matchmode)
1423 {
1424 int retval;
1425 int brp_i = 0;
1426 uint32_t control;
1427 uint8_t byte_addr_select = 0x0F;
1428 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1429 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1430 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1431
1432 if (breakpoint->set) {
1433 LOG_WARNING("breakpoint already set");
1434 return ERROR_OK;
1435 }
1436
1437 if (breakpoint->type == BKPT_HARD) {
1438 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1439 brp_i++;
1440 if (brp_i >= cortex_a->brp_num) {
1441 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1442 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1443 }
1444 breakpoint->set = brp_i + 1;
1445 if (breakpoint->length == 2)
1446 byte_addr_select = (3 << (breakpoint->address & 0x02));
1447 control = ((matchmode & 0x7) << 20)
1448 | (byte_addr_select << 5)
1449 | (3 << 1) | 1;
1450 brp_list[brp_i].used = 1;
1451 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1452 brp_list[brp_i].control = control;
1453 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1454 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1455 brp_list[brp_i].value);
1456 if (retval != ERROR_OK)
1457 return retval;
1458 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1459 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1460 brp_list[brp_i].control);
1461 if (retval != ERROR_OK)
1462 return retval;
1463 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1464 brp_list[brp_i].control,
1465 brp_list[brp_i].value);
1466 } else if (breakpoint->type == BKPT_SOFT) {
1467 uint8_t code[4];
1468 /* length == 2: Thumb breakpoint */
1469 if (breakpoint->length == 2)
1470 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1471 else
1472 /* length == 3: Thumb-2 breakpoint, actual encoding is
1473 * a regular Thumb BKPT instruction but we replace a
1474 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1475 * length
1476 */
1477 if (breakpoint->length == 3) {
1478 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1479 breakpoint->length = 4;
1480 } else
1481 /* length == 4, normal ARM breakpoint */
1482 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1483
1484 retval = target_read_memory(target,
1485 breakpoint->address & 0xFFFFFFFE,
1486 breakpoint->length, 1,
1487 breakpoint->orig_instr);
1488 if (retval != ERROR_OK)
1489 return retval;
1490
1491 /* make sure data cache is cleaned & invalidated down to PoC */
1492 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1493 armv7a_cache_flush_virt(target, breakpoint->address,
1494 breakpoint->length);
1495 }
1496
1497 retval = target_write_memory(target,
1498 breakpoint->address & 0xFFFFFFFE,
1499 breakpoint->length, 1, code);
1500 if (retval != ERROR_OK)
1501 return retval;
1502
1503 /* update i-cache at breakpoint location */
1504 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1505 breakpoint->length);
1506 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1507 breakpoint->length);
1508
1509 breakpoint->set = 0x11; /* Any nice value but 0 */
1510 }
1511
1512 return ERROR_OK;
1513 }
1514
1515 static int cortex_a_set_context_breakpoint(struct target *target,
1516 struct breakpoint *breakpoint, uint8_t matchmode)
1517 {
1518 int retval = ERROR_FAIL;
1519 int brp_i = 0;
1520 uint32_t control;
1521 uint8_t byte_addr_select = 0x0F;
1522 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1523 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1524 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1525
1526 if (breakpoint->set) {
1527 LOG_WARNING("breakpoint already set");
1528 return retval;
1529 }
1530 /*check available context BRPs*/
1531 while ((brp_list[brp_i].used ||
1532 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1533 brp_i++;
1534
1535 if (brp_i >= cortex_a->brp_num) {
1536 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1537 return ERROR_FAIL;
1538 }
1539
1540 breakpoint->set = brp_i + 1;
1541 control = ((matchmode & 0x7) << 20)
1542 | (byte_addr_select << 5)
1543 | (3 << 1) | 1;
1544 brp_list[brp_i].used = 1;
1545 brp_list[brp_i].value = (breakpoint->asid);
1546 brp_list[brp_i].control = control;
1547 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1548 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1549 brp_list[brp_i].value);
1550 if (retval != ERROR_OK)
1551 return retval;
1552 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1553 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1554 brp_list[brp_i].control);
1555 if (retval != ERROR_OK)
1556 return retval;
1557 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1558 brp_list[brp_i].control,
1559 brp_list[brp_i].value);
1560 return ERROR_OK;
1561
1562 }
1563
1564 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1565 {
1566 int retval = ERROR_FAIL;
1567 int brp_1 = 0; /* holds the contextID pair */
1568 int brp_2 = 0; /* holds the IVA pair */
1569 uint32_t control_CTX, control_IVA;
1570 uint8_t CTX_byte_addr_select = 0x0F;
1571 uint8_t IVA_byte_addr_select = 0x0F;
1572 uint8_t CTX_machmode = 0x03;
1573 uint8_t IVA_machmode = 0x01;
1574 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1575 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1576 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1577
1578 if (breakpoint->set) {
1579 LOG_WARNING("breakpoint already set");
1580 return retval;
1581 }
1582 /*check available context BRPs*/
1583 while ((brp_list[brp_1].used ||
1584 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1585 brp_1++;
1586
1587 printf("brp(CTX) found num: %d\n", brp_1);
1588 if (brp_1 >= cortex_a->brp_num) {
1589 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1590 return ERROR_FAIL;
1591 }
1592
1593 while ((brp_list[brp_2].used ||
1594 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1595 brp_2++;
1596
1597 printf("brp(IVA) found num: %d\n", brp_2);
1598 if (brp_2 >= cortex_a->brp_num) {
1599 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1600 return ERROR_FAIL;
1601 }
1602
1603 breakpoint->set = brp_1 + 1;
1604 breakpoint->linked_BRP = brp_2;
1605 control_CTX = ((CTX_machmode & 0x7) << 20)
1606 | (brp_2 << 16)
1607 | (0 << 14)
1608 | (CTX_byte_addr_select << 5)
1609 | (3 << 1) | 1;
1610 brp_list[brp_1].used = 1;
1611 brp_list[brp_1].value = (breakpoint->asid);
1612 brp_list[brp_1].control = control_CTX;
1613 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1614 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1615 brp_list[brp_1].value);
1616 if (retval != ERROR_OK)
1617 return retval;
1618 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1619 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1620 brp_list[brp_1].control);
1621 if (retval != ERROR_OK)
1622 return retval;
1623
1624 control_IVA = ((IVA_machmode & 0x7) << 20)
1625 | (brp_1 << 16)
1626 | (IVA_byte_addr_select << 5)
1627 | (3 << 1) | 1;
1628 brp_list[brp_2].used = 1;
1629 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1630 brp_list[brp_2].control = control_IVA;
1631 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1632 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1633 brp_list[brp_2].value);
1634 if (retval != ERROR_OK)
1635 return retval;
1636 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1637 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1638 brp_list[brp_2].control);
1639 if (retval != ERROR_OK)
1640 return retval;
1641
1642 return ERROR_OK;
1643 }
1644
1645 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1646 {
1647 int retval;
1648 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1649 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1650 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1651
1652 if (!breakpoint->set) {
1653 LOG_WARNING("breakpoint not set");
1654 return ERROR_OK;
1655 }
1656
1657 if (breakpoint->type == BKPT_HARD) {
1658 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1659 int brp_i = breakpoint->set - 1;
1660 int brp_j = breakpoint->linked_BRP;
1661 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1662 LOG_DEBUG("Invalid BRP number in breakpoint");
1663 return ERROR_OK;
1664 }
1665 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1666 brp_list[brp_i].control, brp_list[brp_i].value);
1667 brp_list[brp_i].used = 0;
1668 brp_list[brp_i].value = 0;
1669 brp_list[brp_i].control = 0;
1670 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1671 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1672 brp_list[brp_i].control);
1673 if (retval != ERROR_OK)
1674 return retval;
1675 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1676 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1677 brp_list[brp_i].value);
1678 if (retval != ERROR_OK)
1679 return retval;
1680 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1681 LOG_DEBUG("Invalid BRP number in breakpoint");
1682 return ERROR_OK;
1683 }
1684 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1685 brp_list[brp_j].control, brp_list[brp_j].value);
1686 brp_list[brp_j].used = 0;
1687 brp_list[brp_j].value = 0;
1688 brp_list[brp_j].control = 0;
1689 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1690 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1691 brp_list[brp_j].control);
1692 if (retval != ERROR_OK)
1693 return retval;
1694 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1695 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1696 brp_list[brp_j].value);
1697 if (retval != ERROR_OK)
1698 return retval;
1699 breakpoint->linked_BRP = 0;
1700 breakpoint->set = 0;
1701 return ERROR_OK;
1702
1703 } else {
1704 int brp_i = breakpoint->set - 1;
1705 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1706 LOG_DEBUG("Invalid BRP number in breakpoint");
1707 return ERROR_OK;
1708 }
1709 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1710 brp_list[brp_i].control, brp_list[brp_i].value);
1711 brp_list[brp_i].used = 0;
1712 brp_list[brp_i].value = 0;
1713 brp_list[brp_i].control = 0;
1714 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1715 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1716 brp_list[brp_i].control);
1717 if (retval != ERROR_OK)
1718 return retval;
1719 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1720 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1721 brp_list[brp_i].value);
1722 if (retval != ERROR_OK)
1723 return retval;
1724 breakpoint->set = 0;
1725 return ERROR_OK;
1726 }
1727 } else {
1728
1729 /* make sure data cache is cleaned & invalidated down to PoC */
1730 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1731 armv7a_cache_flush_virt(target, breakpoint->address,
1732 breakpoint->length);
1733 }
1734
1735 /* restore original instruction (kept in target endianness) */
1736 if (breakpoint->length == 4) {
1737 retval = target_write_memory(target,
1738 breakpoint->address & 0xFFFFFFFE,
1739 4, 1, breakpoint->orig_instr);
1740 if (retval != ERROR_OK)
1741 return retval;
1742 } else {
1743 retval = target_write_memory(target,
1744 breakpoint->address & 0xFFFFFFFE,
1745 2, 1, breakpoint->orig_instr);
1746 if (retval != ERROR_OK)
1747 return retval;
1748 }
1749
1750 /* update i-cache at breakpoint location */
1751 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1752 breakpoint->length);
1753 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1754 breakpoint->length);
1755 }
1756 breakpoint->set = 0;
1757
1758 return ERROR_OK;
1759 }
1760
1761 static int cortex_a_add_breakpoint(struct target *target,
1762 struct breakpoint *breakpoint)
1763 {
1764 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1765
1766 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1767 LOG_INFO("no hardware breakpoint available");
1768 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1769 }
1770
1771 if (breakpoint->type == BKPT_HARD)
1772 cortex_a->brp_num_available--;
1773
1774 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1775 }
1776
1777 static int cortex_a_add_context_breakpoint(struct target *target,
1778 struct breakpoint *breakpoint)
1779 {
1780 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1781
1782 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1783 LOG_INFO("no hardware breakpoint available");
1784 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1785 }
1786
1787 if (breakpoint->type == BKPT_HARD)
1788 cortex_a->brp_num_available--;
1789
1790 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1791 }
1792
1793 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1794 struct breakpoint *breakpoint)
1795 {
1796 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1797
1798 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1799 LOG_INFO("no hardware breakpoint available");
1800 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1801 }
1802
1803 if (breakpoint->type == BKPT_HARD)
1804 cortex_a->brp_num_available--;
1805
1806 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1807 }
1808
1809
1810 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1811 {
1812 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1813
1814 #if 0
1815 /* It is perfectly possible to remove breakpoints while the target is running */
1816 if (target->state != TARGET_HALTED) {
1817 LOG_WARNING("target not halted");
1818 return ERROR_TARGET_NOT_HALTED;
1819 }
1820 #endif
1821
1822 if (breakpoint->set) {
1823 cortex_a_unset_breakpoint(target, breakpoint);
1824 if (breakpoint->type == BKPT_HARD)
1825 cortex_a->brp_num_available++;
1826 }
1827
1828
1829 return ERROR_OK;
1830 }
1831
1832 /*
1833 * Cortex-A Reset functions
1834 */
1835
1836 static int cortex_a_assert_reset(struct target *target)
1837 {
1838 struct armv7a_common *armv7a = target_to_armv7a(target);
1839
1840 LOG_DEBUG(" ");
1841
1842 /* FIXME when halt is requested, make it work somehow... */
1843
1844 /* This function can be called in "target not examined" state */
1845
1846 /* Issue some kind of warm reset. */
1847 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1848 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1849 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1850 /* REVISIT handle "pulls" cases, if there's
1851 * hardware that needs them to work.
1852 */
1853
1854 /*
1855 * FIXME: fix reset when transport is SWD. This is a temporary
1856 * work-around for release v0.10 that is not intended to stay!
1857 */
1858 if (transport_is_swd() ||
1859 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1860 jtag_add_reset(0, 1);
1861
1862 } else {
1863 LOG_ERROR("%s: how to reset?", target_name(target));
1864 return ERROR_FAIL;
1865 }
1866
1867 /* registers are now invalid */
1868 if (target_was_examined(target))
1869 register_cache_invalidate(armv7a->arm.core_cache);
1870
1871 target->state = TARGET_RESET;
1872
1873 return ERROR_OK;
1874 }
1875
1876 static int cortex_a_deassert_reset(struct target *target)
1877 {
1878 int retval;
1879
1880 LOG_DEBUG(" ");
1881
1882 /* be certain SRST is off */
1883 jtag_add_reset(0, 0);
1884
1885 if (target_was_examined(target)) {
1886 retval = cortex_a_poll(target);
1887 if (retval != ERROR_OK)
1888 return retval;
1889 }
1890
1891 if (target->reset_halt) {
1892 if (target->state != TARGET_HALTED) {
1893 LOG_WARNING("%s: ran after reset and before halt ...",
1894 target_name(target));
1895 if (target_was_examined(target)) {
1896 retval = target_halt(target);
1897 if (retval != ERROR_OK)
1898 return retval;
1899 } else
1900 target->state = TARGET_UNKNOWN;
1901 }
1902 }
1903
1904 return ERROR_OK;
1905 }
1906
1907 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1908 {
1909 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1910 * New desired mode must be in mode. Current value of DSCR must be in
1911 * *dscr, which is updated with new value.
1912 *
1913 * This function elides actually sending the mode-change over the debug
1914 * interface if the mode is already set as desired.
1915 */
1916 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1917 if (new_dscr != *dscr) {
1918 struct armv7a_common *armv7a = target_to_armv7a(target);
1919 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1920 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1921 if (retval == ERROR_OK)
1922 *dscr = new_dscr;
1923 return retval;
1924 } else {
1925 return ERROR_OK;
1926 }
1927 }
1928
1929 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1930 uint32_t value, uint32_t *dscr)
1931 {
1932 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1933 struct armv7a_common *armv7a = target_to_armv7a(target);
1934 int64_t then = timeval_ms();
1935 int retval;
1936
1937 while ((*dscr & mask) != value) {
1938 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1939 armv7a->debug_base + CPUDBG_DSCR, dscr);
1940 if (retval != ERROR_OK)
1941 return retval;
1942 if (timeval_ms() > then + 1000) {
1943 LOG_ERROR("timeout waiting for DSCR bit change");
1944 return ERROR_FAIL;
1945 }
1946 }
1947 return ERROR_OK;
1948 }
1949
1950 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1951 uint32_t *data, uint32_t *dscr)
1952 {
1953 int retval;
1954 struct armv7a_common *armv7a = target_to_armv7a(target);
1955
1956 /* Move from coprocessor to R0. */
1957 retval = cortex_a_exec_opcode(target, opcode, dscr);
1958 if (retval != ERROR_OK)
1959 return retval;
1960
1961 /* Move from R0 to DTRTX. */
1962 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1963 if (retval != ERROR_OK)
1964 return retval;
1965
1966 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1967 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1968 * must also check TXfull_l). Most of the time this will be free
1969 * because TXfull_l will be set immediately and cached in dscr. */
1970 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
1971 DSCR_DTRTX_FULL_LATCHED, dscr);
1972 if (retval != ERROR_OK)
1973 return retval;
1974
1975 /* Read the value transferred to DTRTX. */
1976 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1977 armv7a->debug_base + CPUDBG_DTRTX, data);
1978 if (retval != ERROR_OK)
1979 return retval;
1980
1981 return ERROR_OK;
1982 }
1983
1984 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
1985 uint32_t *dfsr, uint32_t *dscr)
1986 {
1987 int retval;
1988
1989 if (dfar) {
1990 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
1991 if (retval != ERROR_OK)
1992 return retval;
1993 }
1994
1995 if (dfsr) {
1996 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
1997 if (retval != ERROR_OK)
1998 return retval;
1999 }
2000
2001 return ERROR_OK;
2002 }
2003
2004 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2005 uint32_t data, uint32_t *dscr)
2006 {
2007 int retval;
2008 struct armv7a_common *armv7a = target_to_armv7a(target);
2009
2010 /* Write the value into DTRRX. */
2011 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2012 armv7a->debug_base + CPUDBG_DTRRX, data);
2013 if (retval != ERROR_OK)
2014 return retval;
2015
2016 /* Move from DTRRX to R0. */
2017 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2018 if (retval != ERROR_OK)
2019 return retval;
2020
2021 /* Move from R0 to coprocessor. */
2022 retval = cortex_a_exec_opcode(target, opcode, dscr);
2023 if (retval != ERROR_OK)
2024 return retval;
2025
2026 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2027 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2028 * check RXfull_l). Most of the time this will be free because RXfull_l
2029 * will be cleared immediately and cached in dscr. */
2030 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2031 if (retval != ERROR_OK)
2032 return retval;
2033
2034 return ERROR_OK;
2035 }
2036
2037 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2038 uint32_t dfsr, uint32_t *dscr)
2039 {
2040 int retval;
2041
2042 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2043 if (retval != ERROR_OK)
2044 return retval;
2045
2046 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2047 if (retval != ERROR_OK)
2048 return retval;
2049
2050 return ERROR_OK;
2051 }
2052
2053 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2054 {
2055 uint32_t status, upper4;
2056
2057 if (dfsr & (1 << 9)) {
2058 /* LPAE format. */
2059 status = dfsr & 0x3f;
2060 upper4 = status >> 2;
2061 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2062 return ERROR_TARGET_TRANSLATION_FAULT;
2063 else if (status == 33)
2064 return ERROR_TARGET_UNALIGNED_ACCESS;
2065 else
2066 return ERROR_TARGET_DATA_ABORT;
2067 } else {
2068 /* Normal format. */
2069 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2070 if (status == 1)
2071 return ERROR_TARGET_UNALIGNED_ACCESS;
2072 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2073 status == 9 || status == 11 || status == 13 || status == 15)
2074 return ERROR_TARGET_TRANSLATION_FAULT;
2075 else
2076 return ERROR_TARGET_DATA_ABORT;
2077 }
2078 }
2079
2080 static int cortex_a_write_cpu_memory_slow(struct target *target,
2081 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2082 {
2083 /* Writes count objects of size size from *buffer. Old value of DSCR must
2084 * be in *dscr; updated to new value. This is slow because it works for
2085 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2086 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2087 * preferred.
2088 * Preconditions:
2089 * - Address is in R0.
2090 * - R0 is marked dirty.
2091 */
2092 struct armv7a_common *armv7a = target_to_armv7a(target);
2093 struct arm *arm = &armv7a->arm;
2094 int retval;
2095
2096 /* Mark register R1 as dirty, to use for transferring data. */
2097 arm_reg_current(arm, 1)->dirty = true;
2098
2099 /* Switch to non-blocking mode if not already in that mode. */
2100 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2101 if (retval != ERROR_OK)
2102 return retval;
2103
2104 /* Go through the objects. */
2105 while (count) {
2106 /* Write the value to store into DTRRX. */
2107 uint32_t data, opcode;
2108 if (size == 1)
2109 data = *buffer;
2110 else if (size == 2)
2111 data = target_buffer_get_u16(target, buffer);
2112 else
2113 data = target_buffer_get_u32(target, buffer);
2114 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2115 armv7a->debug_base + CPUDBG_DTRRX, data);
2116 if (retval != ERROR_OK)
2117 return retval;
2118
2119 /* Transfer the value from DTRRX to R1. */
2120 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2121 if (retval != ERROR_OK)
2122 return retval;
2123
2124 /* Write the value transferred to R1 into memory. */
2125 if (size == 1)
2126 opcode = ARMV4_5_STRB_IP(1, 0);
2127 else if (size == 2)
2128 opcode = ARMV4_5_STRH_IP(1, 0);
2129 else
2130 opcode = ARMV4_5_STRW_IP(1, 0);
2131 retval = cortex_a_exec_opcode(target, opcode, dscr);
2132 if (retval != ERROR_OK)
2133 return retval;
2134
2135 /* Check for faults and return early. */
2136 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2137 return ERROR_OK; /* A data fault is not considered a system failure. */
2138
2139 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2140 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2141 * must also check RXfull_l). Most of the time this will be free
2142 * because RXfull_l will be cleared immediately and cached in dscr. */
2143 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2144 if (retval != ERROR_OK)
2145 return retval;
2146
2147 /* Advance. */
2148 buffer += size;
2149 --count;
2150 }
2151
2152 return ERROR_OK;
2153 }
2154
2155 static int cortex_a_write_cpu_memory_fast(struct target *target,
2156 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2157 {
2158 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2159 * in *dscr; updated to new value. This is fast but only works for
2160 * word-sized objects at aligned addresses.
2161 * Preconditions:
2162 * - Address is in R0 and must be a multiple of 4.
2163 * - R0 is marked dirty.
2164 */
2165 struct armv7a_common *armv7a = target_to_armv7a(target);
2166 int retval;
2167
2168 /* Switch to fast mode if not already in that mode. */
2169 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2170 if (retval != ERROR_OK)
2171 return retval;
2172
2173 /* Latch STC instruction. */
2174 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2175 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2176 if (retval != ERROR_OK)
2177 return retval;
2178
2179 /* Transfer all the data and issue all the instructions. */
2180 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2181 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2182 }
2183
2184 static int cortex_a_write_cpu_memory(struct target *target,
2185 uint32_t address, uint32_t size,
2186 uint32_t count, const uint8_t *buffer)
2187 {
2188 /* Write memory through the CPU. */
2189 int retval, final_retval;
2190 struct armv7a_common *armv7a = target_to_armv7a(target);
2191 struct arm *arm = &armv7a->arm;
2192 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2193
2194 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2195 address, size, count);
2196 if (target->state != TARGET_HALTED) {
2197 LOG_WARNING("target not halted");
2198 return ERROR_TARGET_NOT_HALTED;
2199 }
2200
2201 if (!count)
2202 return ERROR_OK;
2203
2204 /* Clear any abort. */
2205 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2206 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2207 if (retval != ERROR_OK)
2208 return retval;
2209
2210 /* Read DSCR. */
2211 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2212 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2213 if (retval != ERROR_OK)
2214 return retval;
2215
2216 /* Switch to non-blocking mode if not already in that mode. */
2217 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2218 if (retval != ERROR_OK)
2219 goto out;
2220
2221 /* Mark R0 as dirty. */
2222 arm_reg_current(arm, 0)->dirty = true;
2223
2224 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2225 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2226 if (retval != ERROR_OK)
2227 goto out;
2228
2229 /* Get the memory address into R0. */
2230 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2231 armv7a->debug_base + CPUDBG_DTRRX, address);
2232 if (retval != ERROR_OK)
2233 goto out;
2234 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2235 if (retval != ERROR_OK)
2236 goto out;
2237
2238 if (size == 4 && (address % 4) == 0) {
2239 /* We are doing a word-aligned transfer, so use fast mode. */
2240 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2241 } else {
2242 /* Use slow path. */
2243 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2244 }
2245
2246 out:
2247 final_retval = retval;
2248
2249 /* Switch to non-blocking mode if not already in that mode. */
2250 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2251 if (final_retval == ERROR_OK)
2252 final_retval = retval;
2253
2254 /* Wait for last issued instruction to complete. */
2255 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2256 if (final_retval == ERROR_OK)
2257 final_retval = retval;
2258
2259 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2260 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2261 * check RXfull_l). Most of the time this will be free because RXfull_l
2262 * will be cleared immediately and cached in dscr. However, don't do this
2263 * if there is fault, because then the instruction might not have completed
2264 * successfully. */
2265 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2266 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2267 if (retval != ERROR_OK)
2268 return retval;
2269 }
2270
2271 /* If there were any sticky abort flags, clear them. */
2272 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2273 fault_dscr = dscr;
2274 mem_ap_write_atomic_u32(armv7a->debug_ap,
2275 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2276 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2277 } else {
2278 fault_dscr = 0;
2279 }
2280
2281 /* Handle synchronous data faults. */
2282 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2283 if (final_retval == ERROR_OK) {
2284 /* Final return value will reflect cause of fault. */
2285 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2286 if (retval == ERROR_OK) {
2287 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2288 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2289 } else
2290 final_retval = retval;
2291 }
2292 /* Fault destroyed DFAR/DFSR; restore them. */
2293 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2294 if (retval != ERROR_OK)
2295 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2296 }
2297
2298 /* Handle asynchronous data faults. */
2299 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2300 if (final_retval == ERROR_OK)
2301 /* No other error has been recorded so far, so keep this one. */
2302 final_retval = ERROR_TARGET_DATA_ABORT;
2303 }
2304
2305 /* If the DCC is nonempty, clear it. */
2306 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2307 uint32_t dummy;
2308 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2309 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2310 if (final_retval == ERROR_OK)
2311 final_retval = retval;
2312 }
2313 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2314 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2315 if (final_retval == ERROR_OK)
2316 final_retval = retval;
2317 }
2318
2319 /* Done. */
2320 return final_retval;
2321 }
2322
2323 static int cortex_a_read_cpu_memory_slow(struct target *target,
2324 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2325 {
2326 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2327 * in *dscr; updated to new value. This is slow because it works for
2328 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2329 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2330 * preferred.
2331 * Preconditions:
2332 * - Address is in R0.
2333 * - R0 is marked dirty.
2334 */
2335 struct armv7a_common *armv7a = target_to_armv7a(target);
2336 struct arm *arm = &armv7a->arm;
2337 int retval;
2338
2339 /* Mark register R1 as dirty, to use for transferring data. */
2340 arm_reg_current(arm, 1)->dirty = true;
2341
2342 /* Switch to non-blocking mode if not already in that mode. */
2343 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2344 if (retval != ERROR_OK)
2345 return retval;
2346
2347 /* Go through the objects. */
2348 while (count) {
2349 /* Issue a load of the appropriate size to R1. */
2350 uint32_t opcode, data;
2351 if (size == 1)
2352 opcode = ARMV4_5_LDRB_IP(1, 0);
2353 else if (size == 2)
2354 opcode = ARMV4_5_LDRH_IP(1, 0);
2355 else
2356 opcode = ARMV4_5_LDRW_IP(1, 0);
2357 retval = cortex_a_exec_opcode(target, opcode, dscr);
2358 if (retval != ERROR_OK)
2359 return retval;
2360
2361 /* Issue a write of R1 to DTRTX. */
2362 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2363 if (retval != ERROR_OK)
2364 return retval;
2365
2366 /* Check for faults and return early. */
2367 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2368 return ERROR_OK; /* A data fault is not considered a system failure. */
2369
2370 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2371 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2372 * must also check TXfull_l). Most of the time this will be free
2373 * because TXfull_l will be set immediately and cached in dscr. */
2374 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2375 DSCR_DTRTX_FULL_LATCHED, dscr);
2376 if (retval != ERROR_OK)
2377 return retval;
2378
2379 /* Read the value transferred to DTRTX into the buffer. */
2380 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2381 armv7a->debug_base + CPUDBG_DTRTX, &data);
2382 if (retval != ERROR_OK)
2383 return retval;
2384 if (size == 1)
2385 *buffer = (uint8_t) data;
2386 else if (size == 2)
2387 target_buffer_set_u16(target, buffer, (uint16_t) data);
2388 else
2389 target_buffer_set_u32(target, buffer, data);
2390
2391 /* Advance. */
2392 buffer += size;
2393 --count;
2394 }
2395
2396 return ERROR_OK;
2397 }
2398
2399 static int cortex_a_read_cpu_memory_fast(struct target *target,
2400 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2401 {
2402 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2403 * *dscr; updated to new value. This is fast but only works for word-sized
2404 * objects at aligned addresses.
2405 * Preconditions:
2406 * - Address is in R0 and must be a multiple of 4.
2407 * - R0 is marked dirty.
2408 */
2409 struct armv7a_common *armv7a = target_to_armv7a(target);
2410 uint32_t u32;
2411 int retval;
2412
2413 /* Switch to non-blocking mode if not already in that mode. */
2414 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2415 if (retval != ERROR_OK)
2416 return retval;
2417
2418 /* Issue the LDC instruction via a write to ITR. */
2419 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2420 if (retval != ERROR_OK)
2421 return retval;
2422
2423 count--;
2424
2425 if (count > 0) {
2426 /* Switch to fast mode if not already in that mode. */
2427 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2428 if (retval != ERROR_OK)
2429 return retval;
2430
2431 /* Latch LDC instruction. */
2432 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2433 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2434 if (retval != ERROR_OK)
2435 return retval;
2436
2437 /* Read the value transferred to DTRTX into the buffer. Due to fast
2438 * mode rules, this blocks until the instruction finishes executing and
2439 * then reissues the read instruction to read the next word from
2440 * memory. The last read of DTRTX in this call reads the second-to-last
2441 * word from memory and issues the read instruction for the last word.
2442 */
2443 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2444 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2445 if (retval != ERROR_OK)
2446 return retval;
2447
2448 /* Advance. */
2449 buffer += count * 4;
2450 }
2451
2452 /* Wait for last issued instruction to complete. */
2453 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2454 if (retval != ERROR_OK)
2455 return retval;
2456
2457 /* Switch to non-blocking mode if not already in that mode. */
2458 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2459 if (retval != ERROR_OK)
2460 return retval;
2461
2462 /* Check for faults and return early. */
2463 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2464 return ERROR_OK; /* A data fault is not considered a system failure. */
2465
2466 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2467 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2468 * check TXfull_l). Most of the time this will be free because TXfull_l
2469 * will be set immediately and cached in dscr. */
2470 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2471 DSCR_DTRTX_FULL_LATCHED, dscr);
2472 if (retval != ERROR_OK)
2473 return retval;
2474
2475 /* Read the value transferred to DTRTX into the buffer. This is the last
2476 * word. */
2477 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2478 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2479 if (retval != ERROR_OK)
2480 return retval;
2481 target_buffer_set_u32(target, buffer, u32);
2482
2483 return ERROR_OK;
2484 }
2485
2486 static int cortex_a_read_cpu_memory(struct target *target,
2487 uint32_t address, uint32_t size,
2488 uint32_t count, uint8_t *buffer)
2489 {
2490 /* Read memory through the CPU. */
2491 int retval, final_retval;
2492 struct armv7a_common *armv7a = target_to_armv7a(target);
2493 struct arm *arm = &armv7a->arm;
2494 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2495
2496 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2497 address, size, count);
2498 if (target->state != TARGET_HALTED) {
2499 LOG_WARNING("target not halted");
2500 return ERROR_TARGET_NOT_HALTED;
2501 }
2502
2503 if (!count)
2504 return ERROR_OK;
2505
2506 /* Clear any abort. */
2507 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2508 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2509 if (retval != ERROR_OK)
2510 return retval;
2511
2512 /* Read DSCR */
2513 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2514 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2515 if (retval != ERROR_OK)
2516 return retval;
2517
2518 /* Switch to non-blocking mode if not already in that mode. */
2519 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2520 if (retval != ERROR_OK)
2521 goto out;
2522
2523 /* Mark R0 as dirty. */
2524 arm_reg_current(arm, 0)->dirty = true;
2525
2526 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2527 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2528 if (retval != ERROR_OK)
2529 goto out;
2530
2531 /* Get the memory address into R0. */
2532 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2533 armv7a->debug_base + CPUDBG_DTRRX, address);
2534 if (retval != ERROR_OK)
2535 goto out;
2536 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2537 if (retval != ERROR_OK)
2538 goto out;
2539
2540 if (size == 4 && (address % 4) == 0) {
2541 /* We are doing a word-aligned transfer, so use fast mode. */
2542 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2543 } else {
2544 /* Use slow path. */
2545 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2546 }
2547
2548 out:
2549 final_retval = retval;
2550
2551 /* Switch to non-blocking mode if not already in that mode. */
2552 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2553 if (final_retval == ERROR_OK)
2554 final_retval = retval;
2555
2556 /* Wait for last issued instruction to complete. */
2557 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2558 if (final_retval == ERROR_OK)
2559 final_retval = retval;
2560
2561 /* If there were any sticky abort flags, clear them. */
2562 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2563 fault_dscr = dscr;
2564 mem_ap_write_atomic_u32(armv7a->debug_ap,
2565 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2566 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2567 } else {
2568 fault_dscr = 0;
2569 }
2570
2571 /* Handle synchronous data faults. */
2572 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2573 if (final_retval == ERROR_OK) {
2574 /* Final return value will reflect cause of fault. */
2575 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2576 if (retval == ERROR_OK) {
2577 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2578 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2579 } else
2580 final_retval = retval;
2581 }
2582 /* Fault destroyed DFAR/DFSR; restore them. */
2583 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2584 if (retval != ERROR_OK)
2585 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2586 }
2587
2588 /* Handle asynchronous data faults. */
2589 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2590 if (final_retval == ERROR_OK)
2591 /* No other error has been recorded so far, so keep this one. */
2592 final_retval = ERROR_TARGET_DATA_ABORT;
2593 }
2594
2595 /* If the DCC is nonempty, clear it. */
2596 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2597 uint32_t dummy;
2598 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2599 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2600 if (final_retval == ERROR_OK)
2601 final_retval = retval;
2602 }
2603 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2604 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2605 if (final_retval == ERROR_OK)
2606 final_retval = retval;
2607 }
2608
2609 /* Done. */
2610 return final_retval;
2611 }
2612
2613
2614 /*
2615 * Cortex-A Memory access
2616 *
2617 * This is same Cortex-M3 but we must also use the correct
2618 * ap number for every access.
2619 */
2620
2621 static int cortex_a_read_phys_memory(struct target *target,
2622 target_addr_t address, uint32_t size,
2623 uint32_t count, uint8_t *buffer)
2624 {
2625 int retval;
2626
2627 if (!count || !buffer)
2628 return ERROR_COMMAND_SYNTAX_ERROR;
2629
2630 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2631 address, size, count);
2632
2633 /* read memory through the CPU */
2634 cortex_a_prep_memaccess(target, 1);
2635 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2636 cortex_a_post_memaccess(target, 1);
2637
2638 return retval;
2639 }
2640
2641 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2642 uint32_t size, uint32_t count, uint8_t *buffer)
2643 {
2644 int retval;
2645
2646 /* cortex_a handles unaligned memory access */
2647 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2648 address, size, count);
2649
2650 cortex_a_prep_memaccess(target, 0);
2651 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2652 cortex_a_post_memaccess(target, 0);
2653
2654 return retval;
2655 }
2656
2657 static int cortex_a_write_phys_memory(struct target *target,
2658 target_addr_t address, uint32_t size,
2659 uint32_t count, const uint8_t *buffer)
2660 {
2661 int retval;
2662
2663 if (!count || !buffer)
2664 return ERROR_COMMAND_SYNTAX_ERROR;
2665
2666 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2667 address, size, count);
2668
2669 /* write memory through the CPU */
2670 cortex_a_prep_memaccess(target, 1);
2671 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2672 cortex_a_post_memaccess(target, 1);
2673
2674 return retval;
2675 }
2676
2677 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2678 uint32_t size, uint32_t count, const uint8_t *buffer)
2679 {
2680 int retval;
2681
2682 /* cortex_a handles unaligned memory access */
2683 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2684 address, size, count);
2685
2686 /* memory writes bypass the caches, must flush before writing */
2687 armv7a_cache_auto_flush_on_write(target, address, size * count);
2688
2689 cortex_a_prep_memaccess(target, 0);
2690 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2691 cortex_a_post_memaccess(target, 0);
2692 return retval;
2693 }
2694
2695 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2696 uint32_t count, uint8_t *buffer)
2697 {
2698 uint32_t size;
2699
2700 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2701 * will have something to do with the size we leave to it. */
2702 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2703 if (address & size) {
2704 int retval = target_read_memory(target, address, size, 1, buffer);
2705 if (retval != ERROR_OK)
2706 return retval;
2707 address += size;
2708 count -= size;
2709 buffer += size;
2710 }
2711 }
2712
2713 /* Read the data with as large access size as possible. */
2714 for (; size > 0; size /= 2) {
2715 uint32_t aligned = count - count % size;
2716 if (aligned > 0) {
2717 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2718 if (retval != ERROR_OK)
2719 return retval;
2720 address += aligned;
2721 count -= aligned;
2722 buffer += aligned;
2723 }
2724 }
2725
2726 return ERROR_OK;
2727 }
2728
2729 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2730 uint32_t count, const uint8_t *buffer)
2731 {
2732 uint32_t size;
2733
2734 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2735 * will have something to do with the size we leave to it. */
2736 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2737 if (address & size) {
2738 int retval = target_write_memory(target, address, size, 1, buffer);
2739 if (retval != ERROR_OK)
2740 return retval;
2741 address += size;
2742 count -= size;
2743 buffer += size;
2744 }
2745 }
2746
2747 /* Write the data with as large access size as possible. */
2748 for (; size > 0; size /= 2) {
2749 uint32_t aligned = count - count % size;
2750 if (aligned > 0) {
2751 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2752 if (retval != ERROR_OK)
2753 return retval;
2754 address += aligned;
2755 count -= aligned;
2756 buffer += aligned;
2757 }
2758 }
2759
2760 return ERROR_OK;
2761 }
2762
2763 static int cortex_a_handle_target_request(void *priv)
2764 {
2765 struct target *target = priv;
2766 struct armv7a_common *armv7a = target_to_armv7a(target);
2767 int retval;
2768
2769 if (!target_was_examined(target))
2770 return ERROR_OK;
2771 if (!target->dbg_msg_enabled)
2772 return ERROR_OK;
2773
2774 if (target->state == TARGET_RUNNING) {
2775 uint32_t request;
2776 uint32_t dscr;
2777 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2778 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2779
2780 /* check if we have data */
2781 int64_t then = timeval_ms();
2782 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2783 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2784 armv7a->debug_base + CPUDBG_DTRTX, &request);
2785 if (retval == ERROR_OK) {
2786 target_request(target, request);
2787 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2788 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2789 }
2790 if (timeval_ms() > then + 1000) {
2791 LOG_ERROR("Timeout waiting for dtr tx full");
2792 return ERROR_FAIL;
2793 }
2794 }
2795 }
2796
2797 return ERROR_OK;
2798 }
2799
2800 /*
2801 * Cortex-A target information and configuration
2802 */
2803
2804 static int cortex_a_examine_first(struct target *target)
2805 {
2806 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2807 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2808 struct adiv5_dap *swjdp = armv7a->arm.dap;
2809
2810 int i;
2811 int retval = ERROR_OK;
2812 uint32_t didr, cpuid, dbg_osreg;
2813
2814 /* Search for the APB-AP - it is needed for access to debug registers */
2815 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2816 if (retval != ERROR_OK) {
2817 LOG_ERROR("Could not find APB-AP for debug access");
2818 return retval;
2819 }
2820
2821 retval = mem_ap_init(armv7a->debug_ap);
2822 if (retval != ERROR_OK) {
2823 LOG_ERROR("Could not initialize the APB-AP");
2824 return retval;
2825 }
2826
2827 armv7a->debug_ap->memaccess_tck = 80;
2828
2829 if (!target->dbgbase_set) {
2830 uint32_t dbgbase;
2831 /* Get ROM Table base */
2832 uint32_t apid;
2833 int32_t coreidx = target->coreid;
2834 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2835 target->cmd_name);
2836 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2837 if (retval != ERROR_OK)
2838 return retval;
2839 /* Lookup 0x15 -- Processor DAP */
2840 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2841 &armv7a->debug_base, &coreidx);
2842 if (retval != ERROR_OK) {
2843 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2844 target->cmd_name);
2845 return retval;
2846 }
2847 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
2848 target->coreid, armv7a->debug_base);
2849 } else
2850 armv7a->debug_base = target->dbgbase;
2851
2852 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2853 armv7a->debug_base + CPUDBG_DIDR, &didr);
2854 if (retval != ERROR_OK) {
2855 LOG_DEBUG("Examine %s failed", "DIDR");
2856 return retval;
2857 }
2858
2859 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2860 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2861 if (retval != ERROR_OK) {
2862 LOG_DEBUG("Examine %s failed", "CPUID");
2863 return retval;
2864 }
2865
2866 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2867 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2868
2869 cortex_a->didr = didr;
2870 cortex_a->cpuid = cpuid;
2871
2872 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2873 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2874 if (retval != ERROR_OK)
2875 return retval;
2876 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
2877
2878 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2879 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2880 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2881 return ERROR_TARGET_INIT_FAILED;
2882 }
2883
2884 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2885 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2886
2887 /* Read DBGOSLSR and check if OSLK is implemented */
2888 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2889 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2890 if (retval != ERROR_OK)
2891 return retval;
2892 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2893
2894 /* check if OS Lock is implemented */
2895 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2896 /* check if OS Lock is set */
2897 if (dbg_osreg & OSLSR_OSLK) {
2898 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2899
2900 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2901 armv7a->debug_base + CPUDBG_OSLAR,
2902 0);
2903 if (retval == ERROR_OK)
2904 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2905 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2906
2907 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2908 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2909 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2910 target->coreid);
2911 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2912 return ERROR_TARGET_INIT_FAILED;
2913 }
2914 }
2915 }
2916
2917 armv7a->arm.core_type = ARM_MODE_MON;
2918
2919 /* Avoid recreating the registers cache */
2920 if (!target_was_examined(target)) {
2921 retval = cortex_a_dpm_setup(cortex_a, didr);
2922 if (retval != ERROR_OK)
2923 return retval;
2924 }
2925
2926 /* Setup Breakpoint Register Pairs */
2927 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
2928 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
2929 cortex_a->brp_num_available = cortex_a->brp_num;
2930 free(cortex_a->brp_list);
2931 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
2932 /* cortex_a->brb_enabled = ????; */
2933 for (i = 0; i < cortex_a->brp_num; i++) {
2934 cortex_a->brp_list[i].used = 0;
2935 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
2936 cortex_a->brp_list[i].type = BRP_NORMAL;
2937 else
2938 cortex_a->brp_list[i].type = BRP_CONTEXT;
2939 cortex_a->brp_list[i].value = 0;
2940 cortex_a->brp_list[i].control = 0;
2941 cortex_a->brp_list[i].BRPn = i;
2942 }
2943
2944 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
2945
2946 /* select debug_ap as default */
2947 swjdp->apsel = armv7a->debug_ap->ap_num;
2948
2949 target_set_examined(target);
2950 return ERROR_OK;
2951 }
2952
2953 static int cortex_a_examine(struct target *target)
2954 {
2955 int retval = ERROR_OK;
2956
2957 /* Reestablish communication after target reset */
2958 retval = cortex_a_examine_first(target);
2959
2960 /* Configure core debug access */
2961 if (retval == ERROR_OK)
2962 retval = cortex_a_init_debug_access(target);
2963
2964 return retval;
2965 }
2966
2967 /*
2968 * Cortex-A target creation and initialization
2969 */
2970
2971 static int cortex_a_init_target(struct command_context *cmd_ctx,
2972 struct target *target)
2973 {
2974 /* examine_first() does a bunch of this */
2975 arm_semihosting_init(target);
2976 return ERROR_OK;
2977 }
2978
2979 static int cortex_a_init_arch_info(struct target *target,
2980 struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
2981 {
2982 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2983
2984 /* Setup struct cortex_a_common */
2985 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
2986 armv7a->arm.dap = dap;
2987
2988 /* register arch-specific functions */
2989 armv7a->examine_debug_reason = NULL;
2990
2991 armv7a->post_debug_entry = cortex_a_post_debug_entry;
2992
2993 armv7a->pre_restore_context = NULL;
2994
2995 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
2996
2997
2998 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
2999
3000 /* REVISIT v7a setup should be in a v7a-specific routine */
3001 armv7a_init_arch_info(target, armv7a);
3002 target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3003
3004 return ERROR_OK;
3005 }
3006
3007 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3008 {
3009 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3010 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3011 struct adiv5_private_config *pc;
3012
3013 if (target->private_config == NULL)
3014 return ERROR_FAIL;
3015
3016 pc = (struct adiv5_private_config *)target->private_config;
3017
3018 cortex_a->armv7a_common.is_armv7r = false;
3019
3020 cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
3021
3022 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3023 }
3024
3025 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3026 {
3027 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3028 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3029 struct adiv5_private_config *pc;
3030
3031 pc = (struct adiv5_private_config *)target->private_config;
3032 if (adiv5_verify_config(pc) != ERROR_OK)
3033 return ERROR_FAIL;
3034
3035 cortex_a->armv7a_common.is_armv7r = true;
3036
3037 return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3038 }
3039
3040 static void cortex_a_deinit_target(struct target *target)
3041 {
3042 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3043 struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3044
3045 free(cortex_a->brp_list);
3046 free(dpm->dbp);
3047 free(dpm->dwp);
3048 free(target->private_config);
3049 free(cortex_a);
3050 }
3051
3052 static int cortex_a_mmu(struct target *target, int *enabled)
3053 {
3054 struct armv7a_common *armv7a = target_to_armv7a(target);
3055
3056 if (target->state != TARGET_HALTED) {
3057 LOG_ERROR("%s: target not halted", __func__);
3058 return ERROR_TARGET_INVALID;
3059 }
3060
3061 if (armv7a->is_armv7r)
3062 *enabled = 0;
3063 else
3064 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3065
3066 return ERROR_OK;
3067 }
3068
3069 static int cortex_a_virt2phys(struct target *target,
3070 target_addr_t virt, target_addr_t *phys)
3071 {
3072 int retval;
3073 int mmu_enabled = 0;
3074
3075 /*
3076 * If the MMU was not enabled at debug entry, there is no
3077 * way of knowing if there was ever a valid configuration
3078 * for it and thus it's not safe to enable it. In this case,
3079 * just return the virtual address as physical.
3080 */
3081 cortex_a_mmu(target, &mmu_enabled);
3082 if (!mmu_enabled) {
3083 *phys = virt;
3084 return ERROR_OK;
3085 }
3086
3087 /* mmu must be enable in order to get a correct translation */
3088 retval = cortex_a_mmu_modify(target, 1);
3089 if (retval != ERROR_OK)
3090 return retval;
3091 return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,