target/cortex_m,hla_target: rework Cortex-M register handling part 4
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 * *
24 * *
25 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
26 * *
27 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FPB remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
48 *
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
52 */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortex_m_load_core_reg_u32(struct target *target,
60 uint32_t regsel, uint32_t *value)
61 {
62 struct armv7m_common *armv7m = target_to_armv7m(target);
63 int retval;
64 uint32_t dcrdr;
65
66 /* because the DCB_DCRDR is used for the emulated dcc channel
67 * we have to save/restore the DCB_DCRDR when used */
68 if (target->dbg_msg_enabled) {
69 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70 if (retval != ERROR_OK)
71 return retval;
72 }
73
74 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
75 if (retval != ERROR_OK)
76 return retval;
77
78 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79 if (retval != ERROR_OK)
80 return retval;
81
82 if (target->dbg_msg_enabled) {
83 /* restore DCB_DCRDR - this needs to be in a separate
84 * transaction otherwise the emulated DCC channel breaks */
85 if (retval == ERROR_OK)
86 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87 }
88
89 return retval;
90 }
91
92 static int cortex_m_store_core_reg_u32(struct target *target,
93 uint32_t regsel, uint32_t value)
94 {
95 struct armv7m_common *armv7m = target_to_armv7m(target);
96 int retval;
97 uint32_t dcrdr;
98
99 /* because the DCB_DCRDR is used for the emulated dcc channel
100 * we have to save/restore the DCB_DCRDR when used */
101 if (target->dbg_msg_enabled) {
102 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103 if (retval != ERROR_OK)
104 return retval;
105 }
106
107 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108 if (retval != ERROR_OK)
109 return retval;
110
111 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regsel | DCRSR_WnR);
112 if (retval != ERROR_OK)
113 return retval;
114
115 if (target->dbg_msg_enabled) {
116 /* restore DCB_DCRDR - this needs to be in a separate
117 * transaction otherwise the emulated DCC channel breaks */
118 if (retval == ERROR_OK)
119 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120 }
121
122 return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126 uint32_t mask_on, uint32_t mask_off)
127 {
128 struct cortex_m_common *cortex_m = target_to_cm(target);
129 struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131 /* mask off status bits */
132 cortex_m->dcb_dhcsr &= ~((0xFFFFul << 16) | mask_off);
133 /* create new register mask */
134 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136 return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_set_maskints(struct target *target, bool mask)
140 {
141 struct cortex_m_common *cortex_m = target_to_cm(target);
142 if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask)
143 return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS);
144 else
145 return ERROR_OK;
146 }
147
148 static int cortex_m_set_maskints_for_halt(struct target *target)
149 {
150 struct cortex_m_common *cortex_m = target_to_cm(target);
151 switch (cortex_m->isrmasking_mode) {
152 case CORTEX_M_ISRMASK_AUTO:
153 /* interrupts taken at resume, whether for step or run -> no mask */
154 return cortex_m_set_maskints(target, false);
155
156 case CORTEX_M_ISRMASK_OFF:
157 /* interrupts never masked */
158 return cortex_m_set_maskints(target, false);
159
160 case CORTEX_M_ISRMASK_ON:
161 /* interrupts always masked */
162 return cortex_m_set_maskints(target, true);
163
164 case CORTEX_M_ISRMASK_STEPONLY:
165 /* interrupts masked for single step only -> mask now if MASKINTS
166 * erratum, otherwise only mask before stepping */
167 return cortex_m_set_maskints(target, cortex_m->maskints_erratum);
168 }
169 return ERROR_OK;
170 }
171
172 static int cortex_m_set_maskints_for_run(struct target *target)
173 {
174 switch (target_to_cm(target)->isrmasking_mode) {
175 case CORTEX_M_ISRMASK_AUTO:
176 /* interrupts taken at resume, whether for step or run -> no mask */
177 return cortex_m_set_maskints(target, false);
178
179 case CORTEX_M_ISRMASK_OFF:
180 /* interrupts never masked */
181 return cortex_m_set_maskints(target, false);
182
183 case CORTEX_M_ISRMASK_ON:
184 /* interrupts always masked */
185 return cortex_m_set_maskints(target, true);
186
187 case CORTEX_M_ISRMASK_STEPONLY:
188 /* interrupts masked for single step only -> no mask */
189 return cortex_m_set_maskints(target, false);
190 }
191 return ERROR_OK;
192 }
193
194 static int cortex_m_set_maskints_for_step(struct target *target)
195 {
196 switch (target_to_cm(target)->isrmasking_mode) {
197 case CORTEX_M_ISRMASK_AUTO:
198 /* the auto-interrupt should already be done -> mask */
199 return cortex_m_set_maskints(target, true);
200
201 case CORTEX_M_ISRMASK_OFF:
202 /* interrupts never masked */
203 return cortex_m_set_maskints(target, false);
204
205 case CORTEX_M_ISRMASK_ON:
206 /* interrupts always masked */
207 return cortex_m_set_maskints(target, true);
208
209 case CORTEX_M_ISRMASK_STEPONLY:
210 /* interrupts masked for single step only -> mask */
211 return cortex_m_set_maskints(target, true);
212 }
213 return ERROR_OK;
214 }
215
216 static int cortex_m_clear_halt(struct target *target)
217 {
218 struct cortex_m_common *cortex_m = target_to_cm(target);
219 struct armv7m_common *armv7m = &cortex_m->armv7m;
220 int retval;
221
222 /* clear step if any */
223 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
224
225 /* Read Debug Fault Status Register */
226 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
227 if (retval != ERROR_OK)
228 return retval;
229
230 /* Clear Debug Fault Status */
231 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
232 if (retval != ERROR_OK)
233 return retval;
234 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
235
236 return ERROR_OK;
237 }
238
239 static int cortex_m_single_step_core(struct target *target)
240 {
241 struct cortex_m_common *cortex_m = target_to_cm(target);
242 struct armv7m_common *armv7m = &cortex_m->armv7m;
243 int retval;
244
245 /* Mask interrupts before clearing halt, if not done already. This avoids
246 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
247 * HALT can put the core into an unknown state.
248 */
249 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
250 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
251 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
252 if (retval != ERROR_OK)
253 return retval;
254 }
255 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
256 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
257 if (retval != ERROR_OK)
258 return retval;
259 LOG_DEBUG(" ");
260
261 /* restore dhcsr reg */
262 cortex_m_clear_halt(target);
263
264 return ERROR_OK;
265 }
266
267 static int cortex_m_enable_fpb(struct target *target)
268 {
269 int retval = target_write_u32(target, FP_CTRL, 3);
270 if (retval != ERROR_OK)
271 return retval;
272
273 /* check the fpb is actually enabled */
274 uint32_t fpctrl;
275 retval = target_read_u32(target, FP_CTRL, &fpctrl);
276 if (retval != ERROR_OK)
277 return retval;
278
279 if (fpctrl & 1)
280 return ERROR_OK;
281
282 return ERROR_FAIL;
283 }
284
285 static int cortex_m_endreset_event(struct target *target)
286 {
287 int i;
288 int retval;
289 uint32_t dcb_demcr;
290 struct cortex_m_common *cortex_m = target_to_cm(target);
291 struct armv7m_common *armv7m = &cortex_m->armv7m;
292 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
293 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
294 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
295
296 /* REVISIT The four debug monitor bits are currently ignored... */
297 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
298 if (retval != ERROR_OK)
299 return retval;
300 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
301
302 /* this register is used for emulated dcc channel */
303 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
304 if (retval != ERROR_OK)
305 return retval;
306
307 /* Enable debug requests */
308 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
309 if (retval != ERROR_OK)
310 return retval;
311 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
312 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
313 if (retval != ERROR_OK)
314 return retval;
315 }
316
317 /* Restore proper interrupt masking setting for running CPU. */
318 cortex_m_set_maskints_for_run(target);
319
320 /* Enable features controlled by ITM and DWT blocks, and catch only
321 * the vectors we were told to pay attention to.
322 *
323 * Target firmware is responsible for all fault handling policy
324 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
325 * or manual updates to the NVIC SHCSR and CCR registers.
326 */
327 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
328 if (retval != ERROR_OK)
329 return retval;
330
331 /* Paranoia: evidently some (early?) chips don't preserve all the
332 * debug state (including FPB, DWT, etc) across reset...
333 */
334
335 /* Enable FPB */
336 retval = cortex_m_enable_fpb(target);
337 if (retval != ERROR_OK) {
338 LOG_ERROR("Failed to enable the FPB");
339 return retval;
340 }
341
342 cortex_m->fpb_enabled = true;
343
344 /* Restore FPB registers */
345 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
346 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
347 if (retval != ERROR_OK)
348 return retval;
349 }
350
351 /* Restore DWT registers */
352 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
353 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
354 dwt_list[i].comp);
355 if (retval != ERROR_OK)
356 return retval;
357 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
358 dwt_list[i].mask);
359 if (retval != ERROR_OK)
360 return retval;
361 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
362 dwt_list[i].function);
363 if (retval != ERROR_OK)
364 return retval;
365 }
366 retval = dap_run(swjdp);
367 if (retval != ERROR_OK)
368 return retval;
369
370 register_cache_invalidate(armv7m->arm.core_cache);
371
372 /* make sure we have latest dhcsr flags */
373 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
374
375 return retval;
376 }
377
378 static int cortex_m_examine_debug_reason(struct target *target)
379 {
380 struct cortex_m_common *cortex_m = target_to_cm(target);
381
382 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
383 * only check the debug reason if we don't know it already */
384
385 if ((target->debug_reason != DBG_REASON_DBGRQ)
386 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
387 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
388 target->debug_reason = DBG_REASON_BREAKPOINT;
389 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
390 target->debug_reason = DBG_REASON_WPTANDBKPT;
391 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
392 target->debug_reason = DBG_REASON_WATCHPOINT;
393 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
394 target->debug_reason = DBG_REASON_BREAKPOINT;
395 else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL)
396 target->debug_reason = DBG_REASON_DBGRQ;
397 else /* HALTED */
398 target->debug_reason = DBG_REASON_UNDEFINED;
399 }
400
401 return ERROR_OK;
402 }
403
404 static int cortex_m_examine_exception_reason(struct target *target)
405 {
406 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
407 struct armv7m_common *armv7m = target_to_armv7m(target);
408 struct adiv5_dap *swjdp = armv7m->arm.dap;
409 int retval;
410
411 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
412 if (retval != ERROR_OK)
413 return retval;
414 switch (armv7m->exception_number) {
415 case 2: /* NMI */
416 break;
417 case 3: /* Hard Fault */
418 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
419 if (retval != ERROR_OK)
420 return retval;
421 if (except_sr & 0x40000000) {
422 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
423 if (retval != ERROR_OK)
424 return retval;
425 }
426 break;
427 case 4: /* Memory Management */
428 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
429 if (retval != ERROR_OK)
430 return retval;
431 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
432 if (retval != ERROR_OK)
433 return retval;
434 break;
435 case 5: /* Bus Fault */
436 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
437 if (retval != ERROR_OK)
438 return retval;
439 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
440 if (retval != ERROR_OK)
441 return retval;
442 break;
443 case 6: /* Usage Fault */
444 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
445 if (retval != ERROR_OK)
446 return retval;
447 break;
448 case 7: /* Secure Fault */
449 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFSR, &except_sr);
450 if (retval != ERROR_OK)
451 return retval;
452 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFAR, &except_ar);
453 if (retval != ERROR_OK)
454 return retval;
455 break;
456 case 11: /* SVCall */
457 break;
458 case 12: /* Debug Monitor */
459 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
460 if (retval != ERROR_OK)
461 return retval;
462 break;
463 case 14: /* PendSV */
464 break;
465 case 15: /* SysTick */
466 break;
467 default:
468 except_sr = 0;
469 break;
470 }
471 retval = dap_run(swjdp);
472 if (retval == ERROR_OK)
473 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
474 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
475 armv7m_exception_string(armv7m->exception_number),
476 shcsr, except_sr, cfsr, except_ar);
477 return retval;
478 }
479
480 static int cortex_m_debug_entry(struct target *target)
481 {
482 int i;
483 uint32_t xPSR;
484 int retval;
485 struct cortex_m_common *cortex_m = target_to_cm(target);
486 struct armv7m_common *armv7m = &cortex_m->armv7m;
487 struct arm *arm = &armv7m->arm;
488 struct reg *r;
489
490 LOG_DEBUG(" ");
491
492 /* Do this really early to minimize the window where the MASKINTS erratum
493 * can pile up pending interrupts. */
494 cortex_m_set_maskints_for_halt(target);
495
496 cortex_m_clear_halt(target);
497 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
498 if (retval != ERROR_OK)
499 return retval;
500
501 retval = armv7m->examine_debug_reason(target);
502 if (retval != ERROR_OK)
503 return retval;
504
505 /* examine PE security state */
506 bool secure_state = false;
507 if (armv7m->arm.is_armv8m) {
508 uint32_t dscsr;
509
510 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DSCSR, &dscsr);
511 if (retval != ERROR_OK)
512 return retval;
513
514 secure_state = (dscsr & DSCSR_CDS) == DSCSR_CDS;
515 }
516
517 /* Examine target state and mode
518 * First load register accessible through core debug port */
519 int num_regs = arm->core_cache->num_regs;
520
521 for (i = 0; i < num_regs; i++) {
522 r = &armv7m->arm.core_cache->reg_list[i];
523 if (!r->valid)
524 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
525 }
526
527 r = arm->cpsr;
528 xPSR = buf_get_u32(r->value, 0, 32);
529
530 /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
531 if (xPSR & 0xf00) {
532 r->dirty = r->valid;
533 cortex_m_store_core_reg_u32(target, 16, xPSR & ~0xff);
534 }
535
536 /* Are we in an exception handler */
537 if (xPSR & 0x1FF) {
538 armv7m->exception_number = (xPSR & 0x1FF);
539
540 arm->core_mode = ARM_MODE_HANDLER;
541 arm->map = armv7m_msp_reg_map;
542 } else {
543 unsigned control = buf_get_u32(arm->core_cache
544 ->reg_list[ARMV7M_CONTROL].value, 0, 3);
545
546 /* is this thread privileged? */
547 arm->core_mode = control & 1
548 ? ARM_MODE_USER_THREAD
549 : ARM_MODE_THREAD;
550
551 /* which stack is it using? */
552 if (control & 2)
553 arm->map = armv7m_psp_reg_map;
554 else
555 arm->map = armv7m_msp_reg_map;
556
557 armv7m->exception_number = 0;
558 }
559
560 if (armv7m->exception_number)
561 cortex_m_examine_exception_reason(target);
562
563 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", cpu in %s state, target->state: %s",
564 arm_mode_name(arm->core_mode),
565 buf_get_u32(arm->pc->value, 0, 32),
566 secure_state ? "Secure" : "Non-Secure",
567 target_state_name(target));
568
569 if (armv7m->post_debug_entry) {
570 retval = armv7m->post_debug_entry(target);
571 if (retval != ERROR_OK)
572 return retval;
573 }
574
575 return ERROR_OK;
576 }
577
578 static int cortex_m_poll(struct target *target)
579 {
580 int detected_failure = ERROR_OK;
581 int retval = ERROR_OK;
582 enum target_state prev_target_state = target->state;
583 struct cortex_m_common *cortex_m = target_to_cm(target);
584 struct armv7m_common *armv7m = &cortex_m->armv7m;
585
586 /* Read from Debug Halting Control and Status Register */
587 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
588 if (retval != ERROR_OK) {
589 target->state = TARGET_UNKNOWN;
590 return retval;
591 }
592
593 /* Recover from lockup. See ARMv7-M architecture spec,
594 * section B1.5.15 "Unrecoverable exception cases".
595 */
596 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
597 LOG_ERROR("%s -- clearing lockup after double fault",
598 target_name(target));
599 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
600 target->debug_reason = DBG_REASON_DBGRQ;
601
602 /* We have to execute the rest (the "finally" equivalent, but
603 * still throw this exception again).
604 */
605 detected_failure = ERROR_FAIL;
606
607 /* refresh status bits */
608 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
609 if (retval != ERROR_OK)
610 return retval;
611 }
612
613 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
614 if (target->state != TARGET_RESET) {
615 target->state = TARGET_RESET;
616 LOG_INFO("%s: external reset detected", target_name(target));
617 }
618 return ERROR_OK;
619 }
620
621 if (target->state == TARGET_RESET) {
622 /* Cannot switch context while running so endreset is
623 * called with target->state == TARGET_RESET
624 */
625 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
626 cortex_m->dcb_dhcsr);
627 retval = cortex_m_endreset_event(target);
628 if (retval != ERROR_OK) {
629 target->state = TARGET_UNKNOWN;
630 return retval;
631 }
632 target->state = TARGET_RUNNING;
633 prev_target_state = TARGET_RUNNING;
634 }
635
636 if (cortex_m->dcb_dhcsr & S_HALT) {
637 target->state = TARGET_HALTED;
638
639 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
640 retval = cortex_m_debug_entry(target);
641 if (retval != ERROR_OK)
642 return retval;
643
644 if (arm_semihosting(target, &retval) != 0)
645 return retval;
646
647 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
648 }
649 if (prev_target_state == TARGET_DEBUG_RUNNING) {
650 LOG_DEBUG(" ");
651 retval = cortex_m_debug_entry(target);
652 if (retval != ERROR_OK)
653 return retval;
654
655 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
656 }
657 }
658
659 if (target->state == TARGET_UNKNOWN) {
660 /* check if processor is retiring instructions or sleeping */
661 if (cortex_m->dcb_dhcsr & S_RETIRE_ST || cortex_m->dcb_dhcsr & S_SLEEP) {
662 target->state = TARGET_RUNNING;
663 retval = ERROR_OK;
664 }
665 }
666
667 /* Check that target is truly halted, since the target could be resumed externally */
668 if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
669 /* registers are now invalid */
670 register_cache_invalidate(armv7m->arm.core_cache);
671
672 target->state = TARGET_RUNNING;
673 LOG_WARNING("%s: external resume detected", target_name(target));
674 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
675 retval = ERROR_OK;
676 }
677
678 /* Did we detect a failure condition that we cleared? */
679 if (detected_failure != ERROR_OK)
680 retval = detected_failure;
681 return retval;
682 }
683
684 static int cortex_m_halt(struct target *target)
685 {
686 LOG_DEBUG("target->state: %s",
687 target_state_name(target));
688
689 if (target->state == TARGET_HALTED) {
690 LOG_DEBUG("target was already halted");
691 return ERROR_OK;
692 }
693
694 if (target->state == TARGET_UNKNOWN)
695 LOG_WARNING("target was in unknown state when halt was requested");
696
697 if (target->state == TARGET_RESET) {
698 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
699 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
700 return ERROR_TARGET_FAILURE;
701 } else {
702 /* we came here in a reset_halt or reset_init sequence
703 * debug entry was already prepared in cortex_m3_assert_reset()
704 */
705 target->debug_reason = DBG_REASON_DBGRQ;
706
707 return ERROR_OK;
708 }
709 }
710
711 /* Write to Debug Halting Control and Status Register */
712 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
713
714 /* Do this really early to minimize the window where the MASKINTS erratum
715 * can pile up pending interrupts. */
716 cortex_m_set_maskints_for_halt(target);
717
718 target->debug_reason = DBG_REASON_DBGRQ;
719
720 return ERROR_OK;
721 }
722
723 static int cortex_m_soft_reset_halt(struct target *target)
724 {
725 struct cortex_m_common *cortex_m = target_to_cm(target);
726 struct armv7m_common *armv7m = &cortex_m->armv7m;
727 uint32_t dcb_dhcsr = 0;
728 int retval, timeout = 0;
729
730 /* on single cortex_m MCU soft_reset_halt should be avoided as same functionality
731 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'.
732 * As this reset only uses VC_CORERESET it would only ever reset the cortex_m
733 * core, not the peripherals */
734 LOG_DEBUG("soft_reset_halt is discouraged, please use 'reset halt' instead.");
735
736 /* Set C_DEBUGEN */
737 retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS);
738 if (retval != ERROR_OK)
739 return retval;
740
741 /* Enter debug state on reset; restore DEMCR in endreset_event() */
742 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
743 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
744 if (retval != ERROR_OK)
745 return retval;
746
747 /* Request a core-only reset */
748 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
749 AIRCR_VECTKEY | AIRCR_VECTRESET);
750 if (retval != ERROR_OK)
751 return retval;
752 target->state = TARGET_RESET;
753
754 /* registers are now invalid */
755 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
756
757 while (timeout < 100) {
758 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
759 if (retval == ERROR_OK) {
760 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
761 &cortex_m->nvic_dfsr);
762 if (retval != ERROR_OK)
763 return retval;
764 if ((dcb_dhcsr & S_HALT)
765 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
766 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
767 "DFSR 0x%08x",
768 (unsigned) dcb_dhcsr,
769 (unsigned) cortex_m->nvic_dfsr);
770 cortex_m_poll(target);
771 /* FIXME restore user's vector catch config */
772 return ERROR_OK;
773 } else
774 LOG_DEBUG("waiting for system reset-halt, "
775 "DHCSR 0x%08x, %d ms",
776 (unsigned) dcb_dhcsr, timeout);
777 }
778 timeout++;
779 alive_sleep(1);
780 }
781
782 return ERROR_OK;
783 }
784
785 void cortex_m_enable_breakpoints(struct target *target)
786 {
787 struct breakpoint *breakpoint = target->breakpoints;
788
789 /* set any pending breakpoints */
790 while (breakpoint) {
791 if (!breakpoint->set)
792 cortex_m_set_breakpoint(target, breakpoint);
793 breakpoint = breakpoint->next;
794 }
795 }
796
797 static int cortex_m_resume(struct target *target, int current,
798 target_addr_t address, int handle_breakpoints, int debug_execution)
799 {
800 struct armv7m_common *armv7m = target_to_armv7m(target);
801 struct breakpoint *breakpoint = NULL;
802 uint32_t resume_pc;
803 struct reg *r;
804
805 if (target->state != TARGET_HALTED) {
806 LOG_WARNING("target not halted");
807 return ERROR_TARGET_NOT_HALTED;
808 }
809
810 if (!debug_execution) {
811 target_free_all_working_areas(target);
812 cortex_m_enable_breakpoints(target);
813 cortex_m_enable_watchpoints(target);
814 }
815
816 if (debug_execution) {
817 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
818
819 /* Disable interrupts */
820 /* We disable interrupts in the PRIMASK register instead of
821 * masking with C_MASKINTS. This is probably the same issue
822 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
823 * in parallel with disabled interrupts can cause local faults
824 * to not be taken.
825 *
826 * REVISIT this clearly breaks non-debug execution, since the
827 * PRIMASK register state isn't saved/restored... workaround
828 * by never resuming app code after debug execution.
829 */
830 buf_set_u32(r->value, 0, 1, 1);
831 r->dirty = true;
832 r->valid = true;
833
834 /* Make sure we are in Thumb mode */
835 r = armv7m->arm.cpsr;
836 buf_set_u32(r->value, 24, 1, 1);
837 r->dirty = true;
838 r->valid = true;
839 }
840
841 /* current = 1: continue on current pc, otherwise continue at <address> */
842 r = armv7m->arm.pc;
843 if (!current) {
844 buf_set_u32(r->value, 0, 32, address);
845 r->dirty = true;
846 r->valid = true;
847 }
848
849 /* if we halted last time due to a bkpt instruction
850 * then we have to manually step over it, otherwise
851 * the core will break again */
852
853 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
854 && !debug_execution)
855 armv7m_maybe_skip_bkpt_inst(target, NULL);
856
857 resume_pc = buf_get_u32(r->value, 0, 32);
858
859 armv7m_restore_context(target);
860
861 /* the front-end may request us not to handle breakpoints */
862 if (handle_breakpoints) {
863 /* Single step past breakpoint at current address */
864 breakpoint = breakpoint_find(target, resume_pc);
865 if (breakpoint) {
866 LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
867 breakpoint->address,
868 breakpoint->unique_id);
869 cortex_m_unset_breakpoint(target, breakpoint);
870 cortex_m_single_step_core(target);
871 cortex_m_set_breakpoint(target, breakpoint);
872 }
873 }
874
875 /* Restart core */
876 cortex_m_set_maskints_for_run(target);
877 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
878
879 target->debug_reason = DBG_REASON_NOTHALTED;
880
881 /* registers are now invalid */
882 register_cache_invalidate(armv7m->arm.core_cache);
883
884 if (!debug_execution) {
885 target->state = TARGET_RUNNING;
886 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
887 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
888 } else {
889 target->state = TARGET_DEBUG_RUNNING;
890 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
891 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
892 }
893
894 return ERROR_OK;
895 }
896
897 /* int irqstepcount = 0; */
898 static int cortex_m_step(struct target *target, int current,
899 target_addr_t address, int handle_breakpoints)
900 {
901 struct cortex_m_common *cortex_m = target_to_cm(target);
902 struct armv7m_common *armv7m = &cortex_m->armv7m;
903 struct breakpoint *breakpoint = NULL;
904 struct reg *pc = armv7m->arm.pc;
905 bool bkpt_inst_found = false;
906 int retval;
907 bool isr_timed_out = false;
908
909 if (target->state != TARGET_HALTED) {
910 LOG_WARNING("target not halted");
911 return ERROR_TARGET_NOT_HALTED;
912 }
913
914 /* current = 1: continue on current pc, otherwise continue at <address> */
915 if (!current)
916 buf_set_u32(pc->value, 0, 32, address);
917
918 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
919
920 /* the front-end may request us not to handle breakpoints */
921 if (handle_breakpoints) {
922 breakpoint = breakpoint_find(target, pc_value);
923 if (breakpoint)
924 cortex_m_unset_breakpoint(target, breakpoint);
925 }
926
927 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
928
929 target->debug_reason = DBG_REASON_SINGLESTEP;
930
931 armv7m_restore_context(target);
932
933 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
934
935 /* if no bkpt instruction is found at pc then we can perform
936 * a normal step, otherwise we have to manually step over the bkpt
937 * instruction - as such simulate a step */
938 if (bkpt_inst_found == false) {
939 if (cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO) {
940 /* Automatic ISR masking mode off: Just step over the next
941 * instruction, with interrupts on or off as appropriate. */
942 cortex_m_set_maskints_for_step(target);
943 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
944 } else {
945 /* Process interrupts during stepping in a way they don't interfere
946 * debugging.
947 *
948 * Principle:
949 *
950 * Set a temporary break point at the current pc and let the core run
951 * with interrupts enabled. Pending interrupts get served and we run
952 * into the breakpoint again afterwards. Then we step over the next
953 * instruction with interrupts disabled.
954 *
955 * If the pending interrupts don't complete within time, we leave the
956 * core running. This may happen if the interrupts trigger faster
957 * than the core can process them or the handler doesn't return.
958 *
959 * If no more breakpoints are available we simply do a step with
960 * interrupts enabled.
961 *
962 */
963
964 /* 2012-09-29 ph
965 *
966 * If a break point is already set on the lower half word then a break point on
967 * the upper half word will not break again when the core is restarted. So we
968 * just step over the instruction with interrupts disabled.
969 *
970 * The documentation has no information about this, it was found by observation
971 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 doesn't seem to
972 * suffer from this problem.
973 *
974 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
975 * address has it always cleared. The former is done to indicate thumb mode
976 * to gdb.
977 *
978 */
979 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
980 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
981 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
982 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
983 /* Re-enable interrupts if appropriate */
984 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
985 cortex_m_set_maskints_for_halt(target);
986 } else {
987
988 /* Set a temporary break point */
989 if (breakpoint) {
990 retval = cortex_m_set_breakpoint(target, breakpoint);
991 } else {
992 enum breakpoint_type type = BKPT_HARD;
993 if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
994 /* FPB rev.1 cannot handle such addr, try BKPT instr */
995 type = BKPT_SOFT;
996 }
997 retval = breakpoint_add(target, pc_value, 2, type);
998 }
999
1000 bool tmp_bp_set = (retval == ERROR_OK);
1001
1002 /* No more breakpoints left, just do a step */
1003 if (!tmp_bp_set) {
1004 cortex_m_set_maskints_for_step(target);
1005 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1006 /* Re-enable interrupts if appropriate */
1007 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1008 cortex_m_set_maskints_for_halt(target);
1009 } else {
1010 /* Start the core */
1011 LOG_DEBUG("Starting core to serve pending interrupts");
1012 int64_t t_start = timeval_ms();
1013 cortex_m_set_maskints_for_run(target);
1014 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
1015
1016 /* Wait for pending handlers to complete or timeout */
1017 do {
1018 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
1019 DCB_DHCSR,
1020 &cortex_m->dcb_dhcsr);
1021 if (retval != ERROR_OK) {
1022 target->state = TARGET_UNKNOWN;
1023 return retval;
1024 }
1025 isr_timed_out = ((timeval_ms() - t_start) > 500);
1026 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
1027
1028 /* only remove breakpoint if we created it */
1029 if (breakpoint)
1030 cortex_m_unset_breakpoint(target, breakpoint);
1031 else {
1032 /* Remove the temporary breakpoint */
1033 breakpoint_remove(target, pc_value);
1034 }
1035
1036 if (isr_timed_out) {
1037 LOG_DEBUG("Interrupt handlers didn't complete within time, "
1038 "leaving target running");
1039 } else {
1040 /* Step over next instruction with interrupts disabled */
1041 cortex_m_set_maskints_for_step(target);
1042 cortex_m_write_debug_halt_mask(target,
1043 C_HALT | C_MASKINTS,
1044 0);
1045 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1046 /* Re-enable interrupts if appropriate */
1047 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1048 cortex_m_set_maskints_for_halt(target);
1049 }
1050 }
1051 }
1052 }
1053 }
1054
1055 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1056 if (retval != ERROR_OK)
1057 return retval;
1058
1059 /* registers are now invalid */
1060 register_cache_invalidate(armv7m->arm.core_cache);
1061
1062 if (breakpoint)
1063 cortex_m_set_breakpoint(target, breakpoint);
1064
1065 if (isr_timed_out) {
1066 /* Leave the core running. The user has to stop execution manually. */
1067 target->debug_reason = DBG_REASON_NOTHALTED;
1068 target->state = TARGET_RUNNING;
1069 return ERROR_OK;
1070 }
1071
1072 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1073 " nvic_icsr = 0x%" PRIx32,
1074 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1075
1076 retval = cortex_m_debug_entry(target);
1077 if (retval != ERROR_OK)
1078 return retval;
1079 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1080
1081 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1082 " nvic_icsr = 0x%" PRIx32,
1083 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1084
1085 return ERROR_OK;
1086 }
1087
1088 static int cortex_m_assert_reset(struct target *target)
1089 {
1090 struct cortex_m_common *cortex_m = target_to_cm(target);
1091 struct armv7m_common *armv7m = &cortex_m->armv7m;
1092 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
1093
1094 LOG_DEBUG("target->state: %s",
1095 target_state_name(target));
1096
1097 enum reset_types jtag_reset_config = jtag_get_reset_config();
1098
1099 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1100 /* allow scripts to override the reset event */
1101
1102 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1103 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1104 target->state = TARGET_RESET;
1105
1106 return ERROR_OK;
1107 }
1108
1109 /* some cores support connecting while srst is asserted
1110 * use that mode is it has been configured */
1111
1112 bool srst_asserted = false;
1113
1114 if (!target_was_examined(target)) {
1115 if (jtag_reset_config & RESET_HAS_SRST) {
1116 adapter_assert_reset();
1117 if (target->reset_halt)
1118 LOG_ERROR("Target not examined, will not halt after reset!");
1119 return ERROR_OK;
1120 } else {
1121 LOG_ERROR("Target not examined, reset NOT asserted!");
1122 return ERROR_FAIL;
1123 }
1124 }
1125
1126 if ((jtag_reset_config & RESET_HAS_SRST) &&
1127 (jtag_reset_config & RESET_SRST_NO_GATING)) {
1128 adapter_assert_reset();
1129 srst_asserted = true;
1130 }
1131
1132 /* Enable debug requests */
1133 int retval;
1134 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1135 /* Store important errors instead of failing and proceed to reset assert */
1136
1137 if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1138 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1139
1140 /* If the processor is sleeping in a WFI or WFE instruction, the
1141 * C_HALT bit must be asserted to regain control */
1142 if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1143 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1144
1145 mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1146 /* Ignore less important errors */
1147
1148 if (!target->reset_halt) {
1149 /* Set/Clear C_MASKINTS in a separate operation */
1150 cortex_m_set_maskints_for_run(target);
1151
1152 /* clear any debug flags before resuming */
1153 cortex_m_clear_halt(target);
1154
1155 /* clear C_HALT in dhcsr reg */
1156 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1157 } else {
1158 /* Halt in debug on reset; endreset_event() restores DEMCR.
1159 *
1160 * REVISIT catching BUSERR presumably helps to defend against
1161 * bad vector table entries. Should this include MMERR or
1162 * other flags too?
1163 */
1164 int retval2;
1165 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1166 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1167 if (retval != ERROR_OK || retval2 != ERROR_OK)
1168 LOG_INFO("AP write error, reset will not halt");
1169 }
1170
1171 if (jtag_reset_config & RESET_HAS_SRST) {
1172 /* default to asserting srst */
1173 if (!srst_asserted)
1174 adapter_assert_reset();
1175
1176 /* srst is asserted, ignore AP access errors */
1177 retval = ERROR_OK;
1178 } else {
1179 /* Use a standard Cortex-M3 software reset mechanism.
1180 * We default to using VECRESET as it is supported on all current cores
1181 * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1182 * This has the disadvantage of not resetting the peripherals, so a
1183 * reset-init event handler is needed to perform any peripheral resets.
1184 */
1185 if (!cortex_m->vectreset_supported
1186 && reset_config == CORTEX_M_RESET_VECTRESET) {
1187 reset_config = CORTEX_M_RESET_SYSRESETREQ;
1188 LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1189 LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1190 }
1191
1192 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1193 ? "SYSRESETREQ" : "VECTRESET");
1194
1195 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1196 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1197 "handler to reset any peripherals or configure hardware srst support.");
1198 }
1199
1200 int retval3;
1201 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1202 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1203 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1204 if (retval3 != ERROR_OK)
1205 LOG_DEBUG("Ignoring AP write error right after reset");
1206
1207 retval3 = dap_dp_init(armv7m->debug_ap->dap);
1208 if (retval3 != ERROR_OK)
1209 LOG_ERROR("DP initialisation failed");
1210
1211 else {
1212 /* I do not know why this is necessary, but it
1213 * fixes strange effects (step/resume cause NMI
1214 * after reset) on LM3S6918 -- Michael Schwingen
1215 */
1216 uint32_t tmp;
1217 mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1218 }
1219 }
1220
1221 target->state = TARGET_RESET;
1222 jtag_sleep(50000);
1223
1224 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1225
1226 /* now return stored error code if any */
1227 if (retval != ERROR_OK)
1228 return retval;
1229
1230 if (target->reset_halt) {
1231 retval = target_halt(target);
1232 if (retval != ERROR_OK)
1233 return retval;
1234 }
1235
1236 return ERROR_OK;
1237 }
1238
1239 static int cortex_m_deassert_reset(struct target *target)
1240 {
1241 struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1242
1243 LOG_DEBUG("target->state: %s",
1244 target_state_name(target));
1245
1246 /* deassert reset lines */
1247 adapter_deassert_reset();
1248
1249 enum reset_types jtag_reset_config = jtag_get_reset_config();
1250
1251 if ((jtag_reset_config & RESET_HAS_SRST) &&
1252 !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1253 target_was_examined(target)) {
1254 int retval = dap_dp_init(armv7m->debug_ap->dap);
1255 if (retval != ERROR_OK) {
1256 LOG_ERROR("DP initialisation failed");
1257 return retval;
1258 }
1259 }
1260
1261 return ERROR_OK;
1262 }
1263
1264 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1265 {
1266 int retval;
1267 int fp_num = 0;
1268 struct cortex_m_common *cortex_m = target_to_cm(target);
1269 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1270
1271 if (breakpoint->set) {
1272 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1273 return ERROR_OK;
1274 }
1275
1276 if (breakpoint->type == BKPT_HARD) {
1277 uint32_t fpcr_value;
1278 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1279 fp_num++;
1280 if (fp_num >= cortex_m->fp_num_code) {
1281 LOG_ERROR("Can not find free FPB Comparator!");
1282 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1283 }
1284 breakpoint->set = fp_num + 1;
1285 fpcr_value = breakpoint->address | 1;
1286 if (cortex_m->fp_rev == 0) {
1287 if (breakpoint->address > 0x1FFFFFFF) {
1288 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1289 return ERROR_FAIL;
1290 }
1291 uint32_t hilo;
1292 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1293 fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1294 } else if (cortex_m->fp_rev > 1) {
1295 LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1296 return ERROR_FAIL;
1297 }
1298 comparator_list[fp_num].used = true;
1299 comparator_list[fp_num].fpcr_value = fpcr_value;
1300 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1301 comparator_list[fp_num].fpcr_value);
1302 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1303 fp_num,
1304 comparator_list[fp_num].fpcr_value);
1305 if (!cortex_m->fpb_enabled) {
1306 LOG_DEBUG("FPB wasn't enabled, do it now");
1307 retval = cortex_m_enable_fpb(target);
1308 if (retval != ERROR_OK) {
1309 LOG_ERROR("Failed to enable the FPB");
1310 return retval;
1311 }
1312
1313 cortex_m->fpb_enabled = true;
1314 }
1315 } else if (breakpoint->type == BKPT_SOFT) {
1316 uint8_t code[4];
1317
1318 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1319 * semihosting; don't use that. Otherwise the BKPT
1320 * parameter is arbitrary.
1321 */
1322 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1323 retval = target_read_memory(target,
1324 breakpoint->address & 0xFFFFFFFE,
1325 breakpoint->length, 1,
1326 breakpoint->orig_instr);
1327 if (retval != ERROR_OK)
1328 return retval;
1329 retval = target_write_memory(target,
1330 breakpoint->address & 0xFFFFFFFE,
1331 breakpoint->length, 1,
1332 code);
1333 if (retval != ERROR_OK)
1334 return retval;
1335 breakpoint->set = true;
1336 }
1337
1338 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1339 breakpoint->unique_id,
1340 (int)(breakpoint->type),
1341 breakpoint->address,
1342 breakpoint->length,
1343 breakpoint->set);
1344
1345 return ERROR_OK;
1346 }
1347
1348 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1349 {
1350 int retval;
1351 struct cortex_m_common *cortex_m = target_to_cm(target);
1352 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1353
1354 if (!breakpoint->set) {
1355 LOG_WARNING("breakpoint not set");
1356 return ERROR_OK;
1357 }
1358
1359 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1360 breakpoint->unique_id,
1361 (int)(breakpoint->type),
1362 breakpoint->address,
1363 breakpoint->length,
1364 breakpoint->set);
1365
1366 if (breakpoint->type == BKPT_HARD) {
1367 int fp_num = breakpoint->set - 1;
1368 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1369 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1370 return ERROR_OK;
1371 }
1372 comparator_list[fp_num].used = false;
1373 comparator_list[fp_num].fpcr_value = 0;
1374 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1375 comparator_list[fp_num].fpcr_value);
1376 } else {
1377 /* restore original instruction (kept in target endianness) */
1378 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
1379 breakpoint->length, 1,
1380 breakpoint->orig_instr);
1381 if (retval != ERROR_OK)
1382 return retval;
1383 }
1384 breakpoint->set = false;
1385
1386 return ERROR_OK;
1387 }
1388
1389 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1390 {
1391 if (breakpoint->length == 3) {
1392 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1393 breakpoint->length = 2;
1394 }
1395
1396 if ((breakpoint->length != 2)) {
1397 LOG_INFO("only breakpoints of two bytes length supported");
1398 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1399 }
1400
1401 return cortex_m_set_breakpoint(target, breakpoint);
1402 }
1403
1404 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1405 {
1406 if (!breakpoint->set)
1407 return ERROR_OK;
1408
1409 return cortex_m_unset_breakpoint(target, breakpoint);
1410 }
1411
1412 static int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1413 {
1414 int dwt_num = 0;
1415 struct cortex_m_common *cortex_m = target_to_cm(target);
1416
1417 /* REVISIT Don't fully trust these "not used" records ... users
1418 * may set up breakpoints by hand, e.g. dual-address data value
1419 * watchpoint using comparator #1; comparator #0 matching cycle
1420 * count; send data trace info through ITM and TPIU; etc
1421 */
1422 struct cortex_m_dwt_comparator *comparator;
1423
1424 for (comparator = cortex_m->dwt_comparator_list;
1425 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1426 comparator++, dwt_num++)
1427 continue;
1428 if (dwt_num >= cortex_m->dwt_num_comp) {
1429 LOG_ERROR("Can not find free DWT Comparator");
1430 return ERROR_FAIL;
1431 }
1432 comparator->used = true;
1433 watchpoint->set = dwt_num + 1;
1434
1435 comparator->comp = watchpoint->address;
1436 target_write_u32(target, comparator->dwt_comparator_address + 0,
1437 comparator->comp);
1438
1439 if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) {
1440 uint32_t mask = 0, temp;
1441
1442 /* watchpoint params were validated earlier */
1443 temp = watchpoint->length;
1444 while (temp) {
1445 temp >>= 1;
1446 mask++;
1447 }
1448 mask--;
1449
1450 comparator->mask = mask;
1451 target_write_u32(target, comparator->dwt_comparator_address + 4,
1452 comparator->mask);
1453
1454 switch (watchpoint->rw) {
1455 case WPT_READ:
1456 comparator->function = 5;
1457 break;
1458 case WPT_WRITE:
1459 comparator->function = 6;
1460 break;
1461 case WPT_ACCESS:
1462 comparator->function = 7;
1463 break;
1464 }
1465 } else {
1466 uint32_t data_size = watchpoint->length >> 1;
1467 comparator->mask = (watchpoint->length >> 1) | 1;
1468
1469 switch (watchpoint->rw) {
1470 case WPT_ACCESS:
1471 comparator->function = 4;
1472 break;
1473 case WPT_WRITE:
1474 comparator->function = 5;
1475 break;
1476 case WPT_READ:
1477 comparator->function = 6;
1478 break;
1479 }
1480 comparator->function = comparator->function | (1 << 4) |
1481 (data_size << 10);
1482 }
1483
1484 target_write_u32(target, comparator->dwt_comparator_address + 8,
1485 comparator->function);
1486
1487 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1488 watchpoint->unique_id, dwt_num,
1489 (unsigned) comparator->comp,
1490 (unsigned) comparator->mask,
1491 (unsigned) comparator->function);
1492 return ERROR_OK;
1493 }
1494
1495 static int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1496 {
1497 struct cortex_m_common *cortex_m = target_to_cm(target);
1498 struct cortex_m_dwt_comparator *comparator;
1499 int dwt_num;
1500
1501 if (!watchpoint->set) {
1502 LOG_WARNING("watchpoint (wpid: %d) not set",
1503 watchpoint->unique_id);
1504 return ERROR_OK;
1505 }
1506
1507 dwt_num = watchpoint->set - 1;
1508
1509 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1510 watchpoint->unique_id, dwt_num,
1511 (unsigned) watchpoint->address);
1512
1513 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1514 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1515 return ERROR_OK;
1516 }
1517
1518 comparator = cortex_m->dwt_comparator_list + dwt_num;
1519 comparator->used = false;
1520 comparator->function = 0;
1521 target_write_u32(target, comparator->dwt_comparator_address + 8,
1522 comparator->function);
1523
1524 watchpoint->set = false;
1525
1526 return ERROR_OK;
1527 }
1528
1529 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1530 {
1531 struct cortex_m_common *cortex_m = target_to_cm(target);
1532
1533 if (cortex_m->dwt_comp_available < 1) {
1534 LOG_DEBUG("no comparators?");
1535 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1536 }
1537
1538 /* hardware doesn't support data value masking */
1539 if (watchpoint->mask != ~(uint32_t)0) {
1540 LOG_DEBUG("watchpoint value masks not supported");
1541 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1542 }
1543
1544 /* hardware allows address masks of up to 32K */
1545 unsigned mask;
1546
1547 for (mask = 0; mask < 16; mask++) {
1548 if ((1u << mask) == watchpoint->length)
1549 break;
1550 }
1551 if (mask == 16) {
1552 LOG_DEBUG("unsupported watchpoint length");
1553 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1554 }
1555 if (watchpoint->address & ((1 << mask) - 1)) {
1556 LOG_DEBUG("watchpoint address is unaligned");
1557 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1558 }
1559
1560 /* Caller doesn't seem to be able to describe watching for data
1561 * values of zero; that flags "no value".
1562 *
1563 * REVISIT This DWT may well be able to watch for specific data
1564 * values. Requires comparator #1 to set DATAVMATCH and match
1565 * the data, and another comparator (DATAVADDR0) matching addr.
1566 */
1567 if (watchpoint->value) {
1568 LOG_DEBUG("data value watchpoint not YET supported");
1569 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1570 }
1571
1572 cortex_m->dwt_comp_available--;
1573 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1574
1575 return ERROR_OK;
1576 }
1577
1578 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1579 {
1580 struct cortex_m_common *cortex_m = target_to_cm(target);
1581
1582 /* REVISIT why check? DWT can be updated with core running ... */
1583 if (target->state != TARGET_HALTED) {
1584 LOG_WARNING("target not halted");
1585 return ERROR_TARGET_NOT_HALTED;
1586 }
1587
1588 if (watchpoint->set)
1589 cortex_m_unset_watchpoint(target, watchpoint);
1590
1591 cortex_m->dwt_comp_available++;
1592 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1593
1594 return ERROR_OK;
1595 }
1596
1597 void cortex_m_enable_watchpoints(struct target *target)
1598 {
1599 struct watchpoint *watchpoint = target->watchpoints;
1600
1601 /* set any pending watchpoints */
1602 while (watchpoint) {
1603 if (!watchpoint->set)
1604 cortex_m_set_watchpoint(target, watchpoint);
1605 watchpoint = watchpoint->next;
1606 }
1607 }
1608
1609 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1610 uint32_t size, uint32_t count, uint8_t *buffer)
1611 {
1612 struct armv7m_common *armv7m = target_to_armv7m(target);
1613
1614 if (armv7m->arm.is_armv6m) {
1615 /* armv6m does not handle unaligned memory access */
1616 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1617 return ERROR_TARGET_UNALIGNED_ACCESS;
1618 }
1619
1620 return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1621 }
1622
1623 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1624 uint32_t size, uint32_t count, const uint8_t *buffer)
1625 {
1626 struct armv7m_common *armv7m = target_to_armv7m(target);
1627
1628 if (armv7m->arm.is_armv6m) {
1629 /* armv6m does not handle unaligned memory access */
1630 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1631 return ERROR_TARGET_UNALIGNED_ACCESS;
1632 }
1633
1634 return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1635 }
1636
1637 static int cortex_m_init_target(struct command_context *cmd_ctx,
1638 struct target *target)
1639 {
1640 armv7m_build_reg_cache(target);
1641 arm_semihosting_init(target);
1642 return ERROR_OK;
1643 }
1644
1645 void cortex_m_deinit_target(struct target *target)
1646 {
1647 struct cortex_m_common *cortex_m = target_to_cm(target);
1648
1649 free(cortex_m->fp_comparator_list);
1650
1651 cortex_m_dwt_free(target);
1652 armv7m_free_reg_cache(target);
1653
1654 free(target->private_config);
1655 free(cortex_m);
1656 }
1657
1658 int cortex_m_profiling(struct target *target, uint32_t *samples,
1659 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1660 {
1661 struct timeval timeout, now;
1662 struct armv7m_common *armv7m = target_to_armv7m(target);
1663 uint32_t reg_value;
1664 int retval;
1665
1666 retval = target_read_u32(target, DWT_PCSR, &reg_value);
1667 if (retval != ERROR_OK) {
1668 LOG_ERROR("Error while reading PCSR");
1669 return retval;
1670 }
1671 if (reg_value == 0) {
1672 LOG_INFO("PCSR sampling not supported on this processor.");
1673 return target_profiling_default(target, samples, max_num_samples, num_samples, seconds);
1674 }
1675
1676 gettimeofday(&timeout, NULL);
1677 timeval_add_time(&timeout, seconds, 0);
1678
1679 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1680
1681 /* Make sure the target is running */
1682 target_poll(target);
1683 if (target->state == TARGET_HALTED)
1684 retval = target_resume(target, 1, 0, 0, 0);
1685
1686 if (retval != ERROR_OK) {
1687 LOG_ERROR("Error while resuming target");
1688 return retval;
1689 }
1690
1691 uint32_t sample_count = 0;
1692
1693 for (;;) {
1694 if (armv7m && armv7m->debug_ap) {
1695 uint32_t read_count = max_num_samples - sample_count;
1696 if (read_count > 1024)
1697 read_count = 1024;
1698
1699 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1700 (void *)&samples[sample_count],
1701 4, read_count, DWT_PCSR);
1702 sample_count += read_count;
1703 } else {
1704 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1705 }
1706
1707 if (retval != ERROR_OK) {
1708 LOG_ERROR("Error while reading PCSR");
1709 return retval;
1710 }
1711
1712
1713 gettimeofday(&now, NULL);
1714 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1715 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1716 break;
1717 }
1718 }
1719
1720 *num_samples = sample_count;
1721 return retval;
1722 }
1723
1724
1725 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1726 * on r/w if the core is not running, and clear on resume or reset ... or
1727 * at least, in a post_restore_context() method.
1728 */
1729
1730 struct dwt_reg_state {
1731 struct target *target;
1732 uint32_t addr;
1733 uint8_t value[4]; /* scratch/cache */
1734 };
1735
1736 static int cortex_m_dwt_get_reg(struct reg *reg)
1737 {
1738 struct dwt_reg_state *state = reg->arch_info;
1739
1740 uint32_t tmp;
1741 int retval = target_read_u32(state->target, state->addr, &tmp);
1742 if (retval != ERROR_OK)
1743 return retval;
1744
1745 buf_set_u32(state->value, 0, 32, tmp);
1746 return ERROR_OK;
1747 }
1748
1749 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1750 {
1751 struct dwt_reg_state *state = reg->arch_info;
1752
1753 return target_write_u32(state->target, state->addr,
1754 buf_get_u32(buf, 0, reg->size));
1755 }
1756
1757 struct dwt_reg {
1758 uint32_t addr;
1759 const char *name;
1760 unsigned size;
1761 };
1762
1763 static const struct dwt_reg dwt_base_regs[] = {
1764 { DWT_CTRL, "dwt_ctrl", 32, },
1765 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1766 * increments while the core is asleep.
1767 */
1768 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1769 /* plus some 8 bit counters, useful for profiling with TPIU */
1770 };
1771
1772 static const struct dwt_reg dwt_comp[] = {
1773 #define DWT_COMPARATOR(i) \
1774 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1775 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1776 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1777 DWT_COMPARATOR(0),
1778 DWT_COMPARATOR(1),
1779 DWT_COMPARATOR(2),
1780 DWT_COMPARATOR(3),
1781 DWT_COMPARATOR(4),
1782 DWT_COMPARATOR(5),
1783 DWT_COMPARATOR(6),
1784 DWT_COMPARATOR(7),
1785 DWT_COMPARATOR(8),
1786 DWT_COMPARATOR(9),
1787 DWT_COMPARATOR(10),
1788 DWT_COMPARATOR(11),
1789 DWT_COMPARATOR(12),
1790 DWT_COMPARATOR(13),
1791 DWT_COMPARATOR(14),
1792 DWT_COMPARATOR(15),
1793 #undef DWT_COMPARATOR
1794 };
1795
1796 static const struct reg_arch_type dwt_reg_type = {
1797 .get = cortex_m_dwt_get_reg,
1798 .set = cortex_m_dwt_set_reg,
1799 };
1800
1801 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1802 {
1803 struct dwt_reg_state *state;
1804
1805 state = calloc(1, sizeof(*state));
1806 if (!state)
1807 return;
1808 state->addr = d->addr;
1809 state->target = t;
1810
1811 r->name = d->name;
1812 r->size = d->size;
1813 r->value = state->value;
1814 r->arch_info = state;
1815 r->type = &dwt_reg_type;
1816 }
1817
1818 static void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1819 {
1820 uint32_t dwtcr;
1821 struct reg_cache *cache;
1822 struct cortex_m_dwt_comparator *comparator;
1823 int reg, i;
1824
1825 target_read_u32(target, DWT_CTRL, &dwtcr);
1826 LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1827 if (!dwtcr) {
1828 LOG_DEBUG("no DWT");
1829 return;
1830 }
1831
1832 target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch);
1833 LOG_DEBUG("DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch);
1834
1835 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1836 cm->dwt_comp_available = cm->dwt_num_comp;
1837 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1838 sizeof(struct cortex_m_dwt_comparator));
1839 if (!cm->dwt_comparator_list) {
1840 fail0:
1841 cm->dwt_num_comp = 0;
1842 LOG_ERROR("out of mem");
1843 return;
1844 }
1845
1846 cache = calloc(1, sizeof(*cache));
1847 if (!cache) {
1848 fail1:
1849 free(cm->dwt_comparator_list);
1850 goto fail0;
1851 }
1852 cache->name = "Cortex-M DWT registers";
1853 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1854 cache->reg_list = calloc(cache->num_regs, sizeof(*cache->reg_list));
1855 if (!cache->reg_list) {
1856 free(cache);
1857 goto fail1;
1858 }
1859
1860 for (reg = 0; reg < 2; reg++)
1861 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1862 dwt_base_regs + reg);
1863
1864 comparator = cm->dwt_comparator_list;
1865 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1866 int j;
1867
1868 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1869 for (j = 0; j < 3; j++, reg++)
1870 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1871 dwt_comp + 3 * i + j);
1872
1873 /* make sure we clear any watchpoints enabled on the target */
1874 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1875 }
1876
1877 *register_get_last_cache_p(&target->reg_cache) = cache;
1878 cm->dwt_cache = cache;
1879
1880 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1881 dwtcr, cm->dwt_num_comp,
1882 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1883
1884 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1885 * implement single-address data value watchpoints ... so we
1886 * won't need to check it later, when asked to set one up.
1887 */
1888 }
1889
1890 static void cortex_m_dwt_free(struct target *target)
1891 {
1892 struct cortex_m_common *cm = target_to_cm(target);
1893 struct reg_cache *cache = cm->dwt_cache;
1894
1895 free(cm->dwt_comparator_list);
1896 cm->dwt_comparator_list = NULL;
1897 cm->dwt_num_comp = 0;
1898
1899 if (cache) {
1900 register_unlink_cache(&target->reg_cache, cache);
1901
1902 if (cache->reg_list) {
1903 for (size_t i = 0; i < cache->num_regs; i++)
1904 free(cache->reg_list[i].arch_info);
1905 free(cache->reg_list);
1906 }
1907 free(cache);
1908 }
1909 cm->dwt_cache = NULL;
1910 }
1911
1912 #define MVFR0 0xe000ef40
1913 #define MVFR1 0xe000ef44
1914
1915 #define MVFR0_DEFAULT_M4 0x10110021
1916 #define MVFR1_DEFAULT_M4 0x11000011
1917
1918 #define MVFR0_DEFAULT_M7_SP 0x10110021
1919 #define MVFR0_DEFAULT_M7_DP 0x10110221
1920 #define MVFR1_DEFAULT_M7_SP 0x11000011
1921 #define MVFR1_DEFAULT_M7_DP 0x12000011
1922
1923 static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp,
1924 struct adiv5_ap **debug_ap)
1925 {
1926 if (dap_find_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK)
1927 return ERROR_OK;
1928
1929 return dap_find_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap);
1930 }
1931
1932 int cortex_m_examine(struct target *target)
1933 {
1934 int retval;
1935 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1936 int i;
1937 struct cortex_m_common *cortex_m = target_to_cm(target);
1938 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1939 struct armv7m_common *armv7m = target_to_armv7m(target);
1940
1941 /* stlink shares the examine handler but does not support
1942 * all its calls */
1943 if (!armv7m->stlink) {
1944 if (cortex_m->apsel == DP_APSEL_INVALID) {
1945 /* Search for the MEM-AP */
1946 retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
1947 if (retval != ERROR_OK) {
1948 LOG_ERROR("Could not find MEM-AP to control the core");
1949 return retval;
1950 }
1951 } else {
1952 armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
1953 }
1954
1955 /* Leave (only) generic DAP stuff for debugport_init(); */
1956 armv7m->debug_ap->memaccess_tck = 8;
1957
1958 retval = mem_ap_init(armv7m->debug_ap);
1959 if (retval != ERROR_OK)
1960 return retval;
1961 }
1962
1963 if (!target_was_examined(target)) {
1964 target_set_examined(target);
1965
1966 /* Read from Device Identification Registers */
1967 retval = target_read_u32(target, CPUID, &cpuid);
1968 if (retval != ERROR_OK)
1969 return retval;
1970
1971 /* Get CPU Type */
1972 i = (cpuid >> 4) & 0xf;
1973
1974 /* Check if it is an ARMv8-M core */
1975 armv7m->arm.is_armv8m = true;
1976
1977 switch (cpuid & ARM_CPUID_PARTNO_MASK) {
1978 case CORTEX_M23_PARTNO:
1979 i = 23;
1980 break;
1981 case CORTEX_M33_PARTNO:
1982 i = 33;
1983 break;
1984 case CORTEX_M35P_PARTNO:
1985 i = 35;
1986 break;
1987 case CORTEX_M55_PARTNO:
1988 i = 55;
1989 break;
1990 default:
1991 armv7m->arm.is_armv8m = false;
1992 break;
1993 }
1994
1995
1996 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1997 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1998 cortex_m->maskints_erratum = false;
1999 if (i == 7) {
2000 uint8_t rev, patch;
2001 rev = (cpuid >> 20) & 0xf;
2002 patch = (cpuid >> 0) & 0xf;
2003 if ((rev == 0) && (patch < 2)) {
2004 LOG_WARNING("Silicon bug: single stepping may enter pending exception handler!");
2005 cortex_m->maskints_erratum = true;
2006 }
2007 }
2008 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2009
2010 /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */
2011 cortex_m->vectreset_supported = i > 1;
2012
2013 if (i == 4) {
2014 target_read_u32(target, MVFR0, &mvfr0);
2015 target_read_u32(target, MVFR1, &mvfr1);
2016
2017 /* test for floating point feature on Cortex-M4 */
2018 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2019 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2020 armv7m->fp_feature = FPv4_SP;
2021 }
2022 } else if (i == 7 || i == 33 || i == 35 || i == 55) {
2023 target_read_u32(target, MVFR0, &mvfr0);
2024 target_read_u32(target, MVFR1, &mvfr1);
2025
2026 /* test for floating point features on Cortex-M7 */
2027 if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2028 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2029 armv7m->fp_feature = FPv5_SP;
2030 } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2031 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2032 armv7m->fp_feature = FPv5_DP;
2033 }
2034 } else if (i == 0) {
2035 /* Cortex-M0 does not support unaligned memory access */
2036 armv7m->arm.is_armv6m = true;
2037 }
2038
2039 if (armv7m->fp_feature == FP_NONE &&
2040 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2041 /* free unavailable FPU registers */
2042 size_t idx;
2043
2044 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2045 idx < armv7m->arm.core_cache->num_regs;
2046 idx++) {
2047 free(armv7m->arm.core_cache->reg_list[idx].value);
2048 free(armv7m->arm.core_cache->reg_list[idx].feature);
2049 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2050 }
2051 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2052 }
2053
2054 if (!armv7m->stlink) {
2055 if (i == 3 || i == 4)
2056 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2057 * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2058 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2059 else if (i == 7)
2060 /* Cortex-M7 has only 1024 bytes autoincrement range */
2061 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2062 }
2063
2064 /* Enable debug requests */
2065 retval = target_read_u32(target, DCB_DHCSR, &cortex_m->dcb_dhcsr);
2066 if (retval != ERROR_OK)
2067 return retval;
2068 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
2069 uint32_t dhcsr = (cortex_m->dcb_dhcsr | C_DEBUGEN) & ~(C_HALT | C_STEP | C_MASKINTS);
2070
2071 retval = target_write_u32(target, DCB_DHCSR, DBGKEY | (dhcsr & 0x0000FFFFUL));
2072 if (retval != ERROR_OK)
2073 return retval;
2074 cortex_m->dcb_dhcsr = dhcsr;
2075 }
2076
2077 /* Configure trace modules */
2078 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2079 if (retval != ERROR_OK)
2080 return retval;
2081
2082 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2083 armv7m_trace_tpiu_config(target);
2084 armv7m_trace_itm_config(target);
2085 }
2086
2087 /* NOTE: FPB and DWT are both optional. */
2088
2089 /* Setup FPB */
2090 target_read_u32(target, FP_CTRL, &fpcr);
2091 /* bits [14:12] and [7:4] */
2092 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2093 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2094 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2095 Revision is zero base, fp_rev == 1 means Rev.2 ! */
2096 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2097 free(cortex_m->fp_comparator_list);
2098 cortex_m->fp_comparator_list = calloc(
2099 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2100 sizeof(struct cortex_m_fp_comparator));
2101 cortex_m->fpb_enabled = fpcr & 1;
2102 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2103 cortex_m->fp_comparator_list[i].type =
2104 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2105 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2106
2107 /* make sure we clear any breakpoints enabled on the target */
2108 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2109 }
2110 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2111 fpcr,
2112 cortex_m->fp_num_code,
2113 cortex_m->fp_num_lit);
2114
2115 /* Setup DWT */
2116 cortex_m_dwt_free(target);
2117 cortex_m_dwt_setup(cortex_m, target);
2118
2119 /* These hardware breakpoints only work for code in flash! */
2120 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2121 target_name(target),
2122 cortex_m->fp_num_code,
2123 cortex_m->dwt_num_comp);
2124 }
2125
2126 return ERROR_OK;
2127 }
2128
2129 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2130 {
2131 struct armv7m_common *armv7m = target_to_armv7m(target);
2132 uint16_t dcrdr;
2133 uint8_t buf[2];
2134 int retval;
2135
2136 retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2137 if (retval != ERROR_OK)
2138 return retval;
2139
2140 dcrdr = target_buffer_get_u16(target, buf);
2141 *ctrl = (uint8_t)dcrdr;
2142 *value = (uint8_t)(dcrdr >> 8);
2143
2144 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2145
2146 /* write ack back to software dcc register
2147 * signify we have read data */
2148 if (dcrdr & (1 << 0)) {
2149 target_buffer_set_u16(target, buf, 0);
2150 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2151 if (retval != ERROR_OK)
2152 return retval;
2153 }
2154
2155 return ERROR_OK;
2156 }
2157
2158 static int cortex_m_target_request_data(struct target *target,
2159 uint32_t size, uint8_t *buffer)
2160 {
2161 uint8_t data;
2162 uint8_t ctrl;
2163 uint32_t i;
2164
2165 for (i = 0; i < (size * 4); i++) {
2166 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2167 if (retval != ERROR_OK)
2168 return retval;
2169 buffer[i] = data;
2170 }
2171
2172 return ERROR_OK;
2173 }
2174
2175 static int cortex_m_handle_target_request(void *priv)
2176 {
2177 struct target *target = priv;
2178 if (!target_was_examined(target))
2179 return ERROR_OK;
2180
2181 if (!target->dbg_msg_enabled)
2182 return ERROR_OK;
2183
2184 if (target->state == TARGET_RUNNING) {
2185 uint8_t data;
2186 uint8_t ctrl;
2187 int retval;
2188
2189 retval = cortex_m_dcc_read(target, &data, &ctrl);
2190 if (retval != ERROR_OK)
2191 return retval;
2192
2193 /* check if we have data */
2194 if (ctrl & (1 << 0)) {
2195 uint32_t request;
2196
2197 /* we assume target is quick enough */
2198 request = data;
2199 for (int i = 1; i <= 3; i++) {
2200 retval = cortex_m_dcc_read(target, &data, &ctrl);
2201 if (retval != ERROR_OK)
2202 return retval;
2203 request |= ((uint32_t)data << (i * 8));
2204 }
2205 target_request(target, request);
2206 }
2207 }
2208
2209 return ERROR_OK;
2210 }
2211
2212 static int cortex_m_init_arch_info(struct target *target,
2213 struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2214 {
2215 struct armv7m_common *armv7m = &cortex_m->armv7m;
2216
2217 armv7m_init_arch_info(target, armv7m);
2218
2219 /* default reset mode is to use srst if fitted
2220 * if not it will use CORTEX_M3_RESET_VECTRESET */
2221 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2222
2223 armv7m->arm.dap = dap;
2224
2225 /* register arch-specific functions */
2226 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2227
2228 armv7m->post_debug_entry = NULL;
2229
2230 armv7m->pre_restore_context = NULL;
2231
2232 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2233 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2234
2235 target_register_timer_callback(cortex_m_handle_target_request, 1,
2236 TARGET_TIMER_TYPE_PERIODIC, target);
2237
2238 return ERROR_OK;
2239 }
2240
2241 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2242 {
2243 struct adiv5_private_config *pc;
2244
2245 pc = (struct adiv5_private_config *)target->private_config;
2246 if (adiv5_verify_config(pc) != ERROR_OK)
2247 return ERROR_FAIL;
2248
2249 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2250 if (cortex_m == NULL) {
2251 LOG_ERROR("No memory creating target");
2252 return ERROR_FAIL;
2253 }
2254
2255 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2256 cortex_m->apsel = pc->ap_num;
2257
2258 cortex_m_init_arch_info(target, cortex_m, pc->dap);
2259
2260 return ERROR_OK;
2261 }
2262
2263 /*--------------------------------------------------------------------------*/
2264
2265 static int cortex_m_verify_pointer(struct command_invocation *cmd,
2266 struct cortex_m_common *cm)
2267 {
2268 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2269 command_print(cmd, "target is not a Cortex-M");
2270 return ERROR_TARGET_INVALID;
2271 }
2272 return ERROR_OK;
2273 }
2274
2275 /*
2276 * Only stuff below this line should need to verify that its target
2277 * is a Cortex-M3. Everything else should have indirected through the
2278 * cortexm3_target structure, which is only used with CM3 targets.
2279 */
2280
2281 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2282 {
2283 struct target *target = get_current_target(CMD_CTX);
2284 struct cortex_m_common *cortex_m = target_to_cm(target);
2285 struct armv7m_common *armv7m = &cortex_m->armv7m;
2286 uint32_t demcr = 0;
2287 int retval;
2288
2289 static const struct {
2290 char name[10];
2291 unsigned mask;
2292 } vec_ids[] = {
2293 { "hard_err", VC_HARDERR, },
2294 { "int_err", VC_INTERR, },
2295 { "bus_err", VC_BUSERR, },
2296 { "state_err", VC_STATERR, },
2297 { "chk_err", VC_CHKERR, },
2298 { "nocp_err", VC_NOCPERR, },
2299 { "mm_err", VC_MMERR, },
2300 { "reset", VC_CORERESET, },
2301 };
2302
2303 retval = cortex_m_verify_pointer(CMD, cortex_m);
2304 if (retval != ERROR_OK)
2305 return retval;
2306
2307 if (!target_was_examined(target)) {
2308 LOG_ERROR("Target not examined yet");
2309 return ERROR_FAIL;
2310 }
2311
2312 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2313 if (retval != ERROR_OK)
2314 return retval;
2315
2316 if (CMD_ARGC > 0) {
2317 unsigned catch = 0;
2318
2319 if (CMD_ARGC == 1) {
2320 if (strcmp(CMD_ARGV[0], "all") == 0) {
2321 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2322 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2323 | VC_MMERR | VC_CORERESET;
2324 goto write;
2325 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2326 goto write;
2327 }
2328 while (CMD_ARGC-- > 0) {
2329 unsigned i;
2330 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2331 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2332 continue;
2333 catch |= vec_ids[i].mask;
2334 break;
2335 }
2336 if (i == ARRAY_SIZE(vec_ids)) {
2337 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2338 return ERROR_COMMAND_SYNTAX_ERROR;
2339 }
2340 }
2341 write:
2342 /* For now, armv7m->demcr only stores vector catch flags. */
2343 armv7m->demcr = catch;
2344
2345 demcr &= ~0xffff;
2346 demcr |= catch;
2347
2348 /* write, but don't assume it stuck (why not??) */
2349 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2350 if (retval != ERROR_OK)
2351 return retval;
2352 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2353 if (retval != ERROR_OK)
2354 return retval;
2355
2356 /* FIXME be sure to clear DEMCR on clean server shutdown.
2357 * Otherwise the vector catch hardware could fire when there's
2358 * no debugger hooked up, causing much confusion...
2359 */
2360 }
2361
2362 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2363 command_print(CMD, "%9s: %s", vec_ids[i].name,
2364 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2365 }
2366
2367 return ERROR_OK;
2368 }
2369
2370 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2371 {
2372 struct target *target = get_current_target(CMD_CTX);
2373 struct cortex_m_common *cortex_m = target_to_cm(target);
2374 int retval;
2375
2376 static const Jim_Nvp nvp_maskisr_modes[] = {
2377 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2378 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2379 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2380 { .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY },
2381 { .name = NULL, .value = -1 },
2382 };
2383 const Jim_Nvp *n;
2384
2385
2386 retval = cortex_m_verify_pointer(CMD, cortex_m);
2387 if (retval != ERROR_OK)
2388 return retval;
2389
2390 if (target->state != TARGET_HALTED) {
2391 command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
2392 return ERROR_OK;
2393 }
2394
2395 if (CMD_ARGC > 0) {
2396 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2397 if (n->name == NULL)
2398 return ERROR_COMMAND_SYNTAX_ERROR;
2399 cortex_m->isrmasking_mode = n->value;
2400 cortex_m_set_maskints_for_halt(target);
2401 }
2402
2403 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2404 command_print(CMD, "cortex_m interrupt mask %s", n->name);
2405
2406 return ERROR_OK;
2407 }
2408
2409 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2410 {
2411 struct target *target = get_current_target(CMD_CTX);
2412 struct cortex_m_common *cortex_m = target_to_cm(target);
2413 int retval;
2414 char *reset_config;
2415
2416 retval = cortex_m_verify_pointer(CMD, cortex_m);
2417 if (retval != ERROR_OK)
2418 return retval;
2419
2420 if (CMD_ARGC > 0) {
2421 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2422 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2423
2424 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2425 if (target_was_examined(target)
2426 && !cortex_m->vectreset_supported)
2427 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2428 else
2429 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2430
2431 } else
2432 return ERROR_COMMAND_SYNTAX_ERROR;
2433 }
2434
2435 switch (cortex_m->soft_reset_config) {
2436 case CORTEX_M_RESET_SYSRESETREQ:
2437 reset_config = "sysresetreq";
2438 break;
2439
2440 case CORTEX_M_RESET_VECTRESET:
2441 reset_config = "vectreset";
2442 break;
2443
2444 default:
2445 reset_config = "unknown";
2446 break;
2447 }
2448
2449 command_print(CMD, "cortex_m reset_config %s", reset_config);
2450
2451 return ERROR_OK;
2452 }
2453
2454 static const struct command_registration cortex_m_exec_command_handlers[] = {
2455 {
2456 .name = "maskisr",
2457 .handler = handle_cortex_m_mask_interrupts_command,
2458 .mode = COMMAND_EXEC,
2459 .help = "mask cortex_m interrupts",
2460 .usage = "['auto'|'on'|'off'|'steponly']",
2461 },
2462 {
2463 .name = "vector_catch",
2464 .handler = handle_cortex_m_vector_catch_command,
2465 .mode = COMMAND_EXEC,
2466 .help = "configure hardware vectors to trigger debug entry",
2467 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2468 },
2469 {
2470 .name = "reset_config",
2471 .handler = handle_cortex_m_reset_config_command,
2472 .mode = COMMAND_ANY,
2473 .help = "configure software reset handling",
2474 .usage = "['sysresetreq'|'vectreset']",
2475 },
2476 COMMAND_REGISTRATION_DONE
2477 };
2478 static const struct command_registration cortex_m_command_handlers[] = {
2479 {
2480 .chain = armv7m_command_handlers,
2481 },
2482 {
2483 .chain = armv7m_trace_command_handlers,
2484 },
2485 {
2486 .name = "cortex_m",
2487 .mode = COMMAND_EXEC,
2488 .help = "Cortex-M command group",
2489 .usage = "",
2490 .chain = cortex_m_exec_command_handlers,
2491 },
2492 COMMAND_REGISTRATION_DONE
2493 };
2494
2495 struct target_type cortexm_target = {
2496 .name = "cortex_m",
2497 .deprecated_name = "cortex_m3",
2498
2499 .poll = cortex_m_poll,
2500 .arch_state = armv7m_arch_state,
2501
2502 .target_request_data = cortex_m_target_request_data,
2503
2504 .halt = cortex_m_halt,
2505 .resume = cortex_m_resume,
2506 .step = cortex_m_step,
2507
2508 .assert_reset = cortex_m_assert_reset,
2509 .deassert_reset = cortex_m_deassert_reset,
2510 .soft_reset_halt = cortex_m_soft_reset_halt,
2511
2512 .get_gdb_arch = arm_get_gdb_arch,
2513 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2514
2515 .read_memory = cortex_m_read_memory,
2516 .write_memory = cortex_m_write_memory,
2517 .checksum_memory = armv7m_checksum_memory,
2518 .blank_check_memory = armv7m_blank_check_memory,
2519
2520 .run_algorithm = armv7m_run_algorithm,
2521 .start_algorithm = armv7m_start_algorithm,
2522 .wait_algorithm = armv7m_wait_algorithm,
2523
2524 .add_breakpoint = cortex_m_add_breakpoint,
2525 .remove_breakpoint = cortex_m_remove_breakpoint,
2526 .add_watchpoint = cortex_m_add_watchpoint,
2527 .remove_watchpoint = cortex_m_remove_watchpoint,
2528
2529 .commands = cortex_m_command_handlers,
2530 .target_create = cortex_m_target_create,
2531 .target_jim_configure = adiv5_jim_configure,
2532 .init_target = cortex_m_init_target,
2533 .examine = cortex_m_examine,
2534 .deinit_target = cortex_m_deinit_target,
2535
2536 .profiling = cortex_m_profiling,
2537 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)