arm_adi_v5: prevent possibly endless recursion in dap_dp_init()
[openocd.git] / src / target / cortex_m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 * *
24 * *
25 * Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
26 * *
27 ***************************************************************************/
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "jtag/interface.h"
33 #include "breakpoints.h"
34 #include "cortex_m.h"
35 #include "target_request.h"
36 #include "target_type.h"
37 #include "arm_disassembler.h"
38 #include "register.h"
39 #include "arm_opcodes.h"
40 #include "arm_semihosting.h"
41 #include <helper/time_support.h>
42
43 /* NOTE: most of this should work fine for the Cortex-M1 and
44 * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45 * Some differences: M0/M1 doesn't have FPB remapping or the
46 * DWT tracing/profiling support. (So the cycle counter will
47 * not be usable; the other stuff isn't currently used here.)
48 *
49 * Although there are some workarounds for errata seen only in r0p0
50 * silicon, such old parts are hard to find and thus not much tested
51 * any longer.
52 */
53
54 /* forward declarations */
55 static int cortex_m_store_core_reg_u32(struct target *target,
56 uint32_t num, uint32_t value);
57 static void cortex_m_dwt_free(struct target *target);
58
59 static int cortex_m_load_core_reg_u32(struct target *target,
60 uint32_t regsel, uint32_t *value)
61 {
62 struct armv7m_common *armv7m = target_to_armv7m(target);
63 int retval;
64 uint32_t dcrdr;
65
66 /* because the DCB_DCRDR is used for the emulated dcc channel
67 * we have to save/restore the DCB_DCRDR when used */
68 if (target->dbg_msg_enabled) {
69 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
70 if (retval != ERROR_OK)
71 return retval;
72 }
73
74 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRSR, regsel);
75 if (retval != ERROR_OK)
76 return retval;
77
78 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DCRDR, value);
79 if (retval != ERROR_OK)
80 return retval;
81
82 if (target->dbg_msg_enabled) {
83 /* restore DCB_DCRDR - this needs to be in a separate
84 * transaction otherwise the emulated DCC channel breaks */
85 if (retval == ERROR_OK)
86 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
87 }
88
89 return retval;
90 }
91
92 static int cortex_m_store_core_reg_u32(struct target *target,
93 uint32_t regsel, uint32_t value)
94 {
95 struct armv7m_common *armv7m = target_to_armv7m(target);
96 int retval;
97 uint32_t dcrdr;
98
99 /* because the DCB_DCRDR is used for the emulated dcc channel
100 * we have to save/restore the DCB_DCRDR when used */
101 if (target->dbg_msg_enabled) {
102 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DCRDR, &dcrdr);
103 if (retval != ERROR_OK)
104 return retval;
105 }
106
107 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, value);
108 if (retval != ERROR_OK)
109 return retval;
110
111 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRSR, regsel | DCRSR_WnR);
112 if (retval != ERROR_OK)
113 return retval;
114
115 if (target->dbg_msg_enabled) {
116 /* restore DCB_DCRDR - this needs to be in a separate
117 * transaction otherwise the emulated DCC channel breaks */
118 if (retval == ERROR_OK)
119 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DCRDR, dcrdr);
120 }
121
122 return retval;
123 }
124
125 static int cortex_m_write_debug_halt_mask(struct target *target,
126 uint32_t mask_on, uint32_t mask_off)
127 {
128 struct cortex_m_common *cortex_m = target_to_cm(target);
129 struct armv7m_common *armv7m = &cortex_m->armv7m;
130
131 /* mask off status bits */
132 cortex_m->dcb_dhcsr &= ~((0xFFFFul << 16) | mask_off);
133 /* create new register mask */
134 cortex_m->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
135
136 return mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR, cortex_m->dcb_dhcsr);
137 }
138
139 static int cortex_m_set_maskints(struct target *target, bool mask)
140 {
141 struct cortex_m_common *cortex_m = target_to_cm(target);
142 if (!!(cortex_m->dcb_dhcsr & C_MASKINTS) != mask)
143 return cortex_m_write_debug_halt_mask(target, mask ? C_MASKINTS : 0, mask ? 0 : C_MASKINTS);
144 else
145 return ERROR_OK;
146 }
147
148 static int cortex_m_set_maskints_for_halt(struct target *target)
149 {
150 struct cortex_m_common *cortex_m = target_to_cm(target);
151 switch (cortex_m->isrmasking_mode) {
152 case CORTEX_M_ISRMASK_AUTO:
153 /* interrupts taken at resume, whether for step or run -> no mask */
154 return cortex_m_set_maskints(target, false);
155
156 case CORTEX_M_ISRMASK_OFF:
157 /* interrupts never masked */
158 return cortex_m_set_maskints(target, false);
159
160 case CORTEX_M_ISRMASK_ON:
161 /* interrupts always masked */
162 return cortex_m_set_maskints(target, true);
163
164 case CORTEX_M_ISRMASK_STEPONLY:
165 /* interrupts masked for single step only -> mask now if MASKINTS
166 * erratum, otherwise only mask before stepping */
167 return cortex_m_set_maskints(target, cortex_m->maskints_erratum);
168 }
169 return ERROR_OK;
170 }
171
172 static int cortex_m_set_maskints_for_run(struct target *target)
173 {
174 switch (target_to_cm(target)->isrmasking_mode) {
175 case CORTEX_M_ISRMASK_AUTO:
176 /* interrupts taken at resume, whether for step or run -> no mask */
177 return cortex_m_set_maskints(target, false);
178
179 case CORTEX_M_ISRMASK_OFF:
180 /* interrupts never masked */
181 return cortex_m_set_maskints(target, false);
182
183 case CORTEX_M_ISRMASK_ON:
184 /* interrupts always masked */
185 return cortex_m_set_maskints(target, true);
186
187 case CORTEX_M_ISRMASK_STEPONLY:
188 /* interrupts masked for single step only -> no mask */
189 return cortex_m_set_maskints(target, false);
190 }
191 return ERROR_OK;
192 }
193
194 static int cortex_m_set_maskints_for_step(struct target *target)
195 {
196 switch (target_to_cm(target)->isrmasking_mode) {
197 case CORTEX_M_ISRMASK_AUTO:
198 /* the auto-interrupt should already be done -> mask */
199 return cortex_m_set_maskints(target, true);
200
201 case CORTEX_M_ISRMASK_OFF:
202 /* interrupts never masked */
203 return cortex_m_set_maskints(target, false);
204
205 case CORTEX_M_ISRMASK_ON:
206 /* interrupts always masked */
207 return cortex_m_set_maskints(target, true);
208
209 case CORTEX_M_ISRMASK_STEPONLY:
210 /* interrupts masked for single step only -> mask */
211 return cortex_m_set_maskints(target, true);
212 }
213 return ERROR_OK;
214 }
215
216 static int cortex_m_clear_halt(struct target *target)
217 {
218 struct cortex_m_common *cortex_m = target_to_cm(target);
219 struct armv7m_common *armv7m = &cortex_m->armv7m;
220 int retval;
221
222 /* clear step if any */
223 cortex_m_write_debug_halt_mask(target, C_HALT, C_STEP);
224
225 /* Read Debug Fault Status Register */
226 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR, &cortex_m->nvic_dfsr);
227 if (retval != ERROR_OK)
228 return retval;
229
230 /* Clear Debug Fault Status */
231 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_DFSR, cortex_m->nvic_dfsr);
232 if (retval != ERROR_OK)
233 return retval;
234 LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m->nvic_dfsr);
235
236 return ERROR_OK;
237 }
238
239 static int cortex_m_single_step_core(struct target *target)
240 {
241 struct cortex_m_common *cortex_m = target_to_cm(target);
242 struct armv7m_common *armv7m = &cortex_m->armv7m;
243 int retval;
244
245 /* Mask interrupts before clearing halt, if not done already. This avoids
246 * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
247 * HALT can put the core into an unknown state.
248 */
249 if (!(cortex_m->dcb_dhcsr & C_MASKINTS)) {
250 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
251 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
252 if (retval != ERROR_OK)
253 return retval;
254 }
255 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DHCSR,
256 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
257 if (retval != ERROR_OK)
258 return retval;
259 LOG_DEBUG(" ");
260
261 /* restore dhcsr reg */
262 cortex_m_clear_halt(target);
263
264 return ERROR_OK;
265 }
266
267 static int cortex_m_enable_fpb(struct target *target)
268 {
269 int retval = target_write_u32(target, FP_CTRL, 3);
270 if (retval != ERROR_OK)
271 return retval;
272
273 /* check the fpb is actually enabled */
274 uint32_t fpctrl;
275 retval = target_read_u32(target, FP_CTRL, &fpctrl);
276 if (retval != ERROR_OK)
277 return retval;
278
279 if (fpctrl & 1)
280 return ERROR_OK;
281
282 return ERROR_FAIL;
283 }
284
285 static int cortex_m_endreset_event(struct target *target)
286 {
287 int i;
288 int retval;
289 uint32_t dcb_demcr;
290 struct cortex_m_common *cortex_m = target_to_cm(target);
291 struct armv7m_common *armv7m = &cortex_m->armv7m;
292 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
293 struct cortex_m_fp_comparator *fp_list = cortex_m->fp_comparator_list;
294 struct cortex_m_dwt_comparator *dwt_list = cortex_m->dwt_comparator_list;
295
296 /* REVISIT The four debug monitor bits are currently ignored... */
297 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &dcb_demcr);
298 if (retval != ERROR_OK)
299 return retval;
300 LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
301
302 /* this register is used for emulated dcc channel */
303 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
304 if (retval != ERROR_OK)
305 return retval;
306
307 /* Enable debug requests */
308 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
309 if (retval != ERROR_OK)
310 return retval;
311 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
312 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
313 if (retval != ERROR_OK)
314 return retval;
315 }
316
317 /* Restore proper interrupt masking setting for running CPU. */
318 cortex_m_set_maskints_for_run(target);
319
320 /* Enable features controlled by ITM and DWT blocks, and catch only
321 * the vectors we were told to pay attention to.
322 *
323 * Target firmware is responsible for all fault handling policy
324 * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
325 * or manual updates to the NVIC SHCSR and CCR registers.
326 */
327 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, TRCENA | armv7m->demcr);
328 if (retval != ERROR_OK)
329 return retval;
330
331 /* Paranoia: evidently some (early?) chips don't preserve all the
332 * debug state (including FPB, DWT, etc) across reset...
333 */
334
335 /* Enable FPB */
336 retval = cortex_m_enable_fpb(target);
337 if (retval != ERROR_OK) {
338 LOG_ERROR("Failed to enable the FPB");
339 return retval;
340 }
341
342 cortex_m->fpb_enabled = true;
343
344 /* Restore FPB registers */
345 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
346 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
347 if (retval != ERROR_OK)
348 return retval;
349 }
350
351 /* Restore DWT registers */
352 for (i = 0; i < cortex_m->dwt_num_comp; i++) {
353 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
354 dwt_list[i].comp);
355 if (retval != ERROR_OK)
356 return retval;
357 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
358 dwt_list[i].mask);
359 if (retval != ERROR_OK)
360 return retval;
361 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
362 dwt_list[i].function);
363 if (retval != ERROR_OK)
364 return retval;
365 }
366 retval = dap_run(swjdp);
367 if (retval != ERROR_OK)
368 return retval;
369
370 register_cache_invalidate(armv7m->arm.core_cache);
371
372 /* make sure we have latest dhcsr flags */
373 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
374
375 return retval;
376 }
377
378 static int cortex_m_examine_debug_reason(struct target *target)
379 {
380 struct cortex_m_common *cortex_m = target_to_cm(target);
381
382 /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
383 * only check the debug reason if we don't know it already */
384
385 if ((target->debug_reason != DBG_REASON_DBGRQ)
386 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
387 if (cortex_m->nvic_dfsr & DFSR_BKPT) {
388 target->debug_reason = DBG_REASON_BREAKPOINT;
389 if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
390 target->debug_reason = DBG_REASON_WPTANDBKPT;
391 } else if (cortex_m->nvic_dfsr & DFSR_DWTTRAP)
392 target->debug_reason = DBG_REASON_WATCHPOINT;
393 else if (cortex_m->nvic_dfsr & DFSR_VCATCH)
394 target->debug_reason = DBG_REASON_BREAKPOINT;
395 else if (cortex_m->nvic_dfsr & DFSR_EXTERNAL)
396 target->debug_reason = DBG_REASON_DBGRQ;
397 else /* HALTED */
398 target->debug_reason = DBG_REASON_UNDEFINED;
399 }
400
401 return ERROR_OK;
402 }
403
404 static int cortex_m_examine_exception_reason(struct target *target)
405 {
406 uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
407 struct armv7m_common *armv7m = target_to_armv7m(target);
408 struct adiv5_dap *swjdp = armv7m->arm.dap;
409 int retval;
410
411 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SHCSR, &shcsr);
412 if (retval != ERROR_OK)
413 return retval;
414 switch (armv7m->exception_number) {
415 case 2: /* NMI */
416 break;
417 case 3: /* Hard Fault */
418 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_HFSR, &except_sr);
419 if (retval != ERROR_OK)
420 return retval;
421 if (except_sr & 0x40000000) {
422 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &cfsr);
423 if (retval != ERROR_OK)
424 return retval;
425 }
426 break;
427 case 4: /* Memory Management */
428 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
429 if (retval != ERROR_OK)
430 return retval;
431 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_MMFAR, &except_ar);
432 if (retval != ERROR_OK)
433 return retval;
434 break;
435 case 5: /* Bus Fault */
436 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
437 if (retval != ERROR_OK)
438 return retval;
439 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_BFAR, &except_ar);
440 if (retval != ERROR_OK)
441 return retval;
442 break;
443 case 6: /* Usage Fault */
444 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_CFSR, &except_sr);
445 if (retval != ERROR_OK)
446 return retval;
447 break;
448 case 7: /* Secure Fault */
449 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFSR, &except_sr);
450 if (retval != ERROR_OK)
451 return retval;
452 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_SFAR, &except_ar);
453 if (retval != ERROR_OK)
454 return retval;
455 break;
456 case 11: /* SVCall */
457 break;
458 case 12: /* Debug Monitor */
459 retval = mem_ap_read_u32(armv7m->debug_ap, NVIC_DFSR, &except_sr);
460 if (retval != ERROR_OK)
461 return retval;
462 break;
463 case 14: /* PendSV */
464 break;
465 case 15: /* SysTick */
466 break;
467 default:
468 except_sr = 0;
469 break;
470 }
471 retval = dap_run(swjdp);
472 if (retval == ERROR_OK)
473 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
474 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
475 armv7m_exception_string(armv7m->exception_number),
476 shcsr, except_sr, cfsr, except_ar);
477 return retval;
478 }
479
480 static int cortex_m_debug_entry(struct target *target)
481 {
482 int i;
483 uint32_t xPSR;
484 int retval;
485 struct cortex_m_common *cortex_m = target_to_cm(target);
486 struct armv7m_common *armv7m = &cortex_m->armv7m;
487 struct arm *arm = &armv7m->arm;
488 struct reg *r;
489
490 LOG_DEBUG(" ");
491
492 /* Do this really early to minimize the window where the MASKINTS erratum
493 * can pile up pending interrupts. */
494 cortex_m_set_maskints_for_halt(target);
495
496 cortex_m_clear_halt(target);
497 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
498 if (retval != ERROR_OK)
499 return retval;
500
501 retval = armv7m->examine_debug_reason(target);
502 if (retval != ERROR_OK)
503 return retval;
504
505 /* examine PE security state */
506 bool secure_state = false;
507 if (armv7m->arm.is_armv8m) {
508 uint32_t dscsr;
509
510 retval = mem_ap_read_u32(armv7m->debug_ap, DCB_DSCSR, &dscsr);
511 if (retval != ERROR_OK)
512 return retval;
513
514 secure_state = (dscsr & DSCSR_CDS) == DSCSR_CDS;
515 }
516
517 /* Examine target state and mode
518 * First load register accessible through core debug port */
519 int num_regs = arm->core_cache->num_regs;
520
521 for (i = 0; i < num_regs; i++) {
522 r = &armv7m->arm.core_cache->reg_list[i];
523 if (!r->valid)
524 arm->read_core_reg(target, r, i, ARM_MODE_ANY);
525 }
526
527 r = arm->cpsr;
528 xPSR = buf_get_u32(r->value, 0, 32);
529
530 /* Are we in an exception handler */
531 if (xPSR & 0x1FF) {
532 armv7m->exception_number = (xPSR & 0x1FF);
533
534 arm->core_mode = ARM_MODE_HANDLER;
535 arm->map = armv7m_msp_reg_map;
536 } else {
537 unsigned control = buf_get_u32(arm->core_cache
538 ->reg_list[ARMV7M_CONTROL].value, 0, 3);
539
540 /* is this thread privileged? */
541 arm->core_mode = control & 1
542 ? ARM_MODE_USER_THREAD
543 : ARM_MODE_THREAD;
544
545 /* which stack is it using? */
546 if (control & 2)
547 arm->map = armv7m_psp_reg_map;
548 else
549 arm->map = armv7m_msp_reg_map;
550
551 armv7m->exception_number = 0;
552 }
553
554 if (armv7m->exception_number)
555 cortex_m_examine_exception_reason(target);
556
557 LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", cpu in %s state, target->state: %s",
558 arm_mode_name(arm->core_mode),
559 buf_get_u32(arm->pc->value, 0, 32),
560 secure_state ? "Secure" : "Non-Secure",
561 target_state_name(target));
562
563 if (armv7m->post_debug_entry) {
564 retval = armv7m->post_debug_entry(target);
565 if (retval != ERROR_OK)
566 return retval;
567 }
568
569 return ERROR_OK;
570 }
571
572 static int cortex_m_poll(struct target *target)
573 {
574 int detected_failure = ERROR_OK;
575 int retval = ERROR_OK;
576 enum target_state prev_target_state = target->state;
577 struct cortex_m_common *cortex_m = target_to_cm(target);
578 struct armv7m_common *armv7m = &cortex_m->armv7m;
579
580 /* Read from Debug Halting Control and Status Register */
581 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
582 if (retval != ERROR_OK) {
583 target->state = TARGET_UNKNOWN;
584 return retval;
585 }
586
587 /* Recover from lockup. See ARMv7-M architecture spec,
588 * section B1.5.15 "Unrecoverable exception cases".
589 */
590 if (cortex_m->dcb_dhcsr & S_LOCKUP) {
591 LOG_ERROR("%s -- clearing lockup after double fault",
592 target_name(target));
593 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
594 target->debug_reason = DBG_REASON_DBGRQ;
595
596 /* We have to execute the rest (the "finally" equivalent, but
597 * still throw this exception again).
598 */
599 detected_failure = ERROR_FAIL;
600
601 /* refresh status bits */
602 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
603 if (retval != ERROR_OK)
604 return retval;
605 }
606
607 if (cortex_m->dcb_dhcsr & S_RESET_ST) {
608 if (target->state != TARGET_RESET) {
609 target->state = TARGET_RESET;
610 LOG_INFO("%s: external reset detected", target_name(target));
611 }
612 return ERROR_OK;
613 }
614
615 if (target->state == TARGET_RESET) {
616 /* Cannot switch context while running so endreset is
617 * called with target->state == TARGET_RESET
618 */
619 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
620 cortex_m->dcb_dhcsr);
621 retval = cortex_m_endreset_event(target);
622 if (retval != ERROR_OK) {
623 target->state = TARGET_UNKNOWN;
624 return retval;
625 }
626 target->state = TARGET_RUNNING;
627 prev_target_state = TARGET_RUNNING;
628 }
629
630 if (cortex_m->dcb_dhcsr & S_HALT) {
631 target->state = TARGET_HALTED;
632
633 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
634 retval = cortex_m_debug_entry(target);
635 if (retval != ERROR_OK)
636 return retval;
637
638 if (arm_semihosting(target, &retval) != 0)
639 return retval;
640
641 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
642 }
643 if (prev_target_state == TARGET_DEBUG_RUNNING) {
644 LOG_DEBUG(" ");
645 retval = cortex_m_debug_entry(target);
646 if (retval != ERROR_OK)
647 return retval;
648
649 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
650 }
651 }
652
653 if (target->state == TARGET_UNKNOWN) {
654 /* check if processor is retiring instructions or sleeping */
655 if (cortex_m->dcb_dhcsr & S_RETIRE_ST || cortex_m->dcb_dhcsr & S_SLEEP) {
656 target->state = TARGET_RUNNING;
657 retval = ERROR_OK;
658 }
659 }
660
661 /* Check that target is truly halted, since the target could be resumed externally */
662 if ((prev_target_state == TARGET_HALTED) && !(cortex_m->dcb_dhcsr & S_HALT)) {
663 /* registers are now invalid */
664 register_cache_invalidate(armv7m->arm.core_cache);
665
666 target->state = TARGET_RUNNING;
667 LOG_WARNING("%s: external resume detected", target_name(target));
668 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
669 retval = ERROR_OK;
670 }
671
672 /* Did we detect a failure condition that we cleared? */
673 if (detected_failure != ERROR_OK)
674 retval = detected_failure;
675 return retval;
676 }
677
678 static int cortex_m_halt(struct target *target)
679 {
680 LOG_DEBUG("target->state: %s",
681 target_state_name(target));
682
683 if (target->state == TARGET_HALTED) {
684 LOG_DEBUG("target was already halted");
685 return ERROR_OK;
686 }
687
688 if (target->state == TARGET_UNKNOWN)
689 LOG_WARNING("target was in unknown state when halt was requested");
690
691 if (target->state == TARGET_RESET) {
692 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
693 LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
694 return ERROR_TARGET_FAILURE;
695 } else {
696 /* we came here in a reset_halt or reset_init sequence
697 * debug entry was already prepared in cortex_m3_assert_reset()
698 */
699 target->debug_reason = DBG_REASON_DBGRQ;
700
701 return ERROR_OK;
702 }
703 }
704
705 /* Write to Debug Halting Control and Status Register */
706 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
707
708 /* Do this really early to minimize the window where the MASKINTS erratum
709 * can pile up pending interrupts. */
710 cortex_m_set_maskints_for_halt(target);
711
712 target->debug_reason = DBG_REASON_DBGRQ;
713
714 return ERROR_OK;
715 }
716
717 static int cortex_m_soft_reset_halt(struct target *target)
718 {
719 struct cortex_m_common *cortex_m = target_to_cm(target);
720 struct armv7m_common *armv7m = &cortex_m->armv7m;
721 uint32_t dcb_dhcsr = 0;
722 int retval, timeout = 0;
723
724 /* on single cortex_m MCU soft_reset_halt should be avoided as same functionality
725 * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'.
726 * As this reset only uses VC_CORERESET it would only ever reset the cortex_m
727 * core, not the peripherals */
728 LOG_DEBUG("soft_reset_halt is discouraged, please use 'reset halt' instead.");
729
730 /* Set C_DEBUGEN */
731 retval = cortex_m_write_debug_halt_mask(target, 0, C_STEP | C_MASKINTS);
732 if (retval != ERROR_OK)
733 return retval;
734
735 /* Enter debug state on reset; restore DEMCR in endreset_event() */
736 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
737 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
738 if (retval != ERROR_OK)
739 return retval;
740
741 /* Request a core-only reset */
742 retval = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
743 AIRCR_VECTKEY | AIRCR_VECTRESET);
744 if (retval != ERROR_OK)
745 return retval;
746 target->state = TARGET_RESET;
747
748 /* registers are now invalid */
749 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
750
751 while (timeout < 100) {
752 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &dcb_dhcsr);
753 if (retval == ERROR_OK) {
754 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_DFSR,
755 &cortex_m->nvic_dfsr);
756 if (retval != ERROR_OK)
757 return retval;
758 if ((dcb_dhcsr & S_HALT)
759 && (cortex_m->nvic_dfsr & DFSR_VCATCH)) {
760 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
761 "DFSR 0x%08x",
762 (unsigned) dcb_dhcsr,
763 (unsigned) cortex_m->nvic_dfsr);
764 cortex_m_poll(target);
765 /* FIXME restore user's vector catch config */
766 return ERROR_OK;
767 } else
768 LOG_DEBUG("waiting for system reset-halt, "
769 "DHCSR 0x%08x, %d ms",
770 (unsigned) dcb_dhcsr, timeout);
771 }
772 timeout++;
773 alive_sleep(1);
774 }
775
776 return ERROR_OK;
777 }
778
779 void cortex_m_enable_breakpoints(struct target *target)
780 {
781 struct breakpoint *breakpoint = target->breakpoints;
782
783 /* set any pending breakpoints */
784 while (breakpoint) {
785 if (!breakpoint->set)
786 cortex_m_set_breakpoint(target, breakpoint);
787 breakpoint = breakpoint->next;
788 }
789 }
790
791 static int cortex_m_resume(struct target *target, int current,
792 target_addr_t address, int handle_breakpoints, int debug_execution)
793 {
794 struct armv7m_common *armv7m = target_to_armv7m(target);
795 struct breakpoint *breakpoint = NULL;
796 uint32_t resume_pc;
797 struct reg *r;
798
799 if (target->state != TARGET_HALTED) {
800 LOG_WARNING("target not halted");
801 return ERROR_TARGET_NOT_HALTED;
802 }
803
804 if (!debug_execution) {
805 target_free_all_working_areas(target);
806 cortex_m_enable_breakpoints(target);
807 cortex_m_enable_watchpoints(target);
808 }
809
810 if (debug_execution) {
811 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
812
813 /* Disable interrupts */
814 /* We disable interrupts in the PRIMASK register instead of
815 * masking with C_MASKINTS. This is probably the same issue
816 * as Cortex-M3 Erratum 377493 (fixed in r1p0): C_MASKINTS
817 * in parallel with disabled interrupts can cause local faults
818 * to not be taken.
819 *
820 * This breaks non-debug (application) execution if not
821 * called from armv7m_start_algorithm() which saves registers.
822 */
823 buf_set_u32(r->value, 0, 1, 1);
824 r->dirty = true;
825 r->valid = true;
826
827 /* Make sure we are in Thumb mode, set xPSR.T bit */
828 /* armv7m_start_algorithm() initializes entire xPSR register.
829 * This duplicity handles the case when cortex_m_resume()
830 * is used with the debug_execution flag directly,
831 * not called through armv7m_start_algorithm().
832 */
833 r = armv7m->arm.cpsr;
834 buf_set_u32(r->value, 24, 1, 1);
835 r->dirty = true;
836 r->valid = true;
837 }
838
839 /* current = 1: continue on current pc, otherwise continue at <address> */
840 r = armv7m->arm.pc;
841 if (!current) {
842 buf_set_u32(r->value, 0, 32, address);
843 r->dirty = true;
844 r->valid = true;
845 }
846
847 /* if we halted last time due to a bkpt instruction
848 * then we have to manually step over it, otherwise
849 * the core will break again */
850
851 if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
852 && !debug_execution)
853 armv7m_maybe_skip_bkpt_inst(target, NULL);
854
855 resume_pc = buf_get_u32(r->value, 0, 32);
856
857 armv7m_restore_context(target);
858
859 /* the front-end may request us not to handle breakpoints */
860 if (handle_breakpoints) {
861 /* Single step past breakpoint at current address */
862 breakpoint = breakpoint_find(target, resume_pc);
863 if (breakpoint) {
864 LOG_DEBUG("unset breakpoint at " TARGET_ADDR_FMT " (ID: %" PRIu32 ")",
865 breakpoint->address,
866 breakpoint->unique_id);
867 cortex_m_unset_breakpoint(target, breakpoint);
868 cortex_m_single_step_core(target);
869 cortex_m_set_breakpoint(target, breakpoint);
870 }
871 }
872
873 /* Restart core */
874 cortex_m_set_maskints_for_run(target);
875 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
876
877 target->debug_reason = DBG_REASON_NOTHALTED;
878
879 /* registers are now invalid */
880 register_cache_invalidate(armv7m->arm.core_cache);
881
882 if (!debug_execution) {
883 target->state = TARGET_RUNNING;
884 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
885 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
886 } else {
887 target->state = TARGET_DEBUG_RUNNING;
888 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
889 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
890 }
891
892 return ERROR_OK;
893 }
894
895 /* int irqstepcount = 0; */
896 static int cortex_m_step(struct target *target, int current,
897 target_addr_t address, int handle_breakpoints)
898 {
899 struct cortex_m_common *cortex_m = target_to_cm(target);
900 struct armv7m_common *armv7m = &cortex_m->armv7m;
901 struct breakpoint *breakpoint = NULL;
902 struct reg *pc = armv7m->arm.pc;
903 bool bkpt_inst_found = false;
904 int retval;
905 bool isr_timed_out = false;
906
907 if (target->state != TARGET_HALTED) {
908 LOG_WARNING("target not halted");
909 return ERROR_TARGET_NOT_HALTED;
910 }
911
912 /* current = 1: continue on current pc, otherwise continue at <address> */
913 if (!current)
914 buf_set_u32(pc->value, 0, 32, address);
915
916 uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
917
918 /* the front-end may request us not to handle breakpoints */
919 if (handle_breakpoints) {
920 breakpoint = breakpoint_find(target, pc_value);
921 if (breakpoint)
922 cortex_m_unset_breakpoint(target, breakpoint);
923 }
924
925 armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
926
927 target->debug_reason = DBG_REASON_SINGLESTEP;
928
929 armv7m_restore_context(target);
930
931 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
932
933 /* if no bkpt instruction is found at pc then we can perform
934 * a normal step, otherwise we have to manually step over the bkpt
935 * instruction - as such simulate a step */
936 if (bkpt_inst_found == false) {
937 if (cortex_m->isrmasking_mode != CORTEX_M_ISRMASK_AUTO) {
938 /* Automatic ISR masking mode off: Just step over the next
939 * instruction, with interrupts on or off as appropriate. */
940 cortex_m_set_maskints_for_step(target);
941 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
942 } else {
943 /* Process interrupts during stepping in a way they don't interfere
944 * debugging.
945 *
946 * Principle:
947 *
948 * Set a temporary break point at the current pc and let the core run
949 * with interrupts enabled. Pending interrupts get served and we run
950 * into the breakpoint again afterwards. Then we step over the next
951 * instruction with interrupts disabled.
952 *
953 * If the pending interrupts don't complete within time, we leave the
954 * core running. This may happen if the interrupts trigger faster
955 * than the core can process them or the handler doesn't return.
956 *
957 * If no more breakpoints are available we simply do a step with
958 * interrupts enabled.
959 *
960 */
961
962 /* 2012-09-29 ph
963 *
964 * If a break point is already set on the lower half word then a break point on
965 * the upper half word will not break again when the core is restarted. So we
966 * just step over the instruction with interrupts disabled.
967 *
968 * The documentation has no information about this, it was found by observation
969 * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 doesn't seem to
970 * suffer from this problem.
971 *
972 * To add some confusion: pc_value has bit 0 always set, while the breakpoint
973 * address has it always cleared. The former is done to indicate thumb mode
974 * to gdb.
975 *
976 */
977 if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
978 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
979 cortex_m_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
980 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
981 /* Re-enable interrupts if appropriate */
982 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
983 cortex_m_set_maskints_for_halt(target);
984 } else {
985
986 /* Set a temporary break point */
987 if (breakpoint) {
988 retval = cortex_m_set_breakpoint(target, breakpoint);
989 } else {
990 enum breakpoint_type type = BKPT_HARD;
991 if (cortex_m->fp_rev == 0 && pc_value > 0x1FFFFFFF) {
992 /* FPB rev.1 cannot handle such addr, try BKPT instr */
993 type = BKPT_SOFT;
994 }
995 retval = breakpoint_add(target, pc_value, 2, type);
996 }
997
998 bool tmp_bp_set = (retval == ERROR_OK);
999
1000 /* No more breakpoints left, just do a step */
1001 if (!tmp_bp_set) {
1002 cortex_m_set_maskints_for_step(target);
1003 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1004 /* Re-enable interrupts if appropriate */
1005 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1006 cortex_m_set_maskints_for_halt(target);
1007 } else {
1008 /* Start the core */
1009 LOG_DEBUG("Starting core to serve pending interrupts");
1010 int64_t t_start = timeval_ms();
1011 cortex_m_set_maskints_for_run(target);
1012 cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
1013
1014 /* Wait for pending handlers to complete or timeout */
1015 do {
1016 retval = mem_ap_read_atomic_u32(armv7m->debug_ap,
1017 DCB_DHCSR,
1018 &cortex_m->dcb_dhcsr);
1019 if (retval != ERROR_OK) {
1020 target->state = TARGET_UNKNOWN;
1021 return retval;
1022 }
1023 isr_timed_out = ((timeval_ms() - t_start) > 500);
1024 } while (!((cortex_m->dcb_dhcsr & S_HALT) || isr_timed_out));
1025
1026 /* only remove breakpoint if we created it */
1027 if (breakpoint)
1028 cortex_m_unset_breakpoint(target, breakpoint);
1029 else {
1030 /* Remove the temporary breakpoint */
1031 breakpoint_remove(target, pc_value);
1032 }
1033
1034 if (isr_timed_out) {
1035 LOG_DEBUG("Interrupt handlers didn't complete within time, "
1036 "leaving target running");
1037 } else {
1038 /* Step over next instruction with interrupts disabled */
1039 cortex_m_set_maskints_for_step(target);
1040 cortex_m_write_debug_halt_mask(target,
1041 C_HALT | C_MASKINTS,
1042 0);
1043 cortex_m_write_debug_halt_mask(target, C_STEP, C_HALT);
1044 /* Re-enable interrupts if appropriate */
1045 cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1046 cortex_m_set_maskints_for_halt(target);
1047 }
1048 }
1049 }
1050 }
1051 }
1052
1053 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1054 if (retval != ERROR_OK)
1055 return retval;
1056
1057 /* registers are now invalid */
1058 register_cache_invalidate(armv7m->arm.core_cache);
1059
1060 if (breakpoint)
1061 cortex_m_set_breakpoint(target, breakpoint);
1062
1063 if (isr_timed_out) {
1064 /* Leave the core running. The user has to stop execution manually. */
1065 target->debug_reason = DBG_REASON_NOTHALTED;
1066 target->state = TARGET_RUNNING;
1067 return ERROR_OK;
1068 }
1069
1070 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1071 " nvic_icsr = 0x%" PRIx32,
1072 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1073
1074 retval = cortex_m_debug_entry(target);
1075 if (retval != ERROR_OK)
1076 return retval;
1077 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1078
1079 LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1080 " nvic_icsr = 0x%" PRIx32,
1081 cortex_m->dcb_dhcsr, cortex_m->nvic_icsr);
1082
1083 return ERROR_OK;
1084 }
1085
1086 static int cortex_m_assert_reset(struct target *target)
1087 {
1088 struct cortex_m_common *cortex_m = target_to_cm(target);
1089 struct armv7m_common *armv7m = &cortex_m->armv7m;
1090 enum cortex_m_soft_reset_config reset_config = cortex_m->soft_reset_config;
1091
1092 LOG_DEBUG("target->state: %s",
1093 target_state_name(target));
1094
1095 enum reset_types jtag_reset_config = jtag_get_reset_config();
1096
1097 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1098 /* allow scripts to override the reset event */
1099
1100 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1101 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1102 target->state = TARGET_RESET;
1103
1104 return ERROR_OK;
1105 }
1106
1107 /* some cores support connecting while srst is asserted
1108 * use that mode is it has been configured */
1109
1110 bool srst_asserted = false;
1111
1112 if (!target_was_examined(target)) {
1113 if (jtag_reset_config & RESET_HAS_SRST) {
1114 adapter_assert_reset();
1115 if (target->reset_halt)
1116 LOG_ERROR("Target not examined, will not halt after reset!");
1117 return ERROR_OK;
1118 } else {
1119 LOG_ERROR("Target not examined, reset NOT asserted!");
1120 return ERROR_FAIL;
1121 }
1122 }
1123
1124 if ((jtag_reset_config & RESET_HAS_SRST) &&
1125 (jtag_reset_config & RESET_SRST_NO_GATING)) {
1126 adapter_assert_reset();
1127 srst_asserted = true;
1128 }
1129
1130 /* Enable debug requests */
1131 int retval;
1132 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DHCSR, &cortex_m->dcb_dhcsr);
1133 /* Store important errors instead of failing and proceed to reset assert */
1134
1135 if (retval != ERROR_OK || !(cortex_m->dcb_dhcsr & C_DEBUGEN))
1136 retval = cortex_m_write_debug_halt_mask(target, 0, C_HALT | C_STEP | C_MASKINTS);
1137
1138 /* If the processor is sleeping in a WFI or WFE instruction, the
1139 * C_HALT bit must be asserted to regain control */
1140 if (retval == ERROR_OK && (cortex_m->dcb_dhcsr & S_SLEEP))
1141 retval = cortex_m_write_debug_halt_mask(target, C_HALT, 0);
1142
1143 mem_ap_write_u32(armv7m->debug_ap, DCB_DCRDR, 0);
1144 /* Ignore less important errors */
1145
1146 if (!target->reset_halt) {
1147 /* Set/Clear C_MASKINTS in a separate operation */
1148 cortex_m_set_maskints_for_run(target);
1149
1150 /* clear any debug flags before resuming */
1151 cortex_m_clear_halt(target);
1152
1153 /* clear C_HALT in dhcsr reg */
1154 cortex_m_write_debug_halt_mask(target, 0, C_HALT);
1155 } else {
1156 /* Halt in debug on reset; endreset_event() restores DEMCR.
1157 *
1158 * REVISIT catching BUSERR presumably helps to defend against
1159 * bad vector table entries. Should this include MMERR or
1160 * other flags too?
1161 */
1162 int retval2;
1163 retval2 = mem_ap_write_atomic_u32(armv7m->debug_ap, DCB_DEMCR,
1164 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1165 if (retval != ERROR_OK || retval2 != ERROR_OK)
1166 LOG_INFO("AP write error, reset will not halt");
1167 }
1168
1169 if (jtag_reset_config & RESET_HAS_SRST) {
1170 /* default to asserting srst */
1171 if (!srst_asserted)
1172 adapter_assert_reset();
1173
1174 /* srst is asserted, ignore AP access errors */
1175 retval = ERROR_OK;
1176 } else {
1177 /* Use a standard Cortex-M3 software reset mechanism.
1178 * We default to using VECRESET as it is supported on all current cores
1179 * (except Cortex-M0, M0+ and M1 which support SYSRESETREQ only!)
1180 * This has the disadvantage of not resetting the peripherals, so a
1181 * reset-init event handler is needed to perform any peripheral resets.
1182 */
1183 if (!cortex_m->vectreset_supported
1184 && reset_config == CORTEX_M_RESET_VECTRESET) {
1185 reset_config = CORTEX_M_RESET_SYSRESETREQ;
1186 LOG_WARNING("VECTRESET is not supported on this Cortex-M core, using SYSRESETREQ instead.");
1187 LOG_WARNING("Set 'cortex_m reset_config sysresetreq'.");
1188 }
1189
1190 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M_RESET_SYSRESETREQ)
1191 ? "SYSRESETREQ" : "VECTRESET");
1192
1193 if (reset_config == CORTEX_M_RESET_VECTRESET) {
1194 LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1195 "handler to reset any peripherals or configure hardware srst support.");
1196 }
1197
1198 int retval3;
1199 retval3 = mem_ap_write_atomic_u32(armv7m->debug_ap, NVIC_AIRCR,
1200 AIRCR_VECTKEY | ((reset_config == CORTEX_M_RESET_SYSRESETREQ)
1201 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1202 if (retval3 != ERROR_OK)
1203 LOG_DEBUG("Ignoring AP write error right after reset");
1204
1205 retval3 = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
1206 if (retval3 != ERROR_OK) {
1207 LOG_ERROR("DP initialisation failed");
1208 /* The error return value must not be propagated in this case.
1209 * SYSRESETREQ or VECTRESET have been possibly triggered
1210 * so reset processing should continue */
1211 } else {
1212 /* I do not know why this is necessary, but it
1213 * fixes strange effects (step/resume cause NMI
1214 * after reset) on LM3S6918 -- Michael Schwingen
1215 */
1216 uint32_t tmp;
1217 mem_ap_read_atomic_u32(armv7m->debug_ap, NVIC_AIRCR, &tmp);
1218 }
1219 }
1220
1221 target->state = TARGET_RESET;
1222 jtag_sleep(50000);
1223
1224 register_cache_invalidate(cortex_m->armv7m.arm.core_cache);
1225
1226 /* now return stored error code if any */
1227 if (retval != ERROR_OK)
1228 return retval;
1229
1230 if (target->reset_halt) {
1231 retval = target_halt(target);
1232 if (retval != ERROR_OK)
1233 return retval;
1234 }
1235
1236 return ERROR_OK;
1237 }
1238
1239 static int cortex_m_deassert_reset(struct target *target)
1240 {
1241 struct armv7m_common *armv7m = &target_to_cm(target)->armv7m;
1242
1243 LOG_DEBUG("target->state: %s",
1244 target_state_name(target));
1245
1246 /* deassert reset lines */
1247 adapter_deassert_reset();
1248
1249 enum reset_types jtag_reset_config = jtag_get_reset_config();
1250
1251 if ((jtag_reset_config & RESET_HAS_SRST) &&
1252 !(jtag_reset_config & RESET_SRST_NO_GATING) &&
1253 target_was_examined(target)) {
1254
1255 int retval = dap_dp_init_or_reconnect(armv7m->debug_ap->dap);
1256 if (retval != ERROR_OK) {
1257 LOG_ERROR("DP initialisation failed");
1258 return retval;
1259 }
1260 }
1261
1262 return ERROR_OK;
1263 }
1264
1265 int cortex_m_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1266 {
1267 int retval;
1268 int fp_num = 0;
1269 struct cortex_m_common *cortex_m = target_to_cm(target);
1270 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1271
1272 if (breakpoint->set) {
1273 LOG_WARNING("breakpoint (BPID: %" PRIu32 ") already set", breakpoint->unique_id);
1274 return ERROR_OK;
1275 }
1276
1277 if (breakpoint->type == BKPT_HARD) {
1278 uint32_t fpcr_value;
1279 while (comparator_list[fp_num].used && (fp_num < cortex_m->fp_num_code))
1280 fp_num++;
1281 if (fp_num >= cortex_m->fp_num_code) {
1282 LOG_ERROR("Can not find free FPB Comparator!");
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284 }
1285 breakpoint->set = fp_num + 1;
1286 fpcr_value = breakpoint->address | 1;
1287 if (cortex_m->fp_rev == 0) {
1288 if (breakpoint->address > 0x1FFFFFFF) {
1289 LOG_ERROR("Cortex-M Flash Patch Breakpoint rev.1 cannot handle HW breakpoint above address 0x1FFFFFFE");
1290 return ERROR_FAIL;
1291 }
1292 uint32_t hilo;
1293 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1294 fpcr_value = (fpcr_value & 0x1FFFFFFC) | hilo | 1;
1295 } else if (cortex_m->fp_rev > 1) {
1296 LOG_ERROR("Unhandled Cortex-M Flash Patch Breakpoint architecture revision");
1297 return ERROR_FAIL;
1298 }
1299 comparator_list[fp_num].used = true;
1300 comparator_list[fp_num].fpcr_value = fpcr_value;
1301 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1302 comparator_list[fp_num].fpcr_value);
1303 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1304 fp_num,
1305 comparator_list[fp_num].fpcr_value);
1306 if (!cortex_m->fpb_enabled) {
1307 LOG_DEBUG("FPB wasn't enabled, do it now");
1308 retval = cortex_m_enable_fpb(target);
1309 if (retval != ERROR_OK) {
1310 LOG_ERROR("Failed to enable the FPB");
1311 return retval;
1312 }
1313
1314 cortex_m->fpb_enabled = true;
1315 }
1316 } else if (breakpoint->type == BKPT_SOFT) {
1317 uint8_t code[4];
1318
1319 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1320 * semihosting; don't use that. Otherwise the BKPT
1321 * parameter is arbitrary.
1322 */
1323 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1324 retval = target_read_memory(target,
1325 breakpoint->address & 0xFFFFFFFE,
1326 breakpoint->length, 1,
1327 breakpoint->orig_instr);
1328 if (retval != ERROR_OK)
1329 return retval;
1330 retval = target_write_memory(target,
1331 breakpoint->address & 0xFFFFFFFE,
1332 breakpoint->length, 1,
1333 code);
1334 if (retval != ERROR_OK)
1335 return retval;
1336 breakpoint->set = true;
1337 }
1338
1339 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1340 breakpoint->unique_id,
1341 (int)(breakpoint->type),
1342 breakpoint->address,
1343 breakpoint->length,
1344 breakpoint->set);
1345
1346 return ERROR_OK;
1347 }
1348
1349 int cortex_m_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1350 {
1351 int retval;
1352 struct cortex_m_common *cortex_m = target_to_cm(target);
1353 struct cortex_m_fp_comparator *comparator_list = cortex_m->fp_comparator_list;
1354
1355 if (!breakpoint->set) {
1356 LOG_WARNING("breakpoint not set");
1357 return ERROR_OK;
1358 }
1359
1360 LOG_DEBUG("BPID: %" PRIu32 ", Type: %d, Address: " TARGET_ADDR_FMT " Length: %d (set=%d)",
1361 breakpoint->unique_id,
1362 (int)(breakpoint->type),
1363 breakpoint->address,
1364 breakpoint->length,
1365 breakpoint->set);
1366
1367 if (breakpoint->type == BKPT_HARD) {
1368 int fp_num = breakpoint->set - 1;
1369 if ((fp_num < 0) || (fp_num >= cortex_m->fp_num_code)) {
1370 LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1371 return ERROR_OK;
1372 }
1373 comparator_list[fp_num].used = false;
1374 comparator_list[fp_num].fpcr_value = 0;
1375 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1376 comparator_list[fp_num].fpcr_value);
1377 } else {
1378 /* restore original instruction (kept in target endianness) */
1379 retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE,
1380 breakpoint->length, 1,
1381 breakpoint->orig_instr);
1382 if (retval != ERROR_OK)
1383 return retval;
1384 }
1385 breakpoint->set = false;
1386
1387 return ERROR_OK;
1388 }
1389
1390 int cortex_m_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1391 {
1392 if (breakpoint->length == 3) {
1393 LOG_DEBUG("Using a two byte breakpoint for 32bit Thumb-2 request");
1394 breakpoint->length = 2;
1395 }
1396
1397 if ((breakpoint->length != 2)) {
1398 LOG_INFO("only breakpoints of two bytes length supported");
1399 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1400 }
1401
1402 return cortex_m_set_breakpoint(target, breakpoint);
1403 }
1404
1405 int cortex_m_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1406 {
1407 if (!breakpoint->set)
1408 return ERROR_OK;
1409
1410 return cortex_m_unset_breakpoint(target, breakpoint);
1411 }
1412
1413 static int cortex_m_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1414 {
1415 int dwt_num = 0;
1416 struct cortex_m_common *cortex_m = target_to_cm(target);
1417
1418 /* REVISIT Don't fully trust these "not used" records ... users
1419 * may set up breakpoints by hand, e.g. dual-address data value
1420 * watchpoint using comparator #1; comparator #0 matching cycle
1421 * count; send data trace info through ITM and TPIU; etc
1422 */
1423 struct cortex_m_dwt_comparator *comparator;
1424
1425 for (comparator = cortex_m->dwt_comparator_list;
1426 comparator->used && dwt_num < cortex_m->dwt_num_comp;
1427 comparator++, dwt_num++)
1428 continue;
1429 if (dwt_num >= cortex_m->dwt_num_comp) {
1430 LOG_ERROR("Can not find free DWT Comparator");
1431 return ERROR_FAIL;
1432 }
1433 comparator->used = true;
1434 watchpoint->set = dwt_num + 1;
1435
1436 comparator->comp = watchpoint->address;
1437 target_write_u32(target, comparator->dwt_comparator_address + 0,
1438 comparator->comp);
1439
1440 if ((cortex_m->dwt_devarch & 0x1FFFFF) != DWT_DEVARCH_ARMV8M) {
1441 uint32_t mask = 0, temp;
1442
1443 /* watchpoint params were validated earlier */
1444 temp = watchpoint->length;
1445 while (temp) {
1446 temp >>= 1;
1447 mask++;
1448 }
1449 mask--;
1450
1451 comparator->mask = mask;
1452 target_write_u32(target, comparator->dwt_comparator_address + 4,
1453 comparator->mask);
1454
1455 switch (watchpoint->rw) {
1456 case WPT_READ:
1457 comparator->function = 5;
1458 break;
1459 case WPT_WRITE:
1460 comparator->function = 6;
1461 break;
1462 case WPT_ACCESS:
1463 comparator->function = 7;
1464 break;
1465 }
1466 } else {
1467 uint32_t data_size = watchpoint->length >> 1;
1468 comparator->mask = (watchpoint->length >> 1) | 1;
1469
1470 switch (watchpoint->rw) {
1471 case WPT_ACCESS:
1472 comparator->function = 4;
1473 break;
1474 case WPT_WRITE:
1475 comparator->function = 5;
1476 break;
1477 case WPT_READ:
1478 comparator->function = 6;
1479 break;
1480 }
1481 comparator->function = comparator->function | (1 << 4) |
1482 (data_size << 10);
1483 }
1484
1485 target_write_u32(target, comparator->dwt_comparator_address + 8,
1486 comparator->function);
1487
1488 LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1489 watchpoint->unique_id, dwt_num,
1490 (unsigned) comparator->comp,
1491 (unsigned) comparator->mask,
1492 (unsigned) comparator->function);
1493 return ERROR_OK;
1494 }
1495
1496 static int cortex_m_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1497 {
1498 struct cortex_m_common *cortex_m = target_to_cm(target);
1499 struct cortex_m_dwt_comparator *comparator;
1500 int dwt_num;
1501
1502 if (!watchpoint->set) {
1503 LOG_WARNING("watchpoint (wpid: %d) not set",
1504 watchpoint->unique_id);
1505 return ERROR_OK;
1506 }
1507
1508 dwt_num = watchpoint->set - 1;
1509
1510 LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1511 watchpoint->unique_id, dwt_num,
1512 (unsigned) watchpoint->address);
1513
1514 if ((dwt_num < 0) || (dwt_num >= cortex_m->dwt_num_comp)) {
1515 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1516 return ERROR_OK;
1517 }
1518
1519 comparator = cortex_m->dwt_comparator_list + dwt_num;
1520 comparator->used = false;
1521 comparator->function = 0;
1522 target_write_u32(target, comparator->dwt_comparator_address + 8,
1523 comparator->function);
1524
1525 watchpoint->set = false;
1526
1527 return ERROR_OK;
1528 }
1529
1530 int cortex_m_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1531 {
1532 struct cortex_m_common *cortex_m = target_to_cm(target);
1533
1534 if (cortex_m->dwt_comp_available < 1) {
1535 LOG_DEBUG("no comparators?");
1536 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1537 }
1538
1539 /* hardware doesn't support data value masking */
1540 if (watchpoint->mask != ~(uint32_t)0) {
1541 LOG_DEBUG("watchpoint value masks not supported");
1542 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1543 }
1544
1545 /* hardware allows address masks of up to 32K */
1546 unsigned mask;
1547
1548 for (mask = 0; mask < 16; mask++) {
1549 if ((1u << mask) == watchpoint->length)
1550 break;
1551 }
1552 if (mask == 16) {
1553 LOG_DEBUG("unsupported watchpoint length");
1554 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1555 }
1556 if (watchpoint->address & ((1 << mask) - 1)) {
1557 LOG_DEBUG("watchpoint address is unaligned");
1558 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1559 }
1560
1561 /* Caller doesn't seem to be able to describe watching for data
1562 * values of zero; that flags "no value".
1563 *
1564 * REVISIT This DWT may well be able to watch for specific data
1565 * values. Requires comparator #1 to set DATAVMATCH and match
1566 * the data, and another comparator (DATAVADDR0) matching addr.
1567 */
1568 if (watchpoint->value) {
1569 LOG_DEBUG("data value watchpoint not YET supported");
1570 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1571 }
1572
1573 cortex_m->dwt_comp_available--;
1574 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1575
1576 return ERROR_OK;
1577 }
1578
1579 int cortex_m_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1580 {
1581 struct cortex_m_common *cortex_m = target_to_cm(target);
1582
1583 /* REVISIT why check? DWT can be updated with core running ... */
1584 if (target->state != TARGET_HALTED) {
1585 LOG_WARNING("target not halted");
1586 return ERROR_TARGET_NOT_HALTED;
1587 }
1588
1589 if (watchpoint->set)
1590 cortex_m_unset_watchpoint(target, watchpoint);
1591
1592 cortex_m->dwt_comp_available++;
1593 LOG_DEBUG("dwt_comp_available: %d", cortex_m->dwt_comp_available);
1594
1595 return ERROR_OK;
1596 }
1597
1598 void cortex_m_enable_watchpoints(struct target *target)
1599 {
1600 struct watchpoint *watchpoint = target->watchpoints;
1601
1602 /* set any pending watchpoints */
1603 while (watchpoint) {
1604 if (!watchpoint->set)
1605 cortex_m_set_watchpoint(target, watchpoint);
1606 watchpoint = watchpoint->next;
1607 }
1608 }
1609
1610 static int cortex_m_read_memory(struct target *target, target_addr_t address,
1611 uint32_t size, uint32_t count, uint8_t *buffer)
1612 {
1613 struct armv7m_common *armv7m = target_to_armv7m(target);
1614
1615 if (armv7m->arm.is_armv6m) {
1616 /* armv6m does not handle unaligned memory access */
1617 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1618 return ERROR_TARGET_UNALIGNED_ACCESS;
1619 }
1620
1621 return mem_ap_read_buf(armv7m->debug_ap, buffer, size, count, address);
1622 }
1623
1624 static int cortex_m_write_memory(struct target *target, target_addr_t address,
1625 uint32_t size, uint32_t count, const uint8_t *buffer)
1626 {
1627 struct armv7m_common *armv7m = target_to_armv7m(target);
1628
1629 if (armv7m->arm.is_armv6m) {
1630 /* armv6m does not handle unaligned memory access */
1631 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1632 return ERROR_TARGET_UNALIGNED_ACCESS;
1633 }
1634
1635 return mem_ap_write_buf(armv7m->debug_ap, buffer, size, count, address);
1636 }
1637
1638 static int cortex_m_init_target(struct command_context *cmd_ctx,
1639 struct target *target)
1640 {
1641 armv7m_build_reg_cache(target);
1642 arm_semihosting_init(target);
1643 return ERROR_OK;
1644 }
1645
1646 void cortex_m_deinit_target(struct target *target)
1647 {
1648 struct cortex_m_common *cortex_m = target_to_cm(target);
1649
1650 free(cortex_m->fp_comparator_list);
1651
1652 cortex_m_dwt_free(target);
1653 armv7m_free_reg_cache(target);
1654
1655 free(target->private_config);
1656 free(cortex_m);
1657 }
1658
1659 int cortex_m_profiling(struct target *target, uint32_t *samples,
1660 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1661 {
1662 struct timeval timeout, now;
1663 struct armv7m_common *armv7m = target_to_armv7m(target);
1664 uint32_t reg_value;
1665 int retval;
1666
1667 retval = target_read_u32(target, DWT_PCSR, &reg_value);
1668 if (retval != ERROR_OK) {
1669 LOG_ERROR("Error while reading PCSR");
1670 return retval;
1671 }
1672 if (reg_value == 0) {
1673 LOG_INFO("PCSR sampling not supported on this processor.");
1674 return target_profiling_default(target, samples, max_num_samples, num_samples, seconds);
1675 }
1676
1677 gettimeofday(&timeout, NULL);
1678 timeval_add_time(&timeout, seconds, 0);
1679
1680 LOG_INFO("Starting Cortex-M profiling. Sampling DWT_PCSR as fast as we can...");
1681
1682 /* Make sure the target is running */
1683 target_poll(target);
1684 if (target->state == TARGET_HALTED)
1685 retval = target_resume(target, 1, 0, 0, 0);
1686
1687 if (retval != ERROR_OK) {
1688 LOG_ERROR("Error while resuming target");
1689 return retval;
1690 }
1691
1692 uint32_t sample_count = 0;
1693
1694 for (;;) {
1695 if (armv7m && armv7m->debug_ap) {
1696 uint32_t read_count = max_num_samples - sample_count;
1697 if (read_count > 1024)
1698 read_count = 1024;
1699
1700 retval = mem_ap_read_buf_noincr(armv7m->debug_ap,
1701 (void *)&samples[sample_count],
1702 4, read_count, DWT_PCSR);
1703 sample_count += read_count;
1704 } else {
1705 target_read_u32(target, DWT_PCSR, &samples[sample_count++]);
1706 }
1707
1708 if (retval != ERROR_OK) {
1709 LOG_ERROR("Error while reading PCSR");
1710 return retval;
1711 }
1712
1713
1714 gettimeofday(&now, NULL);
1715 if (sample_count >= max_num_samples || timeval_compare(&now, &timeout) > 0) {
1716 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1717 break;
1718 }
1719 }
1720
1721 *num_samples = sample_count;
1722 return retval;
1723 }
1724
1725
1726 /* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
1727 * on r/w if the core is not running, and clear on resume or reset ... or
1728 * at least, in a post_restore_context() method.
1729 */
1730
1731 struct dwt_reg_state {
1732 struct target *target;
1733 uint32_t addr;
1734 uint8_t value[4]; /* scratch/cache */
1735 };
1736
1737 static int cortex_m_dwt_get_reg(struct reg *reg)
1738 {
1739 struct dwt_reg_state *state = reg->arch_info;
1740
1741 uint32_t tmp;
1742 int retval = target_read_u32(state->target, state->addr, &tmp);
1743 if (retval != ERROR_OK)
1744 return retval;
1745
1746 buf_set_u32(state->value, 0, 32, tmp);
1747 return ERROR_OK;
1748 }
1749
1750 static int cortex_m_dwt_set_reg(struct reg *reg, uint8_t *buf)
1751 {
1752 struct dwt_reg_state *state = reg->arch_info;
1753
1754 return target_write_u32(state->target, state->addr,
1755 buf_get_u32(buf, 0, reg->size));
1756 }
1757
1758 struct dwt_reg {
1759 uint32_t addr;
1760 const char *name;
1761 unsigned size;
1762 };
1763
1764 static const struct dwt_reg dwt_base_regs[] = {
1765 { DWT_CTRL, "dwt_ctrl", 32, },
1766 /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT: it wrongly
1767 * increments while the core is asleep.
1768 */
1769 { DWT_CYCCNT, "dwt_cyccnt", 32, },
1770 /* plus some 8 bit counters, useful for profiling with TPIU */
1771 };
1772
1773 static const struct dwt_reg dwt_comp[] = {
1774 #define DWT_COMPARATOR(i) \
1775 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1776 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1777 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1778 DWT_COMPARATOR(0),
1779 DWT_COMPARATOR(1),
1780 DWT_COMPARATOR(2),
1781 DWT_COMPARATOR(3),
1782 DWT_COMPARATOR(4),
1783 DWT_COMPARATOR(5),
1784 DWT_COMPARATOR(6),
1785 DWT_COMPARATOR(7),
1786 DWT_COMPARATOR(8),
1787 DWT_COMPARATOR(9),
1788 DWT_COMPARATOR(10),
1789 DWT_COMPARATOR(11),
1790 DWT_COMPARATOR(12),
1791 DWT_COMPARATOR(13),
1792 DWT_COMPARATOR(14),
1793 DWT_COMPARATOR(15),
1794 #undef DWT_COMPARATOR
1795 };
1796
1797 static const struct reg_arch_type dwt_reg_type = {
1798 .get = cortex_m_dwt_get_reg,
1799 .set = cortex_m_dwt_set_reg,
1800 };
1801
1802 static void cortex_m_dwt_addreg(struct target *t, struct reg *r, const struct dwt_reg *d)
1803 {
1804 struct dwt_reg_state *state;
1805
1806 state = calloc(1, sizeof(*state));
1807 if (!state)
1808 return;
1809 state->addr = d->addr;
1810 state->target = t;
1811
1812 r->name = d->name;
1813 r->size = d->size;
1814 r->value = state->value;
1815 r->arch_info = state;
1816 r->type = &dwt_reg_type;
1817 }
1818
1819 static void cortex_m_dwt_setup(struct cortex_m_common *cm, struct target *target)
1820 {
1821 uint32_t dwtcr;
1822 struct reg_cache *cache;
1823 struct cortex_m_dwt_comparator *comparator;
1824 int reg, i;
1825
1826 target_read_u32(target, DWT_CTRL, &dwtcr);
1827 LOG_DEBUG("DWT_CTRL: 0x%" PRIx32, dwtcr);
1828 if (!dwtcr) {
1829 LOG_DEBUG("no DWT");
1830 return;
1831 }
1832
1833 target_read_u32(target, DWT_DEVARCH, &cm->dwt_devarch);
1834 LOG_DEBUG("DWT_DEVARCH: 0x%" PRIx32, cm->dwt_devarch);
1835
1836 cm->dwt_num_comp = (dwtcr >> 28) & 0xF;
1837 cm->dwt_comp_available = cm->dwt_num_comp;
1838 cm->dwt_comparator_list = calloc(cm->dwt_num_comp,
1839 sizeof(struct cortex_m_dwt_comparator));
1840 if (!cm->dwt_comparator_list) {
1841 fail0:
1842 cm->dwt_num_comp = 0;
1843 LOG_ERROR("out of mem");
1844 return;
1845 }
1846
1847 cache = calloc(1, sizeof(*cache));
1848 if (!cache) {
1849 fail1:
1850 free(cm->dwt_comparator_list);
1851 goto fail0;
1852 }
1853 cache->name = "Cortex-M DWT registers";
1854 cache->num_regs = 2 + cm->dwt_num_comp * 3;
1855 cache->reg_list = calloc(cache->num_regs, sizeof(*cache->reg_list));
1856 if (!cache->reg_list) {
1857 free(cache);
1858 goto fail1;
1859 }
1860
1861 for (reg = 0; reg < 2; reg++)
1862 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1863 dwt_base_regs + reg);
1864
1865 comparator = cm->dwt_comparator_list;
1866 for (i = 0; i < cm->dwt_num_comp; i++, comparator++) {
1867 int j;
1868
1869 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1870 for (j = 0; j < 3; j++, reg++)
1871 cortex_m_dwt_addreg(target, cache->reg_list + reg,
1872 dwt_comp + 3 * i + j);
1873
1874 /* make sure we clear any watchpoints enabled on the target */
1875 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1876 }
1877
1878 *register_get_last_cache_p(&target->reg_cache) = cache;
1879 cm->dwt_cache = cache;
1880
1881 LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1882 dwtcr, cm->dwt_num_comp,
1883 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1884
1885 /* REVISIT: if num_comp > 1, check whether comparator #1 can
1886 * implement single-address data value watchpoints ... so we
1887 * won't need to check it later, when asked to set one up.
1888 */
1889 }
1890
1891 static void cortex_m_dwt_free(struct target *target)
1892 {
1893 struct cortex_m_common *cm = target_to_cm(target);
1894 struct reg_cache *cache = cm->dwt_cache;
1895
1896 free(cm->dwt_comparator_list);
1897 cm->dwt_comparator_list = NULL;
1898 cm->dwt_num_comp = 0;
1899
1900 if (cache) {
1901 register_unlink_cache(&target->reg_cache, cache);
1902
1903 if (cache->reg_list) {
1904 for (size_t i = 0; i < cache->num_regs; i++)
1905 free(cache->reg_list[i].arch_info);
1906 free(cache->reg_list);
1907 }
1908 free(cache);
1909 }
1910 cm->dwt_cache = NULL;
1911 }
1912
1913 #define MVFR0 0xe000ef40
1914 #define MVFR1 0xe000ef44
1915
1916 #define MVFR0_DEFAULT_M4 0x10110021
1917 #define MVFR1_DEFAULT_M4 0x11000011
1918
1919 #define MVFR0_DEFAULT_M7_SP 0x10110021
1920 #define MVFR0_DEFAULT_M7_DP 0x10110221
1921 #define MVFR1_DEFAULT_M7_SP 0x11000011
1922 #define MVFR1_DEFAULT_M7_DP 0x12000011
1923
1924 static int cortex_m_find_mem_ap(struct adiv5_dap *swjdp,
1925 struct adiv5_ap **debug_ap)
1926 {
1927 if (dap_find_ap(swjdp, AP_TYPE_AHB3_AP, debug_ap) == ERROR_OK)
1928 return ERROR_OK;
1929
1930 return dap_find_ap(swjdp, AP_TYPE_AHB5_AP, debug_ap);
1931 }
1932
1933 int cortex_m_examine(struct target *target)
1934 {
1935 int retval;
1936 uint32_t cpuid, fpcr, mvfr0, mvfr1;
1937 int i;
1938 struct cortex_m_common *cortex_m = target_to_cm(target);
1939 struct adiv5_dap *swjdp = cortex_m->armv7m.arm.dap;
1940 struct armv7m_common *armv7m = target_to_armv7m(target);
1941
1942 /* stlink shares the examine handler but does not support
1943 * all its calls */
1944 if (!armv7m->stlink) {
1945 if (cortex_m->apsel == DP_APSEL_INVALID) {
1946 /* Search for the MEM-AP */
1947 retval = cortex_m_find_mem_ap(swjdp, &armv7m->debug_ap);
1948 if (retval != ERROR_OK) {
1949 LOG_ERROR("Could not find MEM-AP to control the core");
1950 return retval;
1951 }
1952 } else {
1953 armv7m->debug_ap = dap_ap(swjdp, cortex_m->apsel);
1954 }
1955
1956 /* Leave (only) generic DAP stuff for debugport_init(); */
1957 armv7m->debug_ap->memaccess_tck = 8;
1958
1959 retval = mem_ap_init(armv7m->debug_ap);
1960 if (retval != ERROR_OK)
1961 return retval;
1962 }
1963
1964 if (!target_was_examined(target)) {
1965 target_set_examined(target);
1966
1967 /* Read from Device Identification Registers */
1968 retval = target_read_u32(target, CPUID, &cpuid);
1969 if (retval != ERROR_OK)
1970 return retval;
1971
1972 /* Get CPU Type */
1973 i = (cpuid >> 4) & 0xf;
1974
1975 /* Check if it is an ARMv8-M core */
1976 armv7m->arm.is_armv8m = true;
1977
1978 switch (cpuid & ARM_CPUID_PARTNO_MASK) {
1979 case CORTEX_M23_PARTNO:
1980 i = 23;
1981 break;
1982 case CORTEX_M33_PARTNO:
1983 i = 33;
1984 break;
1985 case CORTEX_M35P_PARTNO:
1986 i = 35;
1987 break;
1988 case CORTEX_M55_PARTNO:
1989 i = 55;
1990 break;
1991 default:
1992 armv7m->arm.is_armv8m = false;
1993 break;
1994 }
1995
1996
1997 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1998 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1999 cortex_m->maskints_erratum = false;
2000 if (i == 7) {
2001 uint8_t rev, patch;
2002 rev = (cpuid >> 20) & 0xf;
2003 patch = (cpuid >> 0) & 0xf;
2004 if ((rev == 0) && (patch < 2)) {
2005 LOG_WARNING("Silicon bug: single stepping may enter pending exception handler!");
2006 cortex_m->maskints_erratum = true;
2007 }
2008 }
2009 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
2010
2011 /* VECTRESET is not supported on Cortex-M0, M0+ and M1 */
2012 cortex_m->vectreset_supported = i > 1;
2013
2014 if (i == 4) {
2015 target_read_u32(target, MVFR0, &mvfr0);
2016 target_read_u32(target, MVFR1, &mvfr1);
2017
2018 /* test for floating point feature on Cortex-M4 */
2019 if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
2020 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
2021 armv7m->fp_feature = FPv4_SP;
2022 }
2023 } else if (i == 7 || i == 33 || i == 35 || i == 55) {
2024 target_read_u32(target, MVFR0, &mvfr0);
2025 target_read_u32(target, MVFR1, &mvfr1);
2026
2027 /* test for floating point features on Cortex-M7 */
2028 if ((mvfr0 == MVFR0_DEFAULT_M7_SP) && (mvfr1 == MVFR1_DEFAULT_M7_SP)) {
2029 LOG_DEBUG("Cortex-M%d floating point feature FPv5_SP found", i);
2030 armv7m->fp_feature = FPv5_SP;
2031 } else if ((mvfr0 == MVFR0_DEFAULT_M7_DP) && (mvfr1 == MVFR1_DEFAULT_M7_DP)) {
2032 LOG_DEBUG("Cortex-M%d floating point feature FPv5_DP found", i);
2033 armv7m->fp_feature = FPv5_DP;
2034 }
2035 } else if (i == 0) {
2036 /* Cortex-M0 does not support unaligned memory access */
2037 armv7m->arm.is_armv6m = true;
2038 }
2039
2040 if (armv7m->fp_feature == FP_NONE &&
2041 armv7m->arm.core_cache->num_regs > ARMV7M_NUM_CORE_REGS_NOFP) {
2042 /* free unavailable FPU registers */
2043 size_t idx;
2044
2045 for (idx = ARMV7M_NUM_CORE_REGS_NOFP;
2046 idx < armv7m->arm.core_cache->num_regs;
2047 idx++) {
2048 free(armv7m->arm.core_cache->reg_list[idx].feature);
2049 free(armv7m->arm.core_cache->reg_list[idx].reg_data_type);
2050 }
2051 armv7m->arm.core_cache->num_regs = ARMV7M_NUM_CORE_REGS_NOFP;
2052 }
2053
2054 if (!armv7m->stlink) {
2055 if (i == 3 || i == 4)
2056 /* Cortex-M3/M4 have 4096 bytes autoincrement range,
2057 * s. ARM IHI 0031C: MEM-AP 7.2.2 */
2058 armv7m->debug_ap->tar_autoincr_block = (1 << 12);
2059 else if (i == 7)
2060 /* Cortex-M7 has only 1024 bytes autoincrement range */
2061 armv7m->debug_ap->tar_autoincr_block = (1 << 10);
2062 }
2063
2064 /* Enable debug requests */
2065 retval = target_read_u32(target, DCB_DHCSR, &cortex_m->dcb_dhcsr);
2066 if (retval != ERROR_OK)
2067 return retval;
2068 if (!(cortex_m->dcb_dhcsr & C_DEBUGEN)) {
2069 uint32_t dhcsr = (cortex_m->dcb_dhcsr | C_DEBUGEN) & ~(C_HALT | C_STEP | C_MASKINTS);
2070
2071 retval = target_write_u32(target, DCB_DHCSR, DBGKEY | (dhcsr & 0x0000FFFFUL));
2072 if (retval != ERROR_OK)
2073 return retval;
2074 cortex_m->dcb_dhcsr = dhcsr;
2075 }
2076
2077 /* Configure trace modules */
2078 retval = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
2079 if (retval != ERROR_OK)
2080 return retval;
2081
2082 if (armv7m->trace_config.config_type != TRACE_CONFIG_TYPE_DISABLED) {
2083 armv7m_trace_tpiu_config(target);
2084 armv7m_trace_itm_config(target);
2085 }
2086
2087 /* NOTE: FPB and DWT are both optional. */
2088
2089 /* Setup FPB */
2090 target_read_u32(target, FP_CTRL, &fpcr);
2091 /* bits [14:12] and [7:4] */
2092 cortex_m->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);
2093 cortex_m->fp_num_lit = (fpcr >> 8) & 0xF;
2094 /* Detect flash patch revision, see RM DDI 0403E.b page C1-817.
2095 Revision is zero base, fp_rev == 1 means Rev.2 ! */
2096 cortex_m->fp_rev = (fpcr >> 28) & 0xf;
2097 free(cortex_m->fp_comparator_list);
2098 cortex_m->fp_comparator_list = calloc(
2099 cortex_m->fp_num_code + cortex_m->fp_num_lit,
2100 sizeof(struct cortex_m_fp_comparator));
2101 cortex_m->fpb_enabled = fpcr & 1;
2102 for (i = 0; i < cortex_m->fp_num_code + cortex_m->fp_num_lit; i++) {
2103 cortex_m->fp_comparator_list[i].type =
2104 (i < cortex_m->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
2105 cortex_m->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
2106
2107 /* make sure we clear any breakpoints enabled on the target */
2108 target_write_u32(target, cortex_m->fp_comparator_list[i].fpcr_address, 0);
2109 }
2110 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
2111 fpcr,
2112 cortex_m->fp_num_code,
2113 cortex_m->fp_num_lit);
2114
2115 /* Setup DWT */
2116 cortex_m_dwt_free(target);
2117 cortex_m_dwt_setup(cortex_m, target);
2118
2119 /* These hardware breakpoints only work for code in flash! */
2120 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
2121 target_name(target),
2122 cortex_m->fp_num_code,
2123 cortex_m->dwt_num_comp);
2124 }
2125
2126 return ERROR_OK;
2127 }
2128
2129 static int cortex_m_dcc_read(struct target *target, uint8_t *value, uint8_t *ctrl)
2130 {
2131 struct armv7m_common *armv7m = target_to_armv7m(target);
2132 uint16_t dcrdr;
2133 uint8_t buf[2];
2134 int retval;
2135
2136 retval = mem_ap_read_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2137 if (retval != ERROR_OK)
2138 return retval;
2139
2140 dcrdr = target_buffer_get_u16(target, buf);
2141 *ctrl = (uint8_t)dcrdr;
2142 *value = (uint8_t)(dcrdr >> 8);
2143
2144 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
2145
2146 /* write ack back to software dcc register
2147 * signify we have read data */
2148 if (dcrdr & (1 << 0)) {
2149 target_buffer_set_u16(target, buf, 0);
2150 retval = mem_ap_write_buf_noincr(armv7m->debug_ap, buf, 2, 1, DCB_DCRDR);
2151 if (retval != ERROR_OK)
2152 return retval;
2153 }
2154
2155 return ERROR_OK;
2156 }
2157
2158 static int cortex_m_target_request_data(struct target *target,
2159 uint32_t size, uint8_t *buffer)
2160 {
2161 uint8_t data;
2162 uint8_t ctrl;
2163 uint32_t i;
2164
2165 for (i = 0; i < (size * 4); i++) {
2166 int retval = cortex_m_dcc_read(target, &data, &ctrl);
2167 if (retval != ERROR_OK)
2168 return retval;
2169 buffer[i] = data;
2170 }
2171
2172 return ERROR_OK;
2173 }
2174
2175 static int cortex_m_handle_target_request(void *priv)
2176 {
2177 struct target *target = priv;
2178 if (!target_was_examined(target))
2179 return ERROR_OK;
2180
2181 if (!target->dbg_msg_enabled)
2182 return ERROR_OK;
2183
2184 if (target->state == TARGET_RUNNING) {
2185 uint8_t data;
2186 uint8_t ctrl;
2187 int retval;
2188
2189 retval = cortex_m_dcc_read(target, &data, &ctrl);
2190 if (retval != ERROR_OK)
2191 return retval;
2192
2193 /* check if we have data */
2194 if (ctrl & (1 << 0)) {
2195 uint32_t request;
2196
2197 /* we assume target is quick enough */
2198 request = data;
2199 for (int i = 1; i <= 3; i++) {
2200 retval = cortex_m_dcc_read(target, &data, &ctrl);
2201 if (retval != ERROR_OK)
2202 return retval;
2203 request |= ((uint32_t)data << (i * 8));
2204 }
2205 target_request(target, request);
2206 }
2207 }
2208
2209 return ERROR_OK;
2210 }
2211
2212 static int cortex_m_init_arch_info(struct target *target,
2213 struct cortex_m_common *cortex_m, struct adiv5_dap *dap)
2214 {
2215 struct armv7m_common *armv7m = &cortex_m->armv7m;
2216
2217 armv7m_init_arch_info(target, armv7m);
2218
2219 /* default reset mode is to use srst if fitted
2220 * if not it will use CORTEX_M3_RESET_VECTRESET */
2221 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2222
2223 armv7m->arm.dap = dap;
2224
2225 /* register arch-specific functions */
2226 armv7m->examine_debug_reason = cortex_m_examine_debug_reason;
2227
2228 armv7m->post_debug_entry = NULL;
2229
2230 armv7m->pre_restore_context = NULL;
2231
2232 armv7m->load_core_reg_u32 = cortex_m_load_core_reg_u32;
2233 armv7m->store_core_reg_u32 = cortex_m_store_core_reg_u32;
2234
2235 target_register_timer_callback(cortex_m_handle_target_request, 1,
2236 TARGET_TIMER_TYPE_PERIODIC, target);
2237
2238 return ERROR_OK;
2239 }
2240
2241 static int cortex_m_target_create(struct target *target, Jim_Interp *interp)
2242 {
2243 struct adiv5_private_config *pc;
2244
2245 pc = (struct adiv5_private_config *)target->private_config;
2246 if (adiv5_verify_config(pc) != ERROR_OK)
2247 return ERROR_FAIL;
2248
2249 struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
2250 if (cortex_m == NULL) {
2251 LOG_ERROR("No memory creating target");
2252 return ERROR_FAIL;
2253 }
2254
2255 cortex_m->common_magic = CORTEX_M_COMMON_MAGIC;
2256 cortex_m->apsel = pc->ap_num;
2257
2258 cortex_m_init_arch_info(target, cortex_m, pc->dap);
2259
2260 return ERROR_OK;
2261 }
2262
2263 /*--------------------------------------------------------------------------*/
2264
2265 static int cortex_m_verify_pointer(struct command_invocation *cmd,
2266 struct cortex_m_common *cm)
2267 {
2268 if (cm->common_magic != CORTEX_M_COMMON_MAGIC) {
2269 command_print(cmd, "target is not a Cortex-M");
2270 return ERROR_TARGET_INVALID;
2271 }
2272 return ERROR_OK;
2273 }
2274
2275 /*
2276 * Only stuff below this line should need to verify that its target
2277 * is a Cortex-M3. Everything else should have indirected through the
2278 * cortexm3_target structure, which is only used with CM3 targets.
2279 */
2280
2281 COMMAND_HANDLER(handle_cortex_m_vector_catch_command)
2282 {
2283 struct target *target = get_current_target(CMD_CTX);
2284 struct cortex_m_common *cortex_m = target_to_cm(target);
2285 struct armv7m_common *armv7m = &cortex_m->armv7m;
2286 uint32_t demcr = 0;
2287 int retval;
2288
2289 static const struct {
2290 char name[10];
2291 unsigned mask;
2292 } vec_ids[] = {
2293 { "hard_err", VC_HARDERR, },
2294 { "int_err", VC_INTERR, },
2295 { "bus_err", VC_BUSERR, },
2296 { "state_err", VC_STATERR, },
2297 { "chk_err", VC_CHKERR, },
2298 { "nocp_err", VC_NOCPERR, },
2299 { "mm_err", VC_MMERR, },
2300 { "reset", VC_CORERESET, },
2301 };
2302
2303 retval = cortex_m_verify_pointer(CMD, cortex_m);
2304 if (retval != ERROR_OK)
2305 return retval;
2306
2307 if (!target_was_examined(target)) {
2308 LOG_ERROR("Target not examined yet");
2309 return ERROR_FAIL;
2310 }
2311
2312 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2313 if (retval != ERROR_OK)
2314 return retval;
2315
2316 if (CMD_ARGC > 0) {
2317 unsigned catch = 0;
2318
2319 if (CMD_ARGC == 1) {
2320 if (strcmp(CMD_ARGV[0], "all") == 0) {
2321 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2322 | VC_STATERR | VC_CHKERR | VC_NOCPERR
2323 | VC_MMERR | VC_CORERESET;
2324 goto write;
2325 } else if (strcmp(CMD_ARGV[0], "none") == 0)
2326 goto write;
2327 }
2328 while (CMD_ARGC-- > 0) {
2329 unsigned i;
2330 for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2331 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2332 continue;
2333 catch |= vec_ids[i].mask;
2334 break;
2335 }
2336 if (i == ARRAY_SIZE(vec_ids)) {
2337 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2338 return ERROR_COMMAND_SYNTAX_ERROR;
2339 }
2340 }
2341 write:
2342 /* For now, armv7m->demcr only stores vector catch flags. */
2343 armv7m->demcr = catch;
2344
2345 demcr &= ~0xffff;
2346 demcr |= catch;
2347
2348 /* write, but don't assume it stuck (why not??) */
2349 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR, demcr);
2350 if (retval != ERROR_OK)
2351 return retval;
2352 retval = mem_ap_read_atomic_u32(armv7m->debug_ap, DCB_DEMCR, &demcr);
2353 if (retval != ERROR_OK)
2354 return retval;
2355
2356 /* FIXME be sure to clear DEMCR on clean server shutdown.
2357 * Otherwise the vector catch hardware could fire when there's
2358 * no debugger hooked up, causing much confusion...
2359 */
2360 }
2361
2362 for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2363 command_print(CMD, "%9s: %s", vec_ids[i].name,
2364 (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2365 }
2366
2367 return ERROR_OK;
2368 }
2369
2370 COMMAND_HANDLER(handle_cortex_m_mask_interrupts_command)
2371 {
2372 struct target *target = get_current_target(CMD_CTX);
2373 struct cortex_m_common *cortex_m = target_to_cm(target);
2374 int retval;
2375
2376 static const Jim_Nvp nvp_maskisr_modes[] = {
2377 { .name = "auto", .value = CORTEX_M_ISRMASK_AUTO },
2378 { .name = "off", .value = CORTEX_M_ISRMASK_OFF },
2379 { .name = "on", .value = CORTEX_M_ISRMASK_ON },
2380 { .name = "steponly", .value = CORTEX_M_ISRMASK_STEPONLY },
2381 { .name = NULL, .value = -1 },
2382 };
2383 const Jim_Nvp *n;
2384
2385
2386 retval = cortex_m_verify_pointer(CMD, cortex_m);
2387 if (retval != ERROR_OK)
2388 return retval;
2389
2390 if (target->state != TARGET_HALTED) {
2391 command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
2392 return ERROR_OK;
2393 }
2394
2395 if (CMD_ARGC > 0) {
2396 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2397 if (n->name == NULL)
2398 return ERROR_COMMAND_SYNTAX_ERROR;
2399 cortex_m->isrmasking_mode = n->value;
2400 cortex_m_set_maskints_for_halt(target);
2401 }
2402
2403 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m->isrmasking_mode);
2404 command_print(CMD, "cortex_m interrupt mask %s", n->name);
2405
2406 return ERROR_OK;
2407 }
2408
2409 COMMAND_HANDLER(handle_cortex_m_reset_config_command)
2410 {
2411 struct target *target = get_current_target(CMD_CTX);
2412 struct cortex_m_common *cortex_m = target_to_cm(target);
2413 int retval;
2414 char *reset_config;
2415
2416 retval = cortex_m_verify_pointer(CMD, cortex_m);
2417 if (retval != ERROR_OK)
2418 return retval;
2419
2420 if (CMD_ARGC > 0) {
2421 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2422 cortex_m->soft_reset_config = CORTEX_M_RESET_SYSRESETREQ;
2423
2424 else if (strcmp(*CMD_ARGV, "vectreset") == 0) {
2425 if (target_was_examined(target)
2426 && !cortex_m->vectreset_supported)
2427 LOG_WARNING("VECTRESET is not supported on your Cortex-M core!");
2428 else
2429 cortex_m->soft_reset_config = CORTEX_M_RESET_VECTRESET;
2430
2431 } else
2432 return ERROR_COMMAND_SYNTAX_ERROR;
2433 }
2434
2435 switch (cortex_m->soft_reset_config) {
2436 case CORTEX_M_RESET_SYSRESETREQ:
2437 reset_config = "sysresetreq";
2438 break;
2439
2440 case CORTEX_M_RESET_VECTRESET:
2441 reset_config = "vectreset";
2442 break;
2443
2444 default:
2445 reset_config = "unknown";
2446 break;
2447 }
2448
2449 command_print(CMD, "cortex_m reset_config %s", reset_config);
2450
2451 return ERROR_OK;
2452 }
2453
2454 static const struct command_registration cortex_m_exec_command_handlers[] = {
2455 {
2456 .name = "maskisr",
2457 .handler = handle_cortex_m_mask_interrupts_command,
2458 .mode = COMMAND_EXEC,
2459 .help = "mask cortex_m interrupts",
2460 .usage = "['auto'|'on'|'off'|'steponly']",
2461 },
2462 {
2463 .name = "vector_catch",
2464 .handler = handle_cortex_m_vector_catch_command,
2465 .mode = COMMAND_EXEC,
2466 .help = "configure hardware vectors to trigger debug entry",
2467 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2468 },
2469 {
2470 .name = "reset_config",
2471 .handler = handle_cortex_m_reset_config_command,
2472 .mode = COMMAND_ANY,
2473 .help = "configure software reset handling",
2474 .usage = "['sysresetreq'|'vectreset']",
2475 },
2476 COMMAND_REGISTRATION_DONE
2477 };
2478 static const struct command_registration cortex_m_command_handlers[] = {
2479 {
2480 .chain = armv7m_command_handlers,
2481 },
2482 {
2483 .chain = armv7m_trace_command_handlers,
2484 },
2485 {
2486 .name = "cortex_m",
2487 .mode = COMMAND_EXEC,
2488 .help = "Cortex-M command group",
2489 .usage = "",
2490 .chain = cortex_m_exec_command_handlers,
2491 },
2492 COMMAND_REGISTRATION_DONE
2493 };
2494
2495 struct target_type cortexm_target = {
2496 .name = "cortex_m",
2497 .deprecated_name = "cortex_m3",
2498
2499 .poll = cortex_m_poll,
2500 .arch_state = armv7m_arch_state,
2501
2502 .target_request_data = cortex_m_target_request_data,
2503
2504 .halt = cortex_m_halt,
2505 .resume = cortex_m_resume,
2506 .step = cortex_m_step,
2507
2508 .assert_reset = cortex_m_assert_reset,
2509 .deassert_reset = cortex_m_deassert_reset,
2510 .soft_reset_halt = cortex_m_soft_reset_halt,
2511
2512 .get_gdb_arch = arm_get_gdb_arch,
2513 .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2514
2515 .read_memory = cortex_m_read_memory,
2516 .write_memory = cortex_m_write_memory,
2517 .checksum_memory = armv7m_checksum_memory,
2518 .blank_check_memory = armv7m_blank_check_memory,
2519
2520 .run_algorithm = armv7m_run_algorithm,
2521 .start_algorithm = armv7m_start_algorithm,
2522 .wait_algorithm = armv7m_wait_algorithm,
2523
2524 .add_breakpoint = cortex_m_add_breakpoint,
2525 .remove_breakpoint = cortex_m_remove_breakpoint,
2526 .add_watchpoint = cortex_m_add_watchpoint,
2527 .remove_watchpoint = cortex_m_remove_watchpoint,
2528
2529 .commands = cortex_m_command_handlers,
2530 .target_create = cortex_m_target_create,
2531 .target_jim_configure = adiv5_jim_configure,
2532 .init_target = cortex_m_init_target,
2533 .examine = cortex_m_examine,
2534 .deinit_target = cortex_m_deinit_target,
2535
2536 .profiling = cortex_m_profiling,
2537 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)