1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
61 static int target_read_buffer_default(struct target
*target
, target_addr_t address
,
62 uint32_t count
, uint8_t *buffer
);
63 static int target_write_buffer_default(struct target
*target
, target_addr_t address
,
64 uint32_t count
, const uint8_t *buffer
);
65 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
66 int argc
, Jim_Obj
* const *argv
);
67 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
68 int argc
, Jim_Obj
* const *argv
);
69 static int target_register_user_commands(struct command_context
*cmd_ctx
);
70 static int target_get_gdb_fileio_info_default(struct target
*target
,
71 struct gdb_fileio_info
*fileio_info
);
72 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
73 int fileio_errno
, bool ctrl_c
);
74 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
75 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
);
78 extern struct target_type arm7tdmi_target
;
79 extern struct target_type arm720t_target
;
80 extern struct target_type arm9tdmi_target
;
81 extern struct target_type arm920t_target
;
82 extern struct target_type arm966e_target
;
83 extern struct target_type arm946e_target
;
84 extern struct target_type arm926ejs_target
;
85 extern struct target_type fa526_target
;
86 extern struct target_type feroceon_target
;
87 extern struct target_type dragonite_target
;
88 extern struct target_type xscale_target
;
89 extern struct target_type cortexm_target
;
90 extern struct target_type cortexa_target
;
91 extern struct target_type aarch64_target
;
92 extern struct target_type cortexr4_target
;
93 extern struct target_type arm11_target
;
94 extern struct target_type ls1_sap_target
;
95 extern struct target_type mips_m4k_target
;
96 extern struct target_type avr_target
;
97 extern struct target_type dsp563xx_target
;
98 extern struct target_type dsp5680xx_target
;
99 extern struct target_type testee_target
;
100 extern struct target_type avr32_ap7k_target
;
101 extern struct target_type hla_target
;
102 extern struct target_type nds32_v2_target
;
103 extern struct target_type nds32_v3_target
;
104 extern struct target_type nds32_v3m_target
;
105 extern struct target_type or1k_target
;
106 extern struct target_type quark_x10xx_target
;
107 extern struct target_type quark_d20xx_target
;
108 extern struct target_type stm8_target
;
110 static struct target_type
*target_types
[] = {
147 struct target
*all_targets
;
148 static struct target_event_callback
*target_event_callbacks
;
149 static struct target_timer_callback
*target_timer_callbacks
;
150 LIST_HEAD(target_reset_callback_list
);
151 LIST_HEAD(target_trace_callback_list
);
152 static const int polling_interval
= 100;
154 static const Jim_Nvp nvp_assert
[] = {
155 { .name
= "assert", NVP_ASSERT
},
156 { .name
= "deassert", NVP_DEASSERT
},
157 { .name
= "T", NVP_ASSERT
},
158 { .name
= "F", NVP_DEASSERT
},
159 { .name
= "t", NVP_ASSERT
},
160 { .name
= "f", NVP_DEASSERT
},
161 { .name
= NULL
, .value
= -1 }
164 static const Jim_Nvp nvp_error_target
[] = {
165 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
166 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
167 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
168 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
169 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
170 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
171 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
172 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
173 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
174 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
175 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
176 { .value
= -1, .name
= NULL
}
179 static const char *target_strerror_safe(int err
)
183 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
190 static const Jim_Nvp nvp_target_event
[] = {
192 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
193 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
194 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
195 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
196 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
198 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
199 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
201 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
202 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
203 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
204 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
205 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
206 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
207 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
208 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
210 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
211 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
213 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
214 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
216 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
217 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
219 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
220 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
222 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
223 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
225 { .value
= TARGET_EVENT_TRACE_CONFIG
, .name
= "trace-config" },
227 { .name
= NULL
, .value
= -1 }
230 static const Jim_Nvp nvp_target_state
[] = {
231 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
232 { .name
= "running", .value
= TARGET_RUNNING
},
233 { .name
= "halted", .value
= TARGET_HALTED
},
234 { .name
= "reset", .value
= TARGET_RESET
},
235 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
236 { .name
= NULL
, .value
= -1 },
239 static const Jim_Nvp nvp_target_debug_reason
[] = {
240 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
241 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
242 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
243 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
244 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
245 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
246 { .name
= "program-exit" , .value
= DBG_REASON_EXIT
},
247 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
248 { .name
= NULL
, .value
= -1 },
251 static const Jim_Nvp nvp_target_endian
[] = {
252 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
253 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
254 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
255 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
256 { .name
= NULL
, .value
= -1 },
259 static const Jim_Nvp nvp_reset_modes
[] = {
260 { .name
= "unknown", .value
= RESET_UNKNOWN
},
261 { .name
= "run" , .value
= RESET_RUN
},
262 { .name
= "halt" , .value
= RESET_HALT
},
263 { .name
= "init" , .value
= RESET_INIT
},
264 { .name
= NULL
, .value
= -1 },
267 const char *debug_reason_name(struct target
*t
)
271 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
272 t
->debug_reason
)->name
;
274 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
275 cp
= "(*BUG*unknown*BUG*)";
280 const char *target_state_name(struct target
*t
)
283 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
285 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
286 cp
= "(*BUG*unknown*BUG*)";
289 if (!target_was_examined(t
) && t
->defer_examine
)
290 cp
= "examine deferred";
295 const char *target_event_name(enum target_event event
)
298 cp
= Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
;
300 LOG_ERROR("Invalid target event: %d", (int)(event
));
301 cp
= "(*BUG*unknown*BUG*)";
306 const char *target_reset_mode_name(enum target_reset_mode reset_mode
)
309 cp
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
;
311 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode
));
312 cp
= "(*BUG*unknown*BUG*)";
317 /* determine the number of the new target */
318 static int new_target_number(void)
323 /* number is 0 based */
327 if (x
< t
->target_number
)
328 x
= t
->target_number
;
334 /* read a uint64_t from a buffer in target memory endianness */
335 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
337 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
338 return le_to_h_u64(buffer
);
340 return be_to_h_u64(buffer
);
343 /* read a uint32_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
346 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
347 return le_to_h_u32(buffer
);
349 return be_to_h_u32(buffer
);
352 /* read a uint24_t from a buffer in target memory endianness */
353 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
355 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
356 return le_to_h_u24(buffer
);
358 return be_to_h_u24(buffer
);
361 /* read a uint16_t from a buffer in target memory endianness */
362 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
364 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
365 return le_to_h_u16(buffer
);
367 return be_to_h_u16(buffer
);
370 /* read a uint8_t from a buffer in target memory endianness */
371 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
373 return *buffer
& 0x0ff;
376 /* write a uint64_t to a buffer in target memory endianness */
377 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
379 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
380 h_u64_to_le(buffer
, value
);
382 h_u64_to_be(buffer
, value
);
385 /* write a uint32_t to a buffer in target memory endianness */
386 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
388 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
389 h_u32_to_le(buffer
, value
);
391 h_u32_to_be(buffer
, value
);
394 /* write a uint24_t to a buffer in target memory endianness */
395 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
397 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
398 h_u24_to_le(buffer
, value
);
400 h_u24_to_be(buffer
, value
);
403 /* write a uint16_t to a buffer in target memory endianness */
404 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
406 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
407 h_u16_to_le(buffer
, value
);
409 h_u16_to_be(buffer
, value
);
412 /* write a uint8_t to a buffer in target memory endianness */
413 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
418 /* write a uint64_t array to a buffer in target memory endianness */
419 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
422 for (i
= 0; i
< count
; i
++)
423 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
426 /* write a uint32_t array to a buffer in target memory endianness */
427 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
430 for (i
= 0; i
< count
; i
++)
431 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
434 /* write a uint16_t array to a buffer in target memory endianness */
435 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
438 for (i
= 0; i
< count
; i
++)
439 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
442 /* write a uint64_t array to a buffer in target memory endianness */
443 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
446 for (i
= 0; i
< count
; i
++)
447 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
450 /* write a uint32_t array to a buffer in target memory endianness */
451 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
454 for (i
= 0; i
< count
; i
++)
455 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
458 /* write a uint16_t array to a buffer in target memory endianness */
459 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
462 for (i
= 0; i
< count
; i
++)
463 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
466 /* return a pointer to a configured target; id is name or number */
467 struct target
*get_target(const char *id
)
469 struct target
*target
;
471 /* try as tcltarget name */
472 for (target
= all_targets
; target
; target
= target
->next
) {
473 if (target_name(target
) == NULL
)
475 if (strcmp(id
, target_name(target
)) == 0)
479 /* It's OK to remove this fallback sometime after August 2010 or so */
481 /* no match, try as number */
483 if (parse_uint(id
, &num
) != ERROR_OK
)
486 for (target
= all_targets
; target
; target
= target
->next
) {
487 if (target
->target_number
== (int)num
) {
488 LOG_WARNING("use '%s' as target identifier, not '%u'",
489 target_name(target
), num
);
497 /* returns a pointer to the n-th configured target */
498 struct target
*get_target_by_num(int num
)
500 struct target
*target
= all_targets
;
503 if (target
->target_number
== num
)
505 target
= target
->next
;
511 struct target
*get_current_target(struct command_context
*cmd_ctx
)
513 struct target
*target
= cmd_ctx
->current_target_override
514 ? cmd_ctx
->current_target_override
515 : cmd_ctx
->current_target
;
517 if (target
== NULL
) {
518 LOG_ERROR("BUG: current_target out of bounds");
525 int target_poll(struct target
*target
)
529 /* We can't poll until after examine */
530 if (!target_was_examined(target
)) {
531 /* Fail silently lest we pollute the log */
535 retval
= target
->type
->poll(target
);
536 if (retval
!= ERROR_OK
)
539 if (target
->halt_issued
) {
540 if (target
->state
== TARGET_HALTED
)
541 target
->halt_issued
= false;
543 int64_t t
= timeval_ms() - target
->halt_issued_time
;
544 if (t
> DEFAULT_HALT_TIMEOUT
) {
545 target
->halt_issued
= false;
546 LOG_INFO("Halt timed out, wake up GDB.");
547 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
555 int target_halt(struct target
*target
)
558 /* We can't poll until after examine */
559 if (!target_was_examined(target
)) {
560 LOG_ERROR("Target not examined yet");
564 retval
= target
->type
->halt(target
);
565 if (retval
!= ERROR_OK
)
568 target
->halt_issued
= true;
569 target
->halt_issued_time
= timeval_ms();
575 * Make the target (re)start executing using its saved execution
576 * context (possibly with some modifications).
578 * @param target Which target should start executing.
579 * @param current True to use the target's saved program counter instead
580 * of the address parameter
581 * @param address Optionally used as the program counter.
582 * @param handle_breakpoints True iff breakpoints at the resumption PC
583 * should be skipped. (For example, maybe execution was stopped by
584 * such a breakpoint, in which case it would be counterprodutive to
586 * @param debug_execution False if all working areas allocated by OpenOCD
587 * should be released and/or restored to their original contents.
588 * (This would for example be true to run some downloaded "helper"
589 * algorithm code, which resides in one such working buffer and uses
590 * another for data storage.)
592 * @todo Resolve the ambiguity about what the "debug_execution" flag
593 * signifies. For example, Target implementations don't agree on how
594 * it relates to invalidation of the register cache, or to whether
595 * breakpoints and watchpoints should be enabled. (It would seem wrong
596 * to enable breakpoints when running downloaded "helper" algorithms
597 * (debug_execution true), since the breakpoints would be set to match
598 * target firmware being debugged, not the helper algorithm.... and
599 * enabling them could cause such helpers to malfunction (for example,
600 * by overwriting data with a breakpoint instruction. On the other
601 * hand the infrastructure for running such helpers might use this
602 * procedure but rely on hardware breakpoint to detect termination.)
604 int target_resume(struct target
*target
, int current
, target_addr_t address
,
605 int handle_breakpoints
, int debug_execution
)
609 /* We can't poll until after examine */
610 if (!target_was_examined(target
)) {
611 LOG_ERROR("Target not examined yet");
615 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
617 /* note that resume *must* be asynchronous. The CPU can halt before
618 * we poll. The CPU can even halt at the current PC as a result of
619 * a software breakpoint being inserted by (a bug?) the application.
621 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
622 if (retval
!= ERROR_OK
)
625 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
630 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
635 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
636 if (n
->name
== NULL
) {
637 LOG_ERROR("invalid reset mode");
641 struct target
*target
;
642 for (target
= all_targets
; target
; target
= target
->next
)
643 target_call_reset_callbacks(target
, reset_mode
);
645 /* disable polling during reset to make reset event scripts
646 * more predictable, i.e. dr/irscan & pathmove in events will
647 * not have JTAG operations injected into the middle of a sequence.
649 bool save_poll
= jtag_poll_get_enabled();
651 jtag_poll_set_enabled(false);
653 sprintf(buf
, "ocd_process_reset %s", n
->name
);
654 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
656 jtag_poll_set_enabled(save_poll
);
658 if (retval
!= JIM_OK
) {
659 Jim_MakeErrorMessage(cmd_ctx
->interp
);
660 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
664 /* We want any events to be processed before the prompt */
665 retval
= target_call_timer_callbacks_now();
667 for (target
= all_targets
; target
; target
= target
->next
) {
668 target
->type
->check_reset(target
);
669 target
->running_alg
= false;
675 static int identity_virt2phys(struct target
*target
,
676 target_addr_t
virtual, target_addr_t
*physical
)
682 static int no_mmu(struct target
*target
, int *enabled
)
688 static int default_examine(struct target
*target
)
690 target_set_examined(target
);
694 /* no check by default */
695 static int default_check_reset(struct target
*target
)
700 int target_examine_one(struct target
*target
)
702 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
704 int retval
= target
->type
->examine(target
);
705 if (retval
!= ERROR_OK
)
708 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
713 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
715 struct target
*target
= priv
;
717 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
720 jtag_unregister_event_callback(jtag_enable_callback
, target
);
722 return target_examine_one(target
);
725 /* Targets that correctly implement init + examine, i.e.
726 * no communication with target during init:
730 int target_examine(void)
732 int retval
= ERROR_OK
;
733 struct target
*target
;
735 for (target
= all_targets
; target
; target
= target
->next
) {
736 /* defer examination, but don't skip it */
737 if (!target
->tap
->enabled
) {
738 jtag_register_event_callback(jtag_enable_callback
,
743 if (target
->defer_examine
)
746 retval
= target_examine_one(target
);
747 if (retval
!= ERROR_OK
)
753 const char *target_type_name(struct target
*target
)
755 return target
->type
->name
;
758 static int target_soft_reset_halt(struct target
*target
)
760 if (!target_was_examined(target
)) {
761 LOG_ERROR("Target not examined yet");
764 if (!target
->type
->soft_reset_halt
) {
765 LOG_ERROR("Target %s does not support soft_reset_halt",
766 target_name(target
));
769 return target
->type
->soft_reset_halt(target
);
773 * Downloads a target-specific native code algorithm to the target,
774 * and executes it. * Note that some targets may need to set up, enable,
775 * and tear down a breakpoint (hard or * soft) to detect algorithm
776 * termination, while others may support lower overhead schemes where
777 * soft breakpoints embedded in the algorithm automatically terminate the
780 * @param target used to run the algorithm
781 * @param arch_info target-specific description of the algorithm.
783 int target_run_algorithm(struct target
*target
,
784 int num_mem_params
, struct mem_param
*mem_params
,
785 int num_reg_params
, struct reg_param
*reg_param
,
786 uint32_t entry_point
, uint32_t exit_point
,
787 int timeout_ms
, void *arch_info
)
789 int retval
= ERROR_FAIL
;
791 if (!target_was_examined(target
)) {
792 LOG_ERROR("Target not examined yet");
795 if (!target
->type
->run_algorithm
) {
796 LOG_ERROR("Target type '%s' does not support %s",
797 target_type_name(target
), __func__
);
801 target
->running_alg
= true;
802 retval
= target
->type
->run_algorithm(target
,
803 num_mem_params
, mem_params
,
804 num_reg_params
, reg_param
,
805 entry_point
, exit_point
, timeout_ms
, arch_info
);
806 target
->running_alg
= false;
813 * Executes a target-specific native code algorithm and leaves it running.
815 * @param target used to run the algorithm
816 * @param arch_info target-specific description of the algorithm.
818 int target_start_algorithm(struct target
*target
,
819 int num_mem_params
, struct mem_param
*mem_params
,
820 int num_reg_params
, struct reg_param
*reg_params
,
821 uint32_t entry_point
, uint32_t exit_point
,
824 int retval
= ERROR_FAIL
;
826 if (!target_was_examined(target
)) {
827 LOG_ERROR("Target not examined yet");
830 if (!target
->type
->start_algorithm
) {
831 LOG_ERROR("Target type '%s' does not support %s",
832 target_type_name(target
), __func__
);
835 if (target
->running_alg
) {
836 LOG_ERROR("Target is already running an algorithm");
840 target
->running_alg
= true;
841 retval
= target
->type
->start_algorithm(target
,
842 num_mem_params
, mem_params
,
843 num_reg_params
, reg_params
,
844 entry_point
, exit_point
, arch_info
);
851 * Waits for an algorithm started with target_start_algorithm() to complete.
853 * @param target used to run the algorithm
854 * @param arch_info target-specific description of the algorithm.
856 int target_wait_algorithm(struct target
*target
,
857 int num_mem_params
, struct mem_param
*mem_params
,
858 int num_reg_params
, struct reg_param
*reg_params
,
859 uint32_t exit_point
, int timeout_ms
,
862 int retval
= ERROR_FAIL
;
864 if (!target
->type
->wait_algorithm
) {
865 LOG_ERROR("Target type '%s' does not support %s",
866 target_type_name(target
), __func__
);
869 if (!target
->running_alg
) {
870 LOG_ERROR("Target is not running an algorithm");
874 retval
= target
->type
->wait_algorithm(target
,
875 num_mem_params
, mem_params
,
876 num_reg_params
, reg_params
,
877 exit_point
, timeout_ms
, arch_info
);
878 if (retval
!= ERROR_TARGET_TIMEOUT
)
879 target
->running_alg
= false;
886 * Streams data to a circular buffer on target intended for consumption by code
887 * running asynchronously on target.
889 * This is intended for applications where target-specific native code runs
890 * on the target, receives data from the circular buffer, does something with
891 * it (most likely writing it to a flash memory), and advances the circular
894 * This assumes that the helper algorithm has already been loaded to the target,
895 * but has not been started yet. Given memory and register parameters are passed
898 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
901 * [buffer_start + 0, buffer_start + 4):
902 * Write Pointer address (aka head). Written and updated by this
903 * routine when new data is written to the circular buffer.
904 * [buffer_start + 4, buffer_start + 8):
905 * Read Pointer address (aka tail). Updated by code running on the
906 * target after it consumes data.
907 * [buffer_start + 8, buffer_start + buffer_size):
908 * Circular buffer contents.
910 * See contrib/loaders/flash/stm32f1x.S for an example.
912 * @param target used to run the algorithm
913 * @param buffer address on the host where data to be sent is located
914 * @param count number of blocks to send
915 * @param block_size size in bytes of each block
916 * @param num_mem_params count of memory-based params to pass to algorithm
917 * @param mem_params memory-based params to pass to algorithm
918 * @param num_reg_params count of register-based params to pass to algorithm
919 * @param reg_params memory-based params to pass to algorithm
920 * @param buffer_start address on the target of the circular buffer structure
921 * @param buffer_size size of the circular buffer structure
922 * @param entry_point address on the target to execute to start the algorithm
923 * @param exit_point address at which to set a breakpoint to catch the
924 * end of the algorithm; can be 0 if target triggers a breakpoint itself
927 int target_run_flash_async_algorithm(struct target
*target
,
928 const uint8_t *buffer
, uint32_t count
, int block_size
,
929 int num_mem_params
, struct mem_param
*mem_params
,
930 int num_reg_params
, struct reg_param
*reg_params
,
931 uint32_t buffer_start
, uint32_t buffer_size
,
932 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
937 const uint8_t *buffer_orig
= buffer
;
939 /* Set up working area. First word is write pointer, second word is read pointer,
940 * rest is fifo data area. */
941 uint32_t wp_addr
= buffer_start
;
942 uint32_t rp_addr
= buffer_start
+ 4;
943 uint32_t fifo_start_addr
= buffer_start
+ 8;
944 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
946 uint32_t wp
= fifo_start_addr
;
947 uint32_t rp
= fifo_start_addr
;
949 /* validate block_size is 2^n */
950 assert(!block_size
|| !(block_size
& (block_size
- 1)));
952 retval
= target_write_u32(target
, wp_addr
, wp
);
953 if (retval
!= ERROR_OK
)
955 retval
= target_write_u32(target
, rp_addr
, rp
);
956 if (retval
!= ERROR_OK
)
959 /* Start up algorithm on target and let it idle while writing the first chunk */
960 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
961 num_reg_params
, reg_params
,
966 if (retval
!= ERROR_OK
) {
967 LOG_ERROR("error starting target flash write algorithm");
973 retval
= target_read_u32(target
, rp_addr
, &rp
);
974 if (retval
!= ERROR_OK
) {
975 LOG_ERROR("failed to get read pointer");
979 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
980 (size_t) (buffer
- buffer_orig
), count
, wp
, rp
);
983 LOG_ERROR("flash write algorithm aborted by target");
984 retval
= ERROR_FLASH_OPERATION_FAILED
;
988 if (((rp
- fifo_start_addr
) & (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
989 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
993 /* Count the number of bytes available in the fifo without
994 * crossing the wrap around. Make sure to not fill it completely,
995 * because that would make wp == rp and that's the empty condition. */
996 uint32_t thisrun_bytes
;
998 thisrun_bytes
= rp
- wp
- block_size
;
999 else if (rp
> fifo_start_addr
)
1000 thisrun_bytes
= fifo_end_addr
- wp
;
1002 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
1004 if (thisrun_bytes
== 0) {
1005 /* Throttle polling a bit if transfer is (much) faster than flash
1006 * programming. The exact delay shouldn't matter as long as it's
1007 * less than buffer size / flash speed. This is very unlikely to
1008 * run when using high latency connections such as USB. */
1011 /* to stop an infinite loop on some targets check and increment a timeout
1012 * this issue was observed on a stellaris using the new ICDI interface */
1013 if (timeout
++ >= 500) {
1014 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1015 return ERROR_FLASH_OPERATION_FAILED
;
1020 /* reset our timeout */
1023 /* Limit to the amount of data we actually want to write */
1024 if (thisrun_bytes
> count
* block_size
)
1025 thisrun_bytes
= count
* block_size
;
1027 /* Write data to fifo */
1028 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
1029 if (retval
!= ERROR_OK
)
1032 /* Update counters and wrap write pointer */
1033 buffer
+= thisrun_bytes
;
1034 count
-= thisrun_bytes
/ block_size
;
1035 wp
+= thisrun_bytes
;
1036 if (wp
>= fifo_end_addr
)
1037 wp
= fifo_start_addr
;
1039 /* Store updated write pointer to target */
1040 retval
= target_write_u32(target
, wp_addr
, wp
);
1041 if (retval
!= ERROR_OK
)
1045 if (retval
!= ERROR_OK
) {
1046 /* abort flash write algorithm on target */
1047 target_write_u32(target
, wp_addr
, 0);
1050 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
1051 num_reg_params
, reg_params
,
1056 if (retval2
!= ERROR_OK
) {
1057 LOG_ERROR("error waiting for target flash write algorithm");
1061 if (retval
== ERROR_OK
) {
1062 /* check if algorithm set rp = 0 after fifo writer loop finished */
1063 retval
= target_read_u32(target
, rp_addr
, &rp
);
1064 if (retval
== ERROR_OK
&& rp
== 0) {
1065 LOG_ERROR("flash write algorithm aborted by target");
1066 retval
= ERROR_FLASH_OPERATION_FAILED
;
1073 int target_read_memory(struct target
*target
,
1074 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1076 if (!target_was_examined(target
)) {
1077 LOG_ERROR("Target not examined yet");
1080 if (!target
->type
->read_memory
) {
1081 LOG_ERROR("Target %s doesn't support read_memory", target_name(target
));
1084 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
1087 int target_read_phys_memory(struct target
*target
,
1088 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1090 if (!target_was_examined(target
)) {
1091 LOG_ERROR("Target not examined yet");
1094 if (!target
->type
->read_phys_memory
) {
1095 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target
));
1098 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1101 int target_write_memory(struct target
*target
,
1102 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1104 if (!target_was_examined(target
)) {
1105 LOG_ERROR("Target not examined yet");
1108 if (!target
->type
->write_memory
) {
1109 LOG_ERROR("Target %s doesn't support write_memory", target_name(target
));
1112 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1115 int target_write_phys_memory(struct target
*target
,
1116 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1118 if (!target_was_examined(target
)) {
1119 LOG_ERROR("Target not examined yet");
1122 if (!target
->type
->write_phys_memory
) {
1123 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target
));
1126 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1129 int target_add_breakpoint(struct target
*target
,
1130 struct breakpoint
*breakpoint
)
1132 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1133 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target
));
1134 return ERROR_TARGET_NOT_HALTED
;
1136 return target
->type
->add_breakpoint(target
, breakpoint
);
1139 int target_add_context_breakpoint(struct target
*target
,
1140 struct breakpoint
*breakpoint
)
1142 if (target
->state
!= TARGET_HALTED
) {
1143 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target
));
1144 return ERROR_TARGET_NOT_HALTED
;
1146 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1149 int target_add_hybrid_breakpoint(struct target
*target
,
1150 struct breakpoint
*breakpoint
)
1152 if (target
->state
!= TARGET_HALTED
) {
1153 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target
));
1154 return ERROR_TARGET_NOT_HALTED
;
1156 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1159 int target_remove_breakpoint(struct target
*target
,
1160 struct breakpoint
*breakpoint
)
1162 return target
->type
->remove_breakpoint(target
, breakpoint
);
1165 int target_add_watchpoint(struct target
*target
,
1166 struct watchpoint
*watchpoint
)
1168 if (target
->state
!= TARGET_HALTED
) {
1169 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target
));
1170 return ERROR_TARGET_NOT_HALTED
;
1172 return target
->type
->add_watchpoint(target
, watchpoint
);
1174 int target_remove_watchpoint(struct target
*target
,
1175 struct watchpoint
*watchpoint
)
1177 return target
->type
->remove_watchpoint(target
, watchpoint
);
1179 int target_hit_watchpoint(struct target
*target
,
1180 struct watchpoint
**hit_watchpoint
)
1182 if (target
->state
!= TARGET_HALTED
) {
1183 LOG_WARNING("target %s is not halted (hit watchpoint)", target
->cmd_name
);
1184 return ERROR_TARGET_NOT_HALTED
;
1187 if (target
->type
->hit_watchpoint
== NULL
) {
1188 /* For backward compatible, if hit_watchpoint is not implemented,
1189 * return ERROR_FAIL such that gdb_server will not take the nonsense
1194 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1197 int target_get_gdb_reg_list(struct target
*target
,
1198 struct reg
**reg_list
[], int *reg_list_size
,
1199 enum target_register_class reg_class
)
1201 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1203 int target_step(struct target
*target
,
1204 int current
, target_addr_t address
, int handle_breakpoints
)
1206 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1209 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1211 if (target
->state
!= TARGET_HALTED
) {
1212 LOG_WARNING("target %s is not halted (gdb fileio)", target
->cmd_name
);
1213 return ERROR_TARGET_NOT_HALTED
;
1215 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1218 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1220 if (target
->state
!= TARGET_HALTED
) {
1221 LOG_WARNING("target %s is not halted (gdb fileio end)", target
->cmd_name
);
1222 return ERROR_TARGET_NOT_HALTED
;
1224 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1227 int target_profiling(struct target
*target
, uint32_t *samples
,
1228 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1230 if (target
->state
!= TARGET_HALTED
) {
1231 LOG_WARNING("target %s is not halted (profiling)", target
->cmd_name
);
1232 return ERROR_TARGET_NOT_HALTED
;
1234 return target
->type
->profiling(target
, samples
, max_num_samples
,
1235 num_samples
, seconds
);
1239 * Reset the @c examined flag for the given target.
1240 * Pure paranoia -- targets are zeroed on allocation.
1242 static void target_reset_examined(struct target
*target
)
1244 target
->examined
= false;
1247 static int handle_target(void *priv
);
1249 static int target_init_one(struct command_context
*cmd_ctx
,
1250 struct target
*target
)
1252 target_reset_examined(target
);
1254 struct target_type
*type
= target
->type
;
1255 if (type
->examine
== NULL
)
1256 type
->examine
= default_examine
;
1258 if (type
->check_reset
== NULL
)
1259 type
->check_reset
= default_check_reset
;
1261 assert(type
->init_target
!= NULL
);
1263 int retval
= type
->init_target(cmd_ctx
, target
);
1264 if (ERROR_OK
!= retval
) {
1265 LOG_ERROR("target '%s' init failed", target_name(target
));
1269 /* Sanity-check MMU support ... stub in what we must, to help
1270 * implement it in stages, but warn if we need to do so.
1273 if (type
->virt2phys
== NULL
) {
1274 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1275 type
->virt2phys
= identity_virt2phys
;
1278 /* Make sure no-MMU targets all behave the same: make no
1279 * distinction between physical and virtual addresses, and
1280 * ensure that virt2phys() is always an identity mapping.
1282 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1283 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1286 type
->write_phys_memory
= type
->write_memory
;
1287 type
->read_phys_memory
= type
->read_memory
;
1288 type
->virt2phys
= identity_virt2phys
;
1291 if (target
->type
->read_buffer
== NULL
)
1292 target
->type
->read_buffer
= target_read_buffer_default
;
1294 if (target
->type
->write_buffer
== NULL
)
1295 target
->type
->write_buffer
= target_write_buffer_default
;
1297 if (target
->type
->get_gdb_fileio_info
== NULL
)
1298 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1300 if (target
->type
->gdb_fileio_end
== NULL
)
1301 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1303 if (target
->type
->profiling
== NULL
)
1304 target
->type
->profiling
= target_profiling_default
;
1309 static int target_init(struct command_context
*cmd_ctx
)
1311 struct target
*target
;
1314 for (target
= all_targets
; target
; target
= target
->next
) {
1315 retval
= target_init_one(cmd_ctx
, target
);
1316 if (ERROR_OK
!= retval
)
1323 retval
= target_register_user_commands(cmd_ctx
);
1324 if (ERROR_OK
!= retval
)
1327 retval
= target_register_timer_callback(&handle_target
,
1328 polling_interval
, 1, cmd_ctx
->interp
);
1329 if (ERROR_OK
!= retval
)
1335 COMMAND_HANDLER(handle_target_init_command
)
1340 return ERROR_COMMAND_SYNTAX_ERROR
;
1342 static bool target_initialized
;
1343 if (target_initialized
) {
1344 LOG_INFO("'target init' has already been called");
1347 target_initialized
= true;
1349 retval
= command_run_line(CMD_CTX
, "init_targets");
1350 if (ERROR_OK
!= retval
)
1353 retval
= command_run_line(CMD_CTX
, "init_target_events");
1354 if (ERROR_OK
!= retval
)
1357 retval
= command_run_line(CMD_CTX
, "init_board");
1358 if (ERROR_OK
!= retval
)
1361 LOG_DEBUG("Initializing targets...");
1362 return target_init(CMD_CTX
);
1365 int target_register_event_callback(int (*callback
)(struct target
*target
,
1366 enum target_event event
, void *priv
), void *priv
)
1368 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1370 if (callback
== NULL
)
1371 return ERROR_COMMAND_SYNTAX_ERROR
;
1374 while ((*callbacks_p
)->next
)
1375 callbacks_p
= &((*callbacks_p
)->next
);
1376 callbacks_p
= &((*callbacks_p
)->next
);
1379 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1380 (*callbacks_p
)->callback
= callback
;
1381 (*callbacks_p
)->priv
= priv
;
1382 (*callbacks_p
)->next
= NULL
;
1387 int target_register_reset_callback(int (*callback
)(struct target
*target
,
1388 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1390 struct target_reset_callback
*entry
;
1392 if (callback
== NULL
)
1393 return ERROR_COMMAND_SYNTAX_ERROR
;
1395 entry
= malloc(sizeof(struct target_reset_callback
));
1396 if (entry
== NULL
) {
1397 LOG_ERROR("error allocating buffer for reset callback entry");
1398 return ERROR_COMMAND_SYNTAX_ERROR
;
1401 entry
->callback
= callback
;
1403 list_add(&entry
->list
, &target_reset_callback_list
);
1409 int target_register_trace_callback(int (*callback
)(struct target
*target
,
1410 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1412 struct target_trace_callback
*entry
;
1414 if (callback
== NULL
)
1415 return ERROR_COMMAND_SYNTAX_ERROR
;
1417 entry
= malloc(sizeof(struct target_trace_callback
));
1418 if (entry
== NULL
) {
1419 LOG_ERROR("error allocating buffer for trace callback entry");
1420 return ERROR_COMMAND_SYNTAX_ERROR
;
1423 entry
->callback
= callback
;
1425 list_add(&entry
->list
, &target_trace_callback_list
);
1431 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1433 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1435 if (callback
== NULL
)
1436 return ERROR_COMMAND_SYNTAX_ERROR
;
1439 while ((*callbacks_p
)->next
)
1440 callbacks_p
= &((*callbacks_p
)->next
);
1441 callbacks_p
= &((*callbacks_p
)->next
);
1444 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1445 (*callbacks_p
)->callback
= callback
;
1446 (*callbacks_p
)->periodic
= periodic
;
1447 (*callbacks_p
)->time_ms
= time_ms
;
1448 (*callbacks_p
)->removed
= false;
1450 gettimeofday(&(*callbacks_p
)->when
, NULL
);
1451 timeval_add_time(&(*callbacks_p
)->when
, 0, time_ms
* 1000);
1453 (*callbacks_p
)->priv
= priv
;
1454 (*callbacks_p
)->next
= NULL
;
1459 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1460 enum target_event event
, void *priv
), void *priv
)
1462 struct target_event_callback
**p
= &target_event_callbacks
;
1463 struct target_event_callback
*c
= target_event_callbacks
;
1465 if (callback
== NULL
)
1466 return ERROR_COMMAND_SYNTAX_ERROR
;
1469 struct target_event_callback
*next
= c
->next
;
1470 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1482 int target_unregister_reset_callback(int (*callback
)(struct target
*target
,
1483 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1485 struct target_reset_callback
*entry
;
1487 if (callback
== NULL
)
1488 return ERROR_COMMAND_SYNTAX_ERROR
;
1490 list_for_each_entry(entry
, &target_reset_callback_list
, list
) {
1491 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1492 list_del(&entry
->list
);
1501 int target_unregister_trace_callback(int (*callback
)(struct target
*target
,
1502 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1504 struct target_trace_callback
*entry
;
1506 if (callback
== NULL
)
1507 return ERROR_COMMAND_SYNTAX_ERROR
;
1509 list_for_each_entry(entry
, &target_trace_callback_list
, list
) {
1510 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1511 list_del(&entry
->list
);
1520 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1522 if (callback
== NULL
)
1523 return ERROR_COMMAND_SYNTAX_ERROR
;
1525 for (struct target_timer_callback
*c
= target_timer_callbacks
;
1527 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1536 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1538 struct target_event_callback
*callback
= target_event_callbacks
;
1539 struct target_event_callback
*next_callback
;
1541 if (event
== TARGET_EVENT_HALTED
) {
1542 /* execute early halted first */
1543 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1546 LOG_DEBUG("target event %i (%s)", event
,
1547 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1549 target_handle_event(target
, event
);
1552 next_callback
= callback
->next
;
1553 callback
->callback(target
, event
, callback
->priv
);
1554 callback
= next_callback
;
1560 int target_call_reset_callbacks(struct target
*target
, enum target_reset_mode reset_mode
)
1562 struct target_reset_callback
*callback
;
1564 LOG_DEBUG("target reset %i (%s)", reset_mode
,
1565 Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
);
1567 list_for_each_entry(callback
, &target_reset_callback_list
, list
)
1568 callback
->callback(target
, reset_mode
, callback
->priv
);
1573 int target_call_trace_callbacks(struct target
*target
, size_t len
, uint8_t *data
)
1575 struct target_trace_callback
*callback
;
1577 list_for_each_entry(callback
, &target_trace_callback_list
, list
)
1578 callback
->callback(target
, len
, data
, callback
->priv
);
1583 static int target_timer_callback_periodic_restart(
1584 struct target_timer_callback
*cb
, struct timeval
*now
)
1587 timeval_add_time(&cb
->when
, 0, cb
->time_ms
* 1000L);
1591 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1592 struct timeval
*now
)
1594 cb
->callback(cb
->priv
);
1597 return target_timer_callback_periodic_restart(cb
, now
);
1599 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1602 static int target_call_timer_callbacks_check_time(int checktime
)
1604 static bool callback_processing
;
1606 /* Do not allow nesting */
1607 if (callback_processing
)
1610 callback_processing
= true;
1615 gettimeofday(&now
, NULL
);
1617 /* Store an address of the place containing a pointer to the
1618 * next item; initially, that's a standalone "root of the
1619 * list" variable. */
1620 struct target_timer_callback
**callback
= &target_timer_callbacks
;
1622 if ((*callback
)->removed
) {
1623 struct target_timer_callback
*p
= *callback
;
1624 *callback
= (*callback
)->next
;
1629 bool call_it
= (*callback
)->callback
&&
1630 ((!checktime
&& (*callback
)->periodic
) ||
1631 timeval_compare(&now
, &(*callback
)->when
) >= 0);
1634 target_call_timer_callback(*callback
, &now
);
1636 callback
= &(*callback
)->next
;
1639 callback_processing
= false;
1643 int target_call_timer_callbacks(void)
1645 return target_call_timer_callbacks_check_time(1);
1648 /* invoke periodic callbacks immediately */
1649 int target_call_timer_callbacks_now(void)
1651 return target_call_timer_callbacks_check_time(0);
1654 /* Prints the working area layout for debug purposes */
1655 static void print_wa_layout(struct target
*target
)
1657 struct working_area
*c
= target
->working_areas
;
1660 LOG_DEBUG("%c%c " TARGET_ADDR_FMT
"-" TARGET_ADDR_FMT
" (%" PRIu32
" bytes)",
1661 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1662 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1667 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1668 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1670 assert(area
->free
); /* Shouldn't split an allocated area */
1671 assert(size
<= area
->size
); /* Caller should guarantee this */
1673 /* Split only if not already the right size */
1674 if (size
< area
->size
) {
1675 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1680 new_wa
->next
= area
->next
;
1681 new_wa
->size
= area
->size
- size
;
1682 new_wa
->address
= area
->address
+ size
;
1683 new_wa
->backup
= NULL
;
1684 new_wa
->user
= NULL
;
1685 new_wa
->free
= true;
1687 area
->next
= new_wa
;
1690 /* If backup memory was allocated to this area, it has the wrong size
1691 * now so free it and it will be reallocated if/when needed */
1694 area
->backup
= NULL
;
1699 /* Merge all adjacent free areas into one */
1700 static void target_merge_working_areas(struct target
*target
)
1702 struct working_area
*c
= target
->working_areas
;
1704 while (c
&& c
->next
) {
1705 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1707 /* Find two adjacent free areas */
1708 if (c
->free
&& c
->next
->free
) {
1709 /* Merge the last into the first */
1710 c
->size
+= c
->next
->size
;
1712 /* Remove the last */
1713 struct working_area
*to_be_freed
= c
->next
;
1714 c
->next
= c
->next
->next
;
1715 if (to_be_freed
->backup
)
1716 free(to_be_freed
->backup
);
1719 /* If backup memory was allocated to the remaining area, it's has
1720 * the wrong size now */
1731 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1733 /* Reevaluate working area address based on MMU state*/
1734 if (target
->working_areas
== NULL
) {
1738 retval
= target
->type
->mmu(target
, &enabled
);
1739 if (retval
!= ERROR_OK
)
1743 if (target
->working_area_phys_spec
) {
1744 LOG_DEBUG("MMU disabled, using physical "
1745 "address for working memory " TARGET_ADDR_FMT
,
1746 target
->working_area_phys
);
1747 target
->working_area
= target
->working_area_phys
;
1749 LOG_ERROR("No working memory available. "
1750 "Specify -work-area-phys to target.");
1751 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1754 if (target
->working_area_virt_spec
) {
1755 LOG_DEBUG("MMU enabled, using virtual "
1756 "address for working memory " TARGET_ADDR_FMT
,
1757 target
->working_area_virt
);
1758 target
->working_area
= target
->working_area_virt
;
1760 LOG_ERROR("No working memory available. "
1761 "Specify -work-area-virt to target.");
1762 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1766 /* Set up initial working area on first call */
1767 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1769 new_wa
->next
= NULL
;
1770 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1771 new_wa
->address
= target
->working_area
;
1772 new_wa
->backup
= NULL
;
1773 new_wa
->user
= NULL
;
1774 new_wa
->free
= true;
1777 target
->working_areas
= new_wa
;
1780 /* only allocate multiples of 4 byte */
1782 size
= (size
+ 3) & (~3UL);
1784 struct working_area
*c
= target
->working_areas
;
1786 /* Find the first large enough working area */
1788 if (c
->free
&& c
->size
>= size
)
1794 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1796 /* Split the working area into the requested size */
1797 target_split_working_area(c
, size
);
1799 LOG_DEBUG("allocated new working area of %" PRIu32
" bytes at address " TARGET_ADDR_FMT
,
1802 if (target
->backup_working_area
) {
1803 if (c
->backup
== NULL
) {
1804 c
->backup
= malloc(c
->size
);
1805 if (c
->backup
== NULL
)
1809 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1810 if (retval
!= ERROR_OK
)
1814 /* mark as used, and return the new (reused) area */
1821 print_wa_layout(target
);
1826 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1830 retval
= target_alloc_working_area_try(target
, size
, area
);
1831 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1832 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1837 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1839 int retval
= ERROR_OK
;
1841 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1842 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1843 if (retval
!= ERROR_OK
)
1844 LOG_ERROR("failed to restore %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
1845 area
->size
, area
->address
);
1851 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1852 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1854 int retval
= ERROR_OK
;
1860 retval
= target_restore_working_area(target
, area
);
1861 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1862 if (retval
!= ERROR_OK
)
1868 LOG_DEBUG("freed %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
1869 area
->size
, area
->address
);
1871 /* mark user pointer invalid */
1872 /* TODO: Is this really safe? It points to some previous caller's memory.
1873 * How could we know that the area pointer is still in that place and not
1874 * some other vital data? What's the purpose of this, anyway? */
1878 target_merge_working_areas(target
);
1880 print_wa_layout(target
);
1885 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1887 return target_free_working_area_restore(target
, area
, 1);
1890 static void target_destroy(struct target
*target
)
1892 if (target
->type
->deinit_target
)
1893 target
->type
->deinit_target(target
);
1896 free(target
->trace_info
);
1897 free(target
->cmd_name
);
1901 void target_quit(void)
1903 struct target_event_callback
*pe
= target_event_callbacks
;
1905 struct target_event_callback
*t
= pe
->next
;
1909 target_event_callbacks
= NULL
;
1911 struct target_timer_callback
*pt
= target_timer_callbacks
;
1913 struct target_timer_callback
*t
= pt
->next
;
1917 target_timer_callbacks
= NULL
;
1919 for (struct target
*target
= all_targets
; target
;) {
1923 target_destroy(target
);
1930 /* free resources and restore memory, if restoring memory fails,
1931 * free up resources anyway
1933 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1935 struct working_area
*c
= target
->working_areas
;
1937 LOG_DEBUG("freeing all working areas");
1939 /* Loop through all areas, restoring the allocated ones and marking them as free */
1943 target_restore_working_area(target
, c
);
1945 *c
->user
= NULL
; /* Same as above */
1951 /* Run a merge pass to combine all areas into one */
1952 target_merge_working_areas(target
);
1954 print_wa_layout(target
);
1957 void target_free_all_working_areas(struct target
*target
)
1959 target_free_all_working_areas_restore(target
, 1);
1962 /* Find the largest number of bytes that can be allocated */
1963 uint32_t target_get_working_area_avail(struct target
*target
)
1965 struct working_area
*c
= target
->working_areas
;
1966 uint32_t max_size
= 0;
1969 return target
->working_area_size
;
1972 if (c
->free
&& max_size
< c
->size
)
1981 int target_arch_state(struct target
*target
)
1984 if (target
== NULL
) {
1985 LOG_WARNING("No target has been configured");
1989 if (target
->state
!= TARGET_HALTED
)
1992 retval
= target
->type
->arch_state(target
);
1996 static int target_get_gdb_fileio_info_default(struct target
*target
,
1997 struct gdb_fileio_info
*fileio_info
)
1999 /* If target does not support semi-hosting function, target
2000 has no need to provide .get_gdb_fileio_info callback.
2001 It just return ERROR_FAIL and gdb_server will return "Txx"
2002 as target halted every time. */
2006 static int target_gdb_fileio_end_default(struct target
*target
,
2007 int retcode
, int fileio_errno
, bool ctrl_c
)
2012 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
2013 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
2015 struct timeval timeout
, now
;
2017 gettimeofday(&timeout
, NULL
);
2018 timeval_add_time(&timeout
, seconds
, 0);
2020 LOG_INFO("Starting profiling. Halting and resuming the"
2021 " target as often as we can...");
2023 uint32_t sample_count
= 0;
2024 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2025 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
2027 int retval
= ERROR_OK
;
2029 target_poll(target
);
2030 if (target
->state
== TARGET_HALTED
) {
2031 uint32_t t
= buf_get_u32(reg
->value
, 0, 32);
2032 samples
[sample_count
++] = t
;
2033 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2034 retval
= target_resume(target
, 1, 0, 0, 0);
2035 target_poll(target
);
2036 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2037 } else if (target
->state
== TARGET_RUNNING
) {
2038 /* We want to quickly sample the PC. */
2039 retval
= target_halt(target
);
2041 LOG_INFO("Target not halted or running");
2046 if (retval
!= ERROR_OK
)
2049 gettimeofday(&now
, NULL
);
2050 if ((sample_count
>= max_num_samples
) || timeval_compare(&now
, &timeout
) >= 0) {
2051 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
2056 *num_samples
= sample_count
;
2060 /* Single aligned words are guaranteed to use 16 or 32 bit access
2061 * mode respectively, otherwise data is handled as quickly as
2064 int target_write_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, const uint8_t *buffer
)
2066 LOG_DEBUG("writing buffer of %" PRIi32
" byte at " TARGET_ADDR_FMT
,
2069 if (!target_was_examined(target
)) {
2070 LOG_ERROR("Target not examined yet");
2077 if ((address
+ size
- 1) < address
) {
2078 /* GDB can request this when e.g. PC is 0xfffffffc */
2079 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2085 return target
->type
->write_buffer(target
, address
, size
, buffer
);
2088 static int target_write_buffer_default(struct target
*target
,
2089 target_addr_t address
, uint32_t count
, const uint8_t *buffer
)
2093 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2094 * will have something to do with the size we leave to it. */
2095 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2096 if (address
& size
) {
2097 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
2098 if (retval
!= ERROR_OK
)
2106 /* Write the data with as large access size as possible. */
2107 for (; size
> 0; size
/= 2) {
2108 uint32_t aligned
= count
- count
% size
;
2110 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
2111 if (retval
!= ERROR_OK
)
2122 /* Single aligned words are guaranteed to use 16 or 32 bit access
2123 * mode respectively, otherwise data is handled as quickly as
2126 int target_read_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, uint8_t *buffer
)
2128 LOG_DEBUG("reading buffer of %" PRIi32
" byte at " TARGET_ADDR_FMT
,
2131 if (!target_was_examined(target
)) {
2132 LOG_ERROR("Target not examined yet");
2139 if ((address
+ size
- 1) < address
) {
2140 /* GDB can request this when e.g. PC is 0xfffffffc */
2141 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2147 return target
->type
->read_buffer(target
, address
, size
, buffer
);
2150 static int target_read_buffer_default(struct target
*target
, target_addr_t address
, uint32_t count
, uint8_t *buffer
)
2154 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2155 * will have something to do with the size we leave to it. */
2156 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2157 if (address
& size
) {
2158 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
2159 if (retval
!= ERROR_OK
)
2167 /* Read the data with as large access size as possible. */
2168 for (; size
> 0; size
/= 2) {
2169 uint32_t aligned
= count
- count
% size
;
2171 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
2172 if (retval
!= ERROR_OK
)
2183 int target_checksum_memory(struct target
*target
, target_addr_t address
, uint32_t size
, uint32_t* crc
)
2188 uint32_t checksum
= 0;
2189 if (!target_was_examined(target
)) {
2190 LOG_ERROR("Target not examined yet");
2194 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
2195 if (retval
!= ERROR_OK
) {
2196 buffer
= malloc(size
);
2197 if (buffer
== NULL
) {
2198 LOG_ERROR("error allocating buffer for section (%" PRId32
" bytes)", size
);
2199 return ERROR_COMMAND_SYNTAX_ERROR
;
2201 retval
= target_read_buffer(target
, address
, size
, buffer
);
2202 if (retval
!= ERROR_OK
) {
2207 /* convert to target endianness */
2208 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
2209 uint32_t target_data
;
2210 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
2211 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2214 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2223 int target_blank_check_memory(struct target
*target
, target_addr_t address
, uint32_t size
, uint32_t* blank
,
2224 uint8_t erased_value
)
2227 if (!target_was_examined(target
)) {
2228 LOG_ERROR("Target not examined yet");
2232 if (target
->type
->blank_check_memory
== 0)
2233 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2235 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
, erased_value
);
2240 int target_read_u64(struct target
*target
, target_addr_t address
, uint64_t *value
)
2242 uint8_t value_buf
[8];
2243 if (!target_was_examined(target
)) {
2244 LOG_ERROR("Target not examined yet");
2248 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2250 if (retval
== ERROR_OK
) {
2251 *value
= target_buffer_get_u64(target
, value_buf
);
2252 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2257 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2264 int target_read_u32(struct target
*target
, target_addr_t address
, uint32_t *value
)
2266 uint8_t value_buf
[4];
2267 if (!target_was_examined(target
)) {
2268 LOG_ERROR("Target not examined yet");
2272 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2274 if (retval
== ERROR_OK
) {
2275 *value
= target_buffer_get_u32(target
, value_buf
);
2276 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2281 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2288 int target_read_u16(struct target
*target
, target_addr_t address
, uint16_t *value
)
2290 uint8_t value_buf
[2];
2291 if (!target_was_examined(target
)) {
2292 LOG_ERROR("Target not examined yet");
2296 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2298 if (retval
== ERROR_OK
) {
2299 *value
= target_buffer_get_u16(target
, value_buf
);
2300 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%4.4" PRIx16
,
2305 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2312 int target_read_u8(struct target
*target
, target_addr_t address
, uint8_t *value
)
2314 if (!target_was_examined(target
)) {
2315 LOG_ERROR("Target not examined yet");
2319 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2321 if (retval
== ERROR_OK
) {
2322 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2327 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2334 int target_write_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2337 uint8_t value_buf
[8];
2338 if (!target_was_examined(target
)) {
2339 LOG_ERROR("Target not examined yet");
2343 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2347 target_buffer_set_u64(target
, value_buf
, value
);
2348 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2349 if (retval
!= ERROR_OK
)
2350 LOG_DEBUG("failed: %i", retval
);
2355 int target_write_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2358 uint8_t value_buf
[4];
2359 if (!target_was_examined(target
)) {
2360 LOG_ERROR("Target not examined yet");
2364 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2368 target_buffer_set_u32(target
, value_buf
, value
);
2369 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2370 if (retval
!= ERROR_OK
)
2371 LOG_DEBUG("failed: %i", retval
);
2376 int target_write_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2379 uint8_t value_buf
[2];
2380 if (!target_was_examined(target
)) {
2381 LOG_ERROR("Target not examined yet");
2385 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2389 target_buffer_set_u16(target
, value_buf
, value
);
2390 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2391 if (retval
!= ERROR_OK
)
2392 LOG_DEBUG("failed: %i", retval
);
2397 int target_write_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2400 if (!target_was_examined(target
)) {
2401 LOG_ERROR("Target not examined yet");
2405 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2408 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2409 if (retval
!= ERROR_OK
)
2410 LOG_DEBUG("failed: %i", retval
);
2415 int target_write_phys_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2418 uint8_t value_buf
[8];
2419 if (!target_was_examined(target
)) {
2420 LOG_ERROR("Target not examined yet");
2424 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2428 target_buffer_set_u64(target
, value_buf
, value
);
2429 retval
= target_write_phys_memory(target
, address
, 8, 1, value_buf
);
2430 if (retval
!= ERROR_OK
)
2431 LOG_DEBUG("failed: %i", retval
);
2436 int target_write_phys_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2439 uint8_t value_buf
[4];
2440 if (!target_was_examined(target
)) {
2441 LOG_ERROR("Target not examined yet");
2445 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2449 target_buffer_set_u32(target
, value_buf
, value
);
2450 retval
= target_write_phys_memory(target
, address
, 4, 1, value_buf
);
2451 if (retval
!= ERROR_OK
)
2452 LOG_DEBUG("failed: %i", retval
);
2457 int target_write_phys_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2460 uint8_t value_buf
[2];
2461 if (!target_was_examined(target
)) {
2462 LOG_ERROR("Target not examined yet");
2466 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2470 target_buffer_set_u16(target
, value_buf
, value
);
2471 retval
= target_write_phys_memory(target
, address
, 2, 1, value_buf
);
2472 if (retval
!= ERROR_OK
)
2473 LOG_DEBUG("failed: %i", retval
);
2478 int target_write_phys_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2481 if (!target_was_examined(target
)) {
2482 LOG_ERROR("Target not examined yet");
2486 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2489 retval
= target_write_phys_memory(target
, address
, 1, 1, &value
);
2490 if (retval
!= ERROR_OK
)
2491 LOG_DEBUG("failed: %i", retval
);
2496 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2498 struct target
*target
= get_target(name
);
2499 if (target
== NULL
) {
2500 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2503 if (!target
->tap
->enabled
) {
2504 LOG_USER("Target: TAP %s is disabled, "
2505 "can't be the current target\n",
2506 target
->tap
->dotted_name
);
2510 cmd_ctx
->current_target
= target
;
2511 if (cmd_ctx
->current_target_override
)
2512 cmd_ctx
->current_target_override
= target
;
2518 COMMAND_HANDLER(handle_targets_command
)
2520 int retval
= ERROR_OK
;
2521 if (CMD_ARGC
== 1) {
2522 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2523 if (retval
== ERROR_OK
) {
2529 struct target
*target
= all_targets
;
2530 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2531 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2536 if (target
->tap
->enabled
)
2537 state
= target_state_name(target
);
2539 state
= "tap-disabled";
2541 if (CMD_CTX
->current_target
== target
)
2544 /* keep columns lined up to match the headers above */
2545 command_print(CMD_CTX
,
2546 "%2d%c %-18s %-10s %-6s %-18s %s",
2547 target
->target_number
,
2549 target_name(target
),
2550 target_type_name(target
),
2551 Jim_Nvp_value2name_simple(nvp_target_endian
,
2552 target
->endianness
)->name
,
2553 target
->tap
->dotted_name
,
2555 target
= target
->next
;
2561 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2563 static int powerDropout
;
2564 static int srstAsserted
;
2566 static int runPowerRestore
;
2567 static int runPowerDropout
;
2568 static int runSrstAsserted
;
2569 static int runSrstDeasserted
;
2571 static int sense_handler(void)
2573 static int prevSrstAsserted
;
2574 static int prevPowerdropout
;
2576 int retval
= jtag_power_dropout(&powerDropout
);
2577 if (retval
!= ERROR_OK
)
2581 powerRestored
= prevPowerdropout
&& !powerDropout
;
2583 runPowerRestore
= 1;
2585 int64_t current
= timeval_ms();
2586 static int64_t lastPower
;
2587 bool waitMore
= lastPower
+ 2000 > current
;
2588 if (powerDropout
&& !waitMore
) {
2589 runPowerDropout
= 1;
2590 lastPower
= current
;
2593 retval
= jtag_srst_asserted(&srstAsserted
);
2594 if (retval
!= ERROR_OK
)
2598 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2600 static int64_t lastSrst
;
2601 waitMore
= lastSrst
+ 2000 > current
;
2602 if (srstDeasserted
&& !waitMore
) {
2603 runSrstDeasserted
= 1;
2607 if (!prevSrstAsserted
&& srstAsserted
)
2608 runSrstAsserted
= 1;
2610 prevSrstAsserted
= srstAsserted
;
2611 prevPowerdropout
= powerDropout
;
2613 if (srstDeasserted
|| powerRestored
) {
2614 /* Other than logging the event we can't do anything here.
2615 * Issuing a reset is a particularly bad idea as we might
2616 * be inside a reset already.
2623 /* process target state changes */
2624 static int handle_target(void *priv
)
2626 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2627 int retval
= ERROR_OK
;
2629 if (!is_jtag_poll_safe()) {
2630 /* polling is disabled currently */
2634 /* we do not want to recurse here... */
2635 static int recursive
;
2639 /* danger! running these procedures can trigger srst assertions and power dropouts.
2640 * We need to avoid an infinite loop/recursion here and we do that by
2641 * clearing the flags after running these events.
2643 int did_something
= 0;
2644 if (runSrstAsserted
) {
2645 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2646 Jim_Eval(interp
, "srst_asserted");
2649 if (runSrstDeasserted
) {
2650 Jim_Eval(interp
, "srst_deasserted");
2653 if (runPowerDropout
) {
2654 LOG_INFO("Power dropout detected, running power_dropout proc.");
2655 Jim_Eval(interp
, "power_dropout");
2658 if (runPowerRestore
) {
2659 Jim_Eval(interp
, "power_restore");
2663 if (did_something
) {
2664 /* clear detect flags */
2668 /* clear action flags */
2670 runSrstAsserted
= 0;
2671 runSrstDeasserted
= 0;
2672 runPowerRestore
= 0;
2673 runPowerDropout
= 0;
2678 /* Poll targets for state changes unless that's globally disabled.
2679 * Skip targets that are currently disabled.
2681 for (struct target
*target
= all_targets
;
2682 is_jtag_poll_safe() && target
;
2683 target
= target
->next
) {
2685 if (!target_was_examined(target
))
2688 if (!target
->tap
->enabled
)
2691 if (target
->backoff
.times
> target
->backoff
.count
) {
2692 /* do not poll this time as we failed previously */
2693 target
->backoff
.count
++;
2696 target
->backoff
.count
= 0;
2698 /* only poll target if we've got power and srst isn't asserted */
2699 if (!powerDropout
&& !srstAsserted
) {
2700 /* polling may fail silently until the target has been examined */
2701 retval
= target_poll(target
);
2702 if (retval
!= ERROR_OK
) {
2703 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2704 if (target
->backoff
.times
* polling_interval
< 5000) {
2705 target
->backoff
.times
*= 2;
2706 target
->backoff
.times
++;
2709 /* Tell GDB to halt the debugger. This allows the user to
2710 * run monitor commands to handle the situation.
2712 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2714 if (target
->backoff
.times
> 0) {
2715 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target
));
2716 target_reset_examined(target
);
2717 retval
= target_examine_one(target
);
2718 /* Target examination could have failed due to unstable connection,
2719 * but we set the examined flag anyway to repoll it later */
2720 if (retval
!= ERROR_OK
) {
2721 target
->examined
= true;
2722 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2723 target
->backoff
.times
* polling_interval
);
2728 /* Since we succeeded, we reset backoff count */
2729 target
->backoff
.times
= 0;
2736 COMMAND_HANDLER(handle_reg_command
)
2738 struct target
*target
;
2739 struct reg
*reg
= NULL
;
2745 target
= get_current_target(CMD_CTX
);
2747 /* list all available registers for the current target */
2748 if (CMD_ARGC
== 0) {
2749 struct reg_cache
*cache
= target
->reg_cache
;
2755 command_print(CMD_CTX
, "===== %s", cache
->name
);
2757 for (i
= 0, reg
= cache
->reg_list
;
2758 i
< cache
->num_regs
;
2759 i
++, reg
++, count
++) {
2760 /* only print cached values if they are valid */
2762 value
= buf_to_str(reg
->value
,
2764 command_print(CMD_CTX
,
2765 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2773 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2778 cache
= cache
->next
;
2784 /* access a single register by its ordinal number */
2785 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2787 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2789 struct reg_cache
*cache
= target
->reg_cache
;
2793 for (i
= 0; i
< cache
->num_regs
; i
++) {
2794 if (count
++ == num
) {
2795 reg
= &cache
->reg_list
[i
];
2801 cache
= cache
->next
;
2805 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2806 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2810 /* access a single register by its name */
2811 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2814 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2819 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2821 /* display a register */
2822 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2823 && (CMD_ARGV
[1][0] <= '9')))) {
2824 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2827 if (reg
->valid
== 0)
2828 reg
->type
->get(reg
);
2829 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2830 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2835 /* set register value */
2836 if (CMD_ARGC
== 2) {
2837 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2840 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2842 reg
->type
->set(reg
, buf
);
2844 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2845 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2853 return ERROR_COMMAND_SYNTAX_ERROR
;
2856 COMMAND_HANDLER(handle_poll_command
)
2858 int retval
= ERROR_OK
;
2859 struct target
*target
= get_current_target(CMD_CTX
);
2861 if (CMD_ARGC
== 0) {
2862 command_print(CMD_CTX
, "background polling: %s",
2863 jtag_poll_get_enabled() ? "on" : "off");
2864 command_print(CMD_CTX
, "TAP: %s (%s)",
2865 target
->tap
->dotted_name
,
2866 target
->tap
->enabled
? "enabled" : "disabled");
2867 if (!target
->tap
->enabled
)
2869 retval
= target_poll(target
);
2870 if (retval
!= ERROR_OK
)
2872 retval
= target_arch_state(target
);
2873 if (retval
!= ERROR_OK
)
2875 } else if (CMD_ARGC
== 1) {
2877 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2878 jtag_poll_set_enabled(enable
);
2880 return ERROR_COMMAND_SYNTAX_ERROR
;
2885 COMMAND_HANDLER(handle_wait_halt_command
)
2888 return ERROR_COMMAND_SYNTAX_ERROR
;
2890 unsigned ms
= DEFAULT_HALT_TIMEOUT
;
2891 if (1 == CMD_ARGC
) {
2892 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2893 if (ERROR_OK
!= retval
)
2894 return ERROR_COMMAND_SYNTAX_ERROR
;
2897 struct target
*target
= get_current_target(CMD_CTX
);
2898 return target_wait_state(target
, TARGET_HALTED
, ms
);
2901 /* wait for target state to change. The trick here is to have a low
2902 * latency for short waits and not to suck up all the CPU time
2905 * After 500ms, keep_alive() is invoked
2907 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2910 int64_t then
= 0, cur
;
2914 retval
= target_poll(target
);
2915 if (retval
!= ERROR_OK
)
2917 if (target
->state
== state
)
2922 then
= timeval_ms();
2923 LOG_DEBUG("waiting for target %s...",
2924 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2930 if ((cur
-then
) > ms
) {
2931 LOG_ERROR("timed out while waiting for target %s",
2932 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2940 COMMAND_HANDLER(handle_halt_command
)
2944 struct target
*target
= get_current_target(CMD_CTX
);
2945 int retval
= target_halt(target
);
2946 if (ERROR_OK
!= retval
)
2949 if (CMD_ARGC
== 1) {
2950 unsigned wait_local
;
2951 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2952 if (ERROR_OK
!= retval
)
2953 return ERROR_COMMAND_SYNTAX_ERROR
;
2958 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2961 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2963 struct target
*target
= get_current_target(CMD_CTX
);
2965 LOG_USER("requesting target halt and executing a soft reset");
2967 target_soft_reset_halt(target
);
2972 COMMAND_HANDLER(handle_reset_command
)
2975 return ERROR_COMMAND_SYNTAX_ERROR
;
2977 enum target_reset_mode reset_mode
= RESET_RUN
;
2978 if (CMD_ARGC
== 1) {
2980 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
2981 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
2982 return ERROR_COMMAND_SYNTAX_ERROR
;
2983 reset_mode
= n
->value
;
2986 /* reset *all* targets */
2987 return target_process_reset(CMD_CTX
, reset_mode
);
2991 COMMAND_HANDLER(handle_resume_command
)
2995 return ERROR_COMMAND_SYNTAX_ERROR
;
2997 struct target
*target
= get_current_target(CMD_CTX
);
2999 /* with no CMD_ARGV, resume from current pc, addr = 0,
3000 * with one arguments, addr = CMD_ARGV[0],
3001 * handle breakpoints, not debugging */
3002 target_addr_t addr
= 0;
3003 if (CMD_ARGC
== 1) {
3004 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], addr
);
3008 return target_resume(target
, current
, addr
, 1, 0);
3011 COMMAND_HANDLER(handle_step_command
)
3014 return ERROR_COMMAND_SYNTAX_ERROR
;
3018 /* with no CMD_ARGV, step from current pc, addr = 0,
3019 * with one argument addr = CMD_ARGV[0],
3020 * handle breakpoints, debugging */
3021 target_addr_t addr
= 0;
3023 if (CMD_ARGC
== 1) {
3024 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], addr
);
3028 struct target
*target
= get_current_target(CMD_CTX
);
3030 return target
->type
->step(target
, current_pc
, addr
, 1);
3033 static void handle_md_output(struct command_context
*cmd_ctx
,
3034 struct target
*target
, target_addr_t address
, unsigned size
,
3035 unsigned count
, const uint8_t *buffer
)
3037 const unsigned line_bytecnt
= 32;
3038 unsigned line_modulo
= line_bytecnt
/ size
;
3040 char output
[line_bytecnt
* 4 + 1];
3041 unsigned output_len
= 0;
3043 const char *value_fmt
;
3046 value_fmt
= "%16.16"PRIx64
" ";
3049 value_fmt
= "%8.8"PRIx64
" ";
3052 value_fmt
= "%4.4"PRIx64
" ";
3055 value_fmt
= "%2.2"PRIx64
" ";
3058 /* "can't happen", caller checked */
3059 LOG_ERROR("invalid memory read size: %u", size
);
3063 for (unsigned i
= 0; i
< count
; i
++) {
3064 if (i
% line_modulo
== 0) {
3065 output_len
+= snprintf(output
+ output_len
,
3066 sizeof(output
) - output_len
,
3067 TARGET_ADDR_FMT
": ",
3068 (address
+ (i
* size
)));
3072 const uint8_t *value_ptr
= buffer
+ i
* size
;
3075 value
= target_buffer_get_u64(target
, value_ptr
);
3078 value
= target_buffer_get_u32(target
, value_ptr
);
3081 value
= target_buffer_get_u16(target
, value_ptr
);
3086 output_len
+= snprintf(output
+ output_len
,
3087 sizeof(output
) - output_len
,
3090 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
3091 command_print(cmd_ctx
, "%s", output
);
3097 COMMAND_HANDLER(handle_md_command
)
3100 return ERROR_COMMAND_SYNTAX_ERROR
;
3103 switch (CMD_NAME
[2]) {
3117 return ERROR_COMMAND_SYNTAX_ERROR
;
3120 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
3121 int (*fn
)(struct target
*target
,
3122 target_addr_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
3126 fn
= target_read_phys_memory
;
3128 fn
= target_read_memory
;
3129 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
3130 return ERROR_COMMAND_SYNTAX_ERROR
;
3132 target_addr_t address
;
3133 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], address
);
3137 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
3139 uint8_t *buffer
= calloc(count
, size
);
3140 if (buffer
== NULL
) {
3141 LOG_ERROR("Failed to allocate md read buffer");
3145 struct target
*target
= get_current_target(CMD_CTX
);
3146 int retval
= fn(target
, address
, size
, count
, buffer
);
3147 if (ERROR_OK
== retval
)
3148 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
3155 typedef int (*target_write_fn
)(struct target
*target
,
3156 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
3158 static int target_fill_mem(struct target
*target
,
3159 target_addr_t address
,
3167 /* We have to write in reasonably large chunks to be able
3168 * to fill large memory areas with any sane speed */
3169 const unsigned chunk_size
= 16384;
3170 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
3171 if (target_buf
== NULL
) {
3172 LOG_ERROR("Out of memory");
3176 for (unsigned i
= 0; i
< chunk_size
; i
++) {
3177 switch (data_size
) {
3179 target_buffer_set_u64(target
, target_buf
+ i
* data_size
, b
);
3182 target_buffer_set_u32(target
, target_buf
+ i
* data_size
, b
);
3185 target_buffer_set_u16(target
, target_buf
+ i
* data_size
, b
);
3188 target_buffer_set_u8(target
, target_buf
+ i
* data_size
, b
);
3195 int retval
= ERROR_OK
;
3197 for (unsigned x
= 0; x
< c
; x
+= chunk_size
) {
3200 if (current
> chunk_size
)
3201 current
= chunk_size
;
3202 retval
= fn(target
, address
+ x
* data_size
, data_size
, current
, target_buf
);
3203 if (retval
!= ERROR_OK
)
3205 /* avoid GDB timeouts */
3214 COMMAND_HANDLER(handle_mw_command
)
3217 return ERROR_COMMAND_SYNTAX_ERROR
;
3218 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
3223 fn
= target_write_phys_memory
;
3225 fn
= target_write_memory
;
3226 if ((CMD_ARGC
< 2) || (CMD_ARGC
> 3))
3227 return ERROR_COMMAND_SYNTAX_ERROR
;
3229 target_addr_t address
;
3230 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], address
);
3232 target_addr_t value
;
3233 COMMAND_PARSE_ADDRESS(CMD_ARGV
[1], value
);
3237 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[2], count
);
3239 struct target
*target
= get_current_target(CMD_CTX
);
3241 switch (CMD_NAME
[2]) {
3255 return ERROR_COMMAND_SYNTAX_ERROR
;
3258 return target_fill_mem(target
, address
, fn
, wordsize
, value
, count
);
3261 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV
, struct image
*image
,
3262 target_addr_t
*min_address
, target_addr_t
*max_address
)
3264 if (CMD_ARGC
< 1 || CMD_ARGC
> 5)
3265 return ERROR_COMMAND_SYNTAX_ERROR
;
3267 /* a base address isn't always necessary,
3268 * default to 0x0 (i.e. don't relocate) */
3269 if (CMD_ARGC
>= 2) {
3271 COMMAND_PARSE_ADDRESS(CMD_ARGV
[1], addr
);
3272 image
->base_address
= addr
;
3273 image
->base_address_set
= 1;
3275 image
->base_address_set
= 0;
3277 image
->start_address_set
= 0;
3280 COMMAND_PARSE_ADDRESS(CMD_ARGV
[3], *min_address
);
3281 if (CMD_ARGC
== 5) {
3282 COMMAND_PARSE_ADDRESS(CMD_ARGV
[4], *max_address
);
3283 /* use size (given) to find max (required) */
3284 *max_address
+= *min_address
;
3287 if (*min_address
> *max_address
)
3288 return ERROR_COMMAND_SYNTAX_ERROR
;
3293 COMMAND_HANDLER(handle_load_image_command
)
3297 uint32_t image_size
;
3298 target_addr_t min_address
= 0;
3299 target_addr_t max_address
= -1;
3303 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
3304 &image
, &min_address
, &max_address
);
3305 if (ERROR_OK
!= retval
)
3308 struct target
*target
= get_current_target(CMD_CTX
);
3310 struct duration bench
;
3311 duration_start(&bench
);
3313 if (image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
) != ERROR_OK
)
3318 for (i
= 0; i
< image
.num_sections
; i
++) {
3319 buffer
= malloc(image
.sections
[i
].size
);
3320 if (buffer
== NULL
) {
3321 command_print(CMD_CTX
,
3322 "error allocating buffer for section (%d bytes)",
3323 (int)(image
.sections
[i
].size
));
3324 retval
= ERROR_FAIL
;
3328 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3329 if (retval
!= ERROR_OK
) {
3334 uint32_t offset
= 0;
3335 uint32_t length
= buf_cnt
;
3337 /* DANGER!!! beware of unsigned comparision here!!! */
3339 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
3340 (image
.sections
[i
].base_address
< max_address
)) {
3342 if (image
.sections
[i
].base_address
< min_address
) {
3343 /* clip addresses below */
3344 offset
+= min_address
-image
.sections
[i
].base_address
;
3348 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
3349 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
3351 retval
= target_write_buffer(target
,
3352 image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
);
3353 if (retval
!= ERROR_OK
) {
3357 image_size
+= length
;
3358 command_print(CMD_CTX
, "%u bytes written at address " TARGET_ADDR_FMT
"",
3359 (unsigned int)length
,
3360 image
.sections
[i
].base_address
+ offset
);
3366 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3367 command_print(CMD_CTX
, "downloaded %" PRIu32
" bytes "
3368 "in %fs (%0.3f KiB/s)", image_size
,
3369 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3372 image_close(&image
);
3378 COMMAND_HANDLER(handle_dump_image_command
)
3380 struct fileio
*fileio
;
3382 int retval
, retvaltemp
;
3383 target_addr_t address
, size
;
3384 struct duration bench
;
3385 struct target
*target
= get_current_target(CMD_CTX
);
3388 return ERROR_COMMAND_SYNTAX_ERROR
;
3390 COMMAND_PARSE_ADDRESS(CMD_ARGV
[1], address
);
3391 COMMAND_PARSE_ADDRESS(CMD_ARGV
[2], size
);
3393 uint32_t buf_size
= (size
> 4096) ? 4096 : size
;
3394 buffer
= malloc(buf_size
);
3398 retval
= fileio_open(&fileio
, CMD_ARGV
[0], FILEIO_WRITE
, FILEIO_BINARY
);
3399 if (retval
!= ERROR_OK
) {
3404 duration_start(&bench
);
3407 size_t size_written
;
3408 uint32_t this_run_size
= (size
> buf_size
) ? buf_size
: size
;
3409 retval
= target_read_buffer(target
, address
, this_run_size
, buffer
);
3410 if (retval
!= ERROR_OK
)
3413 retval
= fileio_write(fileio
, this_run_size
, buffer
, &size_written
);
3414 if (retval
!= ERROR_OK
)
3417 size
-= this_run_size
;
3418 address
+= this_run_size
;
3423 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3425 retval
= fileio_size(fileio
, &filesize
);
3426 if (retval
!= ERROR_OK
)
3428 command_print(CMD_CTX
,
3429 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize
,
3430 duration_elapsed(&bench
), duration_kbps(&bench
, filesize
));
3433 retvaltemp
= fileio_close(fileio
);
3434 if (retvaltemp
!= ERROR_OK
)
3443 IMAGE_CHECKSUM_ONLY
= 2
3446 static COMMAND_HELPER(handle_verify_image_command_internal
, enum verify_mode verify
)
3450 uint32_t image_size
;
3453 uint32_t checksum
= 0;
3454 uint32_t mem_checksum
= 0;
3458 struct target
*target
= get_current_target(CMD_CTX
);
3461 return ERROR_COMMAND_SYNTAX_ERROR
;
3464 LOG_ERROR("no target selected");
3468 struct duration bench
;
3469 duration_start(&bench
);
3471 if (CMD_ARGC
>= 2) {
3473 COMMAND_PARSE_ADDRESS(CMD_ARGV
[1], addr
);
3474 image
.base_address
= addr
;
3475 image
.base_address_set
= 1;
3477 image
.base_address_set
= 0;
3478 image
.base_address
= 0x0;
3481 image
.start_address_set
= 0;
3483 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
== 3) ? CMD_ARGV
[2] : NULL
);
3484 if (retval
!= ERROR_OK
)
3490 for (i
= 0; i
< image
.num_sections
; i
++) {
3491 buffer
= malloc(image
.sections
[i
].size
);
3492 if (buffer
== NULL
) {
3493 command_print(CMD_CTX
,
3494 "error allocating buffer for section (%d bytes)",
3495 (int)(image
.sections
[i
].size
));
3498 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3499 if (retval
!= ERROR_OK
) {
3504 if (verify
>= IMAGE_VERIFY
) {
3505 /* calculate checksum of image */
3506 retval
= image_calculate_checksum(buffer
, buf_cnt
, &checksum
);
3507 if (retval
!= ERROR_OK
) {
3512 retval
= target_checksum_memory(target
, image
.sections
[i
].base_address
, buf_cnt
, &mem_checksum
);
3513 if (retval
!= ERROR_OK
) {
3517 if ((checksum
!= mem_checksum
) && (verify
== IMAGE_CHECKSUM_ONLY
)) {
3518 LOG_ERROR("checksum mismatch");
3520 retval
= ERROR_FAIL
;
3523 if (checksum
!= mem_checksum
) {
3524 /* failed crc checksum, fall back to a binary compare */
3528 LOG_ERROR("checksum mismatch - attempting binary compare");
3530 data
= malloc(buf_cnt
);
3532 /* Can we use 32bit word accesses? */
3534 int count
= buf_cnt
;
3535 if ((count
% 4) == 0) {
3539 retval
= target_read_memory(target
, image
.sections
[i
].base_address
, size
, count
, data
);
3540 if (retval
== ERROR_OK
) {
3542 for (t
= 0; t
< buf_cnt
; t
++) {
3543 if (data
[t
] != buffer
[t
]) {
3544 command_print(CMD_CTX
,
3545 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3547 (unsigned)(t
+ image
.sections
[i
].base_address
),
3550 if (diffs
++ >= 127) {
3551 command_print(CMD_CTX
, "More than 128 errors, the rest are not printed.");
3563 command_print(CMD_CTX
, "address " TARGET_ADDR_FMT
" length 0x%08zx",
3564 image
.sections
[i
].base_address
,
3569 image_size
+= buf_cnt
;
3572 command_print(CMD_CTX
, "No more differences found.");
3575 retval
= ERROR_FAIL
;
3576 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3577 command_print(CMD_CTX
, "verified %" PRIu32
" bytes "
3578 "in %fs (%0.3f KiB/s)", image_size
,
3579 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3582 image_close(&image
);
3587 COMMAND_HANDLER(handle_verify_image_checksum_command
)
3589 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, IMAGE_CHECKSUM_ONLY
);
3592 COMMAND_HANDLER(handle_verify_image_command
)
3594 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, IMAGE_VERIFY
);
3597 COMMAND_HANDLER(handle_test_image_command
)
3599 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, IMAGE_TEST
);
3602 static int handle_bp_command_list(struct command_context
*cmd_ctx
)
3604 struct target
*target
= get_current_target(cmd_ctx
);
3605 struct breakpoint
*breakpoint
= target
->breakpoints
;
3606 while (breakpoint
) {
3607 if (breakpoint
->type
== BKPT_SOFT
) {
3608 char *buf
= buf_to_str(breakpoint
->orig_instr
,
3609 breakpoint
->length
, 16);
3610 command_print(cmd_ctx
, "IVA breakpoint: " TARGET_ADDR_FMT
", 0x%x, %i, 0x%s",
3611 breakpoint
->address
,
3613 breakpoint
->set
, buf
);
3616 if ((breakpoint
->address
== 0) && (breakpoint
->asid
!= 0))
3617 command_print(cmd_ctx
, "Context breakpoint: 0x%8.8" PRIx32
", 0x%x, %i",
3619 breakpoint
->length
, breakpoint
->set
);
3620 else if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
3621 command_print(cmd_ctx
, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT
", 0x%x, %i",
3622 breakpoint
->address
,
3623 breakpoint
->length
, breakpoint
->set
);
3624 command_print(cmd_ctx
, "\t|--->linked with ContextID: 0x%8.8" PRIx32
,
3627 command_print(cmd_ctx
, "Breakpoint(IVA): " TARGET_ADDR_FMT
", 0x%x, %i",
3628 breakpoint
->address
,
3629 breakpoint
->length
, breakpoint
->set
);
3632 breakpoint
= breakpoint
->next
;
3637 static int handle_bp_command_set(struct command_context
*cmd_ctx
,
3638 target_addr_t addr
, uint32_t asid
, uint32_t length
, int hw
)
3640 struct target
*target
= get_current_target(cmd_ctx
);
3644 retval
= breakpoint_add(target
, addr
, length
, hw
);
3645 if (ERROR_OK
== retval
)
3646 command_print(cmd_ctx
, "breakpoint set at " TARGET_ADDR_FMT
"", addr
);
3648 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3651 } else if (addr
== 0) {
3652 if (target
->type
->add_context_breakpoint
== NULL
) {
3653 LOG_WARNING("Context breakpoint not available");
3656 retval
= context_breakpoint_add(target
, asid
, length
, hw
);
3657 if (ERROR_OK
== retval
)
3658 command_print(cmd_ctx
, "Context breakpoint set at 0x%8.8" PRIx32
"", asid
);
3660 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3664 if (target
->type
->add_hybrid_breakpoint
== NULL
) {
3665 LOG_WARNING("Hybrid breakpoint not available");
3668 retval
= hybrid_breakpoint_add(target
, addr
, asid
, length
, hw
);
3669 if (ERROR_OK
== retval
)
3670 command_print(cmd_ctx
, "Hybrid breakpoint set at 0x%8.8" PRIx32
"", asid
);
3672 LOG_ERROR("Failure setting breakpoint, the same address is already used");