4ce776cd0dd3193add842af303b82b34411cb7db
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 * *
24 * *
25 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
26 * *
27 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FPB remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
48 *
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
52 */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortexm_dap_read_coreregister_u32(struct target *target,
60 uint32_t *value, int regnum)
61 {
62 struct armv7m_common *armv7m = target_to_armv7m(target);
63 int retval;
64 uint32_t dcrdr;
65
66 /* because the DCB_DCRDR is used for the emulated dcc channel
67 * we have to save/restore the DCB_DCRDR when used */
68 if (target->dbg_msg_enabled) {
69 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70 if (retval != ERROR_OK)
71 return retval;
72 }
73
74 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regnum);
75 if (retval != ERROR_OK)
76 return retval;
77
78 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79 if (retval != ERROR_OK)
80 return retval;
81
82 if (target->dbg_msg_enabled) {
83 /* restore DCB_DCRDR - this needs to be in a separate
84 * transaction otherwise the emulated DCC channel breaks */
85 if (retval == ERROR_OK)
86 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87 }
88
89 return retval;
90 }
91
92 static int cortexm_dap_write_coreregister_u32(struct target *target,
93 uint32_t value, int regnum)
94 {
95 struct armv7m_common *armv7m = target_to_armv7m(target);
96 int retval;
97 uint32_t dcrdr;
98
99 /* because the DCB_DCRDR is used for the emulated dcc channel
100 * we have to save/restore the DCB_DCRDR when used */
101 if (target->dbg_msg_enabled) {
102 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103 if (retval != ERROR_OK)
104 return retval;
105 }
106
107 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108 if (retval != ERROR_OK)
109 return retval;
110
111 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regnum | DCRSR_WnR);
112 if (retval != ERROR_OK)
113 return retval;
114
115 if (target->dbg_msg_enabled) {
116 /* restore DCB_DCRDR - this needs to be in a seperate
117 * transaction otherwise the emulated DCC channel breaks */
118 if (retval == ERROR_OK)
119 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120 }
121
122 return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126 uint32_t mask_on, uint32_t mask_off)
127 {
128 struct cortex_m_common *cortex_m = target_to_cm(target);
129 struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131 /* mask off status bits */
132 cortex_m->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
133 /* create new register mask */
134 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136 return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_clear_halt(struct target *target)
140 {
141 struct cortex_m_common *cortex_m = target_to_cm(target);
142 struct armv7m_common *armv7m = &cortex_m->armv7m;
143 int retval;
144
145 /* clear step if any */
146 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
147
148 /* Read Debug Fault Status Register */
149 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
150 if (retval != ERROR_OK)
151 return retval;
152
153 /* Clear Debug Fault Status */
154 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
155 if (retval != ERROR_OK)
156 return retval;
157 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
158
159 return ERROR_OK;
160 }
161
162 static int cortex_m_single_step_core(struct target *target)
163 {
164 struct cortex_m_common *cortex_m = target_to_cm(target);
165 struct armv7m_common *armv7m = &cortex_m->armv7m;
166 int retval;
167
168 /* Mask interrupts before clearing halt, if not done already. This avoids
169 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
170 * HALT can put the core into an unknown state.
171 */
172 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
173 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
174 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
175 if (retval != ERROR_OK)
176 return retval;
177 }
178 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
179 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
180 if (retval != ERROR_OK)
181 return retval;
182 LOG_DEBUG(" ");
183
184 /* restore dhcsr reg */
185 cortex_m_clear_halt(target);
186
187 return ERROR_OK;
188 }
189
190 static int cortex_m_enable_fpb(struct target *target)
191 {
192 int retval = target_write_u32(target, FP_CTRL, 3);
193 if (retval != ERROR_OK)
194 return retval;
195
196 /* check the fpb is actually enabled */
197 uint32_t fpctrl;
198 retval = target_read_u32(target, FP_CTRL, &fpctrl);
199 if (retval != ERROR_OK)
200 return retval;
201
202 if (fpctrl & 1)
203 return ERROR_OK;
204
205 return ERROR_FAIL;
206 }
207
208 static int cortex_m_endreset_event(struct target *target)
209 {
210 int i;
211 int retval;
212 uint32_t dcb_demcr;
213 struct cortex_m_common *cortex_m = target_to_cm(target);
214 struct armv7m_common *armv7m = &cortex_m->armv7m;
215 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
216 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
217 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
218
219 /* REVISIT The four debug monitor bits are currently ignored... */
220 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
221 if (retval != ERROR_OK)
222 return retval;
223 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
224
225 /* this register is used for emulated dcc channel */
226 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
227 if (retval != ERROR_OK)
228 return retval;
229
230 /* Enable debug requests */
231 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
232 if (retval != ERROR_OK)
233 return retval;
234 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
235 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
236 if (retval != ERROR_OK)
237 return retval;
238 }
239
240 /* Restore proper interrupt masking setting. */
241 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
242 cortex_m_write_debug_halt_mask(target, C_MASKINTS, 0);
243 else
244 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
245
246 /* Enable features controlled by ITM and DWT blocks, and catch only
247 * the vectors we were told to pay attention to.
248 *
249 * Target firmware is responsible for all fault handling policy
250 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
251 * or manual updates to the NVIC SHCSR and CCR registers.
252 */
253 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
254 if (retval != ERROR_OK)
255 return retval;
256
257 /* Paranoia: evidently some (early?) chips don't preserve all the
258 * debug state (including FPB, DWT, etc) across reset...
259 */
260
261 /* Enable FPB */
262 retval = cortex_m_enable_fpb(target);
263 if (retval != ERROR_OK) {
264 LOG_ERROR("Failed to enable the FPB");
265 return retval;
266 }
267
268 cortex_m->fpb_enabled = 1;
269
270 /* Restore FPB registers */
271 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
272 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
273 if (retval != ERROR_OK)
274 return retval;
275 }
276
277 /* Restore DWT registers */
278 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
279 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
280 dwt_list[i].comp);
281 if (retval != ERROR_OK)
282 return retval;
283 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
284 dwt_list[i].mask);
285 if (retval != ERROR_OK)
286 return retval;
287 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
288 dwt_list[i].function);
289 if (retval != ERROR_OK)
290 return retval;
291 }
292 retval = dap_run(swjdp);
293 if (retval != ERROR_OK)
294 return retval;
295
296 register_cache_invalidate(armv7m->arm.core_cache);
297
298 /* make sure we have latest dhcsr flags */
299 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
300
301 return retval;
302 }
303
304 static int cortex_m_examine_debug_reason(struct target *target)
305 {
306 struct cortex_m_common *cortex_m = target_to_cm(target);
307
308 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
309 * only check the debug reason if we don't know it already */
310
311 if ((target->debug_reason != DBG_REASON_DBGRQ)
312 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
313 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
314 target->debug_reason = DBG_REASON_BREAKPOINT;
315 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
316 target->debug_reason = DBG_REASON_WPTANDBKPT;
317 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
318 target->debug_reason = DBG_REASON_WATCHPOINT;
319 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
320 target->debug_reason = DBG_REASON_BREAKPOINT;
321 else /* EXTERNAL, HALTED */
322 target->debug_reason = DBG_REASON_UNDEFINED;
323 }
324
325 return ERROR_OK;
326 }
327
328 static int cortex_m_examine_exception_reason(struct target *target)
329 {
330 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
331 struct armv7m_common *armv7m = target_to_armv7m(target);
332 struct adiv5_dap *swjdp = armv7m->arm.dap;
333 int retval;
334
335 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
336 if (retval != ERROR_OK)
337 return retval;
338 switch (armv7m->exception_number) {
339 case 2: /* NMI */
340 break;
341 case 3: /* Hard Fault */
342 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
343 if (retval != ERROR_OK)
344 return retval;
345 if (except_sr & 0x40000000) {
346 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
347 if (retval != ERROR_OK)
348 return retval;
349 }
350 break;
351 case 4: /* Memory Management */
352 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
353 if (retval != ERROR_OK)
354 return retval;
355 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
356 if (retval != ERROR_OK)
357 return retval;
358 break;
359 case 5: /* Bus Fault */
360 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
361 if (retval != ERROR_OK)
362 return retval;
363 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
364 if (retval != ERROR_OK)
365 return retval;
366 break;
367 case 6: /* Usage Fault */
368 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
369 if (retval != ERROR_OK)
370 return retval;
371 break;
372 case 11: /* SVCall */
373 break;
374 case 12: /* Debug Monitor */
375 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
376 if (retval != ERROR_OK)
377 return retval;
378 break;
379 case 14: /* PendSV */
380 break;
381 case 15: /* SysTick */
382 break;
383 default:
384 except_sr = 0;
385 break;
386 }
387 retval = dap_run(swjdp);
388 if (retval == ERROR_OK)
389 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
390 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
391 armv7m_exception_string(armv7m->exception_number),
392 shcsr, except_sr, cfsr, except_ar);
393 return retval;
394 }
395
396 static int cortex_m_debug_entry(struct target *target)
397 {
398 int i;
399 uint32_t xPSR;
400 int retval;
401 struct cortex_m_common *cortex_m = target_to_cm(target);
402 struct armv7m_common *armv7m = &cortex_m->armv7m;
403 struct arm *arm = &armv7m->arm;
404 struct reg *r;
405
406 LOG_DEBUG(" ");
407
408 cortex_m_clear_halt(target);
409 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
410 if (retval != ERROR_OK)
411 return retval;
412
413 retval = armv7m->examine_debug_reason(target);
414 if (retval != ERROR_OK)
415 return retval;
416
417 /* Examine target state and mode
418 * First load register accessible through core debug port */
419 int num_regs = arm->core_cache->num_regs;
420
421 for (i = 0; i < num_regs; i++) {
422 r = &armv7m->arm.core_cache->reg_list[i];
423 if (!r->valid)
424 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
425 }
426
427 r = arm->cpsr;
428 xPSR = buf_get_u32(r->value, 0, 32);
429
430 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
431 if (xPSR & 0xf00) {
432 r->dirty = r->valid;
433 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
434 }
435
436 /* Are we in an exception handler */
437 if (xPSR & 0x1FF) {
438 armv7m->exception_number = (xPSR & 0x1FF);
439
440 arm->core_mode = ARM_MODE_HANDLER;
441 arm->map = armv7m_msp_reg_map;
442 } else {
443 unsigned control = buf_get_u32(arm->core_cache
444 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
445
446 /* is this thread privileged? */
447 arm->core_mode = control & 1
448 ? ARM_MODE_USER_THREAD
449 : ARM_MODE_THREAD;
450
451 /* which stack is it using? */
452 if (control & 2)
453 arm->map = armv7m_psp_reg_map;
454 else
455 arm->map = armv7m_msp_reg_map;
456
457 armv7m->exception_number = 0;
458 }
459
460 if (armv7m->exception_number)
461 cortex_m_examine_exception_reason(target);
462
463 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
464 arm_mode_name(arm->core_mode),
465 buf_get_u32(arm->pc->value, 0, 32),
466 target_state_name(target));
467
468 if (armv7m->post_debug_entry) {
469 retval = armv7m->post_debug_entry(target);
470 if (retval != ERROR_OK)
471 return retval;
472 }
473
474 return ERROR_OK;
475 }
476
477 static int cortex_m_poll(struct target *target)
478 {
479 int detected_failure = ERROR_OK;
480 int retval = ERROR_OK;
481 enum target_state prev_target_state = target->state;
482 struct cortex_m_common *cortex_m = target_to_cm(target);
483 struct armv7m_common *armv7m = &cortex_m->armv7m;
484
485 /* Read from Debug Halting Control and Status Register */
486 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
487 if (retval != ERROR_OK) {
488 target->state = TARGET_UNKNOWN;
489 return retval;
490 }
491
492 /* Recover from lockup. See ARMv7-M architecture spec,
493 * section B1.5.15 "Unrecoverable exception cases".
494 */
495 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
496 LOG_ERROR("%s -- clearing lockup after double fault",
497 target_name(target));
498 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
499 target->debug_reason = DBG_REASON_DBGRQ;
500
501 /* We have to execute the rest (the "finally" equivalent, but
502 * still throw this exception again).
503 */
504 detected_failure = ERROR_FAIL;
505
506 /* refresh status bits */
507 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
508 if (retval != ERROR_OK)
509 return retval;
510 }
511
512 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
513 target->state = TARGET_RESET;
514 return ERROR_OK;
515 }
516
517 if (target->state == TARGET_RESET) {
518 /* Cannot switch context while running so endreset is
519 * called with target->state == TARGET_RESET
520 */
521 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
522 cortex_m->dcb_dhcsr);
523 retval = cortex_m_endreset_event(target);
524 if (retval != ERROR_OK) {
525 target->state = TARGET_UNKNOWN;
526 return retval;
527 }
528 target->state = TARGET_RUNNING;
529 prev_target_state = TARGET_RUNNING;
530 }
531
532 if (cortex_m->dcb_dhcsr & S_HALT) {
533 target->state = TARGET_HALTED;
534
535 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
536 retval = cortex_m_debug_entry(target);
537 if (retval != ERROR_OK)
538 return retval;
539
540 if (arm_semihosting(target, &retval) != 0)
541 return retval;
542
543 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
544 }
545 if (prev_target_state == TARGET_DEBUG_RUNNING) {
546 LOG_DEBUG(" ");
547 retval = cortex_m_debug_entry(target);
548 if (retval != ERROR_OK)
549 return retval;
550
551 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
552 }
553 }
554
555 /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
556 * How best to model low power modes?
557 */
558
559 if (target->state == TARGET_UNKNOWN) {
560 /* check if processor is retiring instructions */
561 if (cortex_m->dcb_dhcsr & S_RETIRE_ST) {
562 target->state = TARGET_RUNNING;
563 retval = ERROR_OK;
564 }
565 }
566
567 /* Did we detect a failure condition that we cleared? */
568 if (detected_failure != ERROR_OK)
569 retval = detected_failure;
570 return retval;
571 }
572
573 static int cortex_m_halt(struct target *target)
574 {
575 LOG_DEBUG("target->state: %s",
576 target_state_name(target));
577
578 if (target->state == TARGET_HALTED) {
579 LOG_DEBUG("target was already halted");
580 return ERROR_OK;
581 }
582
583 if (target->state == TARGET_UNKNOWN)
584 LOG_WARNING("target was in unknown state when halt was requested");
585
586 if (target->state == TARGET_RESET) {
587 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
588 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
589 return ERROR_TARGET_FAILURE;
590 } else {
591 /* we came here in a reset_halt or reset_init sequence
592 * debug entry was already prepared in cortex_m3_assert_reset()
593 */
594 target->debug_reason = DBG_REASON_DBGRQ;
595
596 return ERROR_OK;
597 }
598 }
599
600 /* Write to Debug Halting Control and Status Register */
601 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
602
603 target->debug_reason = DBG_REASON_DBGRQ;
604
605 return ERROR_OK;
606 }
607
608 static int cortex_m_soft_reset_halt(struct target *target)
609 {
610 struct cortex_m_common *cortex_m = target_to_cm(target);
611 struct armv7m_common *armv7m = &cortex_m->armv7m;
612 uint32_t dcb_dhcsr = 0;
613 int retval, timeout = 0;
614
615 /* soft_reset_halt is deprecated on cortex_m as the same functionality
616 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
617 * As this reset only used VC_CORERESET it would only ever reset the cortex_m
618 * core, not the peripherals */
619 LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
620
621 /* Enter debug state on reset; restore DEMCR in endreset_event() */
622 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
623 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
624 if (retval != ERROR_OK)
625 return retval;
626
627 /* Request a core-only reset */
628 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
629 AIRCR_VECTKEY | AIRCR_VECTRESET);
630 if (retval != ERROR_OK)
631 return retval;
632 target->state = TARGET_RESET;
633
634 /* registers are now invalid */
635 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
636
637 while (timeout < 100) {
638 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
639 if (retval == ERROR_OK) {
640 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
641 &cortex_m->nvic_dfsr);
642 if (retval != ERROR_OK)
643 return retval;
644 if ((dcb_dhcsr & S_HALT)
645 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
646 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
647 "DFSR 0x%08x",
648 (unsigned) dcb_dhcsr,
649 (unsigned) cortex_m->nvic_dfsr);
650 cortex_m_poll(target);
651 /* FIXME restore user's vector catch config */
652 return ERROR_OK;
653 } else
654 LOG_DEBUG("waiting for system reset-halt, "
655 "DHCSR 0x%08x, %d ms",
656 (unsigned) dcb_dhcsr, timeout);
657 }
658 timeout++;
659 alive_sleep(1);
660 }
661
662 return ERROR_OK;
663 }
664
665 void cortex_m_enable_breakpoints(struct target *target)
666 {
667 struct breakpoint *breakpoint = target->breakpoints;
668
669 /* set any pending breakpoints */
670 while (breakpoint) {
671 if (!breakpoint->set)
672 cortex_m_set_breakpoint(target, breakpoint);
673 breakpoint = breakpoint->next;
674 }
675 }
676
677 static int cortex_m_resume(struct target *target, int current,
678 target_addr_t address, int handle_breakpoints, int debug_execution)
679 {
680 struct armv7m_common *armv7m = target_to_armv7m(target);
681 struct breakpoint *breakpoint = NULL;
682 uint32_t resume_pc;
683 struct reg *r;
684
685 if (target->state != TARGET_HALTED) {
686 LOG_WARNING("target not halted");
687 return ERROR_TARGET_NOT_HALTED;
688 }
689
690 if (!debug_execution) {
691 target_free_all_working_areas(target);
692 cortex_m_enable_breakpoints(target);
693 cortex_m_enable_watchpoints(target);
694 }
695
696 if (debug_execution) {
697 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
698
699 /* Disable interrupts */
700 /* We disable interrupts in the PRIMASK register instead of
701 * masking with C_MASKINTS. This is probably the same issue
702 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
703 * in parallel with disabled interrupts can cause local faults
704 * to not be taken.
705 *
706 * REVISIT this clearly breaks non-debug execution, since the
707 * PRIMASK register state isn't saved/restored... workaround
708 * by never resuming app code after debug execution.
709 */
710 buf_set_u32(r->value, 0, 1, 1);
711 r->dirty = true;
712 r->valid = true;
713
714 /* Make sure we are in Thumb mode */
715 r = armv7m->arm.cpsr;
716 buf_set_u32(r->value, 24, 1, 1);
717 r->dirty = true;
718 r->valid = true;
719 }
720
721 /* current = 1: continue on current pc, otherwise continue at <address> */
722 r = armv7m->arm.pc;
723 if (!current) {
724 buf_set_u32(r->value, 0, 32, address);
725 r->dirty = true;
726 r->valid = true;
727 }
728
729 /* if we halted last time due to a bkpt instruction
730 * then we have to manually step over it, otherwise
731 * the core will break again */
732
733 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
734 && !debug_execution)
735 armv7m_maybe_skip_bkpt_inst(target, NULL);
736
737 resume_pc = buf_get_u32(r->value, 0, 32);
738
739 armv7m_restore_context(target);
740
741 /* the front-end may request us not to handle breakpoints */
742 if (handle_breakpoints) {
743 /* Single step past breakpoint at current address */
744 breakpoint = breakpoint_find(target, resume_pc);
745 if (breakpoint) {
746 LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
747 breakpoint->address,
748 breakpoint->unique_id);
749 cortex_m_unset_breakpoint(target, breakpoint);
750 cortex_m_single_step_core(target);
751 cortex_m_set_breakpoint(target, breakpoint);
752 }
753 }
754
755 /* Restart core */
756 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
757
758 target->debug_reason = DBG_REASON_NOTHALTED;
759
760 /* registers are now invalid */
761 register_cache_invalidate(armv7m->arm.core_cache);
762
763 if (!debug_execution) {
764 target->state = TARGET_RUNNING;
765 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
766 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
767 } else {
768 target->state = TARGET_DEBUG_RUNNING;
769 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
770 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
771 }
772
773 return ERROR_OK;
774 }
775
776 /* int irqstepcount = 0; */
777 static int cortex_m_step(struct target *target, int current,
778 target_addr_t address, int handle_breakpoints)
779 {
780 struct cortex_m_common *cortex_m = target_to_cm(target);
781 struct armv7m_common *armv7m = &cortex_m->armv7m;
782 struct breakpoint *breakpoint = NULL;
783 struct reg *pc = armv7m->arm.pc;
784 bool bkpt_inst_found = false;
785 int retval;
786 bool isr_timed_out = false;
787
788 if (target->state != TARGET_HALTED) {
789 LOG_WARNING("target not halted");
790 return ERROR_TARGET_NOT_HALTED;
791 }
792
793 /* current = 1: continue on current pc, otherwise continue at <address> */
794 if (!current)
795 buf_set_u32(pc->value, 0, 32, address);
796
797 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
798
799 /* the front-end may request us not to handle breakpoints */
800 if (handle_breakpoints) {
801 breakpoint = breakpoint_find(target, pc_value);
802 if (breakpoint)
803 cortex_m_unset_breakpoint(target, breakpoint);
804 }
805
806 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
807
808 target->debug_reason = DBG_REASON_SINGLESTEP;
809
810 armv7m_restore_context(target);
811
812 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
813
814 /* if no bkpt instruction is found at pc then we can perform
815 * a normal step, otherwise we have to manually step over the bkpt
816 * instruction - as such simulate a step */
817 if (bkpt_inst_found == false) {
818 /* Automatic ISR masking mode off: Just step over the next instruction */
819 if ((cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO))
820 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
821 else {
822 /* Process interrupts during stepping in a way they don't interfere
823 * debugging.
824 *
825 * Principle:
826 *
827 * Set a temporary break point at the current pc and let the core run
828 * with interrupts enabled. Pending interrupts get served and we run
829 * into the breakpoint again afterwards. Then we step over the next
830 * instruction with interrupts disabled.
831 *
832 * If the pending interrupts don't complete within time, we leave the
833 * core running. This may happen if the interrupts trigger faster
834 * than the core can process them or the handler doesn't return.
835 *
836 * If no more breakpoints are available we simply do a step with
837 * interrupts enabled.
838 *
839 */
840
841 /* 2012-09-29 ph
842 *
843 * If a break point is already set on the lower half word then a break point on
844 * the upper half word will not break again when the core is restarted. So we
845 * just step over the instruction with interrupts disabled.
846 *
847 * The documentation has no information about this, it was found by observation
848 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
849 * suffer from this problem.
850 *
851 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
852 * address has it always cleared. The former is done to indicate thumb mode
853 * to gdb.
854 *
855 */
856 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
857 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
858 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
859 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
860 /* Re-enable interrupts */
861 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
862 }
863 else {
864
865 /* Set a temporary break point */
866 if (breakpoint)
867 retval = cortex_m_set_breakpoint(target, breakpoint);
868 else
869 retval = breakpoint_add(target, pc_value, 2, BKPT_HARD);
870 bool tmp_bp_set = (retval == ERROR_OK);
871
872 /* No more breakpoints left, just do a step */
873 if (!tmp_bp_set)
874 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
875 else {
876 /* Start the core */
877 LOG_DEBUG("Starting core to serve pending interrupts");
878 int64_t t_start = timeval_ms();
879 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
880
881 /* Wait for pending handlers to complete or timeout */
882 do {
883 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
884 DCB_DHCSR,
885 &cortex_m->dcb_dhcsr);
886 if (retval != ERROR_OK) {
887 target->state = TARGET_UNKNOWN;
888 return retval;
889 }
890 isr_timed_out = ((timeval_ms() - t_start) > 500);
891 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
892
893 /* only remove breakpoint if we created it */
894 if (breakpoint)
895 cortex_m_unset_breakpoint(target, breakpoint);
896 else {
897 /* Remove the temporary breakpoint */
898 breakpoint_remove(target, pc_value);
899 }
900
901 if (isr_timed_out) {
902 LOG_DEBUG("Interrupt handlers didn't complete within time, "
903 "leaving target running");
904 } else {
905 /* Step over next instruction with interrupts disabled */
906 cortex_m_write_debug_halt_mask(target,
907 C_HALT | C_MASKINTS,
908 0);
909 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
910 /* Re-enable interrupts */
911 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
912 }
913 }
914 }
915 }
916 }
917
918 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
919 if (retval != ERROR_OK)
920 return retval;
921
922 /* registers are now invalid */
923 register_cache_invalidate(armv7m->arm.core_cache);
924
925 if (breakpoint)
926 cortex_m_set_breakpoint(target, breakpoint);
927
928 if (isr_timed_out) {
929 /* Leave the core running. The user has to stop execution manually. */
930 target->debug_reason = DBG_REASON_NOTHALTED;
931 target->state = TARGET_RUNNING;
932 return ERROR_OK;
933 }
934
935 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
936 " nvic_icsr = 0x%" PRIx32,
937 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
938
939 retval = cortex_m_debug_entry(target);
940 if (retval != ERROR_OK)
941 return retval;
942 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
943
944 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
945 " nvic_icsr = 0x%" PRIx32,
946 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
947
948 return ERROR_OK;
949 }
950
951 static int cortex_m_assert_reset(struct target *target)
952 {
953 struct cortex_m_common *cortex_m = target_to_cm(target);
954 struct armv7m_common *armv7m = &cortex_m->armv7m;
955 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
956
957 LOG_DEBUG("target->state: %s",
958 target_state_name(target));
959
960 enum reset_types jtag_reset_config = jtag_get_reset_config();
961
962 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
963 /* allow scripts to override the reset event */
964
965 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
966 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
967 target->state = TARGET_RESET;
968
969 return ERROR_OK;
970 }
971
972 /* some cores support connecting while srst is asserted
973 * use that mode is it has been configured */
974
975 bool srst_asserted = false;
976
977 if (!target_was_examined(target)) {
978 if (jtag_reset_config & RESET_HAS_SRST) {
979 adapter_assert_reset();
980 if (target->reset_halt)
981 LOG_ERROR("Target not examined, will not halt after reset!");
982 return ERROR_OK;
983 } else {
984 LOG_ERROR("Target not examined, reset NOT asserted!");
985 return ERROR_FAIL;
986 }
987 }
988
989 if ((jtag_reset_config & RESET_HAS_SRST) &&
990 (jtag_reset_config & RESET_SRST_NO_GATING)) {
991 adapter_assert_reset();
992 srst_asserted = true;
993 }
994
995 /* Enable debug requests */
996 int retval;
997 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
998 /* Store important errors instead of failing and proceed to reset assert */
999
1000 if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1001 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1002
1003 /* If the processor is sleeping in a WFI or WFE instruction, the
1004 * C_HALT bit must be asserted to regain control */
1005 if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1006 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1007
1008 mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1009 /* Ignore less important errors */
1010
1011 if (!target->reset_halt) {
1012 /* Set/Clear C_MASKINTS in a separate operation */
1013 if (cortex_m->dcb_dhcsr & C_MASKINTS)
1014 cortex_m_write_debug_halt_mask(target, 0, C_MASKINTS);
1015
1016 /* clear any debug flags before resuming */
1017 cortex_m_clear_halt(target);
1018
1019 /* clear C_HALT in dhcsr reg */
1020 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1021 } else {
1022 /* Halt in debug on reset; endreset_event() restores DEMCR.
1023 *
1024 * REVISIT catching BUSERR presumably helps to defend against
1025 * bad vector table entries. Should this include MMERR or
1026 * other flags too?
1027 */
1028 int retval2;
1029 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1030 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1031 if (retval != ERROR_OK || retval2 != ERROR_OK)
1032 LOG_INFO("AP write error, reset will not halt");
1033 }
1034
1035 if (jtag_reset_config & RESET_HAS_SRST) {
1036 /* default to asserting srst */
1037 if (!srst_asserted)
1038 adapter_assert_reset();
1039
1040 /* srst is asserted, ignore AP access errors */
1041 retval = ERROR_OK;
1042 } else {
1043 /* Use a standard Cortex-M3 software reset mechanism.
1044 * We default to using VECRESET as it is supported on all current cores
1045 * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1046 * This has the disadvantage of not resetting the peripherals, so a
1047 * reset-init event handler is needed to perform any peripheral resets.
1048 */
1049 if (!cortex_m->vectreset_supported
1050 && reset_config == CORTEX_M_RESET_VECTRESET) {
1051 reset_config = CORTEX_M_RESET_SYSRESETREQ;
1052 LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1053 LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1054 }
1055
1056 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1057 ? "SYSRESETREQ" : "VECTRESET");
1058
1059 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1060 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1061 "handler to reset any peripherals or configure hardware srst support.");
1062 }
1063
1064 int retval3;
1065 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1066 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1067 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1068 if (retval3 != ERROR_OK)
1069 LOG_DEBUG("Ignoring AP write error right after reset");
1070
1071 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1072 if (retval3 != ERROR_OK)
1073 LOG_ERROR("DP initialisation failed");
1074
1075 else {
1076 /* I do not know why this is necessary, but it
1077 * fixes strange effects (step/resume cause NMI
1078 * after reset) on LM3S6918 -- Michael Schwingen
1079 */
1080 uint32_t tmp;
1081 mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1082 }
1083 }
1084
1085 target->state = TARGET_RESET;
1086 jtag_add_sleep(50000);
1087
1088 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1089
1090 /* now return stored error code if any */
1091 if (retval != ERROR_OK)
1092 return retval;
1093
1094 if (target->reset_halt) {
1095 retval = target_halt(target);
1096 if (retval != ERROR_OK)
1097 return retval;
1098 }
1099
1100 return ERROR_OK;
1101 }
1102
1103 static int cortex_m_deassert_reset(struct target *target)
1104 {
1105 struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1106
1107 LOG_DEBUG("target->state: %s",
1108 target_state_name(target));
1109
1110 /* deassert reset lines */
1111 adapter_deassert_reset();
1112
1113 enum reset_types jtag_reset_config = jtag_get_reset_config();
1114
1115 if ((jtag_reset_config & RESET_HAS_SRST) &&
1116 !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1117 target_was_examined(target)) {
1118 int retval = dap_dp_init(armv7m->debug_ap->dap);
1119 if (retval != ERROR_OK) {
1120 LOG_ERROR("DP initialisation failed");
1121 return retval;
1122 }
1123 }
1124
1125 return ERROR_OK;
1126 }
1127
1128 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1129 {
1130 int retval;
1131 int fp_num = 0;
1132 struct cortex_m_common *cortex_m = target_to_cm(target);
1133 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1134
1135 if (breakpoint->set) {
1136 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1137 return ERROR_OK;
1138 }
1139
1140 if (breakpoint->type == BKPT_HARD) {
1141 uint32_t fpcr_value;
1142 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1143 fp_num++;
1144 if (fp_num >= cortex_m->fp_num_code) {
1145 LOG_ERROR("Can not find free FPB Comparator!");
1146 return ERROR_FAIL;
1147 }
1148 breakpoint->set = fp_num + 1;
1149 fpcr_value = breakpoint->address | 1;
1150 if (cortex_m->fp_rev == 0) {
1151 if (breakpoint->address > 0x1FFFFFFF) {
1152 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1153 return ERROR_FAIL;
1154 }
1155 uint32_t hilo;
1156 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1157 fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1158 } else if (cortex_m->fp_rev > 1) {
1159 LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1160 return ERROR_FAIL;
1161 }
1162 comparator_list[fp_num].used = 1;
1163 comparator_list[fp_num].fpcr_value = fpcr_value;
1164 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1165 comparator_list[fp_num].fpcr_value);
1166 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1167 fp_num,
1168 comparator_list[fp_num].fpcr_value);
1169 if (!cortex_m->fpb_enabled) {
1170 LOG_DEBUG("FPB wasn't enabled, do it now");
1171 retval = cortex_m_enable_fpb(target);
1172 if (retval != ERROR_OK) {
1173 LOG_ERROR("Failed to enable the FPB");
1174 return retval;
1175 }
1176
1177 cortex_m->fpb_enabled = 1;
1178 }
1179 } else if (breakpoint->type == BKPT_SOFT) {
1180 uint8_t code[4];
1181
1182 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1183 * semihosting; don't use that. Otherwise the BKPT
1184 * parameter is arbitrary.
1185 */
1186 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1187 retval = target_read_memory(target,
1188 breakpoint->address & 0xFFFFFFFE,
1189 breakpoint->length, 1,
1190 breakpoint->orig_instr);
1191 if (retval != ERROR_OK)
1192 return retval;
1193 retval = target_write_memory(target,
1194 breakpoint->address & 0xFFFFFFFE,
1195 breakpoint->length, 1,
1196 code);
1197 if (retval != ERROR_OK)
1198 return retval;
1199 breakpoint->set = true;
1200 }
1201
1202 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1203 breakpoint->unique_id,
1204 (int)(breakpoint->type),
1205 breakpoint->address,
1206 breakpoint->length,
1207 breakpoint->set);
1208
1209 return ERROR_OK;
1210 }
1211
1212 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1213 {
1214 int retval;
1215 struct cortex_m_common *cortex_m = target_to_cm(target);
1216 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1217
1218 if (!breakpoint->set) {
1219 LOG_WARNING("breakpoint not set");
1220 return ERROR_OK;
1221 }
1222
1223 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1224 breakpoint->unique_id,
1225 (int)(breakpoint->type),
1226 breakpoint->address,
1227 breakpoint->length,
1228 breakpoint->set);
1229
1230 if (breakpoint->type == BKPT_HARD) {
1231 int fp_num = breakpoint->set - 1;
1232 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1233 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1234 return ERROR_OK;
1235 }
1236 comparator_list[fp_num].used = 0;
1237 comparator_list[fp_num].fpcr_value = 0;
1238 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1239 comparator_list[fp_num].fpcr_value);
1240 } else {
1241 /* restore original instruction (kept in target endianness) */
1242 if (breakpoint->length == 4) {
1243 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1244 breakpoint->orig_instr);
1245 if (retval != ERROR_OK)
1246 return retval;
1247 } else {
1248 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1249 breakpoint->orig_instr);
1250 if (retval != ERROR_OK)
1251 return retval;
1252 }
1253 }
1254 breakpoint->set = false;
1255
1256 return ERROR_OK;
1257 }
1258
1259 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1260 {
1261 struct cortex_m_common *cortex_m = target_to_cm(target);
1262
1263 if ((breakpoint->type == BKPT_HARD) && (cortex_m->fp_code_available < 1)) {
1264 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1265 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1266 }
1267
1268 if (breakpoint->length == 3) {
1269 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1270 breakpoint->length = 2;
1271 }
1272
1273 if ((breakpoint->length != 2)) {
1274 LOG_INFO("only breakpoints of two bytes length supported");
1275 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1276 }
1277
1278 if (breakpoint->type == BKPT_HARD)
1279 cortex_m->fp_code_available--;
1280
1281 return cortex_m_set_breakpoint(target, breakpoint);
1282 }
1283
1284 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1285 {
1286 struct cortex_m_common *cortex_m = target_to_cm(target);
1287
1288 /* REVISIT why check? FPB can be updated with core running ... */
1289 if (target->state != TARGET_HALTED) {
1290 LOG_WARNING("target not halted");
1291 return ERROR_TARGET_NOT_HALTED;
1292 }
1293
1294 if (breakpoint->set)
1295 cortex_m_unset_breakpoint(target, breakpoint);
1296
1297 if (breakpoint->type == BKPT_HARD)
1298 cortex_m->fp_code_available++;
1299
1300 return ERROR_OK;
1301 }
1302
1303 int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1304 {
1305 int dwt_num = 0;
1306 uint32_t mask, temp;
1307 struct cortex_m_common *cortex_m = target_to_cm(target);
1308
1309 /* watchpoint params were validated earlier */
1310 mask = 0;
1311 temp = watchpoint->length;
1312 while (temp) {
1313 temp >>= 1;
1314 mask++;
1315 }
1316 mask--;
1317
1318 /* REVISIT Don't fully trust these "not used" records ... users
1319 * may set up breakpoints by hand, e.g. dual-address data value
1320 * watchpoint using comparator #1; comparator #0 matching cycle
1321 * count; send data trace info through ITM and TPIU; etc
1322 */
1323 struct cortex_m_dwt_comparator *comparator;
1324
1325 for (comparator = cortex_m->dwt_comparator_list;
1326 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1327 comparator++, dwt_num++)
1328 continue;
1329 if (dwt_num >= cortex_m->dwt_num_comp) {
1330 LOG_ERROR("Can not find free DWT Comparator");
1331 return ERROR_FAIL;
1332 }
1333 comparator->used = 1;
1334 watchpoint->set = dwt_num + 1;
1335
1336 comparator->comp = watchpoint->address;
1337 target_write_u32(target, comparator->dwt_comparator_address + 0,
1338 comparator->comp);
1339
1340 comparator->mask = mask;
1341 target_write_u32(target, comparator->dwt_comparator_address + 4,
1342 comparator->mask);
1343
1344 switch (watchpoint->rw) {
1345 case WPT_READ:
1346 comparator->function = 5;
1347 break;
1348 case WPT_WRITE:
1349 comparator->function = 6;
1350 break;
1351 case WPT_ACCESS:
1352 comparator->function = 7;
1353 break;
1354 }
1355 target_write_u32(target, comparator->dwt_comparator_address + 8,
1356 comparator->function);
1357
1358 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1359 watchpoint->unique_id, dwt_num,
1360 (unsigned) comparator->comp,
1361 (unsigned) comparator->mask,
1362 (unsigned) comparator->function);
1363 return ERROR_OK;
1364 }
1365
1366 int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1367 {
1368 struct cortex_m_common *cortex_m = target_to_cm(target);
1369 struct cortex_m_dwt_comparator *comparator;
1370 int dwt_num;
1371
1372 if (!watchpoint->set) {
1373 LOG_WARNING("watchpoint (wpid: %d) not set",
1374 watchpoint->unique_id);
1375 return ERROR_OK;
1376 }
1377
1378 dwt_num = watchpoint->set - 1;
1379
1380 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1381 watchpoint->unique_id, dwt_num,
1382 (unsigned) watchpoint->address);
1383
1384 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1385 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1386 return ERROR_OK;
1387 }
1388
1389 comparator = cortex_m->dwt_comparator_list + dwt_num;
1390 comparator->used = 0;
1391 comparator->function = 0;
1392 target_write_u32(target, comparator->dwt_comparator_address + 8,
1393 comparator->function);
1394
1395 watchpoint->set = false;
1396
1397 return ERROR_OK;
1398 }
1399
1400 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1401 {
1402 struct cortex_m_common *cortex_m = target_to_cm(target);
1403
1404 if (cortex_m->dwt_comp_available < 1) {
1405 LOG_DEBUG("no comparators?");
1406 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1407 }
1408
1409 /* hardware doesn't support data value masking */
1410 if (watchpoint->mask != ~(uint32_t)0) {
1411 LOG_DEBUG("watchpoint value masks not supported");
1412 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1413 }
1414
1415 /* hardware allows address masks of up to 32K */
1416 unsigned mask;
1417
1418 for (mask = 0; mask < 16; mask++) {
1419 if ((1u << mask) == watchpoint->length)
1420 break;
1421 }
1422 if (mask == 16) {
1423 LOG_DEBUG("unsupported watchpoint length");
1424 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1425 }
1426 if (watchpoint->address & ((1 << mask) - 1)) {
1427 LOG_DEBUG("watchpoint address is unaligned");
1428 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1429 }
1430
1431 /* Caller doesn't seem to be able to describe watching for data
1432 * values of zero; that flags "no value".
1433 *
1434 * REVISIT This DWT may well be able to watch for specific data
1435 * values. Requires comparator #1 to set DATAVMATCH and match
1436 * the data, and another comparator (DATAVADDR0) matching addr.
1437 */
1438 if (watchpoint->value) {
1439 LOG_DEBUG("data value watchpoint not YET supported");
1440 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1441 }
1442
1443 cortex_m->dwt_comp_available--;
1444 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1445
1446 return ERROR_OK;
1447 }
1448
1449 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1450 {
1451 struct cortex_m_common *cortex_m = target_to_cm(target);
1452
1453 /* REVISIT why check? DWT can be updated with core running ... */
1454 if (target->state != TARGET_HALTED) {
1455 LOG_WARNING("target not halted");
1456 return ERROR_TARGET_NOT_HALTED;
1457 }
1458
1459 if (watchpoint->set)
1460 cortex_m_unset_watchpoint(target, watchpoint);
1461
1462 cortex_m->dwt_comp_available++;
1463 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1464
1465 return ERROR_OK;
1466 }
1467
1468 void cortex_m_enable_watchpoints(struct target *target)
1469 {
1470 struct watchpoint *watchpoint = target->watchpoints;
1471
1472 /* set any pending watchpoints */
1473 while (watchpoint) {
1474 if (!watchpoint->set)
1475 cortex_m_set_watchpoint(target, watchpoint);
1476 watchpoint = watchpoint->next;
1477 }
1478 }
1479
1480 static int cortex_m_load_core_reg_u32(struct target *target,
1481 uint32_t num, uint32_t *value)
1482 {
1483 int retval;
1484
1485 /* NOTE: we "know" here that the register identifiers used
1486 * in the v7m header match the Cortex-M3 Debug Core Register
1487 * Selector values for R0..R15, xPSR, MSP, and PSP.
1488 */
1489 switch (num) {
1490 case 0 ... 18:
1491 /* read a normal core register */
1492 retval = cortexm_dap_read_coreregister_u32(target, value, num);
1493
1494 if (retval != ERROR_OK) {
1495 LOG_ERROR("JTAG failure %i", retval);
1496 return ERROR_JTAG_DEVICE_ERROR;
1497 }
1498 LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
1499 break;
1500
1501 case ARMV7M_FPSCR:
1502 /* Floating-point Status and Registers */
1503 retval = target_write_u32(target, DCB_DCRSR, 0x21);
1504 if (retval != ERROR_OK)
1505 return retval;
1506 retval = target_read_u32(target, DCB_DCRDR, value);
1507 if (retval != ERROR_OK)
1508 return retval;
1509 LOG_DEBUG("load from FPSCR value 0x%" PRIx32, *value);
1510 break;
1511
1512 case ARMV7M_S0 ... ARMV7M_S31:
1513 /* Floating-point Status and Registers */
1514 retval = target_write_u32(target, DCB_DCRSR, num - ARMV7M_S0 + 0x40);
1515 if (retval != ERROR_OK)
1516 return retval;
1517 retval = target_read_u32(target, DCB_DCRDR, value);
1518 if (retval != ERROR_OK)
1519 return retval;
1520 LOG_DEBUG("load from FPU reg S%d value 0x%" PRIx32,
1521 (int)(num - ARMV7M_S0), *value);
1522 break;
1523
1524 case ARMV7M_PRIMASK:
1525 case ARMV7M_BASEPRI:
1526 case ARMV7M_FAULTMASK:
1527 case ARMV7M_CONTROL:
1528 /* Cortex-M3 packages these four registers as bitfields
1529 * in one Debug Core register. So say r0 and r2 docs;
1530 * it was removed from r1 docs, but still works.
1531 */
1532 cortexm_dap_read_coreregister_u32(target, value, 20);
1533
1534 switch (num) {
1535 case ARMV7M_PRIMASK:
1536 *value = buf_get_u32((uint8_t *)value, 0, 1);
1537 break;
1538
1539 case ARMV7M_BASEPRI:
1540 *value = buf_get_u32((uint8_t *)value, 8, 8);
1541 break;
1542
1543 case ARMV7M_FAULTMASK:
1544 *value = buf_get_u32((uint8_t *)value, 16, 1);
1545 break;
1546
1547 case ARMV7M_CONTROL:
1548 *value = buf_get_u32((uint8_t *)value, 24, 2);
1549 break;
1550 }
1551
1552 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1553 break;
1554
1555 default:
1556 return ERROR_COMMAND_SYNTAX_ERROR;
1557 }
1558
1559 return ERROR_OK;
1560 }
1561
1562 static int cortex_m_store_core_reg_u32(struct target *target,
1563 uint32_t num, uint32_t value)
1564 {
1565 int retval;
1566 uint32_t reg;
1567 struct armv7m_common *armv7m = target_to_armv7m(target);
1568
1569 /* NOTE: we "know" here that the register identifiers used
1570 * in the v7m header match the Cortex-M3 Debug Core Register
1571 * Selector values for R0..R15, xPSR, MSP, and PSP.
1572 */
1573 switch (num) {
1574 case 0 ... 18:
1575 retval = cortexm_dap_write_coreregister_u32(target, value, num);
1576 if (retval != ERROR_OK) {
1577 struct reg *r;
1578
1579 LOG_ERROR("JTAG failure");
1580 r = armv7m->arm.core_cache->reg_list + num;
1581 r->dirty = r->valid;
1582 return ERROR_JTAG_DEVICE_ERROR;
1583 }
1584 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1585 break;
1586
1587 case ARMV7M_FPSCR:
1588 /* Floating-point Status and Registers */
1589 retval = target_write_u32(target, DCB_DCRDR, value);
1590 if (retval != ERROR_OK)
1591 return retval;
1592 retval = target_write_u32(target, DCB_DCRSR, 0x21 | (1<<16));
1593 if (retval != ERROR_OK)
1594 return retval;
1595 LOG_DEBUG("write FPSCR value 0x%" PRIx32, value);
1596 break;
1597
1598 case ARMV7M_S0 ... ARMV7M_S31:
1599 /* Floating-point Status and Registers */
1600 retval = target_write_u32(target, DCB_DCRDR, value);
1601 if (retval != ERROR_OK)
1602 return retval;
1603 retval = target_write_u32(target, DCB_DCRSR, (num - ARMV7M_S0 + 0x40) | (1<<16));
1604 if (retval != ERROR_OK)
1605 return retval;
1606 LOG_DEBUG("write FPU reg S%d value 0x%" PRIx32,
1607 (int)(num - ARMV7M_S0), value);
1608 break;
1609
1610 case ARMV7M_PRIMASK:
1611 case ARMV7M_BASEPRI:
1612 case ARMV7M_FAULTMASK:
1613 case ARMV7M_CONTROL:
1614 /* Cortex-M3 packages these four registers as bitfields
1615 * in one Debug Core register. So say r0 and r2 docs;
1616 * it was removed from r1 docs, but still works.
1617 */
1618 cortexm_dap_read_coreregister_u32(target, &reg, 20);
1619
1620 switch (num) {
1621 case ARMV7M_PRIMASK:
1622 buf_set_u32((uint8_t *)&reg, 0, 1, value);
1623 break;
1624
1625 case ARMV7M_BASEPRI:
1626 buf_set_u32((uint8_t *)&reg, 8, 8, value);
1627 break;
1628
1629 case ARMV7M_FAULTMASK:
1630 buf_set_u32((uint8_t *)&reg, 16, 1, value);
1631 break;
1632
1633 case ARMV7M_CONTROL:
1634 buf_set_u32((uint8_t *)&reg, 24, 2, value);
1635 break;
1636 }
1637
1638 cortexm_dap_write_coreregister_u32(target, reg, 20);
1639
1640 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1641 break;
1642
1643 default:
1644 return ERROR_COMMAND_SYNTAX_ERROR;
1645 }
1646
1647 return ERROR_OK;
1648 }
1649
1650 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1651 uint32_t size, uint32_t count, uint8_t *buffer)
1652 {
1653 struct armv7m_common *armv7m = target_to_armv7m(target);
1654
1655 if (armv7m->arm.is_armv6m) {
1656 /* armv6m does not handle unaligned memory access */
1657 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1658 return ERROR_TARGET_UNALIGNED_ACCESS;
1659 }
1660
1661 return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1662 }
1663
1664 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1665 uint32_t size, uint32_t count, const uint8_t *buffer)
1666 {
1667 struct armv7m_common *armv7m = target_to_armv7m(target);
1668
1669 if (armv7m->arm.is_armv6m) {
1670 /* armv6m does not handle unaligned memory access */
1671 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1672 return ERROR_TARGET_UNALIGNED_ACCESS;
1673 }
1674
1675 return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1676 }
1677
1678 static int cortex_m_init_target(struct command_context *cmd_ctx,
1679 struct target *target)
1680 {
1681 armv7m_build_reg_cache(target);
1682 arm_semihosting_init(target);
1683 return ERROR_OK;
1684 }
1685
1686 void cortex_m_deinit_target(struct target *target)
1687 {
1688 struct cortex_m_common *cortex_m = target_to_cm(target);
1689
1690 free(cortex_m->fp_comparator_list);
1691
1692 cortex_m_dwt_free(target);
1693 armv7m_free_reg_cache(target);
1694
1695 free(target->private_config);
1696 free(cortex_m);
1697 }
1698
1699 int cortex_m_profiling(struct target *target, uint32_t *samples,
1700 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1701 {
1702 struct timeval timeout, now;
1703 struct armv7m_common *armv7m = target_to_armv7m(target);
1704 uint32_t reg_value;
1705 bool use_pcsr = false;
1706 int retval = ERROR_OK;
1707 struct reg *reg;
1708
1709 gettimeofday(&timeout, NULL);
1710 timeval_add_time(&timeout, seconds, 0);
1711
1712 retval = target_read_u32(target, DWT_PCSR, &reg_value);
1713 if (retval != ERROR_OK) {
1714 LOG_ERROR("Error while reading PCSR");
1715 return retval;
1716 }
1717
1718 if (reg_value != 0) {
1719 use_pcsr = true;
1720 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1721 } else {
1722 LOG_INFO("Starting profiling. Halting and resuming the"
1723 " target as often as we can...");
1724 reg = register_get_by_name(target->reg_cache, "pc", 1);
1725 }
1726
1727 /* Make sure the target is running */
1728 target_poll(target);
1729 if (target->state == TARGET_HALTED)
1730 retval = target_resume(target, 1, 0, 0, 0);
1731
1732 if (retval != ERROR_OK) {
1733 LOG_ERROR("Error while resuming target");
1734 return retval;
1735 }
1736
1737 uint32_t sample_count = 0;
1738
1739 for (;;) {
1740 if (use_pcsr) {
1741 if (armv7m && armv7m->debug_ap) {
1742 uint32_t read_count = max_num_samples - sample_count;
1743 if (read_count > 1024)
1744 read_count = 1024;
1745
1746 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1747 (void *)&samples[sample_count],
1748 4, read_count, DWT_PCSR);
1749 sample_count += read_count;
1750 } else {
1751 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1752 }
1753 } else {
1754 target_poll(target);
1755 if (target->state == TARGET_HALTED) {
1756 reg_value = buf_get_u32(reg->value, 0, 32);
1757 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1758 retval = target_resume(target, 1, 0, 0, 0);
1759 samples[sample_count++] = reg_value;
1760 target_poll(target);
1761 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1762 } else if (target->state == TARGET_RUNNING) {
1763 /* We want to quickly sample the PC. */
1764 retval = target_halt(target);
1765 } else {
1766 LOG_INFO("Target not halted or running");
1767 retval = ERROR_OK;
1768 break;
1769 }
1770 }
1771
1772 if (retval != ERROR_OK) {
1773 LOG_ERROR("Error while reading %s", use_pcsr ? "PCSR" : "target pc");
1774 return retval;
1775 }
1776
1777
1778 gettimeofday(&now, NULL);
1779 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1780 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1781 break;
1782 }
1783 }
1784
1785 *num_samples = sample_count;
1786 return retval;
1787 }
1788
1789
1790 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1791 * on r/w if the core is not running, and clear on resume or reset ... or
1792 * at least, in a post_restore_context() method.
1793 */
1794
1795 struct dwt_reg_state {
1796 struct target *target;
1797 uint32_t addr;
1798 uint8_t value[4]; /* scratch/cache */
1799 };
1800
1801 static int cortex_m_dwt_get_reg(struct reg *reg)
1802 {
1803 struct dwt_reg_state *state = reg->arch_info;
1804
1805 uint32_t tmp;
1806 int retval = target_read_u32(state->target, state->addr, &tmp);
1807 if (retval != ERROR_OK)
1808 return retval;
1809
1810 buf_set_u32(state->value, 0, 32, tmp);
1811 return ERROR_OK;
1812 }
1813
1814 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1815 {
1816 struct dwt_reg_state *state = reg->arch_info;
1817
1818 return target_write_u32(state->target, state->addr,
1819 buf_get_u32(buf, 0, reg->size));
1820 }
1821
1822 struct dwt_reg {
1823 uint32_t addr;
1824 const char *name;
1825 unsigned size;
1826 };
1827
1828 static const struct dwt_reg dwt_base_regs[] = {
1829 { DWT_CTRL, "dwt_ctrl", 32, },
1830 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1831 * increments while the core is asleep.
1832 */
1833 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1834 /* plus some 8 bit counters, useful for profiling with TPIU */
1835 };
1836
1837 static const struct dwt_reg dwt_comp[] = {
1838 #define DWT_COMPARATOR(i) \
1839 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1840 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1841 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1842 DWT_COMPARATOR(0),
1843 DWT_COMPARATOR(1),
1844 DWT_COMPARATOR(2),
1845 DWT_COMPARATOR(3),
1846 DWT_COMPARATOR(4),
1847 DWT_COMPARATOR(5),
1848 DWT_COMPARATOR(6),
1849 DWT_COMPARATOR(7),
1850 DWT_COMPARATOR(8),
1851 DWT_COMPARATOR(9),
1852 DWT_COMPARATOR(10),
1853 DWT_COMPARATOR(11),
1854 DWT_COMPARATOR(12),
1855 DWT_COMPARATOR(13),
1856 DWT_COMPARATOR(14),
1857 DWT_COMPARATOR(15),
1858 #undef DWT_COMPARATOR
1859 };
1860
1861 static const struct reg_arch_type dwt_reg_type = {
1862 .get = cortex_m_dwt_get_reg,
1863 .set = cortex_m_dwt_set_reg,
1864 };
1865
1866 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1867 {
1868 struct dwt_reg_state *state;
1869
1870 state = calloc(1, sizeof *state);
1871 if (!state)
1872 return;
1873 state->addr = d->addr;
1874 state->target = t;
1875
1876 r->name = d->name;
1877 r->size = d->size;
1878 r->value = state->value;
1879 r->arch_info = state;
1880 r->type = &dwt_reg_type;
1881 }
1882
1883 void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1884 {
1885 uint32_t dwtcr;
1886 struct reg_cache *cache;
1887 struct cortex_m_dwt_comparator *comparator;
1888 int reg, i;
1889
1890 target_read_u32(target, DWT_CTRL, &dwtcr);
1891 LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1892 if (!dwtcr) {
1893 LOG_DEBUG("no DWT");
1894 return;
1895 }
1896
1897 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1898 cm->dwt_comp_available = cm->dwt_num_comp;
1899 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1900 sizeof(struct cortex_m_dwt_comparator));
1901 if (!cm->dwt_comparator_list) {
1902 fail0:
1903 cm->dwt_num_comp = 0;
1904 LOG_ERROR("out of mem");
1905 return;
1906 }
1907
1908 cache = calloc(1, sizeof *cache);
1909 if (!cache) {
1910 fail1:
1911 free(cm->dwt_comparator_list);
1912 goto fail0;
1913 }
1914 cache->name = "Cortex-M DWT registers";
1915 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1916 cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1917 if (!cache->reg_list) {
1918 free(cache);
1919 goto fail1;
1920 }
1921
1922 for (reg = 0; reg < 2; reg++)
1923 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1924 dwt_base_regs + reg);
1925
1926 comparator = cm->dwt_comparator_list;
1927 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1928 int j;
1929
1930 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1931 for (j = 0; j < 3; j++, reg++)
1932 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1933 dwt_comp + 3 * i + j);
1934
1935 /* make sure we clear any watchpoints enabled on the target */
1936 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1937 }
1938
1939 *register_get_last_cache_p(&target->reg_cache) = cache;
1940 cm->dwt_cache = cache;
1941
1942 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1943 dwtcr, cm->dwt_num_comp,
1944 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1945
1946 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1947 * implement single-address data value watchpoints ... so we
1948 * won't need to check it later, when asked to set one up.
1949 */
1950 }
1951
1952 static void cortex_m_dwt_free(struct target *target)
1953 {
1954 struct cortex_m_common *cm = target_to_cm(target);
1955 struct reg_cache *cache = cm->dwt_cache;
1956
1957 free(cm->dwt_comparator_list);
1958 cm->dwt_comparator_list = NULL;
1959 cm->dwt_num_comp = 0;
1960
1961 if (cache) {
1962 register_unlink_cache(&target->reg_cache, cache);
1963
1964 if (cache->reg_list) {
1965 for (size_t i = 0; i < cache->num_regs; i++)
1966 free(cache->reg_list[i].arch_info);
1967 free(cache->reg_list);
1968 }
1969 free(cache);
1970 }
1971 cm->dwt_cache = NULL;
1972 }
1973
1974 #define MVFR0 0xe000ef40
1975 #define MVFR1 0xe000ef44
1976
1977 #define MVFR0_DEFAULT_M4 0x10110021
1978 #define MVFR1_DEFAULT_M4 0x11000011
1979
1980 #define MVFR0_DEFAULT_M7_SP 0x10110021
1981 #define MVFR0_DEFAULT_M7_DP 0x10110221
1982 #define MVFR1_DEFAULT_M7_SP 0x11000011
1983 #define MVFR1_DEFAULT_M7_DP 0x12000011
1984
1985 int cortex_m_examine(struct target *target)
1986 {
1987 int retval;
1988 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1989 int i;
1990 struct cortex_m_common *cortex_m = target_to_cm(target);
1991 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1992 struct armv7m_common *armv7m = target_to_armv7m(target);
1993
1994 /* stlink shares the examine handler but does not support
1995 * all its calls */
1996 if (!armv7m->stlink) {
1997 if (cortex_m->apsel == DP_APSEL_INVALID) {
1998 /* Search for the MEM-AP */
1999 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7m->debug_ap);
2000 if (retval != ERROR_OK) {
2001 LOG_ERROR("Could not find MEM-AP to control the core");
2002 return retval;
2003 }
2004 } else {
2005 armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
2006 }
2007
2008 /* Leave (only) generic DAP stuff for debugport_init(); */
2009 armv7m->debug_ap->memaccess_tck = 8;
2010
2011 retval = mem_ap_init(armv7m->debug_ap);
2012 if (retval != ERROR_OK)
2013 return retval;
2014 }
2015
2016 if (!target_was_examined(target)) {
2017 target_set_examined(target);
2018
2019 /* Read from Device Identification Registers */
2020 retval = target_read_u32(target, CPUID, &cpuid);
2021 if (retval != ERROR_OK)
2022 return retval;
2023
2024 /* Get CPU Type */
2025 i = (cpuid >> 4) & 0xf;
2026
2027 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
2028 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
2029 if (i == 7) {
2030 uint8_t rev, patch;
2031 rev = (cpuid >> 20) & 0xf;
2032 patch = (cpuid >> 0) & 0xf;
2033 if ((rev == 0) && (patch < 2))
2034 LOG_WARNING("Silicon bug: single stepping will enter pending exception handler!");
2035 }
2036 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2037
2038 /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */
2039 cortex_m->vectreset_supported = i > 1;
2040
2041 if (i == 4) {
2042 target_read_u32(target, MVFR0, &mvfr0);
2043 target_read_u32(target, MVFR1, &mvfr1);
2044
2045 /* test for floating point feature on Cortex-M4 */
2046 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2047 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2048 armv7m->fp_feature = FPv4_SP;
2049 }
2050 } else if (i == 7) {
2051 target_read_u32(target, MVFR0, &mvfr0);
2052 target_read_u32(target, MVFR1, &mvfr1);
2053
2054 /* test for floating point features on Cortex-M7 */
2055 if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2056 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2057 armv7m->fp_feature = FPv5_SP;
2058 } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2059 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2060 armv7m->fp_feature = FPv5_DP;
2061 }
2062 } else if (i == 0) {
2063 /* Cortex-M0 does not support unaligned memory access */
2064 armv7m->arm.is_armv6m = true;
2065 }
2066
2067 if (armv7m->fp_feature == FP_NONE &&
2068 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2069 /* free unavailable FPU registers */
2070 size_t idx;
2071
2072 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2073 idx < armv7m->arm.core_cache->num_regs;
2074 idx++) {
2075 free(armv7m->arm.core_cache->reg_list[idx].value);
2076 free(armv7m->arm.core_cache->reg_list[idx].feature);
2077 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2078 }
2079 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2080 }
2081
2082 if (!armv7m->stlink) {
2083 if (i == 3 || i == 4)
2084 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2085 * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2086 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2087 else if (i == 7)
2088 /* Cortex-M7 has only 1024 bytes autoincrement range */
2089 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2090 }
2091
2092 /* Configure trace modules */
2093 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2094 if (retval != ERROR_OK)
2095 return retval;
2096
2097 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2098 armv7m_trace_tpiu_config(target);
2099 armv7m_trace_itm_config(target);
2100 }
2101
2102 /* NOTE: FPB and DWT are both optional. */
2103
2104 /* Setup FPB */
2105 target_read_u32(target, FP_CTRL, &fpcr);
2106 /* bits [14:12] and [7:4] */
2107 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2108 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2109 cortex_m->fp_code_available = cortex_m->fp_num_code;
2110 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2111 Revision is zero base, fp_rev == 1 means Rev.2 ! */
2112 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2113 free(cortex_m->fp_comparator_list);
2114 cortex_m->fp_comparator_list = calloc(
2115 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2116 sizeof(struct cortex_m_fp_comparator));
2117 cortex_m->fpb_enabled = fpcr & 1;
2118 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2119 cortex_m->fp_comparator_list[i].type =
2120 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2121 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2122
2123 /* make sure we clear any breakpoints enabled on the target */
2124 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2125 }
2126 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2127 fpcr,
2128 cortex_m->fp_num_code,
2129 cortex_m->fp_num_lit);
2130
2131 /* Setup DWT */
2132 cortex_m_dwt_free(target);
2133 cortex_m_dwt_setup(cortex_m, target);
2134
2135 /* These hardware breakpoints only work for code in flash! */
2136 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2137 target_name(target),
2138 cortex_m->fp_num_code,
2139 cortex_m->dwt_num_comp);
2140 }
2141
2142 return ERROR_OK;
2143 }
2144
2145 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2146 {
2147 struct armv7m_common *armv7m = target_to_armv7m(target);
2148 uint16_t dcrdr;
2149 uint8_t buf[2];
2150 int retval;
2151
2152 retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2153 if (retval != ERROR_OK)
2154 return retval;
2155
2156 dcrdr = target_buffer_get_u16(target, buf);
2157 *ctrl = (uint8_t)dcrdr;
2158 *value = (uint8_t)(dcrdr >> 8);
2159
2160 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2161
2162 /* write ack back to software dcc register
2163 * signify we have read data */
2164 if (dcrdr & (1 << 0)) {
2165 target_buffer_set_u16(target, buf, 0);
2166 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2167 if (retval != ERROR_OK)
2168 return retval;
2169 }
2170
2171 return ERROR_OK;
2172 }
2173
2174 static int cortex_m_target_request_data(struct target *target,
2175 uint32_t size, uint8_t *buffer)
2176 {
2177 uint8_t data;
2178 uint8_t ctrl;
2179 uint32_t i;
2180
2181 for (i = 0; i < (size * 4); i++) {
2182 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2183 if (retval != ERROR_OK)
2184 return retval;
2185 buffer[i] = data;
2186 }
2187
2188 return ERROR_OK;
2189 }
2190
2191 static int cortex_m_handle_target_request(void *priv)
2192 {
2193 struct target *target = priv;
2194 if (!target_was_examined(target))
2195 return ERROR_OK;
2196
2197 if (!target->dbg_msg_enabled)
2198 return ERROR_OK;
2199
2200 if (target->state == TARGET_RUNNING) {
2201 uint8_t data;
2202 uint8_t ctrl;
2203 int retval;
2204
2205 retval = cortex_m_dcc_read(target, &data, &ctrl);
2206 if (retval != ERROR_OK)
2207 return retval;
2208
2209 /* check if we have data */
2210 if (ctrl & (1 << 0)) {
2211 uint32_t request;
2212
2213 /* we assume target is quick enough */
2214 request = data;
2215 for (int i = 1; i <= 3; i++) {
2216 retval = cortex_m_dcc_read(target, &data, &ctrl);
2217 if (retval != ERROR_OK)
2218 return retval;
2219 request |= ((uint32_t)data << (i * 8));
2220 }
2221 target_request(target, request);
2222 }
2223 }
2224
2225 return ERROR_OK;
2226 }
2227
2228 static int cortex_m_init_arch_info(struct target *target,
2229 struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2230 {
2231 struct armv7m_common *armv7m = &cortex_m->armv7m;
2232
2233 armv7m_init_arch_info(target, armv7m);
2234
2235 /* default reset mode is to use srst if fitted
2236 * if not it will use CORTEX_M3_RESET_VECTRESET */
2237 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2238
2239 armv7m->arm.dap = dap;
2240
2241 /* register arch-specific functions */
2242 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2243
2244 armv7m->post_debug_entry = NULL;
2245
2246 armv7m->pre_restore_context = NULL;
2247
2248 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2249 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2250
2251 target_register_timer_callback(cortex_m_handle_target_request, 1, 1, target);
2252
2253 return ERROR_OK;
2254 }
2255
2256 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2257 {
2258 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2259 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2260 struct adiv5_private_config *pc;
2261
2262 pc = (struct adiv5_private_config *)target->private_config;
2263 if (adiv5_verify_config(pc) != ERROR_OK)
2264 return ERROR_FAIL;
2265
2266 cortex_m->apsel = pc->ap_num;
2267
2268 cortex_m_init_arch_info(target, cortex_m, pc->dap);
2269
2270 return ERROR_OK;
2271 }
2272
2273 /*--------------------------------------------------------------------------*/
2274
2275 static int cortex_m_verify_pointer(struct command_context *cmd_ctx,
2276 struct cortex_m_common *cm)
2277 {
2278 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2279 command_print(cmd_ctx, "target is not a Cortex-M");
2280 return ERROR_TARGET_INVALID;
2281 }
2282 return ERROR_OK;
2283 }
2284
2285 /*
2286 * Only stuff below this line should need to verify that its target
2287 * is a Cortex-M3. Everything else should have indirected through the
2288 * cortexm3_target structure, which is only used with CM3 targets.
2289 */
2290
2291 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2292 {
2293 struct target *target = get_current_target(CMD_CTX);
2294 struct cortex_m_common *cortex_m = target_to_cm(target);
2295 struct armv7m_common *armv7m = &cortex_m->armv7m;
2296 uint32_t demcr = 0;
2297 int retval;
2298
2299 static const struct {
2300 char name[10];
2301 unsigned mask;
2302 } vec_ids[] = {
2303 { "hard_err", VC_HARDERR, },
2304 { "int_err", VC_INTERR, },
2305 { "bus_err", VC_BUSERR, },
2306 { "state_err", VC_STATERR, },
2307 { "chk_err", VC_CHKERR, },
2308 { "nocp_err", VC_NOCPERR, },
2309 { "mm_err", VC_MMERR, },
2310 { "reset", VC_CORERESET, },
2311 };
2312
2313 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2314 if (retval != ERROR_OK)
2315 return retval;
2316
2317 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2318 if (retval != ERROR_OK)
2319 return retval;
2320
2321 if (CMD_ARGC > 0) {
2322 unsigned catch = 0;
2323
2324 if (CMD_ARGC == 1) {
2325 if (strcmp(CMD_ARGV[0], "all") == 0) {
2326 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2327 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2328 | VC_MMERR | VC_CORERESET;
2329 goto write;
2330 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2331 goto write;
2332 }
2333 while (CMD_ARGC-- > 0) {
2334 unsigned i;
2335 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2336 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2337 continue;
2338 catch |= vec_ids[i].mask;
2339 break;
2340 }
2341 if (i == ARRAY_SIZE(vec_ids)) {
2342 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2343 return ERROR_COMMAND_SYNTAX_ERROR;
2344 }
2345 }
2346 write:
2347 /* For now, armv7m->demcr only stores vector catch flags. */
2348 armv7m->demcr = catch;
2349
2350 demcr &= ~0xffff;
2351 demcr |= catch;
2352
2353 /* write, but don't assume it stuck (why not??) */
2354 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2355 if (retval != ERROR_OK)
2356 return retval;
2357 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2358 if (retval != ERROR_OK)
2359 return retval;
2360
2361 /* FIXME be sure to clear DEMCR on clean server shutdown.
2362 * Otherwise the vector catch hardware could fire when there's
2363 * no debugger hooked up, causing much confusion...
2364 */
2365 }
2366
2367 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2368 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2369 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2370 }
2371
2372 return ERROR_OK;
2373 }
2374
2375 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2376 {
2377 struct target *target = get_current_target(CMD_CTX);
2378 struct cortex_m_common *cortex_m = target_to_cm(target);
2379 int retval;
2380
2381 static const Jim_Nvp nvp_maskisr_modes[] = {
2382 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2383 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2384 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2385 { .name = NULL, .value = -1 },
2386 };
2387 const Jim_Nvp *n;
2388
2389
2390 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2391 if (retval != ERROR_OK)
2392 return retval;
2393
2394 if (target->state != TARGET_HALTED) {
2395 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2396 return ERROR_OK;
2397 }
2398
2399 if (CMD_ARGC > 0) {
2400 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2401 if (n->name == NULL)
2402 return ERROR_COMMAND_SYNTAX_ERROR;
2403 cortex_m->isrmasking_mode = n->value;
2404
2405
2406 if (cortex_m->isrmasking_mode == CORTEX_M_ISRMASK_ON)
2407 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2408 else
2409 cortex_m_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2410 }
2411
2412 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2413 command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2414
2415 return ERROR_OK;
2416 }
2417
2418 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2419 {
2420 struct target *target = get_current_target(CMD_CTX);
2421 struct cortex_m_common *cortex_m = target_to_cm(target);
2422 int retval;
2423 char *reset_config;
2424
2425 retval = cortex_m_verify_pointer(CMD_CTX, cortex_m);
2426 if (retval != ERROR_OK)
2427 return retval;
2428
2429 if (CMD_ARGC > 0) {
2430 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2431 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2432
2433 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2434 if (target_was_examined(target)
2435 && !cortex_m->vectreset_supported)
2436 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2437 else
2438 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2439
2440 } else
2441 return ERROR_COMMAND_SYNTAX_ERROR;
2442 }
2443
2444 switch (cortex_m->soft_reset_config) {
2445 case CORTEX_M_RESET_SYSRESETREQ:
2446 reset_config = "sysresetreq";
2447 break;
2448
2449 case CORTEX_M_RESET_VECTRESET:
2450 reset_config = "vectreset";
2451 break;
2452
2453 default:
2454 reset_config = "unknown";
2455 break;
2456 }
2457
2458 command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2459
2460 return ERROR_OK;
2461 }
2462
2463 static const struct command_registration cortex_m_exec_command_handlers[] = {
2464 {
2465 .name = "maskisr",
2466 .handler = handle_cortex_m_mask_interrupts_command,
2467 .mode = COMMAND_EXEC,
2468 .help = "mask cortex_m interrupts",
2469 .usage = "['auto'|'on'|'off']",
2470 },
2471 {
2472 .name = "vector_catch",
2473 .handler = handle_cortex_m_vector_catch_command,
2474 .mode = COMMAND_EXEC,
2475 .help = "configure hardware vectors to trigger debug entry",
2476 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2477 },
2478 {
2479 .name = "reset_config",
2480 .handler = handle_cortex_m_reset_config_command,
2481 .mode = COMMAND_ANY,
2482 .help = "configure software reset handling",
2483 .usage = "['sysresetreq'|'vectreset']",
2484 },
2485 COMMAND_REGISTRATION_DONE
2486 };
2487 static const struct command_registration cortex_m_command_handlers[] = {
2488 {
2489 .chain = armv7m_command_handlers,
2490 },
2491 {
2492 .chain = armv7m_trace_command_handlers,
2493 },
2494 {
2495 .name = "cortex_m",
2496 .mode = COMMAND_EXEC,
2497 .help = "Cortex-M command group",
2498 .usage = "",
2499 .chain = cortex_m_exec_command_handlers,
2500 },
2501 COMMAND_REGISTRATION_DONE
2502 };
2503
2504 struct target_type cortexm_target = {
2505 .name = "cortex_m",
2506 .deprecated_name = "cortex_m3",
2507
2508 .poll = cortex_m_poll,
2509 .arch_state = armv7m_arch_state,
2510
2511 .target_request_data = cortex_m_target_request_data,
2512
2513 .halt = cortex_m_halt,
2514 .resume = cortex_m_resume,
2515 .step = cortex_m_step,
2516
2517 .assert_reset = cortex_m_assert_reset,
2518 .deassert_reset = cortex_m_deassert_reset,
2519 .soft_reset_halt = cortex_m_soft_reset_halt,
2520
2521 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2522
2523 .read_memory = cortex_m_read_memory,
2524 .write_memory = cortex_m_write_memory,
2525 .checksum_memory = armv7m_checksum_memory,
2526 .blank_check_memory = armv7m_blank_check_memory,
2527
2528 .run_algorithm = armv7m_run_algorithm,
2529 .start_algorithm = armv7m_start_algorithm,
2530 .wait_algorithm = armv7m_wait_algorithm,
2531
2532 .add_breakpoint = cortex_m_add_breakpoint,
2533 .remove_breakpoint = cortex_m_remove_breakpoint,
2534 .add_watchpoint = cortex_m_add_watchpoint,
2535 .remove_watchpoint = cortex_m_remove_watchpoint,
2536
2537 .commands = cortex_m_command_handlers,
2538 .target_create = cortex_m_target_create,
2539 .target_jim_configure = adiv5_jim_configure,
2540 .init_target = cortex_m_init_target,
2541 .examine = cortex_m_examine,
2542 .deinit_target = cortex_m_deinit_target,
2543
2544 .profiling = cortex_m_profiling,
2545 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)