32000c0474b3c2a7c0466632db288912a0a2f823
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109
110 static struct target_type *target_types[] = {
111 &arm7tdmi_target,
112 &arm9tdmi_target,
113 &arm920t_target,
114 &arm720t_target,
115 &arm966e_target,
116 &arm946e_target,
117 &arm926ejs_target,
118 &fa526_target,
119 &feroceon_target,
120 &dragonite_target,
121 &xscale_target,
122 &cortexm_target,
123 &cortexa_target,
124 &cortexr4_target,
125 &arm11_target,
126 &ls1_sap_target,
127 &mips_m4k_target,
128 &avr_target,
129 &dsp563xx_target,
130 &dsp5680xx_target,
131 &testee_target,
132 &avr32_ap7k_target,
133 &hla_target,
134 &nds32_v2_target,
135 &nds32_v3_target,
136 &nds32_v3m_target,
137 &or1k_target,
138 &quark_x10xx_target,
139 &quark_d20xx_target,
140 &stm8_target,
141 #if BUILD_TARGET64
142 &aarch64_target,
143 #endif
144 NULL,
145 };
146
147 struct target *all_targets;
148 static struct target_event_callback *target_event_callbacks;
149 static struct target_timer_callback *target_timer_callbacks;
150 LIST_HEAD(target_reset_callback_list);
151 LIST_HEAD(target_trace_callback_list);
152 static const int polling_interval = 100;
153
154 static const Jim_Nvp nvp_assert[] = {
155 { .name = "assert", NVP_ASSERT },
156 { .name = "deassert", NVP_DEASSERT },
157 { .name = "T", NVP_ASSERT },
158 { .name = "F", NVP_DEASSERT },
159 { .name = "t", NVP_ASSERT },
160 { .name = "f", NVP_DEASSERT },
161 { .name = NULL, .value = -1 }
162 };
163
164 static const Jim_Nvp nvp_error_target[] = {
165 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
166 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
167 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
168 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
169 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
170 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
171 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
172 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
173 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
174 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
175 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
176 { .value = -1, .name = NULL }
177 };
178
179 static const char *target_strerror_safe(int err)
180 {
181 const Jim_Nvp *n;
182
183 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
184 if (n->name == NULL)
185 return "unknown";
186 else
187 return n->name;
188 }
189
190 static const Jim_Nvp nvp_target_event[] = {
191
192 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
193 { .value = TARGET_EVENT_HALTED, .name = "halted" },
194 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
197
198 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
199 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
200
201 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
202 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
203 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
204 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
205 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
206 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
207 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
208 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
209
210 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
211 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
212
213 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
214 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
215
216 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
217 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
218
219 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
220 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
221
222 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
223 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
224
225 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
226
227 { .name = NULL, .value = -1 }
228 };
229
230 static const Jim_Nvp nvp_target_state[] = {
231 { .name = "unknown", .value = TARGET_UNKNOWN },
232 { .name = "running", .value = TARGET_RUNNING },
233 { .name = "halted", .value = TARGET_HALTED },
234 { .name = "reset", .value = TARGET_RESET },
235 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
236 { .name = NULL, .value = -1 },
237 };
238
239 static const Jim_Nvp nvp_target_debug_reason[] = {
240 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
241 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
242 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
243 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
244 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
245 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
246 { .name = "program-exit" , .value = DBG_REASON_EXIT },
247 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
248 { .name = NULL, .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_target_endian[] = {
252 { .name = "big", .value = TARGET_BIG_ENDIAN },
253 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
254 { .name = "be", .value = TARGET_BIG_ENDIAN },
255 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
256 { .name = NULL, .value = -1 },
257 };
258
259 static const Jim_Nvp nvp_reset_modes[] = {
260 { .name = "unknown", .value = RESET_UNKNOWN },
261 { .name = "run" , .value = RESET_RUN },
262 { .name = "halt" , .value = RESET_HALT },
263 { .name = "init" , .value = RESET_INIT },
264 { .name = NULL , .value = -1 },
265 };
266
267 const char *debug_reason_name(struct target *t)
268 {
269 const char *cp;
270
271 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
272 t->debug_reason)->name;
273 if (!cp) {
274 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
275 cp = "(*BUG*unknown*BUG*)";
276 }
277 return cp;
278 }
279
280 const char *target_state_name(struct target *t)
281 {
282 const char *cp;
283 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid target state: %d", (int)(t->state));
286 cp = "(*BUG*unknown*BUG*)";
287 }
288
289 if (!target_was_examined(t) && t->defer_examine)
290 cp = "examine deferred";
291
292 return cp;
293 }
294
295 const char *target_event_name(enum target_event event)
296 {
297 const char *cp;
298 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
299 if (!cp) {
300 LOG_ERROR("Invalid target event: %d", (int)(event));
301 cp = "(*BUG*unknown*BUG*)";
302 }
303 return cp;
304 }
305
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
307 {
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
312 cp = "(*BUG*unknown*BUG*)";
313 }
314 return cp;
315 }
316
317 /* determine the number of the new target */
318 static int new_target_number(void)
319 {
320 struct target *t;
321 int x;
322
323 /* number is 0 based */
324 x = -1;
325 t = all_targets;
326 while (t) {
327 if (x < t->target_number)
328 x = t->target_number;
329 t = t->next;
330 }
331 return x + 1;
332 }
333
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
336 {
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u64(buffer);
339 else
340 return be_to_h_u64(buffer);
341 }
342
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
345 {
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u32(buffer);
348 else
349 return be_to_h_u32(buffer);
350 }
351
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
354 {
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u24(buffer);
357 else
358 return be_to_h_u24(buffer);
359 }
360
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
363 {
364 if (target->endianness == TARGET_LITTLE_ENDIAN)
365 return le_to_h_u16(buffer);
366 else
367 return be_to_h_u16(buffer);
368 }
369
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
372 {
373 return *buffer & 0x0ff;
374 }
375
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
378 {
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u64_to_le(buffer, value);
381 else
382 h_u64_to_be(buffer, value);
383 }
384
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
387 {
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u32_to_le(buffer, value);
390 else
391 h_u32_to_be(buffer, value);
392 }
393
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
396 {
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u24_to_le(buffer, value);
399 else
400 h_u24_to_be(buffer, value);
401 }
402
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
405 {
406 if (target->endianness == TARGET_LITTLE_ENDIAN)
407 h_u16_to_le(buffer, value);
408 else
409 h_u16_to_be(buffer, value);
410 }
411
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
414 {
415 *buffer = value;
416 }
417
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
420 {
421 uint32_t i;
422 for (i = 0; i < count; i++)
423 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
424 }
425
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
428 {
429 uint32_t i;
430 for (i = 0; i < count; i++)
431 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
432 }
433
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
436 {
437 uint32_t i;
438 for (i = 0; i < count; i++)
439 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
440 }
441
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
444 {
445 uint32_t i;
446 for (i = 0; i < count; i++)
447 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
448 }
449
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
452 {
453 uint32_t i;
454 for (i = 0; i < count; i++)
455 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
456 }
457
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
460 {
461 uint32_t i;
462 for (i = 0; i < count; i++)
463 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
464 }
465
466 /* return a pointer to a configured target; id is name or number */
467 struct target *get_target(const char *id)
468 {
469 struct target *target;
470
471 /* try as tcltarget name */
472 for (target = all_targets; target; target = target->next) {
473 if (target_name(target) == NULL)
474 continue;
475 if (strcmp(id, target_name(target)) == 0)
476 return target;
477 }
478
479 /* It's OK to remove this fallback sometime after August 2010 or so */
480
481 /* no match, try as number */
482 unsigned num;
483 if (parse_uint(id, &num) != ERROR_OK)
484 return NULL;
485
486 for (target = all_targets; target; target = target->next) {
487 if (target->target_number == (int)num) {
488 LOG_WARNING("use '%s' as target identifier, not '%u'",
489 target_name(target), num);
490 return target;
491 }
492 }
493
494 return NULL;
495 }
496
497 /* returns a pointer to the n-th configured target */
498 struct target *get_target_by_num(int num)
499 {
500 struct target *target = all_targets;
501
502 while (target) {
503 if (target->target_number == num)
504 return target;
505 target = target->next;
506 }
507
508 return NULL;
509 }
510
511 struct target *get_current_target(struct command_context *cmd_ctx)
512 {
513 struct target *target = cmd_ctx->current_target_override
514 ? cmd_ctx->current_target_override
515 : cmd_ctx->current_target;
516
517 if (target == NULL) {
518 LOG_ERROR("BUG: current_target out of bounds");
519 exit(-1);
520 }
521
522 return target;
523 }
524
525 int target_poll(struct target *target)
526 {
527 int retval;
528
529 /* We can't poll until after examine */
530 if (!target_was_examined(target)) {
531 /* Fail silently lest we pollute the log */
532 return ERROR_FAIL;
533 }
534
535 retval = target->type->poll(target);
536 if (retval != ERROR_OK)
537 return retval;
538
539 if (target->halt_issued) {
540 if (target->state == TARGET_HALTED)
541 target->halt_issued = false;
542 else {
543 int64_t t = timeval_ms() - target->halt_issued_time;
544 if (t > DEFAULT_HALT_TIMEOUT) {
545 target->halt_issued = false;
546 LOG_INFO("Halt timed out, wake up GDB.");
547 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
548 }
549 }
550 }
551
552 return ERROR_OK;
553 }
554
555 int target_halt(struct target *target)
556 {
557 int retval;
558 /* We can't poll until after examine */
559 if (!target_was_examined(target)) {
560 LOG_ERROR("Target not examined yet");
561 return ERROR_FAIL;
562 }
563
564 retval = target->type->halt(target);
565 if (retval != ERROR_OK)
566 return retval;
567
568 target->halt_issued = true;
569 target->halt_issued_time = timeval_ms();
570
571 return ERROR_OK;
572 }
573
574 /**
575 * Make the target (re)start executing using its saved execution
576 * context (possibly with some modifications).
577 *
578 * @param target Which target should start executing.
579 * @param current True to use the target's saved program counter instead
580 * of the address parameter
581 * @param address Optionally used as the program counter.
582 * @param handle_breakpoints True iff breakpoints at the resumption PC
583 * should be skipped. (For example, maybe execution was stopped by
584 * such a breakpoint, in which case it would be counterprodutive to
585 * let it re-trigger.
586 * @param debug_execution False if all working areas allocated by OpenOCD
587 * should be released and/or restored to their original contents.
588 * (This would for example be true to run some downloaded "helper"
589 * algorithm code, which resides in one such working buffer and uses
590 * another for data storage.)
591 *
592 * @todo Resolve the ambiguity about what the "debug_execution" flag
593 * signifies. For example, Target implementations don't agree on how
594 * it relates to invalidation of the register cache, or to whether
595 * breakpoints and watchpoints should be enabled. (It would seem wrong
596 * to enable breakpoints when running downloaded "helper" algorithms
597 * (debug_execution true), since the breakpoints would be set to match
598 * target firmware being debugged, not the helper algorithm.... and
599 * enabling them could cause such helpers to malfunction (for example,
600 * by overwriting data with a breakpoint instruction. On the other
601 * hand the infrastructure for running such helpers might use this
602 * procedure but rely on hardware breakpoint to detect termination.)
603 */
604 int target_resume(struct target *target, int current, target_addr_t address,
605 int handle_breakpoints, int debug_execution)
606 {
607 int retval;
608
609 /* We can't poll until after examine */
610 if (!target_was_examined(target)) {
611 LOG_ERROR("Target not examined yet");
612 return ERROR_FAIL;
613 }
614
615 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
616
617 /* note that resume *must* be asynchronous. The CPU can halt before
618 * we poll. The CPU can even halt at the current PC as a result of
619 * a software breakpoint being inserted by (a bug?) the application.
620 */
621 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
622 if (retval != ERROR_OK)
623 return retval;
624
625 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
626
627 return retval;
628 }
629
630 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
631 {
632 char buf[100];
633 int retval;
634 Jim_Nvp *n;
635 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
636 if (n->name == NULL) {
637 LOG_ERROR("invalid reset mode");
638 return ERROR_FAIL;
639 }
640
641 struct target *target;
642 for (target = all_targets; target; target = target->next)
643 target_call_reset_callbacks(target, reset_mode);
644
645 /* disable polling during reset to make reset event scripts
646 * more predictable, i.e. dr/irscan & pathmove in events will
647 * not have JTAG operations injected into the middle of a sequence.
648 */
649 bool save_poll = jtag_poll_get_enabled();
650
651 jtag_poll_set_enabled(false);
652
653 sprintf(buf, "ocd_process_reset %s", n->name);
654 retval = Jim_Eval(cmd_ctx->interp, buf);
655
656 jtag_poll_set_enabled(save_poll);
657
658 if (retval != JIM_OK) {
659 Jim_MakeErrorMessage(cmd_ctx->interp);
660 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
661 return ERROR_FAIL;
662 }
663
664 /* We want any events to be processed before the prompt */
665 retval = target_call_timer_callbacks_now();
666
667 for (target = all_targets; target; target = target->next) {
668 target->type->check_reset(target);
669 target->running_alg = false;
670 }
671
672 return retval;
673 }
674
675 static int identity_virt2phys(struct target *target,
676 target_addr_t virtual, target_addr_t *physical)
677 {
678 *physical = virtual;
679 return ERROR_OK;
680 }
681
682 static int no_mmu(struct target *target, int *enabled)
683 {
684 *enabled = 0;
685 return ERROR_OK;
686 }
687
688 static int default_examine(struct target *target)
689 {
690 target_set_examined(target);
691 return ERROR_OK;
692 }
693
694 /* no check by default */
695 static int default_check_reset(struct target *target)
696 {
697 return ERROR_OK;
698 }
699
700 int target_examine_one(struct target *target)
701 {
702 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704 int retval = target->type->examine(target);
705 if (retval != ERROR_OK)
706 return retval;
707
708 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709
710 return ERROR_OK;
711 }
712
713 static int jtag_enable_callback(enum jtag_event event, void *priv)
714 {
715 struct target *target = priv;
716
717 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
718 return ERROR_OK;
719
720 jtag_unregister_event_callback(jtag_enable_callback, target);
721
722 return target_examine_one(target);
723 }
724
725 /* Targets that correctly implement init + examine, i.e.
726 * no communication with target during init:
727 *
728 * XScale
729 */
730 int target_examine(void)
731 {
732 int retval = ERROR_OK;
733 struct target *target;
734
735 for (target = all_targets; target; target = target->next) {
736 /* defer examination, but don't skip it */
737 if (!target->tap->enabled) {
738 jtag_register_event_callback(jtag_enable_callback,
739 target);
740 continue;
741 }
742
743 if (target->defer_examine)
744 continue;
745
746 retval = target_examine_one(target);
747 if (retval != ERROR_OK)
748 return retval;
749 }
750 return retval;
751 }
752
753 const char *target_type_name(struct target *target)
754 {
755 return target->type->name;
756 }
757
758 static int target_soft_reset_halt(struct target *target)
759 {
760 if (!target_was_examined(target)) {
761 LOG_ERROR("Target not examined yet");
762 return ERROR_FAIL;
763 }
764 if (!target->type->soft_reset_halt) {
765 LOG_ERROR("Target %s does not support soft_reset_halt",
766 target_name(target));
767 return ERROR_FAIL;
768 }
769 return target->type->soft_reset_halt(target);
770 }
771
772 /**
773 * Downloads a target-specific native code algorithm to the target,
774 * and executes it. * Note that some targets may need to set up, enable,
775 * and tear down a breakpoint (hard or * soft) to detect algorithm
776 * termination, while others may support lower overhead schemes where
777 * soft breakpoints embedded in the algorithm automatically terminate the
778 * algorithm.
779 *
780 * @param target used to run the algorithm
781 * @param arch_info target-specific description of the algorithm.
782 */
783 int target_run_algorithm(struct target *target,
784 int num_mem_params, struct mem_param *mem_params,
785 int num_reg_params, struct reg_param *reg_param,
786 uint32_t entry_point, uint32_t exit_point,
787 int timeout_ms, void *arch_info)
788 {
789 int retval = ERROR_FAIL;
790
791 if (!target_was_examined(target)) {
792 LOG_ERROR("Target not examined yet");
793 goto done;
794 }
795 if (!target->type->run_algorithm) {
796 LOG_ERROR("Target type '%s' does not support %s",
797 target_type_name(target), __func__);
798 goto done;
799 }
800
801 target->running_alg = true;
802 retval = target->type->run_algorithm(target,
803 num_mem_params, mem_params,
804 num_reg_params, reg_param,
805 entry_point, exit_point, timeout_ms, arch_info);
806 target->running_alg = false;
807
808 done:
809 return retval;
810 }
811
812 /**
813 * Executes a target-specific native code algorithm and leaves it running.
814 *
815 * @param target used to run the algorithm
816 * @param arch_info target-specific description of the algorithm.
817 */
818 int target_start_algorithm(struct target *target,
819 int num_mem_params, struct mem_param *mem_params,
820 int num_reg_params, struct reg_param *reg_params,
821 uint32_t entry_point, uint32_t exit_point,
822 void *arch_info)
823 {
824 int retval = ERROR_FAIL;
825
826 if (!target_was_examined(target)) {
827 LOG_ERROR("Target not examined yet");
828 goto done;
829 }
830 if (!target->type->start_algorithm) {
831 LOG_ERROR("Target type '%s' does not support %s",
832 target_type_name(target), __func__);
833 goto done;
834 }
835 if (target->running_alg) {
836 LOG_ERROR("Target is already running an algorithm");
837 goto done;
838 }
839
840 target->running_alg = true;
841 retval = target->type->start_algorithm(target,
842 num_mem_params, mem_params,
843 num_reg_params, reg_params,
844 entry_point, exit_point, arch_info);
845
846 done:
847 return retval;
848 }
849
850 /**
851 * Waits for an algorithm started with target_start_algorithm() to complete.
852 *
853 * @param target used to run the algorithm
854 * @param arch_info target-specific description of the algorithm.
855 */
856 int target_wait_algorithm(struct target *target,
857 int num_mem_params, struct mem_param *mem_params,
858 int num_reg_params, struct reg_param *reg_params,
859 uint32_t exit_point, int timeout_ms,
860 void *arch_info)
861 {
862 int retval = ERROR_FAIL;
863
864 if (!target->type->wait_algorithm) {
865 LOG_ERROR("Target type '%s' does not support %s",
866 target_type_name(target), __func__);
867 goto done;
868 }
869 if (!target->running_alg) {
870 LOG_ERROR("Target is not running an algorithm");
871 goto done;
872 }
873
874 retval = target->type->wait_algorithm(target,
875 num_mem_params, mem_params,
876 num_reg_params, reg_params,
877 exit_point, timeout_ms, arch_info);
878 if (retval != ERROR_TARGET_TIMEOUT)
879 target->running_alg = false;
880
881 done:
882 return retval;
883 }
884
885 /**
886 * Streams data to a circular buffer on target intended for consumption by code
887 * running asynchronously on target.
888 *
889 * This is intended for applications where target-specific native code runs
890 * on the target, receives data from the circular buffer, does something with
891 * it (most likely writing it to a flash memory), and advances the circular
892 * buffer pointer.
893 *
894 * This assumes that the helper algorithm has already been loaded to the target,
895 * but has not been started yet. Given memory and register parameters are passed
896 * to the algorithm.
897 *
898 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
899 * following format:
900 *
901 * [buffer_start + 0, buffer_start + 4):
902 * Write Pointer address (aka head). Written and updated by this
903 * routine when new data is written to the circular buffer.
904 * [buffer_start + 4, buffer_start + 8):
905 * Read Pointer address (aka tail). Updated by code running on the
906 * target after it consumes data.
907 * [buffer_start + 8, buffer_start + buffer_size):
908 * Circular buffer contents.
909 *
910 * See contrib/loaders/flash/stm32f1x.S for an example.
911 *
912 * @param target used to run the algorithm
913 * @param buffer address on the host where data to be sent is located
914 * @param count number of blocks to send
915 * @param block_size size in bytes of each block
916 * @param num_mem_params count of memory-based params to pass to algorithm
917 * @param mem_params memory-based params to pass to algorithm
918 * @param num_reg_params count of register-based params to pass to algorithm
919 * @param reg_params memory-based params to pass to algorithm
920 * @param buffer_start address on the target of the circular buffer structure
921 * @param buffer_size size of the circular buffer structure
922 * @param entry_point address on the target to execute to start the algorithm
923 * @param exit_point address at which to set a breakpoint to catch the
924 * end of the algorithm; can be 0 if target triggers a breakpoint itself
925 */
926
927 int target_run_flash_async_algorithm(struct target *target,
928 const uint8_t *buffer, uint32_t count, int block_size,
929 int num_mem_params, struct mem_param *mem_params,
930 int num_reg_params, struct reg_param *reg_params,
931 uint32_t buffer_start, uint32_t buffer_size,
932 uint32_t entry_point, uint32_t exit_point, void *arch_info)
933 {
934 int retval;
935 int timeout = 0;
936
937 const uint8_t *buffer_orig = buffer;
938
939 /* Set up working area. First word is write pointer, second word is read pointer,
940 * rest is fifo data area. */
941 uint32_t wp_addr = buffer_start;
942 uint32_t rp_addr = buffer_start + 4;
943 uint32_t fifo_start_addr = buffer_start + 8;
944 uint32_t fifo_end_addr = buffer_start + buffer_size;
945
946 uint32_t wp = fifo_start_addr;
947 uint32_t rp = fifo_start_addr;
948
949 /* validate block_size is 2^n */
950 assert(!block_size || !(block_size & (block_size - 1)));
951
952 retval = target_write_u32(target, wp_addr, wp);
953 if (retval != ERROR_OK)
954 return retval;
955 retval = target_write_u32(target, rp_addr, rp);
956 if (retval != ERROR_OK)
957 return retval;
958
959 /* Start up algorithm on target and let it idle while writing the first chunk */
960 retval = target_start_algorithm(target, num_mem_params, mem_params,
961 num_reg_params, reg_params,
962 entry_point,
963 exit_point,
964 arch_info);
965
966 if (retval != ERROR_OK) {
967 LOG_ERROR("error starting target flash write algorithm");
968 return retval;
969 }
970
971 while (count > 0) {
972
973 retval = target_read_u32(target, rp_addr, &rp);
974 if (retval != ERROR_OK) {
975 LOG_ERROR("failed to get read pointer");
976 break;
977 }
978
979 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
980 (size_t) (buffer - buffer_orig), count, wp, rp);
981
982 if (rp == 0) {
983 LOG_ERROR("flash write algorithm aborted by target");
984 retval = ERROR_FLASH_OPERATION_FAILED;
985 break;
986 }
987
988 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
989 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
990 break;
991 }
992
993 /* Count the number of bytes available in the fifo without
994 * crossing the wrap around. Make sure to not fill it completely,
995 * because that would make wp == rp and that's the empty condition. */
996 uint32_t thisrun_bytes;
997 if (rp > wp)
998 thisrun_bytes = rp - wp - block_size;
999 else if (rp > fifo_start_addr)
1000 thisrun_bytes = fifo_end_addr - wp;
1001 else
1002 thisrun_bytes = fifo_end_addr - wp - block_size;
1003
1004 if (thisrun_bytes == 0) {
1005 /* Throttle polling a bit if transfer is (much) faster than flash
1006 * programming. The exact delay shouldn't matter as long as it's
1007 * less than buffer size / flash speed. This is very unlikely to
1008 * run when using high latency connections such as USB. */
1009 alive_sleep(10);
1010
1011 /* to stop an infinite loop on some targets check and increment a timeout
1012 * this issue was observed on a stellaris using the new ICDI interface */
1013 if (timeout++ >= 500) {
1014 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1015 return ERROR_FLASH_OPERATION_FAILED;
1016 }
1017 continue;
1018 }
1019
1020 /* reset our timeout */
1021 timeout = 0;
1022
1023 /* Limit to the amount of data we actually want to write */
1024 if (thisrun_bytes > count * block_size)
1025 thisrun_bytes = count * block_size;
1026
1027 /* Write data to fifo */
1028 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1029 if (retval != ERROR_OK)
1030 break;
1031
1032 /* Update counters and wrap write pointer */
1033 buffer += thisrun_bytes;
1034 count -= thisrun_bytes / block_size;
1035 wp += thisrun_bytes;
1036 if (wp >= fifo_end_addr)
1037 wp = fifo_start_addr;
1038
1039 /* Store updated write pointer to target */
1040 retval = target_write_u32(target, wp_addr, wp);
1041 if (retval != ERROR_OK)
1042 break;
1043 }
1044
1045 if (retval != ERROR_OK) {
1046 /* abort flash write algorithm on target */
1047 target_write_u32(target, wp_addr, 0);
1048 }
1049
1050 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1051 num_reg_params, reg_params,
1052 exit_point,
1053 10000,
1054 arch_info);
1055
1056 if (retval2 != ERROR_OK) {
1057 LOG_ERROR("error waiting for target flash write algorithm");
1058 retval = retval2;
1059 }
1060
1061 if (retval == ERROR_OK) {
1062 /* check if algorithm set rp = 0 after fifo writer loop finished */
1063 retval = target_read_u32(target, rp_addr, &rp);
1064 if (retval == ERROR_OK && rp == 0) {
1065 LOG_ERROR("flash write algorithm aborted by target");
1066 retval = ERROR_FLASH_OPERATION_FAILED;
1067 }
1068 }
1069
1070 return retval;
1071 }
1072
1073 int target_read_memory(struct target *target,
1074 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1075 {
1076 if (!target_was_examined(target)) {
1077 LOG_ERROR("Target not examined yet");
1078 return ERROR_FAIL;
1079 }
1080 if (!target->type->read_memory) {
1081 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1082 return ERROR_FAIL;
1083 }
1084 return target->type->read_memory(target, address, size, count, buffer);
1085 }
1086
1087 int target_read_phys_memory(struct target *target,
1088 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1089 {
1090 if (!target_was_examined(target)) {
1091 LOG_ERROR("Target not examined yet");
1092 return ERROR_FAIL;
1093 }
1094 if (!target->type->read_phys_memory) {
1095 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1096 return ERROR_FAIL;
1097 }
1098 return target->type->read_phys_memory(target, address, size, count, buffer);
1099 }
1100
1101 int target_write_memory(struct target *target,
1102 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1103 {
1104 if (!target_was_examined(target)) {
1105 LOG_ERROR("Target not examined yet");
1106 return ERROR_FAIL;
1107 }
1108 if (!target->type->write_memory) {
1109 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1110 return ERROR_FAIL;
1111 }
1112 return target->type->write_memory(target, address, size, count, buffer);
1113 }
1114
1115 int target_write_phys_memory(struct target *target,
1116 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1117 {
1118 if (!target_was_examined(target)) {
1119 LOG_ERROR("Target not examined yet");
1120 return ERROR_FAIL;
1121 }
1122 if (!target->type->write_phys_memory) {
1123 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1124 return ERROR_FAIL;
1125 }
1126 return target->type->write_phys_memory(target, address, size, count, buffer);
1127 }
1128
1129 int target_add_breakpoint(struct target *target,
1130 struct breakpoint *breakpoint)
1131 {
1132 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1133 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1134 return ERROR_TARGET_NOT_HALTED;
1135 }
1136 return target->type->add_breakpoint(target, breakpoint);
1137 }
1138
1139 int target_add_context_breakpoint(struct target *target,
1140 struct breakpoint *breakpoint)
1141 {
1142 if (target->state != TARGET_HALTED) {
1143 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1144 return ERROR_TARGET_NOT_HALTED;
1145 }
1146 return target->type->add_context_breakpoint(target, breakpoint);
1147 }
1148
1149 int target_add_hybrid_breakpoint(struct target *target,
1150 struct breakpoint *breakpoint)
1151 {
1152 if (target->state != TARGET_HALTED) {
1153 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1154 return ERROR_TARGET_NOT_HALTED;
1155 }
1156 return target->type->add_hybrid_breakpoint(target, breakpoint);
1157 }
1158
1159 int target_remove_breakpoint(struct target *target,
1160 struct breakpoint *breakpoint)
1161 {
1162 return target->type->remove_breakpoint(target, breakpoint);
1163 }
1164
1165 int target_add_watchpoint(struct target *target,
1166 struct watchpoint *watchpoint)
1167 {
1168 if (target->state != TARGET_HALTED) {
1169 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1170 return ERROR_TARGET_NOT_HALTED;
1171 }
1172 return target->type->add_watchpoint(target, watchpoint);
1173 }
1174 int target_remove_watchpoint(struct target *target,
1175 struct watchpoint *watchpoint)
1176 {
1177 return target->type->remove_watchpoint(target, watchpoint);
1178 }
1179 int target_hit_watchpoint(struct target *target,
1180 struct watchpoint **hit_watchpoint)
1181 {
1182 if (target->state != TARGET_HALTED) {
1183 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1184 return ERROR_TARGET_NOT_HALTED;
1185 }
1186
1187 if (target->type->hit_watchpoint == NULL) {
1188 /* For backward compatible, if hit_watchpoint is not implemented,
1189 * return ERROR_FAIL such that gdb_server will not take the nonsense
1190 * information. */
1191 return ERROR_FAIL;
1192 }
1193
1194 return target->type->hit_watchpoint(target, hit_watchpoint);
1195 }
1196
1197 int target_get_gdb_reg_list(struct target *target,
1198 struct reg **reg_list[], int *reg_list_size,
1199 enum target_register_class reg_class)
1200 {
1201 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1202 }
1203 int target_step(struct target *target,
1204 int current, target_addr_t address, int handle_breakpoints)
1205 {
1206 return target->type->step(target, current, address, handle_breakpoints);
1207 }
1208
1209 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1210 {
1211 if (target->state != TARGET_HALTED) {
1212 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1213 return ERROR_TARGET_NOT_HALTED;
1214 }
1215 return target->type->get_gdb_fileio_info(target, fileio_info);
1216 }
1217
1218 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1219 {
1220 if (target->state != TARGET_HALTED) {
1221 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1222 return ERROR_TARGET_NOT_HALTED;
1223 }
1224 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1225 }
1226
1227 int target_profiling(struct target *target, uint32_t *samples,
1228 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1229 {
1230 if (target->state != TARGET_HALTED) {
1231 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1232 return ERROR_TARGET_NOT_HALTED;
1233 }
1234 return target->type->profiling(target, samples, max_num_samples,
1235 num_samples, seconds);
1236 }
1237
1238 /**
1239 * Reset the @c examined flag for the given target.
1240 * Pure paranoia -- targets are zeroed on allocation.
1241 */
1242 static void target_reset_examined(struct target *target)
1243 {
1244 target->examined = false;
1245 }
1246
1247 static int handle_target(void *priv);
1248
1249 static int target_init_one(struct command_context *cmd_ctx,
1250 struct target *target)
1251 {
1252 target_reset_examined(target);
1253
1254 struct target_type *type = target->type;
1255 if (type->examine == NULL)
1256 type->examine = default_examine;
1257
1258 if (type->check_reset == NULL)
1259 type->check_reset = default_check_reset;
1260
1261 assert(type->init_target != NULL);
1262
1263 int retval = type->init_target(cmd_ctx, target);
1264 if (ERROR_OK != retval) {
1265 LOG_ERROR("target '%s' init failed", target_name(target));
1266 return retval;
1267 }
1268
1269 /* Sanity-check MMU support ... stub in what we must, to help
1270 * implement it in stages, but warn if we need to do so.
1271 */
1272 if (type->mmu) {
1273 if (type->virt2phys == NULL) {
1274 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1275 type->virt2phys = identity_virt2phys;
1276 }
1277 } else {
1278 /* Make sure no-MMU targets all behave the same: make no
1279 * distinction between physical and virtual addresses, and
1280 * ensure that virt2phys() is always an identity mapping.
1281 */
1282 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1283 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1284
1285 type->mmu = no_mmu;
1286 type->write_phys_memory = type->write_memory;
1287 type->read_phys_memory = type->read_memory;
1288 type->virt2phys = identity_virt2phys;
1289 }
1290
1291 if (target->type->read_buffer == NULL)
1292 target->type->read_buffer = target_read_buffer_default;
1293
1294 if (target->type->write_buffer == NULL)
1295 target->type->write_buffer = target_write_buffer_default;
1296
1297 if (target->type->get_gdb_fileio_info == NULL)
1298 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1299
1300 if (target->type->gdb_fileio_end == NULL)
1301 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1302
1303 if (target->type->profiling == NULL)
1304 target->type->profiling = target_profiling_default;
1305
1306 return ERROR_OK;
1307 }
1308
1309 static int target_init(struct command_context *cmd_ctx)
1310 {
1311 struct target *target;
1312 int retval;
1313
1314 for (target = all_targets; target; target = target->next) {
1315 retval = target_init_one(cmd_ctx, target);
1316 if (ERROR_OK != retval)
1317 return retval;
1318 }
1319
1320 if (!all_targets)
1321 return ERROR_OK;
1322
1323 retval = target_register_user_commands(cmd_ctx);
1324 if (ERROR_OK != retval)
1325 return retval;
1326
1327 retval = target_register_timer_callback(&handle_target,
1328 polling_interval, 1, cmd_ctx->interp);
1329 if (ERROR_OK != retval)
1330 return retval;
1331
1332 return ERROR_OK;
1333 }
1334
1335 COMMAND_HANDLER(handle_target_init_command)
1336 {
1337 int retval;
1338
1339 if (CMD_ARGC != 0)
1340 return ERROR_COMMAND_SYNTAX_ERROR;
1341
1342 static bool target_initialized;
1343 if (target_initialized) {
1344 LOG_INFO("'target init' has already been called");
1345 return ERROR_OK;
1346 }
1347 target_initialized = true;
1348
1349 retval = command_run_line(CMD_CTX, "init_targets");
1350 if (ERROR_OK != retval)
1351 return retval;
1352
1353 retval = command_run_line(CMD_CTX, "init_target_events");
1354 if (ERROR_OK != retval)
1355 return retval;
1356
1357 retval = command_run_line(CMD_CTX, "init_board");
1358 if (ERROR_OK != retval)
1359 return retval;
1360
1361 LOG_DEBUG("Initializing targets...");
1362 return target_init(CMD_CTX);
1363 }
1364
1365 int target_register_event_callback(int (*callback)(struct target *target,
1366 enum target_event event, void *priv), void *priv)
1367 {
1368 struct target_event_callback **callbacks_p = &target_event_callbacks;
1369
1370 if (callback == NULL)
1371 return ERROR_COMMAND_SYNTAX_ERROR;
1372
1373 if (*callbacks_p) {
1374 while ((*callbacks_p)->next)
1375 callbacks_p = &((*callbacks_p)->next);
1376 callbacks_p = &((*callbacks_p)->next);
1377 }
1378
1379 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1380 (*callbacks_p)->callback = callback;
1381 (*callbacks_p)->priv = priv;
1382 (*callbacks_p)->next = NULL;
1383
1384 return ERROR_OK;
1385 }
1386
1387 int target_register_reset_callback(int (*callback)(struct target *target,
1388 enum target_reset_mode reset_mode, void *priv), void *priv)
1389 {
1390 struct target_reset_callback *entry;
1391
1392 if (callback == NULL)
1393 return ERROR_COMMAND_SYNTAX_ERROR;
1394
1395 entry = malloc(sizeof(struct target_reset_callback));
1396 if (entry == NULL) {
1397 LOG_ERROR("error allocating buffer for reset callback entry");
1398 return ERROR_COMMAND_SYNTAX_ERROR;
1399 }
1400
1401 entry->callback = callback;
1402 entry->priv = priv;
1403 list_add(&entry->list, &target_reset_callback_list);
1404
1405
1406 return ERROR_OK;
1407 }
1408
1409 int target_register_trace_callback(int (*callback)(struct target *target,
1410 size_t len, uint8_t *data, void *priv), void *priv)
1411 {
1412 struct target_trace_callback *entry;
1413
1414 if (callback == NULL)
1415 return ERROR_COMMAND_SYNTAX_ERROR;
1416
1417 entry = malloc(sizeof(struct target_trace_callback));
1418 if (entry == NULL) {
1419 LOG_ERROR("error allocating buffer for trace callback entry");
1420 return ERROR_COMMAND_SYNTAX_ERROR;
1421 }
1422
1423 entry->callback = callback;
1424 entry->priv = priv;
1425 list_add(&entry->list, &target_trace_callback_list);
1426
1427
1428 return ERROR_OK;
1429 }
1430
1431 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1432 {
1433 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1434
1435 if (callback == NULL)
1436 return ERROR_COMMAND_SYNTAX_ERROR;
1437
1438 if (*callbacks_p) {
1439 while ((*callbacks_p)->next)
1440 callbacks_p = &((*callbacks_p)->next);
1441 callbacks_p = &((*callbacks_p)->next);
1442 }
1443
1444 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1445 (*callbacks_p)->callback = callback;
1446 (*callbacks_p)->periodic = periodic;
1447 (*callbacks_p)->time_ms = time_ms;
1448 (*callbacks_p)->removed = false;
1449
1450 gettimeofday(&(*callbacks_p)->when, NULL);
1451 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1452
1453 (*callbacks_p)->priv = priv;
1454 (*callbacks_p)->next = NULL;
1455
1456 return ERROR_OK;
1457 }
1458
1459 int target_unregister_event_callback(int (*callback)(struct target *target,
1460 enum target_event event, void *priv), void *priv)
1461 {
1462 struct target_event_callback **p = &target_event_callbacks;
1463 struct target_event_callback *c = target_event_callbacks;
1464
1465 if (callback == NULL)
1466 return ERROR_COMMAND_SYNTAX_ERROR;
1467
1468 while (c) {
1469 struct target_event_callback *next = c->next;
1470 if ((c->callback == callback) && (c->priv == priv)) {
1471 *p = next;
1472 free(c);
1473 return ERROR_OK;
1474 } else
1475 p = &(c->next);
1476 c = next;
1477 }
1478
1479 return ERROR_OK;
1480 }
1481
1482 int target_unregister_reset_callback(int (*callback)(struct target *target,
1483 enum target_reset_mode reset_mode, void *priv), void *priv)
1484 {
1485 struct target_reset_callback *entry;
1486
1487 if (callback == NULL)
1488 return ERROR_COMMAND_SYNTAX_ERROR;
1489
1490 list_for_each_entry(entry, &target_reset_callback_list, list) {
1491 if (entry->callback == callback && entry->priv == priv) {
1492 list_del(&entry->list);
1493 free(entry);
1494 break;
1495 }
1496 }
1497
1498 return ERROR_OK;
1499 }
1500
1501 int target_unregister_trace_callback(int (*callback)(struct target *target,
1502 size_t len, uint8_t *data, void *priv), void *priv)
1503 {
1504 struct target_trace_callback *entry;
1505
1506 if (callback == NULL)
1507 return ERROR_COMMAND_SYNTAX_ERROR;
1508
1509 list_for_each_entry(entry, &target_trace_callback_list, list) {
1510 if (entry->callback == callback && entry->priv == priv) {
1511 list_del(&entry->list);
1512 free(entry);
1513 break;
1514 }
1515 }
1516
1517 return ERROR_OK;
1518 }
1519
1520 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1521 {
1522 if (callback == NULL)
1523 return ERROR_COMMAND_SYNTAX_ERROR;
1524
1525 for (struct target_timer_callback *c = target_timer_callbacks;
1526 c; c = c->next) {
1527 if ((c->callback == callback) && (c->priv == priv)) {
1528 c->removed = true;
1529 return ERROR_OK;
1530 }
1531 }
1532
1533 return ERROR_FAIL;
1534 }
1535
1536 int target_call_event_callbacks(struct target *target, enum target_event event)
1537 {
1538 struct target_event_callback *callback = target_event_callbacks;
1539 struct target_event_callback *next_callback;
1540
1541 if (event == TARGET_EVENT_HALTED) {
1542 /* execute early halted first */
1543 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1544 }
1545
1546 LOG_DEBUG("target event %i (%s)", event,
1547 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1548
1549 target_handle_event(target, event);
1550
1551 while (callback) {
1552 next_callback = callback->next;
1553 callback->callback(target, event, callback->priv);
1554 callback = next_callback;
1555 }
1556
1557 return ERROR_OK;
1558 }
1559
1560 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1561 {
1562 struct target_reset_callback *callback;
1563
1564 LOG_DEBUG("target reset %i (%s)", reset_mode,
1565 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1566
1567 list_for_each_entry(callback, &target_reset_callback_list, list)
1568 callback->callback(target, reset_mode, callback->priv);
1569
1570 return ERROR_OK;
1571 }
1572
1573 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1574 {
1575 struct target_trace_callback *callback;
1576
1577 list_for_each_entry(callback, &target_trace_callback_list, list)
1578 callback->callback(target, len, data, callback->priv);
1579
1580 return ERROR_OK;
1581 }
1582
1583 static int target_timer_callback_periodic_restart(
1584 struct target_timer_callback *cb, struct timeval *now)
1585 {
1586 cb->when = *now;
1587 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1588 return ERROR_OK;
1589 }
1590
1591 static int target_call_timer_callback(struct target_timer_callback *cb,
1592 struct timeval *now)
1593 {
1594 cb->callback(cb->priv);
1595
1596 if (cb->periodic)
1597 return target_timer_callback_periodic_restart(cb, now);
1598
1599 return target_unregister_timer_callback(cb->callback, cb->priv);
1600 }
1601
1602 static int target_call_timer_callbacks_check_time(int checktime)
1603 {
1604 static bool callback_processing;
1605
1606 /* Do not allow nesting */
1607 if (callback_processing)
1608 return ERROR_OK;
1609
1610 callback_processing = true;
1611
1612 keep_alive();
1613
1614 struct timeval now;
1615 gettimeofday(&now, NULL);
1616
1617 /* Store an address of the place containing a pointer to the
1618 * next item; initially, that's a standalone "root of the
1619 * list" variable. */
1620 struct target_timer_callback **callback = &target_timer_callbacks;
1621 while (*callback) {
1622 if ((*callback)->removed) {
1623 struct target_timer_callback *p = *callback;
1624 *callback = (*callback)->next;
1625 free(p);
1626 continue;
1627 }
1628
1629 bool call_it = (*callback)->callback &&
1630 ((!checktime && (*callback)->periodic) ||
1631 timeval_compare(&now, &(*callback)->when) >= 0);
1632
1633 if (call_it)
1634 target_call_timer_callback(*callback, &now);
1635
1636 callback = &(*callback)->next;
1637 }
1638
1639 callback_processing = false;
1640 return ERROR_OK;
1641 }
1642
1643 int target_call_timer_callbacks(void)
1644 {
1645 return target_call_timer_callbacks_check_time(1);
1646 }
1647
1648 /* invoke periodic callbacks immediately */
1649 int target_call_timer_callbacks_now(void)
1650 {
1651 return target_call_timer_callbacks_check_time(0);
1652 }
1653
1654 /* Prints the working area layout for debug purposes */
1655 static void print_wa_layout(struct target *target)
1656 {
1657 struct working_area *c = target->working_areas;
1658
1659 while (c) {
1660 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1661 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1662 c->address, c->address + c->size - 1, c->size);
1663 c = c->next;
1664 }
1665 }
1666
1667 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1668 static void target_split_working_area(struct working_area *area, uint32_t size)
1669 {
1670 assert(area->free); /* Shouldn't split an allocated area */
1671 assert(size <= area->size); /* Caller should guarantee this */
1672
1673 /* Split only if not already the right size */
1674 if (size < area->size) {
1675 struct working_area *new_wa = malloc(sizeof(*new_wa));
1676
1677 if (new_wa == NULL)
1678 return;
1679
1680 new_wa->next = area->next;
1681 new_wa->size = area->size - size;
1682 new_wa->address = area->address + size;
1683 new_wa->backup = NULL;
1684 new_wa->user = NULL;
1685 new_wa->free = true;
1686
1687 area->next = new_wa;
1688 area->size = size;
1689
1690 /* If backup memory was allocated to this area, it has the wrong size
1691 * now so free it and it will be reallocated if/when needed */
1692 if (area->backup) {
1693 free(area->backup);
1694 area->backup = NULL;
1695 }
1696 }
1697 }
1698
1699 /* Merge all adjacent free areas into one */
1700 static void target_merge_working_areas(struct target *target)
1701 {
1702 struct working_area *c = target->working_areas;
1703
1704 while (c && c->next) {
1705 assert(c->next->address == c->address + c->size); /* This is an invariant */
1706
1707 /* Find two adjacent free areas */
1708 if (c->free && c->next->free) {
1709 /* Merge the last into the first */
1710 c->size += c->next->size;
1711
1712 /* Remove the last */
1713 struct working_area *to_be_freed = c->next;
1714 c->next = c->next->next;
1715 if (to_be_freed->backup)
1716 free(to_be_freed->backup);
1717 free(to_be_freed);
1718
1719 /* If backup memory was allocated to the remaining area, it's has
1720 * the wrong size now */
1721 if (c->backup) {
1722 free(c->backup);
1723 c->backup = NULL;
1724 }
1725 } else {
1726 c = c->next;
1727 }
1728 }
1729 }
1730
1731 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1732 {
1733 /* Reevaluate working area address based on MMU state*/
1734 if (target->working_areas == NULL) {
1735 int retval;
1736 int enabled;
1737
1738 retval = target->type->mmu(target, &enabled);
1739 if (retval != ERROR_OK)
1740 return retval;
1741
1742 if (!enabled) {
1743 if (target->working_area_phys_spec) {
1744 LOG_DEBUG("MMU disabled, using physical "
1745 "address for working memory " TARGET_ADDR_FMT,
1746 target->working_area_phys);
1747 target->working_area = target->working_area_phys;
1748 } else {
1749 LOG_ERROR("No working memory available. "
1750 "Specify -work-area-phys to target.");
1751 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1752 }
1753 } else {
1754 if (target->working_area_virt_spec) {
1755 LOG_DEBUG("MMU enabled, using virtual "
1756 "address for working memory " TARGET_ADDR_FMT,
1757 target->working_area_virt);
1758 target->working_area = target->working_area_virt;
1759 } else {
1760 LOG_ERROR("No working memory available. "
1761 "Specify -work-area-virt to target.");
1762 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1763 }
1764 }
1765
1766 /* Set up initial working area on first call */
1767 struct working_area *new_wa = malloc(sizeof(*new_wa));
1768 if (new_wa) {
1769 new_wa->next = NULL;
1770 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1771 new_wa->address = target->working_area;
1772 new_wa->backup = NULL;
1773 new_wa->user = NULL;
1774 new_wa->free = true;
1775 }
1776
1777 target->working_areas = new_wa;
1778 }
1779
1780 /* only allocate multiples of 4 byte */
1781 if (size % 4)
1782 size = (size + 3) & (~3UL);
1783
1784 struct working_area *c = target->working_areas;
1785
1786 /* Find the first large enough working area */
1787 while (c) {
1788 if (c->free && c->size >= size)
1789 break;
1790 c = c->next;
1791 }
1792
1793 if (c == NULL)
1794 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1795
1796 /* Split the working area into the requested size */
1797 target_split_working_area(c, size);
1798
1799 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1800 size, c->address);
1801
1802 if (target->backup_working_area) {
1803 if (c->backup == NULL) {
1804 c->backup = malloc(c->size);
1805 if (c->backup == NULL)
1806 return ERROR_FAIL;
1807 }
1808
1809 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1810 if (retval != ERROR_OK)
1811 return retval;
1812 }
1813
1814 /* mark as used, and return the new (reused) area */
1815 c->free = false;
1816 *area = c;
1817
1818 /* user pointer */
1819 c->user = area;
1820
1821 print_wa_layout(target);
1822
1823 return ERROR_OK;
1824 }
1825
1826 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1827 {
1828 int retval;
1829
1830 retval = target_alloc_working_area_try(target, size, area);
1831 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1832 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1833 return retval;
1834
1835 }
1836
1837 static int target_restore_working_area(struct target *target, struct working_area *area)
1838 {
1839 int retval = ERROR_OK;
1840
1841 if (target->backup_working_area && area->backup != NULL) {
1842 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1843 if (retval != ERROR_OK)
1844 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1845 area->size, area->address);
1846 }
1847
1848 return retval;
1849 }
1850
1851 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1852 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1853 {
1854 int retval = ERROR_OK;
1855
1856 if (area->free)
1857 return retval;
1858
1859 if (restore) {
1860 retval = target_restore_working_area(target, area);
1861 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1862 if (retval != ERROR_OK)
1863 return retval;
1864 }
1865
1866 area->free = true;
1867
1868 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1869 area->size, area->address);
1870
1871 /* mark user pointer invalid */
1872 /* TODO: Is this really safe? It points to some previous caller's memory.
1873 * How could we know that the area pointer is still in that place and not
1874 * some other vital data? What's the purpose of this, anyway? */
1875 *area->user = NULL;
1876 area->user = NULL;
1877
1878 target_merge_working_areas(target);
1879
1880 print_wa_layout(target);
1881
1882 return retval;
1883 }
1884
1885 int target_free_working_area(struct target *target, struct working_area *area)
1886 {
1887 return target_free_working_area_restore(target, area, 1);
1888 }
1889
1890 static void target_destroy(struct target *target)
1891 {
1892 if (target->type->deinit_target)
1893 target->type->deinit_target(target);
1894
1895 free(target->type);
1896 free(target->trace_info);
1897 free(target->cmd_name);
1898 free(target);
1899 }
1900
1901 void target_quit(void)
1902 {
1903 struct target_event_callback *pe = target_event_callbacks;
1904 while (pe) {
1905 struct target_event_callback *t = pe->next;
1906 free(pe);
1907 pe = t;
1908 }
1909 target_event_callbacks = NULL;
1910
1911 struct target_timer_callback *pt = target_timer_callbacks;
1912 while (pt) {
1913 struct target_timer_callback *t = pt->next;
1914 free(pt);
1915 pt = t;
1916 }
1917 target_timer_callbacks = NULL;
1918
1919 for (struct target *target = all_targets; target;) {
1920 struct target *tmp;
1921
1922 tmp = target->next;
1923 target_destroy(target);
1924 target = tmp;
1925 }
1926
1927 all_targets = NULL;
1928 }
1929
1930 /* free resources and restore memory, if restoring memory fails,
1931 * free up resources anyway
1932 */
1933 static void target_free_all_working_areas_restore(struct target *target, int restore)
1934 {
1935 struct working_area *c = target->working_areas;
1936
1937 LOG_DEBUG("freeing all working areas");
1938
1939 /* Loop through all areas, restoring the allocated ones and marking them as free */
1940 while (c) {
1941 if (!c->free) {
1942 if (restore)
1943 target_restore_working_area(target, c);
1944 c->free = true;
1945 *c->user = NULL; /* Same as above */
1946 c->user = NULL;
1947 }
1948 c = c->next;
1949 }
1950
1951 /* Run a merge pass to combine all areas into one */
1952 target_merge_working_areas(target);
1953
1954 print_wa_layout(target);
1955 }
1956
1957 void target_free_all_working_areas(struct target *target)
1958 {
1959 target_free_all_working_areas_restore(target, 1);
1960 }
1961
1962 /* Find the largest number of bytes that can be allocated */
1963 uint32_t target_get_working_area_avail(struct target *target)
1964 {
1965 struct working_area *c = target->working_areas;
1966 uint32_t max_size = 0;
1967
1968 if (c == NULL)
1969 return target->working_area_size;
1970
1971 while (c) {
1972 if (c->free && max_size < c->size)
1973 max_size = c->size;
1974
1975 c = c->next;
1976 }
1977
1978 return max_size;
1979 }
1980
1981 int target_arch_state(struct target *target)
1982 {
1983 int retval;
1984 if (target == NULL) {
1985 LOG_WARNING("No target has been configured");
1986 return ERROR_OK;
1987 }
1988
1989 if (target->state != TARGET_HALTED)
1990 return ERROR_OK;
1991
1992 retval = target->type->arch_state(target);
1993 return retval;
1994 }
1995
1996 static int target_get_gdb_fileio_info_default(struct target *target,
1997 struct gdb_fileio_info *fileio_info)
1998 {
1999 /* If target does not support semi-hosting function, target
2000 has no need to provide .get_gdb_fileio_info callback.
2001 It just return ERROR_FAIL and gdb_server will return "Txx"
2002 as target halted every time. */
2003 return ERROR_FAIL;
2004 }
2005
2006 static int target_gdb_fileio_end_default(struct target *target,
2007 int retcode, int fileio_errno, bool ctrl_c)
2008 {
2009 return ERROR_OK;
2010 }
2011
2012 static int target_profiling_default(struct target *target, uint32_t *samples,
2013 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2014 {
2015 struct timeval timeout, now;
2016
2017 gettimeofday(&timeout, NULL);
2018 timeval_add_time(&timeout, seconds, 0);
2019
2020 LOG_INFO("Starting profiling. Halting and resuming the"
2021 " target as often as we can...");
2022
2023 uint32_t sample_count = 0;
2024 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2025 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2026
2027 int retval = ERROR_OK;
2028 for (;;) {
2029 target_poll(target);
2030 if (target->state == TARGET_HALTED) {
2031 uint32_t t = buf_get_u32(reg->value, 0, 32);
2032 samples[sample_count++] = t;
2033 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2034 retval = target_resume(target, 1, 0, 0, 0);
2035 target_poll(target);
2036 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2037 } else if (target->state == TARGET_RUNNING) {
2038 /* We want to quickly sample the PC. */
2039 retval = target_halt(target);
2040 } else {
2041 LOG_INFO("Target not halted or running");
2042 retval = ERROR_OK;
2043 break;
2044 }
2045
2046 if (retval != ERROR_OK)
2047 break;
2048
2049 gettimeofday(&now, NULL);
2050 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2051 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2052 break;
2053 }
2054 }
2055
2056 *num_samples = sample_count;
2057 return retval;
2058 }
2059
2060 /* Single aligned words are guaranteed to use 16 or 32 bit access
2061 * mode respectively, otherwise data is handled as quickly as
2062 * possible
2063 */
2064 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2065 {
2066 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2067 size, address);
2068
2069 if (!target_was_examined(target)) {
2070 LOG_ERROR("Target not examined yet");
2071 return ERROR_FAIL;
2072 }
2073
2074 if (size == 0)
2075 return ERROR_OK;
2076
2077 if ((address + size - 1) < address) {
2078 /* GDB can request this when e.g. PC is 0xfffffffc */
2079 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2080 address,
2081 size);
2082 return ERROR_FAIL;
2083 }
2084
2085 return target->type->write_buffer(target, address, size, buffer);
2086 }
2087
2088 static int target_write_buffer_default(struct target *target,
2089 target_addr_t address, uint32_t count, const uint8_t *buffer)
2090 {
2091 uint32_t size;
2092
2093 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2094 * will have something to do with the size we leave to it. */
2095 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2096 if (address & size) {
2097 int retval = target_write_memory(target, address, size, 1, buffer);
2098 if (retval != ERROR_OK)
2099 return retval;
2100 address += size;
2101 count -= size;
2102 buffer += size;
2103 }
2104 }
2105
2106 /* Write the data with as large access size as possible. */
2107 for (; size > 0; size /= 2) {
2108 uint32_t aligned = count - count % size;
2109 if (aligned > 0) {
2110 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2111 if (retval != ERROR_OK)
2112 return retval;
2113 address += aligned;
2114 count -= aligned;
2115 buffer += aligned;
2116 }
2117 }
2118
2119 return ERROR_OK;
2120 }
2121
2122 /* Single aligned words are guaranteed to use 16 or 32 bit access
2123 * mode respectively, otherwise data is handled as quickly as
2124 * possible
2125 */
2126 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2127 {
2128 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2129 size, address);
2130
2131 if (!target_was_examined(target)) {
2132 LOG_ERROR("Target not examined yet");
2133 return ERROR_FAIL;
2134 }
2135
2136 if (size == 0)
2137 return ERROR_OK;
2138
2139 if ((address + size - 1) < address) {
2140 /* GDB can request this when e.g. PC is 0xfffffffc */
2141 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2142 address,
2143 size);
2144 return ERROR_FAIL;
2145 }
2146
2147 return target->type->read_buffer(target, address, size, buffer);
2148 }
2149
2150 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2151 {
2152 uint32_t size;
2153
2154 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2155 * will have something to do with the size we leave to it. */
2156 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2157 if (address & size) {
2158 int retval = target_read_memory(target, address, size, 1, buffer);
2159 if (retval != ERROR_OK)
2160 return retval;
2161 address += size;
2162 count -= size;
2163 buffer += size;
2164 }
2165 }
2166
2167 /* Read the data with as large access size as possible. */
2168 for (; size > 0; size /= 2) {
2169 uint32_t aligned = count - count % size;
2170 if (aligned > 0) {
2171 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2172 if (retval != ERROR_OK)
2173 return retval;
2174 address += aligned;
2175 count -= aligned;
2176 buffer += aligned;
2177 }
2178 }
2179
2180 return ERROR_OK;
2181 }
2182
2183 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2184 {
2185 uint8_t *buffer;
2186 int retval;
2187 uint32_t i;
2188 uint32_t checksum = 0;
2189 if (!target_was_examined(target)) {
2190 LOG_ERROR("Target not examined yet");
2191 return ERROR_FAIL;
2192 }
2193
2194 retval = target->type->checksum_memory(target, address, size, &checksum);
2195 if (retval != ERROR_OK) {
2196 buffer = malloc(size);
2197 if (buffer == NULL) {
2198 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2199 return ERROR_COMMAND_SYNTAX_ERROR;
2200 }
2201 retval = target_read_buffer(target, address, size, buffer);
2202 if (retval != ERROR_OK) {
2203 free(buffer);
2204 return retval;
2205 }
2206
2207 /* convert to target endianness */
2208 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2209 uint32_t target_data;
2210 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2211 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2212 }
2213
2214 retval = image_calculate_checksum(buffer, size, &checksum);
2215 free(buffer);
2216 }
2217
2218 *crc = checksum;
2219
2220 return retval;
2221 }
2222
2223 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2224 uint8_t erased_value)
2225 {
2226 int retval;
2227 if (!target_was_examined(target)) {
2228 LOG_ERROR("Target not examined yet");
2229 return ERROR_FAIL;
2230 }
2231
2232 if (target->type->blank_check_memory == 0)
2233 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2234
2235 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2236
2237 return retval;
2238 }
2239
2240 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2241 {
2242 uint8_t value_buf[8];
2243 if (!target_was_examined(target)) {
2244 LOG_ERROR("Target not examined yet");
2245 return ERROR_FAIL;
2246 }
2247
2248 int retval = target_read_memory(target, address, 8, 1, value_buf);
2249
2250 if (retval == ERROR_OK) {
2251 *value = target_buffer_get_u64(target, value_buf);
2252 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2253 address,
2254 *value);
2255 } else {
2256 *value = 0x0;
2257 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2258 address);
2259 }
2260
2261 return retval;
2262 }
2263
2264 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2265 {
2266 uint8_t value_buf[4];
2267 if (!target_was_examined(target)) {
2268 LOG_ERROR("Target not examined yet");
2269 return ERROR_FAIL;
2270 }
2271
2272 int retval = target_read_memory(target, address, 4, 1, value_buf);
2273
2274 if (retval == ERROR_OK) {
2275 *value = target_buffer_get_u32(target, value_buf);
2276 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2277 address,
2278 *value);
2279 } else {
2280 *value = 0x0;
2281 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2282 address);
2283 }
2284
2285 return retval;
2286 }
2287
2288 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2289 {
2290 uint8_t value_buf[2];
2291 if (!target_was_examined(target)) {
2292 LOG_ERROR("Target not examined yet");
2293 return ERROR_FAIL;
2294 }
2295
2296 int retval = target_read_memory(target, address, 2, 1, value_buf);
2297
2298 if (retval == ERROR_OK) {
2299 *value = target_buffer_get_u16(target, value_buf);
2300 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2301 address,
2302 *value);
2303 } else {
2304 *value = 0x0;
2305 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2306 address);
2307 }
2308
2309 return retval;
2310 }
2311
2312 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2313 {
2314 if (!target_was_examined(target)) {
2315 LOG_ERROR("Target not examined yet");
2316 return ERROR_FAIL;
2317 }
2318
2319 int retval = target_read_memory(target, address, 1, 1, value);
2320
2321 if (retval == ERROR_OK) {
2322 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2323 address,
2324 *value);
2325 } else {
2326 *value = 0x0;
2327 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2328 address);
2329 }
2330
2331 return retval;
2332 }
2333
2334 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2335 {
2336 int retval;
2337 uint8_t value_buf[8];
2338 if (!target_was_examined(target)) {
2339 LOG_ERROR("Target not examined yet");
2340 return ERROR_FAIL;
2341 }
2342
2343 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2344 address,
2345 value);
2346
2347 target_buffer_set_u64(target, value_buf, value);
2348 retval = target_write_memory(target, address, 8, 1, value_buf);
2349 if (retval != ERROR_OK)
2350 LOG_DEBUG("failed: %i", retval);
2351
2352 return retval;
2353 }
2354
2355 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2356 {
2357 int retval;
2358 uint8_t value_buf[4];
2359 if (!target_was_examined(target)) {
2360 LOG_ERROR("Target not examined yet");
2361 return ERROR_FAIL;
2362 }
2363
2364 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2365 address,
2366 value);
2367
2368 target_buffer_set_u32(target, value_buf, value);
2369 retval = target_write_memory(target, address, 4, 1, value_buf);
2370 if (retval != ERROR_OK)
2371 LOG_DEBUG("failed: %i", retval);
2372
2373 return retval;
2374 }
2375
2376 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2377 {
2378 int retval;
2379 uint8_t value_buf[2];
2380 if (!target_was_examined(target)) {
2381 LOG_ERROR("Target not examined yet");
2382 return ERROR_FAIL;
2383 }
2384
2385 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2386 address,
2387 value);
2388
2389 target_buffer_set_u16(target, value_buf, value);
2390 retval = target_write_memory(target, address, 2, 1, value_buf);
2391 if (retval != ERROR_OK)
2392 LOG_DEBUG("failed: %i", retval);
2393
2394 return retval;
2395 }
2396
2397 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2398 {
2399 int retval;
2400 if (!target_was_examined(target)) {
2401 LOG_ERROR("Target not examined yet");
2402 return ERROR_FAIL;
2403 }
2404
2405 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2406 address, value);
2407
2408 retval = target_write_memory(target, address, 1, 1, &value);
2409 if (retval != ERROR_OK)
2410 LOG_DEBUG("failed: %i", retval);
2411
2412 return retval;
2413 }
2414
2415 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2416 {
2417 int retval;
2418 uint8_t value_buf[8];
2419 if (!target_was_examined(target)) {
2420 LOG_ERROR("Target not examined yet");
2421 return ERROR_FAIL;
2422 }
2423
2424 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2425 address,
2426 value);
2427
2428 target_buffer_set_u64(target, value_buf, value);
2429 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2430 if (retval != ERROR_OK)
2431 LOG_DEBUG("failed: %i", retval);
2432
2433 return retval;
2434 }
2435
2436 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2437 {
2438 int retval;
2439 uint8_t value_buf[4];
2440 if (!target_was_examined(target)) {
2441 LOG_ERROR("Target not examined yet");
2442 return ERROR_FAIL;
2443 }
2444
2445 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2446 address,
2447 value);
2448
2449 target_buffer_set_u32(target, value_buf, value);
2450 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2451 if (retval != ERROR_OK)
2452 LOG_DEBUG("failed: %i", retval);
2453
2454 return retval;
2455 }
2456
2457 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2458 {
2459 int retval;
2460 uint8_t value_buf[2];
2461 if (!target_was_examined(target)) {
2462 LOG_ERROR("Target not examined yet");
2463 return ERROR_FAIL;
2464 }
2465
2466 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2467 address,
2468 value);
2469
2470 target_buffer_set_u16(target, value_buf, value);
2471 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2472 if (retval != ERROR_OK)
2473 LOG_DEBUG("failed: %i", retval);
2474
2475 return retval;
2476 }
2477
2478 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2479 {
2480 int retval;
2481 if (!target_was_examined(target)) {
2482 LOG_ERROR("Target not examined yet");
2483 return ERROR_FAIL;
2484 }
2485
2486 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2487 address, value);
2488
2489 retval = target_write_phys_memory(target, address, 1, 1, &value);
2490 if (retval != ERROR_OK)
2491 LOG_DEBUG("failed: %i", retval);
2492
2493 return retval;
2494 }
2495
2496 static int find_target(struct command_context *cmd_ctx, const char *name)
2497 {
2498 struct target *target = get_target(name);
2499 if (target == NULL) {
2500 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2501 return ERROR_FAIL;
2502 }
2503 if (!target->tap->enabled) {
2504 LOG_USER("Target: TAP %s is disabled, "
2505 "can't be the current target\n",
2506 target->tap->dotted_name);
2507 return ERROR_FAIL;
2508 }
2509
2510 cmd_ctx->current_target = target;
2511 if (cmd_ctx->current_target_override)
2512 cmd_ctx->current_target_override = target;
2513
2514 return ERROR_OK;
2515 }
2516
2517
2518 COMMAND_HANDLER(handle_targets_command)
2519 {
2520 int retval = ERROR_OK;
2521 if (CMD_ARGC == 1) {
2522 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2523 if (retval == ERROR_OK) {
2524 /* we're done! */
2525 return retval;
2526 }
2527 }
2528
2529 struct target *target = all_targets;
2530 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2531 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2532 while (target) {
2533 const char *state;
2534 char marker = ' ';
2535
2536 if (target->tap->enabled)
2537 state = target_state_name(target);
2538 else
2539 state = "tap-disabled";
2540
2541 if (CMD_CTX->current_target == target)
2542 marker = '*';
2543
2544 /* keep columns lined up to match the headers above */
2545 command_print(CMD_CTX,
2546 "%2d%c %-18s %-10s %-6s %-18s %s",
2547 target->target_number,
2548 marker,
2549 target_name(target),
2550 target_type_name(target),
2551 Jim_Nvp_value2name_simple(nvp_target_endian,
2552 target->endianness)->name,
2553 target->tap->dotted_name,
2554 state);
2555 target = target->next;
2556 }
2557
2558 return retval;
2559 }
2560
2561 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2562
2563 static int powerDropout;
2564 static int srstAsserted;
2565
2566 static int runPowerRestore;
2567 static int runPowerDropout;
2568 static int runSrstAsserted;
2569 static int runSrstDeasserted;
2570
2571 static int sense_handler(void)
2572 {
2573 static int prevSrstAsserted;
2574 static int prevPowerdropout;
2575
2576 int retval = jtag_power_dropout(&powerDropout);
2577 if (retval != ERROR_OK)
2578 return retval;
2579
2580 int powerRestored;
2581 powerRestored = prevPowerdropout && !powerDropout;
2582 if (powerRestored)
2583 runPowerRestore = 1;
2584
2585 int64_t current = timeval_ms();
2586 static int64_t lastPower;
2587 bool waitMore = lastPower + 2000 > current;
2588 if (powerDropout && !waitMore) {
2589 runPowerDropout = 1;
2590 lastPower = current;
2591 }
2592
2593 retval = jtag_srst_asserted(&srstAsserted);
2594 if (retval != ERROR_OK)
2595 return retval;
2596
2597 int srstDeasserted;
2598 srstDeasserted = prevSrstAsserted && !srstAsserted;
2599
2600 static int64_t lastSrst;
2601 waitMore = lastSrst + 2000 > current;
2602 if (srstDeasserted && !waitMore) {
2603 runSrstDeasserted = 1;
2604 lastSrst = current;
2605 }
2606
2607 if (!prevSrstAsserted && srstAsserted)
2608 runSrstAsserted = 1;
2609
2610 prevSrstAsserted = srstAsserted;
2611 prevPowerdropout = powerDropout;
2612
2613 if (srstDeasserted || powerRestored) {
2614 /* Other than logging the event we can't do anything here.
2615 * Issuing a reset is a particularly bad idea as we might
2616 * be inside a reset already.
2617 */
2618 }
2619
2620 return ERROR_OK;
2621 }
2622
2623 /* process target state changes */
2624 static int handle_target(void *priv)
2625 {
2626 Jim_Interp *interp = (Jim_Interp *)priv;
2627 int retval = ERROR_OK;
2628
2629 if (!is_jtag_poll_safe()) {
2630 /* polling is disabled currently */
2631 return ERROR_OK;
2632 }
2633
2634 /* we do not want to recurse here... */
2635 static int recursive;
2636 if (!recursive) {
2637 recursive = 1;
2638 sense_handler();
2639 /* danger! running these procedures can trigger srst assertions and power dropouts.
2640 * We need to avoid an infinite loop/recursion here and we do that by
2641 * clearing the flags after running these events.
2642 */
2643 int did_something = 0;
2644 if (runSrstAsserted) {
2645 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2646 Jim_Eval(interp, "srst_asserted");
2647 did_something = 1;
2648 }
2649 if (runSrstDeasserted) {
2650 Jim_Eval(interp, "srst_deasserted");
2651 did_something = 1;
2652 }
2653 if (runPowerDropout) {
2654 LOG_INFO("Power dropout detected, running power_dropout proc.");
2655 Jim_Eval(interp, "power_dropout");
2656 did_something = 1;
2657 }
2658 if (runPowerRestore) {
2659 Jim_Eval(interp, "power_restore");
2660 did_something = 1;
2661 }
2662
2663 if (did_something) {
2664 /* clear detect flags */
2665 sense_handler();
2666 }
2667
2668 /* clear action flags */
2669
2670 runSrstAsserted = 0;
2671 runSrstDeasserted = 0;
2672 runPowerRestore = 0;
2673 runPowerDropout = 0;
2674
2675 recursive = 0;
2676 }
2677
2678 /* Poll targets for state changes unless that's globally disabled.
2679 * Skip targets that are currently disabled.
2680 */
2681 for (struct target *target = all_targets;
2682 is_jtag_poll_safe() && target;
2683 target = target->next) {
2684
2685 if (!target_was_examined(target))
2686 continue;
2687
2688 if (!target->tap->enabled)
2689 continue;
2690
2691 if (target->backoff.times > target->backoff.count) {
2692 /* do not poll this time as we failed previously */
2693 target->backoff.count++;
2694 continue;
2695 }
2696 target->backoff.count = 0;
2697
2698 /* only poll target if we've got power and srst isn't asserted */
2699 if (!powerDropout && !srstAsserted) {
2700 /* polling may fail silently until the target has been examined */
2701 retval = target_poll(target);
2702 if (retval != ERROR_OK) {
2703 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2704 if (target->backoff.times * polling_interval < 5000) {
2705 target->backoff.times *= 2;
2706 target->backoff.times++;
2707 }
2708
2709 /* Tell GDB to halt the debugger. This allows the user to
2710 * run monitor commands to handle the situation.
2711 */
2712 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2713 }
2714 if (target->backoff.times > 0) {
2715 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2716 target_reset_examined(target);
2717 retval = target_examine_one(target);
2718 /* Target examination could have failed due to unstable connection,
2719 * but we set the examined flag anyway to repoll it later */
2720 if (retval != ERROR_OK) {
2721 target->examined = true;
2722 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2723 target->backoff.times * polling_interval);
2724 return retval;
2725 }
2726 }
2727
2728 /* Since we succeeded, we reset backoff count */
2729 target->backoff.times = 0;
2730 }
2731 }
2732
2733 return retval;
2734 }
2735
2736 COMMAND_HANDLER(handle_reg_command)
2737 {
2738 struct target *target;
2739 struct reg *reg = NULL;
2740 unsigned count = 0;
2741 char *value;
2742
2743 LOG_DEBUG("-");
2744
2745 target = get_current_target(CMD_CTX);
2746
2747 /* list all available registers for the current target */
2748 if (CMD_ARGC == 0) {
2749 struct reg_cache *cache = target->reg_cache;
2750
2751 count = 0;
2752 while (cache) {
2753 unsigned i;
2754
2755 command_print(CMD_CTX, "===== %s", cache->name);
2756
2757 for (i = 0, reg = cache->reg_list;
2758 i < cache->num_regs;
2759 i++, reg++, count++) {
2760 /* only print cached values if they are valid */
2761 if (reg->valid) {
2762 value = buf_to_str(reg->value,
2763 reg->size, 16);
2764 command_print(CMD_CTX,
2765 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2766 count, reg->name,
2767 reg->size, value,
2768 reg->dirty
2769 ? " (dirty)"
2770 : "");
2771 free(value);
2772 } else {
2773 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2774 count, reg->name,
2775 reg->size) ;
2776 }
2777 }
2778 cache = cache->next;
2779 }
2780
2781 return ERROR_OK;
2782 }
2783
2784 /* access a single register by its ordinal number */
2785 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2786 unsigned num;
2787 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2788
2789 struct reg_cache *cache = target->reg_cache;
2790 count = 0;
2791 while (cache) {
2792 unsigned i;
2793 for (i = 0; i < cache->num_regs; i++) {
2794 if (count++ == num) {
2795 reg = &cache->reg_list[i];
2796 break;
2797 }
2798 }
2799 if (reg)
2800 break;
2801 cache = cache->next;
2802 }
2803
2804 if (!reg) {
2805 command_print(CMD_CTX, "%i is out of bounds, the current target "
2806 "has only %i registers (0 - %i)", num, count, count - 1);
2807 return ERROR_OK;
2808 }
2809 } else {
2810 /* access a single register by its name */
2811 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2812
2813 if (!reg) {
2814 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2815 return ERROR_OK;
2816 }
2817 }
2818
2819 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2820
2821 /* display a register */
2822 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2823 && (CMD_ARGV[1][0] <= '9')))) {
2824 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2825 reg->valid = 0;
2826
2827 if (reg->valid == 0)
2828 reg->type->get(reg);
2829 value = buf_to_str(reg->value, reg->size, 16);
2830 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2831 free(value);
2832 return ERROR_OK;
2833 }
2834
2835 /* set register value */
2836 if (CMD_ARGC == 2) {
2837 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2838 if (buf == NULL)
2839 return ERROR_FAIL;
2840 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2841
2842 reg->type->set(reg, buf);
2843
2844 value = buf_to_str(reg->value, reg->size, 16);
2845 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2846 free(value);
2847
2848 free(buf);
2849
2850 return ERROR_OK;
2851 }
2852
2853 return ERROR_COMMAND_SYNTAX_ERROR;
2854 }
2855
2856 COMMAND_HANDLER(handle_poll_command)
2857 {
2858 int retval = ERROR_OK;
2859 struct target *target = get_current_target(CMD_CTX);
2860
2861 if (CMD_ARGC == 0) {
2862 command_print(CMD_CTX, "background polling: %s",
2863 jtag_poll_get_enabled() ? "on" : "off");
2864 command_print(CMD_CTX, "TAP: %s (%s)",
2865 target->tap->dotted_name,
2866 target->tap->enabled ? "enabled" : "disabled");
2867 if (!target->tap->enabled)
2868 return ERROR_OK;
2869 retval = target_poll(target);
2870 if (retval != ERROR_OK)
2871 return retval;
2872 retval = target_arch_state(target);
2873 if (retval != ERROR_OK)
2874 return retval;
2875 } else if (CMD_ARGC == 1) {
2876 bool enable;
2877 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2878 jtag_poll_set_enabled(enable);
2879 } else
2880 return ERROR_COMMAND_SYNTAX_ERROR;
2881
2882 return retval;
2883 }
2884
2885 COMMAND_HANDLER(handle_wait_halt_command)
2886 {
2887 if (CMD_ARGC > 1)
2888 return ERROR_COMMAND_SYNTAX_ERROR;
2889
2890 unsigned ms = DEFAULT_HALT_TIMEOUT;
2891 if (1 == CMD_ARGC) {
2892 int retval = parse_uint(CMD_ARGV[0], &ms);
2893 if (ERROR_OK != retval)
2894 return ERROR_COMMAND_SYNTAX_ERROR;
2895 }
2896
2897 struct target *target = get_current_target(CMD_CTX);
2898 return target_wait_state(target, TARGET_HALTED, ms);
2899 }
2900
2901 /* wait for target state to change. The trick here is to have a low
2902 * latency for short waits and not to suck up all the CPU time
2903 * on longer waits.
2904 *
2905 * After 500ms, keep_alive() is invoked
2906 */
2907 int target_wait_state(struct target *target, enum target_state state, int ms)
2908 {
2909 int retval;
2910 int64_t then = 0, cur;
2911 bool once = true;
2912
2913 for (;;) {
2914 retval = target_poll(target);
2915 if (retval != ERROR_OK)
2916 return retval;
2917 if (target->state == state)
2918 break;
2919 cur = timeval_ms();
2920 if (once) {
2921 once = false;
2922 then = timeval_ms();
2923 LOG_DEBUG("waiting for target %s...",
2924 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2925 }
2926
2927 if (cur-then > 500)
2928 keep_alive();
2929
2930 if ((cur-then) > ms) {
2931 LOG_ERROR("timed out while waiting for target %s",
2932 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2933 return ERROR_FAIL;
2934 }
2935 }
2936
2937 return ERROR_OK;
2938 }
2939
2940 COMMAND_HANDLER(handle_halt_command)
2941 {
2942 LOG_DEBUG("-");
2943
2944 struct target *target = get_current_target(CMD_CTX);
2945 int retval = target_halt(target);
2946 if (ERROR_OK != retval)
2947 return retval;
2948
2949 if (CMD_ARGC == 1) {
2950 unsigned wait_local;
2951 retval = parse_uint(CMD_ARGV[0], &wait_local);
2952 if (ERROR_OK != retval)
2953 return ERROR_COMMAND_SYNTAX_ERROR;
2954 if (!wait_local)
2955 return ERROR_OK;
2956 }
2957
2958 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2959 }
2960
2961 COMMAND_HANDLER(handle_soft_reset_halt_command)
2962 {
2963 struct target *target = get_current_target(CMD_CTX);
2964
2965 LOG_USER("requesting target halt and executing a soft reset");
2966
2967 target_soft_reset_halt(target);
2968
2969 return ERROR_OK;
2970 }
2971
2972 COMMAND_HANDLER(handle_reset_command)
2973 {
2974 if (CMD_ARGC > 1)
2975 return ERROR_COMMAND_SYNTAX_ERROR;
2976
2977 enum target_reset_mode reset_mode = RESET_RUN;
2978 if (CMD_ARGC == 1) {
2979 const Jim_Nvp *n;
2980 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2981 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2982 return ERROR_COMMAND_SYNTAX_ERROR;
2983 reset_mode = n->value;
2984 }
2985
2986 /* reset *all* targets */
2987 return target_process_reset(CMD_CTX, reset_mode);
2988 }
2989
2990
2991 COMMAND_HANDLER(handle_resume_command)
2992 {
2993 int current = 1;
2994 if (CMD_ARGC > 1)
2995 return ERROR_COMMAND_SYNTAX_ERROR;
2996
2997 struct target *target = get_current_target(CMD_CTX);
2998
2999 /* with no CMD_ARGV, resume from current pc, addr = 0,
3000 * with one arguments, addr = CMD_ARGV[0],
3001 * handle breakpoints, not debugging */
3002 target_addr_t addr = 0;
3003 if (CMD_ARGC == 1) {
3004 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3005 current = 0;
3006 }
3007
3008 return target_resume(target, current, addr, 1, 0);
3009 }
3010
3011 COMMAND_HANDLER(handle_step_command)
3012 {
3013 if (CMD_ARGC > 1)
3014 return ERROR_COMMAND_SYNTAX_ERROR;
3015
3016 LOG_DEBUG("-");
3017
3018 /* with no CMD_ARGV, step from current pc, addr = 0,
3019 * with one argument addr = CMD_ARGV[0],
3020 * handle breakpoints, debugging */
3021 target_addr_t addr = 0;
3022 int current_pc = 1;
3023 if (CMD_ARGC == 1) {
3024 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3025 current_pc = 0;
3026 }
3027
3028 struct target *target = get_current_target(CMD_CTX);
3029
3030 return target->type->step(target, current_pc, addr, 1);
3031 }
3032
3033 static void handle_md_output(struct command_context *cmd_ctx,
3034 struct target *target, target_addr_t address, unsigned size,
3035 unsigned count, const uint8_t *buffer)
3036 {
3037 const unsigned line_bytecnt = 32;
3038 unsigned line_modulo = line_bytecnt / size;
3039
3040 char output[line_bytecnt * 4 + 1];
3041 unsigned output_len = 0;
3042
3043 const char *value_fmt;
3044 switch (size) {
3045 case 8:
3046 value_fmt = "%16.16"PRIx64" ";
3047 break;
3048 case 4:
3049 value_fmt = "%8.8"PRIx64" ";
3050 break;
3051 case 2:
3052 value_fmt = "%4.4"PRIx64" ";
3053 break;
3054 case 1:
3055 value_fmt = "%2.2"PRIx64" ";
3056 break;
3057 default:
3058 /* "can't happen", caller checked */
3059 LOG_ERROR("invalid memory read size: %u", size);
3060 return;
3061 }
3062
3063 for (unsigned i = 0; i < count; i++) {
3064 if (i % line_modulo == 0) {
3065 output_len += snprintf(output + output_len,
3066 sizeof(output) - output_len,
3067 TARGET_ADDR_FMT ": ",
3068 (address + (i * size)));
3069 }
3070
3071 uint64_t value = 0;
3072 const uint8_t *value_ptr = buffer + i * size;
3073 switch (size) {
3074 case 8:
3075 value = target_buffer_get_u64(target, value_ptr);
3076 break;
3077 case 4:
3078 value = target_buffer_get_u32(target, value_ptr);
3079 break;
3080 case 2:
3081 value = target_buffer_get_u16(target, value_ptr);
3082 break;
3083 case 1:
3084 value = *value_ptr;
3085 }
3086 output_len += snprintf(output + output_len,
3087 sizeof(output) - output_len,
3088 value_fmt, value);
3089
3090 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3091 command_print(cmd_ctx, "%s", output);
3092 output_len = 0;
3093 }
3094 }
3095 }
3096
3097 COMMAND_HANDLER(handle_md_command)
3098 {
3099 if (CMD_ARGC < 1)
3100 return ERROR_COMMAND_SYNTAX_ERROR;
3101
3102 unsigned size = 0;
3103 switch (CMD_NAME[2]) {
3104 case 'd':
3105 size = 8;
3106 break;
3107 case 'w':
3108 size = 4;
3109 break;
3110 case 'h':
3111 size = 2;
3112 break;
3113 case 'b':
3114 size = 1;
3115 break;
3116 default:
3117 return ERROR_COMMAND_SYNTAX_ERROR;
3118 }
3119
3120 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3121 int (*fn)(struct target *target,
3122 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3123 if (physical) {
3124 CMD_ARGC--;
3125 CMD_ARGV++;
3126 fn = target_read_phys_memory;
3127 } else
3128 fn = target_read_memory;
3129 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3130 return ERROR_COMMAND_SYNTAX_ERROR;
3131
3132 target_addr_t address;
3133 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3134
3135 unsigned count = 1;
3136 if (CMD_ARGC == 2)
3137 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3138
3139 uint8_t *buffer = calloc(count, size);
3140 if (buffer == NULL) {
3141 LOG_ERROR("Failed to allocate md read buffer");
3142 return ERROR_FAIL;
3143 }
3144
3145 struct target *target = get_current_target(CMD_CTX);
3146 int retval = fn(target, address, size, count, buffer);
3147 if (ERROR_OK == retval)
3148 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3149
3150 free(buffer);
3151
3152 return retval;
3153 }
3154
3155 typedef int (*target_write_fn)(struct target *target,
3156 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3157
3158 static int target_fill_mem(struct target *target,
3159 target_addr_t address,
3160 target_write_fn fn,
3161 unsigned data_size,
3162 /* value */
3163 uint64_t b,
3164 /* count */
3165 unsigned c)
3166 {
3167 /* We have to write in reasonably large chunks to be able
3168 * to fill large memory areas with any sane speed */
3169 const unsigned chunk_size = 16384;
3170 uint8_t *target_buf = malloc(chunk_size * data_size);
3171 if (target_buf == NULL) {
3172 LOG_ERROR("Out of memory");
3173 return ERROR_FAIL;
3174 }
3175
3176 for (unsigned i = 0; i < chunk_size; i++) {
3177 switch (data_size) {
3178 case 8:
3179 target_buffer_set_u64(target, target_buf + i * data_size, b);
3180 break;
3181 case 4:
3182 target_buffer_set_u32(target, target_buf + i * data_size, b);
3183 break;
3184 case 2:
3185 target_buffer_set_u16(target, target_buf + i * data_size, b);
3186 break;
3187 case 1:
3188 target_buffer_set_u8(target, target_buf + i * data_size, b);
3189 break;
3190 default:
3191 exit(-1);
3192 }
3193 }
3194
3195 int retval = ERROR_OK;
3196
3197 for (unsigned x = 0; x < c; x += chunk_size) {
3198 unsigned current;
3199 current = c - x;
3200 if (current > chunk_size)
3201 current = chunk_size;
3202 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3203 if (retval != ERROR_OK)
3204 break;
3205 /* avoid GDB timeouts */
3206 keep_alive();
3207 }
3208 free(target_buf);
3209
3210 return retval;
3211 }
3212
3213
3214 COMMAND_HANDLER(handle_mw_command)
3215 {
3216 if (CMD_ARGC < 2)
3217 return ERROR_COMMAND_SYNTAX_ERROR;
3218 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3219 target_write_fn fn;
3220 if (physical) {
3221 CMD_ARGC--;
3222 CMD_ARGV++;
3223 fn = target_write_phys_memory;
3224 } else
3225 fn = target_write_memory;
3226 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3227 return ERROR_COMMAND_SYNTAX_ERROR;
3228
3229 target_addr_t address;
3230 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3231
3232 target_addr_t value;
3233 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3234
3235 unsigned count = 1;
3236 if (CMD_ARGC == 3)
3237 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3238
3239 struct target *target = get_current_target(CMD_CTX);
3240 unsigned wordsize;
3241 switch (CMD_NAME[2]) {
3242 case 'd':
3243 wordsize = 8;
3244 break;
3245 case 'w':
3246 wordsize = 4;
3247 break;
3248 case 'h':
3249 wordsize = 2;
3250 break;
3251 case 'b':
3252 wordsize = 1;
3253 break;
3254 default:
3255 return ERROR_COMMAND_SYNTAX_ERROR;
3256 }
3257
3258 return target_fill_mem(target, address, fn, wordsize, value, count);
3259 }
3260
3261 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3262 target_addr_t *min_address, target_addr_t *max_address)
3263 {
3264 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3265 return ERROR_COMMAND_SYNTAX_ERROR;
3266
3267 /* a base address isn't always necessary,
3268 * default to 0x0 (i.e. don't relocate) */
3269 if (CMD_ARGC >= 2) {
3270 target_addr_t addr;
3271 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3272 image->base_address = addr;
3273 image->base_address_set = 1;
3274 } else
3275 image->base_address_set = 0;
3276
3277 image->start_address_set = 0;
3278
3279 if (CMD_ARGC >= 4)
3280 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3281 if (CMD_ARGC == 5) {
3282 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3283 /* use size (given) to find max (required) */
3284 *max_address += *min_address;
3285 }
3286
3287 if (*min_address > *max_address)
3288 return ERROR_COMMAND_SYNTAX_ERROR;
3289
3290 return ERROR_OK;
3291 }
3292
3293 COMMAND_HANDLER(handle_load_image_command)
3294 {
3295 uint8_t *buffer;
3296 size_t buf_cnt;
3297 uint32_t image_size;
3298 target_addr_t min_address = 0;
3299 target_addr_t max_address = -1;
3300 int i;
3301 struct image image;
3302
3303 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3304 &image, &min_address, &max_address);
3305 if (ERROR_OK != retval)
3306 return retval;
3307
3308 struct target *target = get_current_target(CMD_CTX);
3309
3310 struct duration bench;
3311 duration_start(&bench);
3312
3313 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3314 return ERROR_FAIL;
3315
3316 image_size = 0x0;
3317 retval = ERROR_OK;
3318 for (i = 0; i < image.num_sections; i++) {
3319 buffer = malloc(image.sections[i].size);
3320 if (buffer == NULL) {
3321 command_print(CMD_CTX,
3322 "error allocating buffer for section (%d bytes)",
3323 (int)(image.sections[i].size));
3324 retval = ERROR_FAIL;
3325 break;
3326 }
3327
3328 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3329 if (retval != ERROR_OK) {
3330 free(buffer);
3331 break;
3332 }
3333
3334 uint32_t offset = 0;
3335 uint32_t length = buf_cnt;
3336
3337 /* DANGER!!! beware of unsigned comparision here!!! */
3338
3339 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3340 (image.sections[i].base_address < max_address)) {
3341
3342 if (image.sections[i].base_address < min_address) {
3343 /* clip addresses below */
3344 offset += min_address-image.sections[i].base_address;
3345 length -= offset;
3346 }
3347
3348 if (image.sections[i].base_address + buf_cnt > max_address)
3349 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3350
3351 retval = target_write_buffer(target,
3352 image.sections[i].base_address + offset, length, buffer + offset);
3353 if (retval != ERROR_OK) {
3354 free(buffer);
3355 break;
3356 }
3357 image_size += length;
3358 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3359 (unsigned int)length,
3360 image.sections[i].base_address + offset);
3361 }
3362
3363 free(buffer);
3364 }
3365
3366 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3367 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3368 "in %fs (%0.3f KiB/s)", image_size,
3369 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3370 }
3371
3372 image_close(&image);
3373
3374 return retval;
3375
3376 }
3377
3378 COMMAND_HANDLER(handle_dump_image_command)
3379 {
3380 struct fileio *fileio;
3381 uint8_t *buffer;
3382 int retval, retvaltemp;
3383 target_addr_t address, size;
3384 struct duration bench;
3385 struct target *target = get_current_target(CMD_CTX);
3386
3387 if (CMD_ARGC != 3)
3388 return ERROR_COMMAND_SYNTAX_ERROR;
3389
3390 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3391 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3392
3393 uint32_t buf_size = (size > 4096) ? 4096 : size;
3394 buffer = malloc(buf_size);
3395 if (!buffer)
3396 return ERROR_FAIL;
3397
3398 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3399 if (retval != ERROR_OK) {
3400 free(buffer);
3401 return retval;
3402 }
3403
3404 duration_start(&bench);
3405
3406 while (size > 0) {
3407 size_t size_written;
3408 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3409 retval = target_read_buffer(target, address, this_run_size, buffer);
3410 if (retval != ERROR_OK)
3411 break;
3412
3413 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3414 if (retval != ERROR_OK)
3415 break;
3416
3417 size -= this_run_size;
3418 address += this_run_size;
3419 }
3420
3421 free(buffer);
3422
3423 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3424 size_t filesize;
3425 retval = fileio_size(fileio, &filesize);
3426 if (retval != ERROR_OK)
3427 return retval;
3428 command_print(CMD_CTX,
3429 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3430 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3431 }
3432
3433 retvaltemp = fileio_close(fileio);
3434 if (retvaltemp != ERROR_OK)
3435 return retvaltemp;
3436
3437 return retval;
3438 }
3439
3440 enum verify_mode {
3441 IMAGE_TEST = 0,
3442 IMAGE_VERIFY = 1,
3443 IMAGE_CHECKSUM_ONLY = 2
3444 };
3445
3446 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3447 {
3448 uint8_t *buffer;
3449 size_t buf_cnt;
3450 uint32_t image_size;
3451 int i;
3452 int retval;
3453 uint32_t checksum = 0;
3454 uint32_t mem_checksum = 0;
3455
3456 struct image image;
3457
3458 struct target *target = get_current_target(CMD_CTX);
3459
3460 if (CMD_ARGC < 1)
3461 return ERROR_COMMAND_SYNTAX_ERROR;
3462
3463 if (!target) {
3464 LOG_ERROR("no target selected");
3465 return ERROR_FAIL;
3466 }
3467
3468 struct duration bench;
3469 duration_start(&bench);
3470
3471 if (CMD_ARGC >= 2) {
3472 target_addr_t addr;
3473 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3474 image.base_address = addr;
3475 image.base_address_set = 1;
3476 } else {
3477 image.base_address_set = 0;
3478 image.base_address = 0x0;
3479 }
3480
3481 image.start_address_set = 0;
3482
3483 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3484 if (retval != ERROR_OK)
3485 return retval;
3486
3487 image_size = 0x0;
3488 int diffs = 0;
3489 retval = ERROR_OK;
3490 for (i = 0; i < image.num_sections; i++) {
3491 buffer = malloc(image.sections[i].size);
3492 if (buffer == NULL) {
3493 command_print(CMD_CTX,
3494 "error allocating buffer for section (%d bytes)",
3495 (int)(image.sections[i].size));
3496 break;
3497 }
3498 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3499 if (retval != ERROR_OK) {
3500 free(buffer);
3501 break;
3502 }
3503
3504 if (verify >= IMAGE_VERIFY) {
3505 /* calculate checksum of image */
3506 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3507 if (retval != ERROR_OK) {
3508 free(buffer);
3509 break;
3510 }
3511
3512 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3513 if (retval != ERROR_OK) {
3514 free(buffer);
3515 break;
3516 }
3517 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3518 LOG_ERROR("checksum mismatch");
3519 free(buffer);
3520 retval = ERROR_FAIL;
3521 goto done;
3522 }
3523 if (checksum != mem_checksum) {
3524 /* failed crc checksum, fall back to a binary compare */
3525 uint8_t *data;
3526
3527 if (diffs == 0)
3528 LOG_ERROR("checksum mismatch - attempting binary compare");
3529
3530 data = malloc(buf_cnt);
3531
3532 /* Can we use 32bit word accesses? */
3533 int size = 1;
3534 int count = buf_cnt;
3535 if ((count % 4) == 0) {
3536 size *= 4;
3537 count /= 4;
3538 }
3539 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3540 if (retval == ERROR_OK) {
3541 uint32_t t;
3542 for (t = 0; t < buf_cnt; t++) {
3543 if (data[t] != buffer[t]) {
3544 command_print(CMD_CTX,
3545 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3546 diffs,
3547 (unsigned)(t + image.sections[i].base_address),
3548 data[t],
3549 buffer[t]);
3550 if (diffs++ >= 127) {
3551 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3552 free(data);
3553 free(buffer);
3554 goto done;
3555 }
3556 }
3557 keep_alive();
3558 }
3559 }
3560 free(data);
3561 }
3562 } else {
3563 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3564 image.sections[i].base_address,
3565 buf_cnt);
3566 }
3567
3568 free(buffer);
3569 image_size += buf_cnt;
3570 }
3571 if (diffs > 0)
3572 command_print(CMD_CTX, "No more differences found.");
3573 done:
3574 if (diffs > 0)
3575 retval = ERROR_FAIL;
3576 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3577 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3578 "in %fs (%0.3f KiB/s)", image_size,
3579 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3580 }
3581
3582 image_close(&image);
3583
3584 return retval;
3585 }
3586
3587 COMMAND_HANDLER(handle_verify_image_checksum_command)
3588 {
3589 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3590 }
3591
3592 COMMAND_HANDLER(handle_verify_image_command)
3593 {
3594 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3595 }
3596
3597 COMMAND_HANDLER(handle_test_image_command)
3598 {
3599 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3600 }
3601
3602 static int handle_bp_command_list(struct command_context *cmd_ctx)
3603 {
3604 struct target *target = get_current_target(cmd_ctx);
3605 struct breakpoint *breakpoint = target->breakpoints;
3606 while (breakpoint) {
3607 if (breakpoint->type == BKPT_SOFT) {
3608 char *buf = buf_to_str(breakpoint->orig_instr,
3609 breakpoint->length, 16);
3610 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3611 breakpoint->address,
3612 breakpoint->length,
3613 breakpoint->set, buf);
3614 free(buf);
3615 } else {
3616 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3617 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3618 breakpoint->asid,
3619 breakpoint->length, breakpoint->set);
3620 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3621 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3622 breakpoint->address,
3623 breakpoint->length, breakpoint->set);
3624 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3625 breakpoint->asid);
3626 } else
3627 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3628 breakpoint->address,
3629 breakpoint->length, breakpoint->set);
3630 }
3631
3632 breakpoint = breakpoint->next;
3633 }
3634 return ERROR_OK;
3635 }
3636
3637 static int handle_bp_command_set(struct command_context *cmd_ctx,
3638 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3639 {
3640 struct target *target = get_current_target(cmd_ctx);
3641 int retval;
3642
3643 if (asid == 0) {
3644 retval = breakpoint_add(target, addr, length, hw);
3645 if (ERROR_OK == retval)
3646 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3647 else {
3648 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3649 return retval;
3650 }
3651 } else if (addr == 0) {
3652 if (target->type->add_context_breakpoint == NULL) {
3653 LOG_WARNING("Context breakpoint not available");
3654 return ERROR_OK;
3655 }
3656 retval = context_breakpoint_add(target, asid, length, hw);
3657 if (ERROR_OK == retval)
3658 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3659 else {
3660 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3661 return retval;
3662 }
3663 } else {
3664 if (target->type->add_hybrid_breakpoint == NULL) {
3665 LOG_WARNING("Hybrid breakpoint not available");
3666 return ERROR_OK;
3667 }
3668 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3669 if (ERROR_OK == retval)
3670 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3671 else {
3672 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3673 return retval;
3674 }
3675 }
3676 return ERROR_OK;