1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
46 static int jim_mcrmrc(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
);
48 static int target_array2mem(Jim_Interp
*interp
, target_t
*target
, int argc
, Jim_Obj
*const *argv
);
49 static int target_mem2array(Jim_Interp
*interp
, target_t
*target
, int argc
, Jim_Obj
*const *argv
);
52 extern target_type_t arm7tdmi_target
;
53 extern target_type_t arm720t_target
;
54 extern target_type_t arm9tdmi_target
;
55 extern target_type_t arm920t_target
;
56 extern target_type_t arm966e_target
;
57 extern target_type_t arm926ejs_target
;
58 extern target_type_t fa526_target
;
59 extern target_type_t feroceon_target
;
60 extern target_type_t dragonite_target
;
61 extern target_type_t xscale_target
;
62 extern target_type_t cortexm3_target
;
63 extern target_type_t cortexa8_target
;
64 extern target_type_t arm11_target
;
65 extern target_type_t mips_m4k_target
;
66 extern target_type_t avr_target
;
68 target_type_t
*target_types
[] =
88 target_t
*all_targets
= NULL
;
89 target_event_callback_t
*target_event_callbacks
= NULL
;
90 target_timer_callback_t
*target_timer_callbacks
= NULL
;
92 const Jim_Nvp nvp_assert
[] = {
93 { .name
= "assert", NVP_ASSERT
},
94 { .name
= "deassert", NVP_DEASSERT
},
95 { .name
= "T", NVP_ASSERT
},
96 { .name
= "F", NVP_DEASSERT
},
97 { .name
= "t", NVP_ASSERT
},
98 { .name
= "f", NVP_DEASSERT
},
99 { .name
= NULL
, .value
= -1 }
102 const Jim_Nvp nvp_error_target
[] = {
103 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
104 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
105 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
106 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
107 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
108 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
109 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
110 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
111 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
112 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
113 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
114 { .value
= -1, .name
= NULL
}
117 const char *target_strerror_safe(int err
)
121 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
122 if (n
->name
== NULL
) {
129 static const Jim_Nvp nvp_target_event
[] = {
130 { .value
= TARGET_EVENT_OLD_gdb_program_config
, .name
= "old-gdb_program_config" },
131 { .value
= TARGET_EVENT_OLD_pre_resume
, .name
= "old-pre_resume" },
133 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
134 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
135 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
136 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
137 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
139 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
140 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
142 /* historical name */
144 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
146 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
147 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
148 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
149 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
150 { .value
= TARGET_EVENT_RESET_HALT_PRE
, .name
= "reset-halt-pre" },
151 { .value
= TARGET_EVENT_RESET_HALT_POST
, .name
= "reset-halt-post" },
152 { .value
= TARGET_EVENT_RESET_WAIT_PRE
, .name
= "reset-wait-pre" },
153 { .value
= TARGET_EVENT_RESET_WAIT_POST
, .name
= "reset-wait-post" },
154 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
155 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
157 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
158 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
160 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
161 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
163 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
164 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
166 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
167 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
169 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
170 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
172 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
173 { .value
= TARGET_EVENT_RESUMED
, .name
= "resume-ok" },
174 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
176 { .name
= NULL
, .value
= -1 }
179 const Jim_Nvp nvp_target_state
[] = {
180 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
181 { .name
= "running", .value
= TARGET_RUNNING
},
182 { .name
= "halted", .value
= TARGET_HALTED
},
183 { .name
= "reset", .value
= TARGET_RESET
},
184 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
185 { .name
= NULL
, .value
= -1 },
188 const Jim_Nvp nvp_target_debug_reason
[] = {
189 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
190 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
191 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
192 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
193 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
194 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
195 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
196 { .name
= NULL
, .value
= -1 },
199 const Jim_Nvp nvp_target_endian
[] = {
200 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
201 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
202 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
203 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
204 { .name
= NULL
, .value
= -1 },
207 const Jim_Nvp nvp_reset_modes
[] = {
208 { .name
= "unknown", .value
= RESET_UNKNOWN
},
209 { .name
= "run" , .value
= RESET_RUN
},
210 { .name
= "halt" , .value
= RESET_HALT
},
211 { .name
= "init" , .value
= RESET_INIT
},
212 { .name
= NULL
, .value
= -1 },
216 target_state_name( target_t
*t
)
219 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
221 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
222 cp
= "(*BUG*unknown*BUG*)";
227 /* determine the number of the new target */
228 static int new_target_number(void)
233 /* number is 0 based */
237 if (x
< t
->target_number
) {
238 x
= t
->target_number
;
245 /* read a uint32_t from a buffer in target memory endianness */
246 uint32_t target_buffer_get_u32(target_t
*target
, const uint8_t *buffer
)
248 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
249 return le_to_h_u32(buffer
);
251 return be_to_h_u32(buffer
);
254 /* read a uint16_t from a buffer in target memory endianness */
255 uint16_t target_buffer_get_u16(target_t
*target
, const uint8_t *buffer
)
257 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
258 return le_to_h_u16(buffer
);
260 return be_to_h_u16(buffer
);
263 /* read a uint8_t from a buffer in target memory endianness */
264 uint8_t target_buffer_get_u8(target_t
*target
, const uint8_t *buffer
)
266 return *buffer
& 0x0ff;
269 /* write a uint32_t to a buffer in target memory endianness */
270 void target_buffer_set_u32(target_t
*target
, uint8_t *buffer
, uint32_t value
)
272 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
273 h_u32_to_le(buffer
, value
);
275 h_u32_to_be(buffer
, value
);
278 /* write a uint16_t to a buffer in target memory endianness */
279 void target_buffer_set_u16(target_t
*target
, uint8_t *buffer
, uint16_t value
)
281 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
282 h_u16_to_le(buffer
, value
);
284 h_u16_to_be(buffer
, value
);
287 /* write a uint8_t to a buffer in target memory endianness */
288 void target_buffer_set_u8(target_t
*target
, uint8_t *buffer
, uint8_t value
)
293 /* return a pointer to a configured target; id is name or number */
294 target_t
*get_target(const char *id
)
298 /* try as tcltarget name */
299 for (target
= all_targets
; target
; target
= target
->next
) {
300 if (target
->cmd_name
== NULL
)
302 if (strcmp(id
, target
->cmd_name
) == 0)
306 /* It's OK to remove this fallback sometime after August 2010 or so */
308 /* no match, try as number */
310 if (parse_uint(id
, &num
) != ERROR_OK
)
313 for (target
= all_targets
; target
; target
= target
->next
) {
314 if (target
->target_number
== (int)num
) {
315 LOG_WARNING("use '%s' as target identifier, not '%u'",
316 target
->cmd_name
, num
);
324 /* returns a pointer to the n-th configured target */
325 static target_t
*get_target_by_num(int num
)
327 target_t
*target
= all_targets
;
330 if (target
->target_number
== num
) {
333 target
= target
->next
;
339 target_t
* get_current_target(command_context_t
*cmd_ctx
)
341 target_t
*target
= get_target_by_num(cmd_ctx
->current_target
);
345 LOG_ERROR("BUG: current_target out of bounds");
352 int target_poll(struct target_s
*target
)
356 /* We can't poll until after examine */
357 if (!target_was_examined(target
))
359 /* Fail silently lest we pollute the log */
363 retval
= target
->type
->poll(target
);
364 if (retval
!= ERROR_OK
)
367 if (target
->halt_issued
)
369 if (target
->state
== TARGET_HALTED
)
371 target
->halt_issued
= false;
374 long long t
= timeval_ms() - target
->halt_issued_time
;
377 target
->halt_issued
= false;
378 LOG_INFO("Halt timed out, wake up GDB.");
379 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
387 int target_halt(struct target_s
*target
)
390 /* We can't poll until after examine */
391 if (!target_was_examined(target
))
393 LOG_ERROR("Target not examined yet");
397 retval
= target
->type
->halt(target
);
398 if (retval
!= ERROR_OK
)
401 target
->halt_issued
= true;
402 target
->halt_issued_time
= timeval_ms();
407 int target_resume(struct target_s
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
411 /* We can't poll until after examine */
412 if (!target_was_examined(target
))
414 LOG_ERROR("Target not examined yet");
418 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
419 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
422 if ((retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
)) != ERROR_OK
)
428 int target_process_reset(struct command_context_s
*cmd_ctx
, enum target_reset_mode reset_mode
)
433 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
434 if (n
->name
== NULL
) {
435 LOG_ERROR("invalid reset mode");
439 /* disable polling during reset to make reset event scripts
440 * more predictable, i.e. dr/irscan & pathmove in events will
441 * not have JTAG operations injected into the middle of a sequence.
443 bool save_poll
= jtag_poll_get_enabled();
445 jtag_poll_set_enabled(false);
447 sprintf(buf
, "ocd_process_reset %s", n
->name
);
448 retval
= Jim_Eval(interp
, buf
);
450 jtag_poll_set_enabled(save_poll
);
452 if (retval
!= JIM_OK
) {
453 Jim_PrintErrorMessage(interp
);
457 /* We want any events to be processed before the prompt */
458 retval
= target_call_timer_callbacks_now();
463 static int identity_virt2phys(struct target_s
*target
,
464 uint32_t virtual, uint32_t *physical
)
470 static int no_mmu(struct target_s
*target
, int *enabled
)
476 static int default_examine(struct target_s
*target
)
478 target_set_examined(target
);
482 int target_examine_one(struct target_s
*target
)
484 return target
->type
->examine(target
);
487 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
489 target_t
*target
= priv
;
491 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
494 jtag_unregister_event_callback(jtag_enable_callback
, target
);
495 return target_examine_one(target
);
499 /* Targets that correctly implement init + examine, i.e.
500 * no communication with target during init:
504 int target_examine(void)
506 int retval
= ERROR_OK
;
509 for (target
= all_targets
; target
; target
= target
->next
)
511 /* defer examination, but don't skip it */
512 if (!target
->tap
->enabled
) {
513 jtag_register_event_callback(jtag_enable_callback
,
517 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
522 const char *target_get_name(struct target_s
*target
)
524 return target
->type
->name
;
527 static int target_write_memory_imp(struct target_s
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
529 if (!target_was_examined(target
))
531 LOG_ERROR("Target not examined yet");
534 return target
->type
->write_memory_imp(target
, address
, size
, count
, buffer
);
537 static int target_read_memory_imp(struct target_s
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
539 if (!target_was_examined(target
))
541 LOG_ERROR("Target not examined yet");
544 return target
->type
->read_memory_imp(target
, address
, size
, count
, buffer
);
547 static int target_soft_reset_halt_imp(struct target_s
*target
)
549 if (!target_was_examined(target
))
551 LOG_ERROR("Target not examined yet");
554 if (!target
->type
->soft_reset_halt_imp
) {
555 LOG_ERROR("Target %s does not support soft_reset_halt",
559 return target
->type
->soft_reset_halt_imp(target
);
562 static int target_run_algorithm_imp(struct target_s
*target
, int num_mem_params
, struct mem_param
*mem_params
, int num_reg_params
, reg_param_t
*reg_param
, uint32_t entry_point
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
564 if (!target_was_examined(target
))
566 LOG_ERROR("Target not examined yet");
569 return target
->type
->run_algorithm_imp(target
, num_mem_params
, mem_params
, num_reg_params
, reg_param
, entry_point
, exit_point
, timeout_ms
, arch_info
);
572 int target_read_memory(struct target_s
*target
,
573 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
575 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
578 int target_read_phys_memory(struct target_s
*target
,
579 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
581 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
584 int target_write_memory(struct target_s
*target
,
585 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
587 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
590 int target_write_phys_memory(struct target_s
*target
,
591 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
593 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
596 int target_bulk_write_memory(struct target_s
*target
,
597 uint32_t address
, uint32_t count
, uint8_t *buffer
)
599 return target
->type
->bulk_write_memory(target
, address
, count
, buffer
);
602 int target_add_breakpoint(struct target_s
*target
,
603 struct breakpoint_s
*breakpoint
)
605 return target
->type
->add_breakpoint(target
, breakpoint
);
607 int target_remove_breakpoint(struct target_s
*target
,
608 struct breakpoint_s
*breakpoint
)
610 return target
->type
->remove_breakpoint(target
, breakpoint
);
613 int target_add_watchpoint(struct target_s
*target
,
614 struct watchpoint_s
*watchpoint
)
616 return target
->type
->add_watchpoint(target
, watchpoint
);
618 int target_remove_watchpoint(struct target_s
*target
,
619 struct watchpoint_s
*watchpoint
)
621 return target
->type
->remove_watchpoint(target
, watchpoint
);
624 int target_get_gdb_reg_list(struct target_s
*target
,
625 struct reg_s
**reg_list
[], int *reg_list_size
)
627 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
);
629 int target_step(struct target_s
*target
,
630 int current
, uint32_t address
, int handle_breakpoints
)
632 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
636 int target_run_algorithm(struct target_s
*target
,
637 int num_mem_params
, struct mem_param
*mem_params
,
638 int num_reg_params
, reg_param_t
*reg_param
,
639 uint32_t entry_point
, uint32_t exit_point
,
640 int timeout_ms
, void *arch_info
)
642 return target
->type
->run_algorithm(target
,
643 num_mem_params
, mem_params
, num_reg_params
, reg_param
,
644 entry_point
, exit_point
, timeout_ms
, arch_info
);
647 /// @returns @c true if the target has been examined.
648 bool target_was_examined(struct target_s
*target
)
650 return target
->type
->examined
;
652 /// Sets the @c examined flag for the given target.
653 void target_set_examined(struct target_s
*target
)
655 target
->type
->examined
= true;
657 // Reset the @c examined flag for the given target.
658 void target_reset_examined(struct target_s
*target
)
660 target
->type
->examined
= false;
665 static int default_mrc(struct target_s
*target
, int cpnum
, uint32_t op1
, uint32_t op2
, uint32_t CRn
, uint32_t CRm
, uint32_t *value
)
667 LOG_ERROR("Not implemented: %s", __func__
);
671 static int default_mcr(struct target_s
*target
, int cpnum
, uint32_t op1
, uint32_t op2
, uint32_t CRn
, uint32_t CRm
, uint32_t value
)
673 LOG_ERROR("Not implemented: %s", __func__
);
677 static int arm_cp_check(struct target_s
*target
, int cpnum
, uint32_t op1
, uint32_t op2
, uint32_t CRn
, uint32_t CRm
)
680 if (!target_was_examined(target
))
682 LOG_ERROR("Target not examined yet");
686 if ((cpnum
<0) || (cpnum
> 15))
688 LOG_ERROR("Illegal co-processor %d", cpnum
);
694 LOG_ERROR("Illegal op1");
700 LOG_ERROR("Illegal op2");
706 LOG_ERROR("Illegal CRn");
712 LOG_ERROR("Illegal CRm");
719 int target_mrc(struct target_s
*target
, int cpnum
, uint32_t op1
, uint32_t op2
, uint32_t CRn
, uint32_t CRm
, uint32_t *value
)
723 retval
= arm_cp_check(target
, cpnum
, op1
, op2
, CRn
, CRm
);
724 if (retval
!= ERROR_OK
)
727 return target
->type
->mrc(target
, cpnum
, op1
, op2
, CRn
, CRm
, value
);
730 int target_mcr(struct target_s
*target
, int cpnum
, uint32_t op1
, uint32_t op2
, uint32_t CRn
, uint32_t CRm
, uint32_t value
)
734 retval
= arm_cp_check(target
, cpnum
, op1
, op2
, CRn
, CRm
);
735 if (retval
!= ERROR_OK
)
738 return target
->type
->mcr(target
, cpnum
, op1
, op2
, CRn
, CRm
, value
);
742 err_read_phys_memory(struct target_s
*target
, uint32_t address
,
743 uint32_t size
, uint32_t count
, uint8_t *buffer
)
745 LOG_ERROR("Not implemented: %s", __func__
);
750 err_write_phys_memory(struct target_s
*target
, uint32_t address
,
751 uint32_t size
, uint32_t count
, uint8_t *buffer
)
753 LOG_ERROR("Not implemented: %s", __func__
);
757 int target_init(struct command_context_s
*cmd_ctx
)
759 struct target_s
*target
;
762 for (target
= all_targets
; target
; target
= target
->next
) {
763 struct target_type_s
*type
= target
->type
;
765 target_reset_examined(target
);
766 if (target
->type
->examine
== NULL
)
768 target
->type
->examine
= default_examine
;
771 if ((retval
= target
->type
->init_target(cmd_ctx
, target
)) != ERROR_OK
)
773 LOG_ERROR("target '%s' init failed", target_get_name(target
));
778 * @todo MCR/MRC are ARM-specific; don't require them in
779 * all targets, or for ARMs without coprocessors.
781 if (target
->type
->mcr
== NULL
)
783 target
->type
->mcr
= default_mcr
;
786 /* FIX! multiple targets will generally register global commands
787 * multiple times. Only register this one if *one* of the
788 * targets need the command. Hmm... make it a command on the
789 * Jim Tcl target object?
791 register_jim(cmd_ctx
, "mcr", jim_mcrmrc
, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
794 if (target
->type
->mrc
== NULL
)
796 target
->type
->mrc
= default_mrc
;
799 register_jim(cmd_ctx
, "mrc", jim_mcrmrc
, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
804 * @todo get rid of those *memory_imp() methods, now that all
805 * callers are using target_*_memory() accessors ... and make
806 * sure the "physical" paths handle the same issues.
809 /* a non-invasive way(in terms of patches) to add some code that
810 * runs before the type->write/read_memory implementation
812 target
->type
->write_memory_imp
= target
->type
->write_memory
;
813 target
->type
->write_memory
= target_write_memory_imp
;
814 target
->type
->read_memory_imp
= target
->type
->read_memory
;
815 target
->type
->read_memory
= target_read_memory_imp
;
816 target
->type
->soft_reset_halt_imp
= target
->type
->soft_reset_halt
;
817 target
->type
->soft_reset_halt
= target_soft_reset_halt_imp
;
818 target
->type
->run_algorithm_imp
= target
->type
->run_algorithm
;
819 target
->type
->run_algorithm
= target_run_algorithm_imp
;
821 /* Sanity-check MMU support ... stub in what we must, to help
822 * implement it in stages, but warn if we need to do so.
825 if (type
->write_phys_memory
== NULL
) {
826 LOG_ERROR("type '%s' is missing %s",
828 "write_phys_memory");
829 type
->write_phys_memory
= err_write_phys_memory
;
831 if (type
->read_phys_memory
== NULL
) {
832 LOG_ERROR("type '%s' is missing %s",
835 type
->read_phys_memory
= err_read_phys_memory
;
837 if (type
->virt2phys
== NULL
) {
838 LOG_ERROR("type '%s' is missing %s",
841 type
->virt2phys
= identity_virt2phys
;
844 /* Make sure no-MMU targets all behave the same: make no
845 * distinction between physical and virtual addresses, and
846 * ensure that virt2phys() is always an identity mapping.
849 if (type
->write_phys_memory
850 || type
->read_phys_memory
852 LOG_WARNING("type '%s' has broken MMU hooks",
856 type
->write_phys_memory
= type
->write_memory
;
857 type
->read_phys_memory
= type
->read_memory
;
858 type
->virt2phys
= identity_virt2phys
;
864 if ((retval
= target_register_user_commands(cmd_ctx
)) != ERROR_OK
)
866 if ((retval
= target_register_timer_callback(handle_target
, 100, 1, NULL
)) != ERROR_OK
)
873 int target_register_event_callback(int (*callback
)(struct target_s
*target
, enum target_event event
, void *priv
), void *priv
)
875 target_event_callback_t
**callbacks_p
= &target_event_callbacks
;
877 if (callback
== NULL
)
879 return ERROR_INVALID_ARGUMENTS
;
884 while ((*callbacks_p
)->next
)
885 callbacks_p
= &((*callbacks_p
)->next
);
886 callbacks_p
= &((*callbacks_p
)->next
);
889 (*callbacks_p
) = malloc(sizeof(target_event_callback_t
));
890 (*callbacks_p
)->callback
= callback
;
891 (*callbacks_p
)->priv
= priv
;
892 (*callbacks_p
)->next
= NULL
;
897 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
899 target_timer_callback_t
**callbacks_p
= &target_timer_callbacks
;
902 if (callback
== NULL
)
904 return ERROR_INVALID_ARGUMENTS
;
909 while ((*callbacks_p
)->next
)
910 callbacks_p
= &((*callbacks_p
)->next
);
911 callbacks_p
= &((*callbacks_p
)->next
);
914 (*callbacks_p
) = malloc(sizeof(target_timer_callback_t
));
915 (*callbacks_p
)->callback
= callback
;
916 (*callbacks_p
)->periodic
= periodic
;
917 (*callbacks_p
)->time_ms
= time_ms
;
919 gettimeofday(&now
, NULL
);
920 (*callbacks_p
)->when
.tv_usec
= now
.tv_usec
+ (time_ms
% 1000) * 1000;
921 time_ms
-= (time_ms
% 1000);
922 (*callbacks_p
)->when
.tv_sec
= now
.tv_sec
+ (time_ms
/ 1000);
923 if ((*callbacks_p
)->when
.tv_usec
> 1000000)
925 (*callbacks_p
)->when
.tv_usec
= (*callbacks_p
)->when
.tv_usec
- 1000000;
926 (*callbacks_p
)->when
.tv_sec
+= 1;
929 (*callbacks_p
)->priv
= priv
;
930 (*callbacks_p
)->next
= NULL
;
935 int target_unregister_event_callback(int (*callback
)(struct target_s
*target
, enum target_event event
, void *priv
), void *priv
)
937 target_event_callback_t
**p
= &target_event_callbacks
;
938 target_event_callback_t
*c
= target_event_callbacks
;
940 if (callback
== NULL
)
942 return ERROR_INVALID_ARGUMENTS
;
947 target_event_callback_t
*next
= c
->next
;
948 if ((c
->callback
== callback
) && (c
->priv
== priv
))
962 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
964 target_timer_callback_t
**p
= &target_timer_callbacks
;
965 target_timer_callback_t
*c
= target_timer_callbacks
;
967 if (callback
== NULL
)
969 return ERROR_INVALID_ARGUMENTS
;
974 target_timer_callback_t
*next
= c
->next
;
975 if ((c
->callback
== callback
) && (c
->priv
== priv
))
989 int target_call_event_callbacks(target_t
*target
, enum target_event event
)
991 target_event_callback_t
*callback
= target_event_callbacks
;
992 target_event_callback_t
*next_callback
;
994 if (event
== TARGET_EVENT_HALTED
)
996 /* execute early halted first */
997 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1000 LOG_DEBUG("target event %i (%s)",
1002 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1004 target_handle_event(target
, event
);
1008 next_callback
= callback
->next
;
1009 callback
->callback(target
, event
, callback
->priv
);
1010 callback
= next_callback
;
1016 static int target_timer_callback_periodic_restart(
1017 target_timer_callback_t
*cb
, struct timeval
*now
)
1019 int time_ms
= cb
->time_ms
;
1020 cb
->when
.tv_usec
= now
->tv_usec
+ (time_ms
% 1000) * 1000;
1021 time_ms
-= (time_ms
% 1000);
1022 cb
->when
.tv_sec
= now
->tv_sec
+ time_ms
/ 1000;
1023 if (cb
->when
.tv_usec
> 1000000)
1025 cb
->when
.tv_usec
= cb
->when
.tv_usec
- 1000000;
1026 cb
->when
.tv_sec
+= 1;
1031 static int target_call_timer_callback(target_timer_callback_t
*cb
,
1032 struct timeval
*now
)
1034 cb
->callback(cb
->priv
);
1037 return target_timer_callback_periodic_restart(cb
, now
);
1039 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1042 static int target_call_timer_callbacks_check_time(int checktime
)
1047 gettimeofday(&now
, NULL
);
1049 target_timer_callback_t
*callback
= target_timer_callbacks
;
1052 // cleaning up may unregister and free this callback
1053 target_timer_callback_t
*next_callback
= callback
->next
;
1055 bool call_it
= callback
->callback
&&
1056 ((!checktime
&& callback
->periodic
) ||
1057 now
.tv_sec
> callback
->when
.tv_sec
||
1058 (now
.tv_sec
== callback
->when
.tv_sec
&&
1059 now
.tv_usec
>= callback
->when
.tv_usec
));
1063 int retval
= target_call_timer_callback(callback
, &now
);
1064 if (retval
!= ERROR_OK
)
1068 callback
= next_callback
;
1074 int target_call_timer_callbacks(void)
1076 return target_call_timer_callbacks_check_time(1);
1079 /* invoke periodic callbacks immediately */
1080 int target_call_timer_callbacks_now(void)
1082 return target_call_timer_callbacks_check_time(0);
1085 int target_alloc_working_area(struct target_s
*target
, uint32_t size
, working_area_t
**area
)
1087 working_area_t
*c
= target
->working_areas
;
1088 working_area_t
*new_wa
= NULL
;
1090 /* Reevaluate working area address based on MMU state*/
1091 if (target
->working_areas
== NULL
)
1096 retval
= target
->type
->mmu(target
, &enabled
);
1097 if (retval
!= ERROR_OK
)
1103 if (target
->working_area_phys_spec
) {
1104 LOG_DEBUG("MMU disabled, using physical "
1105 "address for working memory 0x%08x",
1106 (unsigned)target
->working_area_phys
);
1107 target
->working_area
= target
->working_area_phys
;
1109 LOG_ERROR("No working memory available. "
1110 "Specify -work-area-phys to target.");
1111 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1114 if (target
->working_area_virt_spec
) {
1115 LOG_DEBUG("MMU enabled, using virtual "
1116 "address for working memory 0x%08x",
1117 (unsigned)target
->working_area_virt
);
1118 target
->working_area
= target
->working_area_virt
;
1120 LOG_ERROR("No working memory available. "
1121 "Specify -work-area-virt to target.");
1122 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1127 /* only allocate multiples of 4 byte */
1130 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size
)));
1131 size
= (size
+ 3) & (~3);
1134 /* see if there's already a matching working area */
1137 if ((c
->free
) && (c
->size
== size
))
1145 /* if not, allocate a new one */
1148 working_area_t
**p
= &target
->working_areas
;
1149 uint32_t first_free
= target
->working_area
;
1150 uint32_t free_size
= target
->working_area_size
;
1152 c
= target
->working_areas
;
1155 first_free
+= c
->size
;
1156 free_size
-= c
->size
;
1161 if (free_size
< size
)
1163 LOG_WARNING("not enough working area available(requested %u, free %u)",
1164 (unsigned)(size
), (unsigned)(free_size
));
1165 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1168 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free
);
1170 new_wa
= malloc(sizeof(working_area_t
));
1171 new_wa
->next
= NULL
;
1172 new_wa
->size
= size
;
1173 new_wa
->address
= first_free
;
1175 if (target
->backup_working_area
)
1178 new_wa
->backup
= malloc(new_wa
->size
);
1179 if ((retval
= target_read_memory(target
, new_wa
->address
, 4, new_wa
->size
/ 4, new_wa
->backup
)) != ERROR_OK
)
1181 free(new_wa
->backup
);
1188 new_wa
->backup
= NULL
;
1191 /* put new entry in list */
1195 /* mark as used, and return the new (reused) area */
1200 new_wa
->user
= area
;
1205 int target_free_working_area_restore(struct target_s
*target
, working_area_t
*area
, int restore
)
1210 if (restore
&& target
->backup_working_area
)
1213 if ((retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
)) != ERROR_OK
)
1219 /* mark user pointer invalid */
1226 int target_free_working_area(struct target_s
*target
, working_area_t
*area
)
1228 return target_free_working_area_restore(target
, area
, 1);
1231 /* free resources and restore memory, if restoring memory fails,
1232 * free up resources anyway
1234 void target_free_all_working_areas_restore(struct target_s
*target
, int restore
)
1236 working_area_t
*c
= target
->working_areas
;
1240 working_area_t
*next
= c
->next
;
1241 target_free_working_area_restore(target
, c
, restore
);
1251 target
->working_areas
= NULL
;
1254 void target_free_all_working_areas(struct target_s
*target
)
1256 target_free_all_working_areas_restore(target
, 1);
1259 int target_arch_state(struct target_s
*target
)
1264 LOG_USER("No target has been configured");
1268 LOG_USER("target state: %s", target_state_name( target
));
1270 if (target
->state
!= TARGET_HALTED
)
1273 retval
= target
->type
->arch_state(target
);
1277 /* Single aligned words are guaranteed to use 16 or 32 bit access
1278 * mode respectively, otherwise data is handled as quickly as
1281 int target_write_buffer(struct target_s
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1284 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1285 (int)size
, (unsigned)address
);
1287 if (!target_was_examined(target
))
1289 LOG_ERROR("Target not examined yet");
1297 if ((address
+ size
- 1) < address
)
1299 /* GDB can request this when e.g. PC is 0xfffffffc*/
1300 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1306 if (((address
% 2) == 0) && (size
== 2))
1308 return target_write_memory(target
, address
, 2, 1, buffer
);
1311 /* handle unaligned head bytes */
1314 uint32_t unaligned
= 4 - (address
% 4);
1316 if (unaligned
> size
)
1319 if ((retval
= target_write_memory(target
, address
, 1, unaligned
, buffer
)) != ERROR_OK
)
1322 buffer
+= unaligned
;
1323 address
+= unaligned
;
1327 /* handle aligned words */
1330 int aligned
= size
- (size
% 4);
1332 /* use bulk writes above a certain limit. This may have to be changed */
1335 if ((retval
= target
->type
->bulk_write_memory(target
, address
, aligned
/ 4, buffer
)) != ERROR_OK
)
1340 if ((retval
= target_write_memory(target
, address
, 4, aligned
/ 4, buffer
)) != ERROR_OK
)
1349 /* handle tail writes of less than 4 bytes */
1352 if ((retval
= target_write_memory(target
, address
, 1, size
, buffer
)) != ERROR_OK
)
1359 /* Single aligned words are guaranteed to use 16 or 32 bit access
1360 * mode respectively, otherwise data is handled as quickly as
1363 int target_read_buffer(struct target_s
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1366 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1367 (int)size
, (unsigned)address
);
1369 if (!target_was_examined(target
))
1371 LOG_ERROR("Target not examined yet");
1379 if ((address
+ size
- 1) < address
)
1381 /* GDB can request this when e.g. PC is 0xfffffffc*/
1382 LOG_ERROR("address + size wrapped(0x%08" PRIx32
", 0x%08" PRIx32
")",
1388 if (((address
% 2) == 0) && (size
== 2))
1390 return target_read_memory(target
, address
, 2, 1, buffer
);
1393 /* handle unaligned head bytes */
1396 uint32_t unaligned
= 4 - (address
% 4);
1398 if (unaligned
> size
)
1401 if ((retval
= target_read_memory(target
, address
, 1, unaligned
, buffer
)) != ERROR_OK
)
1404 buffer
+= unaligned
;
1405 address
+= unaligned
;
1409 /* handle aligned words */
1412 int aligned
= size
- (size
% 4);
1414 if ((retval
= target_read_memory(target
, address
, 4, aligned
/ 4, buffer
)) != ERROR_OK
)
1422 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1425 int aligned
= size
- (size
%2);
1426 retval
= target_read_memory(target
, address
, 2, aligned
/ 2, buffer
);
1427 if (retval
!= ERROR_OK
)
1434 /* handle tail writes of less than 4 bytes */
1437 if ((retval
= target_read_memory(target
, address
, 1, size
, buffer
)) != ERROR_OK
)
1444 int target_checksum_memory(struct target_s
*target
, uint32_t address
, uint32_t size
, uint32_t* crc
)
1449 uint32_t checksum
= 0;
1450 if (!target_was_examined(target
))
1452 LOG_ERROR("Target not examined yet");
1456 if ((retval
= target
->type
->checksum_memory(target
, address
,
1457 size
, &checksum
)) != ERROR_OK
)
1459 buffer
= malloc(size
);
1462 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size
);
1463 return ERROR_INVALID_ARGUMENTS
;
1465 retval
= target_read_buffer(target
, address
, size
, buffer
);
1466 if (retval
!= ERROR_OK
)
1472 /* convert to target endianess */
1473 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++)
1475 uint32_t target_data
;
1476 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
1477 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
1480 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
1489 int target_blank_check_memory(struct target_s
*target
, uint32_t address
, uint32_t size
, uint32_t* blank
)
1492 if (!target_was_examined(target
))
1494 LOG_ERROR("Target not examined yet");
1498 if (target
->type
->blank_check_memory
== 0)
1499 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1501 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
);
1506 int target_read_u32(struct target_s
*target
, uint32_t address
, uint32_t *value
)
1508 uint8_t value_buf
[4];
1509 if (!target_was_examined(target
))
1511 LOG_ERROR("Target not examined yet");
1515 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
1517 if (retval
== ERROR_OK
)
1519 *value
= target_buffer_get_u32(target
, value_buf
);
1520 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
1527 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1534 int target_read_u16(struct target_s
*target
, uint32_t address
, uint16_t *value
)
1536 uint8_t value_buf
[2];
1537 if (!target_was_examined(target
))
1539 LOG_ERROR("Target not examined yet");
1543 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
1545 if (retval
== ERROR_OK
)
1547 *value
= target_buffer_get_u16(target
, value_buf
);
1548 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%4.4x",
1555 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1562 int target_read_u8(struct target_s
*target
, uint32_t address
, uint8_t *value
)
1564 int retval
= target_read_memory(target
, address
, 1, 1, value
);
1565 if (!target_was_examined(target
))
1567 LOG_ERROR("Target not examined yet");
1571 if (retval
== ERROR_OK
)
1573 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
1580 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
1587 int target_write_u32(struct target_s
*target
, uint32_t address
, uint32_t value
)
1590 uint8_t value_buf
[4];
1591 if (!target_was_examined(target
))
1593 LOG_ERROR("Target not examined yet");
1597 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
1601 target_buffer_set_u32(target
, value_buf
, value
);
1602 if ((retval
= target_write_memory(target
, address
, 4, 1, value_buf
)) != ERROR_OK
)
1604 LOG_DEBUG("failed: %i", retval
);
1610 int target_write_u16(struct target_s
*target
, uint32_t address
, uint16_t value
)
1613 uint8_t value_buf
[2];
1614 if (!target_was_examined(target
))
1616 LOG_ERROR("Target not examined yet");
1620 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8x",
1624 target_buffer_set_u16(target
, value_buf
, value
);
1625 if ((retval
= target_write_memory(target
, address
, 2, 1, value_buf
)) != ERROR_OK
)
1627 LOG_DEBUG("failed: %i", retval
);
1633 int target_write_u8(struct target_s
*target
, uint32_t address
, uint8_t value
)
1636 if (!target_was_examined(target
))
1638 LOG_ERROR("Target not examined yet");
1642 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
1645 if ((retval
= target_write_memory(target
, address
, 1, 1, &value
)) != ERROR_OK
)
1647 LOG_DEBUG("failed: %i", retval
);
1653 COMMAND_HANDLER(handle_targets_command
)
1655 target_t
*target
= all_targets
;
1659 target
= get_target(args
[0]);
1660 if (target
== NULL
) {
1661 command_print(cmd_ctx
,"Target: %s is unknown, try one of:\n", args
[0]);
1664 if (!target
->tap
->enabled
) {
1665 command_print(cmd_ctx
,"Target: TAP %s is disabled, "
1666 "can't be the current target\n",
1667 target
->tap
->dotted_name
);
1671 cmd_ctx
->current_target
= target
->target_number
;
1676 target
= all_targets
;
1677 command_print(cmd_ctx
, " TargetName Type Endian TapName State ");
1678 command_print(cmd_ctx
, "-- ------------------ ---------- ------ ------------------ ------------");
1684 if (target
->tap
->enabled
)
1685 state
= target_state_name( target
);
1687 state
= "tap-disabled";
1689 if (cmd_ctx
->current_target
== target
->target_number
)
1692 /* keep columns lined up to match the headers above */
1693 command_print(cmd_ctx
, "%2d%c %-18s %-10s %-6s %-18s %s",
1694 target
->target_number
,
1697 target_get_name(target
),
1698 Jim_Nvp_value2name_simple(nvp_target_endian
,
1699 target
->endianness
)->name
,
1700 target
->tap
->dotted_name
,
1702 target
= target
->next
;
1708 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1710 static int powerDropout
;
1711 static int srstAsserted
;
1713 static int runPowerRestore
;
1714 static int runPowerDropout
;
1715 static int runSrstAsserted
;
1716 static int runSrstDeasserted
;
1718 static int sense_handler(void)
1720 static int prevSrstAsserted
= 0;
1721 static int prevPowerdropout
= 0;
1724 if ((retval
= jtag_power_dropout(&powerDropout
)) != ERROR_OK
)
1728 powerRestored
= prevPowerdropout
&& !powerDropout
;
1731 runPowerRestore
= 1;
1734 long long current
= timeval_ms();
1735 static long long lastPower
= 0;
1736 int waitMore
= lastPower
+ 2000 > current
;
1737 if (powerDropout
&& !waitMore
)
1739 runPowerDropout
= 1;
1740 lastPower
= current
;
1743 if ((retval
= jtag_srst_asserted(&srstAsserted
)) != ERROR_OK
)
1747 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
1749 static long long lastSrst
= 0;
1750 waitMore
= lastSrst
+ 2000 > current
;
1751 if (srstDeasserted
&& !waitMore
)
1753 runSrstDeasserted
= 1;
1757 if (!prevSrstAsserted
&& srstAsserted
)
1759 runSrstAsserted
= 1;
1762 prevSrstAsserted
= srstAsserted
;
1763 prevPowerdropout
= powerDropout
;
1765 if (srstDeasserted
|| powerRestored
)
1767 /* Other than logging the event we can't do anything here.
1768 * Issuing a reset is a particularly bad idea as we might
1769 * be inside a reset already.
1776 static void target_call_event_callbacks_all(enum target_event e
) {
1778 target
= all_targets
;
1780 target_call_event_callbacks(target
, e
);
1781 target
= target
->next
;
1785 /* process target state changes */
1786 int handle_target(void *priv
)
1788 int retval
= ERROR_OK
;
1790 /* we do not want to recurse here... */
1791 static int recursive
= 0;
1796 /* danger! running these procedures can trigger srst assertions and power dropouts.
1797 * We need to avoid an infinite loop/recursion here and we do that by
1798 * clearing the flags after running these events.
1800 int did_something
= 0;
1801 if (runSrstAsserted
)
1803 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT
);
1804 Jim_Eval(interp
, "srst_asserted");
1807 if (runSrstDeasserted
)
1809 Jim_Eval(interp
, "srst_deasserted");
1812 if (runPowerDropout
)
1814 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT
);
1815 Jim_Eval(interp
, "power_dropout");
1818 if (runPowerRestore
)
1820 Jim_Eval(interp
, "power_restore");
1826 /* clear detect flags */
1830 /* clear action flags */
1832 runSrstAsserted
= 0;
1833 runSrstDeasserted
= 0;
1834 runPowerRestore
= 0;
1835 runPowerDropout
= 0;
1840 /* Poll targets for state changes unless that's globally disabled.
1841 * Skip targets that are currently disabled.
1843 for (target_t
*target
= all_targets
;
1844 is_jtag_poll_safe() && target
;
1845 target
= target
->next
)
1847 if (!target
->tap
->enabled
)
1850 /* only poll target if we've got power and srst isn't asserted */
1851 if (!powerDropout
&& !srstAsserted
)
1853 /* polling may fail silently until the target has been examined */
1854 if ((retval
= target_poll(target
)) != ERROR_OK
)
1856 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1865 COMMAND_HANDLER(handle_reg_command
)
1874 target
= get_current_target(cmd_ctx
);
1876 /* list all available registers for the current target */
1879 reg_cache_t
*cache
= target
->reg_cache
;
1886 command_print(cmd_ctx
, "===== %s", cache
->name
);
1888 for (i
= 0, reg
= cache
->reg_list
;
1889 i
< cache
->num_regs
;
1890 i
++, reg
++, count
++)
1892 /* only print cached values if they are valid */
1894 value
= buf_to_str(reg
->value
,
1896 command_print(cmd_ctx
,
1897 "(%i) %s (/%" PRIu32
"): 0x%s%s",
1905 command_print(cmd_ctx
, "(%i) %s (/%" PRIu32
")",
1910 cache
= cache
->next
;
1916 /* access a single register by its ordinal number */
1917 if ((args
[0][0] >= '0') && (args
[0][0] <= '9'))
1920 COMMAND_PARSE_NUMBER(uint
, args
[0], num
);
1922 reg_cache_t
*cache
= target
->reg_cache
;
1927 for (i
= 0; i
< cache
->num_regs
; i
++)
1929 if (count
++ == (int)num
)
1931 reg
= &cache
->reg_list
[i
];
1937 cache
= cache
->next
;
1942 command_print(cmd_ctx
, "%i is out of bounds, the current target has only %i registers (0 - %i)", num
, count
, count
- 1);
1945 } else /* access a single register by its name */
1947 reg
= register_get_by_name(target
->reg_cache
, args
[0], 1);
1951 command_print(cmd_ctx
, "register %s not found in current target", args
[0]);
1956 /* display a register */
1957 if ((argc
== 1) || ((argc
== 2) && !((args
[1][0] >= '0') && (args
[1][0] <= '9'))))
1959 if ((argc
== 2) && (strcmp(args
[1], "force") == 0))
1962 if (reg
->valid
== 0)
1964 reg_arch_type_t
*arch_type
= register_get_arch_type(reg
->arch_type
);
1965 arch_type
->get(reg
);
1967 value
= buf_to_str(reg
->value
, reg
->size
, 16);
1968 command_print(cmd_ctx
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
1973 /* set register value */
1976 uint8_t *buf
= malloc(CEIL(reg
->size
, 8));
1977 str_to_buf(args
[1], strlen(args
[1]), buf
, reg
->size
, 0);
1979 reg_arch_type_t
*arch_type
= register_get_arch_type(reg
->arch_type
);
1980 arch_type
->set(reg
, buf
);
1982 value
= buf_to_str(reg
->value
, reg
->size
, 16);
1983 command_print(cmd_ctx
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
1991 command_print(cmd_ctx
, "usage: reg <#|name> [value]");
1996 COMMAND_HANDLER(handle_poll_command
)
1998 int retval
= ERROR_OK
;
1999 target_t
*target
= get_current_target(cmd_ctx
);
2003 command_print(cmd_ctx
, "background polling: %s",
2004 jtag_poll_get_enabled() ? "on" : "off");
2005 command_print(cmd_ctx
, "TAP: %s (%s)",
2006 target
->tap
->dotted_name
,
2007 target
->tap
->enabled
? "enabled" : "disabled");
2008 if (!target
->tap
->enabled
)
2010 if ((retval
= target_poll(target
)) != ERROR_OK
)
2012 if ((retval
= target_arch_state(target
)) != ERROR_OK
)
2018 if (strcmp(args
[0], "on") == 0)
2020 jtag_poll_set_enabled(true);
2022 else if (strcmp(args
[0], "off") == 0)
2024 jtag_poll_set_enabled(false);
2028 command_print(cmd_ctx
, "arg is \"on\" or \"off\"");
2032 return ERROR_COMMAND_SYNTAX_ERROR
;
2038 COMMAND_HANDLER(handle_wait_halt_command
)
2041 return ERROR_COMMAND_SYNTAX_ERROR
;
2046 int retval
= parse_uint(args
[0], &ms
);
2047 if (ERROR_OK
!= retval
)
2049 command_print(cmd_ctx
, "usage: %s [seconds]", CMD_NAME
);
2050 return ERROR_COMMAND_SYNTAX_ERROR
;
2052 // convert seconds (given) to milliseconds (needed)
2056 target_t
*target
= get_current_target(cmd_ctx
);
2057 return target_wait_state(target
, TARGET_HALTED
, ms
);
2060 /* wait for target state to change. The trick here is to have a low
2061 * latency for short waits and not to suck up all the CPU time
2064 * After 500ms, keep_alive() is invoked
2066 int target_wait_state(target_t
*target
, enum target_state state
, int ms
)
2069 long long then
= 0, cur
;
2074 if ((retval
= target_poll(target
)) != ERROR_OK
)
2076 if (target
->state
== state
)
2084 then
= timeval_ms();
2085 LOG_DEBUG("waiting for target %s...",
2086 Jim_Nvp_value2name_simple(nvp_target_state
,state
)->name
);
2094 if ((cur
-then
) > ms
)
2096 LOG_ERROR("timed out while waiting for target %s",
2097 Jim_Nvp_value2name_simple(nvp_target_state
,state
)->name
);
2105 COMMAND_HANDLER(handle_halt_command
)
2109 target_t
*target
= get_current_target(cmd_ctx
);
2110 int retval
= target_halt(target
);
2111 if (ERROR_OK
!= retval
)
2117 retval
= parse_uint(args
[0], &wait
);
2118 if (ERROR_OK
!= retval
)
2119 return ERROR_COMMAND_SYNTAX_ERROR
;
2124 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2127 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2129 target_t
*target
= get_current_target(cmd_ctx
);
2131 LOG_USER("requesting target halt and executing a soft reset");
2133 target
->type
->soft_reset_halt(target
);
2138 COMMAND_HANDLER(handle_reset_command
)
2141 return ERROR_COMMAND_SYNTAX_ERROR
;
2143 enum target_reset_mode reset_mode
= RESET_RUN
;
2147 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, args
[0]);
2148 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
)) {
2149 return ERROR_COMMAND_SYNTAX_ERROR
;
2151 reset_mode
= n
->value
;
2154 /* reset *all* targets */
2155 return target_process_reset(cmd_ctx
, reset_mode
);
2159 COMMAND_HANDLER(handle_resume_command
)
2163 return ERROR_COMMAND_SYNTAX_ERROR
;
2165 target_t
*target
= get_current_target(cmd_ctx
);
2166 target_handle_event(target
, TARGET_EVENT_OLD_pre_resume
);
2168 /* with no args, resume from current pc, addr = 0,
2169 * with one arguments, addr = args[0],
2170 * handle breakpoints, not debugging */
2174 COMMAND_PARSE_NUMBER(u32
, args
[0], addr
);
2178 return target_resume(target
, current
, addr
, 1, 0);
2181 COMMAND_HANDLER(handle_step_command
)
2184 return ERROR_COMMAND_SYNTAX_ERROR
;
2188 /* with no args, step from current pc, addr = 0,
2189 * with one argument addr = args[0],
2190 * handle breakpoints, debugging */
2195 COMMAND_PARSE_NUMBER(u32
, args
[0], addr
);
2199 target_t
*target
= get_current_target(cmd_ctx
);
2201 return target
->type
->step(target
, current_pc
, addr
, 1);
2204 static void handle_md_output(struct command_context_s
*cmd_ctx
,
2205 struct target_s
*target
, uint32_t address
, unsigned size
,
2206 unsigned count
, const uint8_t *buffer
)
2208 const unsigned line_bytecnt
= 32;
2209 unsigned line_modulo
= line_bytecnt
/ size
;
2211 char output
[line_bytecnt
* 4 + 1];
2212 unsigned output_len
= 0;
2214 const char *value_fmt
;
2216 case 4: value_fmt
= "%8.8x "; break;
2217 case 2: value_fmt
= "%4.2x "; break;
2218 case 1: value_fmt
= "%2.2x "; break;
2220 LOG_ERROR("invalid memory read size: %u", size
);
2224 for (unsigned i
= 0; i
< count
; i
++)
2226 if (i
% line_modulo
== 0)
2228 output_len
+= snprintf(output
+ output_len
,
2229 sizeof(output
) - output_len
,
2231 (unsigned)(address
+ (i
*size
)));
2235 const uint8_t *value_ptr
= buffer
+ i
* size
;
2237 case 4: value
= target_buffer_get_u32(target
, value_ptr
); break;
2238 case 2: value
= target_buffer_get_u16(target
, value_ptr
); break;
2239 case 1: value
= *value_ptr
;
2241 output_len
+= snprintf(output
+ output_len
,
2242 sizeof(output
) - output_len
,
2245 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1))
2247 command_print(cmd_ctx
, "%s", output
);
2253 COMMAND_HANDLER(handle_md_command
)
2256 return ERROR_COMMAND_SYNTAX_ERROR
;
2259 switch (CMD_NAME
[2]) {
2260 case 'w': size
= 4; break;
2261 case 'h': size
= 2; break;
2262 case 'b': size
= 1; break;
2263 default: return ERROR_COMMAND_SYNTAX_ERROR
;
2266 bool physical
=strcmp(args
[0], "phys")==0;
2267 int (*fn
)(struct target_s
*target
,
2268 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
);
2273 fn
=target_read_phys_memory
;
2276 fn
=target_read_memory
;
2278 if ((argc
< 1) || (argc
> 2))
2280 return ERROR_COMMAND_SYNTAX_ERROR
;
2284 COMMAND_PARSE_NUMBER(u32
, args
[0], address
);
2288 COMMAND_PARSE_NUMBER(uint
, args
[1], count
);
2290 uint8_t *buffer
= calloc(count
, size
);
2292 target_t
*target
= get_current_target(cmd_ctx
);
2293 int retval
= fn(target
, address
, size
, count
, buffer
);
2294 if (ERROR_OK
== retval
)
2295 handle_md_output(cmd_ctx
, target
, address
, size
, count
, buffer
);
2302 COMMAND_HANDLER(handle_mw_command
)
2306 return ERROR_COMMAND_SYNTAX_ERROR
;
2308 bool physical
=strcmp(args
[0], "phys")==0;
2309 int (*fn
)(struct target_s
*target
,
2310 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
);
2315 fn
=target_write_phys_memory
;
2318 fn
=target_write_memory
;
2320 if ((argc
< 2) || (argc
> 3))
2321 return ERROR_COMMAND_SYNTAX_ERROR
;
2324 COMMAND_PARSE_NUMBER(u32
, args
[0], address
);
2327 COMMAND_PARSE_NUMBER(u32
, args
[1], value
);
2331 COMMAND_PARSE_NUMBER(uint
, args
[2], count
);
2333 target_t
*target
= get_current_target(cmd_ctx
);
2335 uint8_t value_buf
[4];
2336 switch (CMD_NAME
[2])
2340 target_buffer_set_u32(target
, value_buf
, value
);
2344 target_buffer_set_u16(target
, value_buf
, value
);
2348 value_buf
[0] = value
;
2351 return ERROR_COMMAND_SYNTAX_ERROR
;
2353 for (unsigned i
= 0; i
< count
; i
++)
2355 int retval
= fn(target
,
2356 address
+ i
* wordsize
, wordsize
, 1, value_buf
);
2357 if (ERROR_OK
!= retval
)
2366 static COMMAND_HELPER(parse_load_image_command_args
, image_t
*image
,
2367 uint32_t *min_address
, uint32_t *max_address
)
2369 if (argc
< 1 || argc
> 5)
2370 return ERROR_COMMAND_SYNTAX_ERROR
;
2372 /* a base address isn't always necessary,
2373 * default to 0x0 (i.e. don't relocate) */
2377 COMMAND_PARSE_NUMBER(u32
, args
[1], addr
);
2378 image
->base_address
= addr
;
2379 image
->base_address_set
= 1;
2382 image
->base_address_set
= 0;
2384 image
->start_address_set
= 0;
2388 COMMAND_PARSE_NUMBER(u32
, args
[3], *min_address
);
2392 COMMAND_PARSE_NUMBER(u32
, args
[4], *max_address
);
2393 // use size (given) to find max (required)
2394 *max_address
+= *min_address
;
2397 if (*min_address
> *max_address
)
2398 return ERROR_COMMAND_SYNTAX_ERROR
;
2403 COMMAND_HANDLER(handle_load_image_command
)
2407 uint32_t image_size
;
2408 uint32_t min_address
= 0;
2409 uint32_t max_address
= 0xffffffff;
2413 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_args
,
2414 &image
, &min_address
, &max_address
);
2415 if (ERROR_OK
!= retval
)
2418 target_t
*target
= get_current_target(cmd_ctx
);
2420 struct duration bench
;
2421 duration_start(&bench
);
2423 if (image_open(&image
, args
[0], (argc
>= 3) ? args
[2] : NULL
) != ERROR_OK
)
2430 for (i
= 0; i
< image
.num_sections
; i
++)
2432 buffer
= malloc(image
.sections
[i
].size
);
2435 command_print(cmd_ctx
,
2436 "error allocating buffer for section (%d bytes)",
2437 (int)(image
.sections
[i
].size
));
2441 if ((retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
)) != ERROR_OK
)
2447 uint32_t offset
= 0;
2448 uint32_t length
= buf_cnt
;
2450 /* DANGER!!! beware of unsigned comparision here!!! */
2452 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
)&&
2453 (image
.sections
[i
].base_address
< max_address
))
2455 if (image
.sections
[i
].base_address
< min_address
)
2457 /* clip addresses below */
2458 offset
+= min_address
-image
.sections
[i
].base_address
;
2462 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
2464 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
2467 if ((retval
= target_write_buffer(target
, image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
)) != ERROR_OK
)
2472 image_size
+= length
;
2473 command_print(cmd_ctx
, "%u bytes written at address 0x%8.8" PRIx32
"",
2474 (unsigned int)length
,
2475 image
.sections
[i
].base_address
+ offset
);
2481 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
))
2483 command_print(cmd_ctx
, "downloaded %" PRIu32
" bytes "
2484 "in %fs (%0.3f kb/s)", image_size
,
2485 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
2488 image_close(&image
);
2494 COMMAND_HANDLER(handle_dump_image_command
)
2496 struct fileio fileio
;
2498 uint8_t buffer
[560];
2502 target_t
*target
= get_current_target(cmd_ctx
);
2506 command_print(cmd_ctx
, "usage: dump_image <filename> <address> <size>");
2511 COMMAND_PARSE_NUMBER(u32
, args
[1], address
);
2513 COMMAND_PARSE_NUMBER(u32
, args
[2], size
);
2515 if (fileio_open(&fileio
, args
[0], FILEIO_WRITE
, FILEIO_BINARY
) != ERROR_OK
)
2520 struct duration bench
;
2521 duration_start(&bench
);
2523 int retval
= ERROR_OK
;
2526 uint32_t size_written
;
2527 uint32_t this_run_size
= (size
> 560) ? 560 : size
;
2528 retval
= target_read_buffer(target
, address
, this_run_size
, buffer
);
2529 if (retval
!= ERROR_OK
)
2534 retval
= fileio_write(&fileio
, this_run_size
, buffer
, &size_written
);
2535 if (retval
!= ERROR_OK
)
2540 size
-= this_run_size
;
2541 address
+= this_run_size
;
2544 if ((retvaltemp
= fileio_close(&fileio
)) != ERROR_OK
)
2547 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
))
2549 command_print(cmd_ctx
,
2550 "dumped %lld bytes in %fs (%0.3f kb/s)", fileio
.size
,
2551 duration_elapsed(&bench
), duration_kbps(&bench
, fileio
.size
));
2557 static COMMAND_HELPER(handle_verify_image_command_internal
, int verify
)
2561 uint32_t image_size
;
2564 uint32_t checksum
= 0;
2565 uint32_t mem_checksum
= 0;
2569 target_t
*target
= get_current_target(cmd_ctx
);
2573 return ERROR_COMMAND_SYNTAX_ERROR
;
2578 LOG_ERROR("no target selected");
2582 struct duration bench
;
2583 duration_start(&bench
);
2588 COMMAND_PARSE_NUMBER(u32
, args
[1], addr
);
2589 image
.base_address
= addr
;
2590 image
.base_address_set
= 1;
2594 image
.base_address_set
= 0;
2595 image
.base_address
= 0x0;
2598 image
.start_address_set
= 0;
2600 if ((retval
= image_open(&image
, args
[0], (argc
== 3) ? args
[2] : NULL
)) != ERROR_OK
)
2607 for (i
= 0; i
< image
.num_sections
; i
++)
2609 buffer
= malloc(image
.sections
[i
].size
);
2612 command_print(cmd_ctx
,
2613 "error allocating buffer for section (%d bytes)",
2614 (int)(image
.sections
[i
].size
));
2617 if ((retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
)) != ERROR_OK
)
2625 /* calculate checksum of image */
2626 image_calculate_checksum(buffer
, buf_cnt
, &checksum
);
2628 retval
= target_checksum_memory(target
, image
.sections
[i
].base_address
, buf_cnt
, &mem_checksum
);
2629 if (retval
!= ERROR_OK
)
2635 if (checksum
!= mem_checksum
)
2637 /* failed crc checksum, fall back to a binary compare */
2640 command_print(cmd_ctx
, "checksum mismatch - attempting binary compare");
2642 data
= (uint8_t*)malloc(buf_cnt
);
2644 /* Can we use 32bit word accesses? */
2646 int count
= buf_cnt
;
2647 if ((count
% 4) == 0)
2652 retval
= target_read_memory(target
, image
.sections
[i
].base_address
, size
, count
, data
);
2653 if (retval
== ERROR_OK
)
2656 for (t
= 0; t
< buf_cnt
; t
++)
2658 if (data
[t
] != buffer
[t
])
2660 command_print(cmd_ctx
,
2661 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2662 (unsigned)(t
+ image
.sections
[i
].base_address
),
2667 retval
= ERROR_FAIL
;
2681 command_print(cmd_ctx
, "address 0x%08" PRIx32
" length 0x%08" PRIx32
"",
2682 image
.sections
[i
].base_address
,
2687 image_size
+= buf_cnt
;
2690 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
))
2692 command_print(cmd_ctx
, "verified %" PRIu32
" bytes "
2693 "in %fs (%0.3f kb/s)", image_size
,
2694 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
2697 image_close(&image
);
2702 COMMAND_HANDLER(handle_verify_image_command
)
2704 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 1);
2707 COMMAND_HANDLER(handle_test_image_command
)
2709 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 0);
2712 static int handle_bp_command_list(struct command_context_s
*cmd_ctx
)
2714 target_t
*target
= get_current_target(cmd_ctx
);
2715 breakpoint_t
*breakpoint
= target
->breakpoints
;
2718 if (breakpoint
->type
== BKPT_SOFT
)
2720 char* buf
= buf_to_str(breakpoint
->orig_instr
,
2721 breakpoint
->length
, 16);
2722 command_print(cmd_ctx
, "0x%8.8" PRIx32
", 0x%x, %i, 0x%s",
2723 breakpoint
->address
,
2725 breakpoint
->set
, buf
);
2730 command_print(cmd_ctx
, "0x%8.8" PRIx32
", 0x%x, %i",
2731 breakpoint
->address
,
2732 breakpoint
->length
, breakpoint
->set
);
2735 breakpoint
= breakpoint
->next
;
2740 static int handle_bp_command_set(struct command_context_s
*cmd_ctx
,
2741 uint32_t addr
, uint32_t length
, int hw
)
2743 target_t
*target
= get_current_target(cmd_ctx
);
2744 int retval
= breakpoint_add(target
, addr
, length
, hw
);
2745 if (ERROR_OK
== retval
)
2746 command_print(cmd_ctx
, "breakpoint set at 0x%8.8" PRIx32
"", addr
);
2748 LOG_ERROR("Failure setting breakpoint");
2752 COMMAND_HANDLER(handle_bp_command
)
2755 return handle_bp_command_list(cmd_ctx
);
2757 if (argc
< 2 || argc
> 3)
2759 command_print(cmd_ctx
, "usage: bp <address> <length> ['hw']");
2760 return ERROR_COMMAND_SYNTAX_ERROR
;
2764 COMMAND_PARSE_NUMBER(u32
, args
[0], addr
);
2766 COMMAND_PARSE_NUMBER(u32
, args
[1], length
);
2771 if (strcmp(args
[2], "hw") == 0)
2774 return ERROR_COMMAND_SYNTAX_ERROR
;
2777 return handle_bp_command_set(cmd_ctx
, addr
, length
, hw
);
2780 COMMAND_HANDLER(handle_rbp_command
)
2783 return ERROR_COMMAND_SYNTAX_ERROR
;
2786 COMMAND_PARSE_NUMBER(u32
, args
[0], addr
);
2788 target_t
*target
= get_current_target(cmd_ctx
);
2789 breakpoint_remove(target
, addr
);
2794 COMMAND_HANDLER(handle_wp_command
)
2796 target_t
*target
= get_current_target(cmd_ctx
);
2800 watchpoint_t
*watchpoint
= target
->watchpoints
;
2804 command_print(cmd_ctx
,
2805 "address: 0x%8.8" PRIx32
", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32
", mask: 0x%8.8" PRIx32
"",
2806 watchpoint
->address
,
2808 (int)(watchpoint
->rw
),
2811 watchpoint
= watchpoint
->next
;
2816 enum watchpoint_rw type
= WPT_ACCESS
;
2818 uint32_t length
= 0;
2819 uint32_t data_value
= 0x0;
2820 uint32_t data_mask
= 0xffffffff;
2825 COMMAND_PARSE_NUMBER(u32
, args
[4], data_mask
);
2828 COMMAND_PARSE_NUMBER(u32
, args
[3], data_value
);
2843 LOG_ERROR("invalid watchpoint mode ('%c')", args
[2][0]);
2844 return ERROR_COMMAND_SYNTAX_ERROR
;
2848 COMMAND_PARSE_NUMBER(u32
, args
[1], length
);
2849 COMMAND_PARSE_NUMBER(u32
, args
[0], addr
);
2853 command_print(cmd_ctx
, "usage: wp [address length "
2854 "[(r|w|a) [value [mask]]]]");
2855 return ERROR_COMMAND_SYNTAX_ERROR
;
2858 int retval
= watchpoint_add(target
, addr
, length
, type
,
2859 data_value
, data_mask
);
2860 if (ERROR_OK
!= retval
)
2861 LOG_ERROR("Failure setting watchpoints");
2866 COMMAND_HANDLER(handle_rwp_command
)
2869 return ERROR_COMMAND_SYNTAX_ERROR
;
2872 COMMAND_PARSE_NUMBER(u32
, args
[0], addr
);
2874 target_t
*target
= get_current_target(cmd_ctx
);
2875 watchpoint_remove(target
, addr
);
2882 * Translate a virtual address to a physical address.
2884 * The low-level target implementation must have logged a detailed error
2885 * which is forwarded to telnet/GDB session.
2887 COMMAND_HANDLER(handle_virt2phys_command
)
2890 return ERROR_COMMAND_SYNTAX_ERROR
;
2893 COMMAND_PARSE_NUMBER(u32
, args
[0], va
);
2896 target_t
*target
= get_current_target(cmd_ctx
);
2897 int retval
= target
->type
->virt2phys(target
, va
, &pa
);
2898 if (retval
== ERROR_OK
)
2899 command_print(cmd_ctx
, "Physical address 0x%08" PRIx32
"", pa
);
2904 static void writeData(FILE *f
, const void *data
, size_t len
)
2906 size_t written
= fwrite(data
, 1, len
, f
);
2908 LOG_ERROR("failed to write %zu bytes: %s", len
, strerror(errno
));
2911 static void writeLong(FILE *f
, int l
)
2914 for (i
= 0; i
< 4; i
++)
2916 char c
= (l
>> (i
*8))&0xff;
2917 writeData(f
, &c
, 1);
2922 static void writeString(FILE *f
, char *s
)
2924 writeData(f
, s
, strlen(s
));
2927 /* Dump a gmon.out histogram file. */
2928 static void writeGmon(uint32_t *samples
, uint32_t sampleNum
, const char *filename
)
2931 FILE *f
= fopen(filename
, "w");
2934 writeString(f
, "gmon");
2935 writeLong(f
, 0x00000001); /* Version */
2936 writeLong(f
, 0); /* padding */
2937 writeLong(f
, 0); /* padding */
2938 writeLong(f
, 0); /* padding */
2940 uint8_t zero
= 0; /* GMON_TAG_TIME_HIST */
2941 writeData(f
, &zero
, 1);
2943 /* figure out bucket size */
2944 uint32_t min
= samples
[0];
2945 uint32_t max
= samples
[0];
2946 for (i
= 0; i
< sampleNum
; i
++)
2948 if (min
> samples
[i
])
2952 if (max
< samples
[i
])
2958 int addressSpace
= (max
-min
+ 1);
2960 static const uint32_t maxBuckets
= 256 * 1024; /* maximum buckets. */
2961 uint32_t length
= addressSpace
;
2962 if (length
> maxBuckets
)
2964 length
= maxBuckets
;
2966 int *buckets
= malloc(sizeof(int)*length
);
2967 if (buckets
== NULL
)
2972 memset(buckets
, 0, sizeof(int)*length
);
2973 for (i
= 0; i
< sampleNum
;i
++)
2975 uint32_t address
= samples
[i
];
2976 long long a
= address
-min
;
2977 long long b
= length
-1;
2978 long long c
= addressSpace
-1;
2979 int index
= (a
*b
)/c
; /* danger!!!! int32 overflows */
2983 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2984 writeLong(f
, min
); /* low_pc */
2985 writeLong(f
, max
); /* high_pc */
2986 writeLong(f
, length
); /* # of samples */
2987 writeLong(f
, 64000000); /* 64MHz */
2988 writeString(f
, "seconds");
2989 for (i
= 0; i
< (15-strlen("seconds")); i
++)
2990 writeData(f
, &zero
, 1);
2991 writeString(f
, "s");
2993 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2995 char *data
= malloc(2*length
);
2998 for (i
= 0; i
< length
;i
++)
3007 data
[i
*2 + 1]=(val
>> 8)&0xff;
3010 writeData(f
, data
, length
* 2);
3020 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3021 COMMAND_HANDLER(handle_profile_command
)
3023 target_t
*target
= get_current_target(cmd_ctx
);
3024 struct timeval timeout
, now
;
3026 gettimeofday(&timeout
, NULL
);
3029 return ERROR_COMMAND_SYNTAX_ERROR
;
3032 COMMAND_PARSE_NUMBER(uint
, args
[0], offset
);
3034 timeval_add_time(&timeout
, offset
, 0);
3036 command_print(cmd_ctx
, "Starting profiling. Halting and resuming the target as often as we can...");
3038 static const int maxSample
= 10000;
3039 uint32_t *samples
= malloc(sizeof(uint32_t)*maxSample
);
3040 if (samples
== NULL
)
3044 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3045 reg_t
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
3050 target_poll(target
);
3051 if (target
->state
== TARGET_HALTED
)
3053 uint32_t t
=*((uint32_t *)reg
->value
);
3054 samples
[numSamples
++]=t
;
3055 retval
= target_resume(target
, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3056 target_poll(target
);
3057 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3058 } else if (target
->state
== TARGET_RUNNING
)
3060 /* We want to quickly sample the PC. */
3061 if ((retval
= target_halt(target
)) != ERROR_OK
)
3068 command_print(cmd_ctx
, "Target not halted or running");
3072 if (retval
!= ERROR_OK
)
3077 gettimeofday(&now
, NULL
);
3078 if ((numSamples
>= maxSample
) || ((now
.tv_sec
>= timeout
.tv_sec
) && (now
.tv_usec
>= timeout
.tv_usec
)))
3080 command_print(cmd_ctx
, "Profiling completed. %d samples.", numSamples
);
3081 if ((retval
= target_poll(target
)) != ERROR_OK
)
3086 if (target
->state
== TARGET_HALTED
)
3088 target_resume(target
, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3090 if ((retval
= target_poll(target
)) != ERROR_OK
)
3095 writeGmon(samples
, numSamples
, args
[1]);
3096 command_print(cmd_ctx
, "Wrote %s", args
[1]);
3105 static int new_int_array_element(Jim_Interp
* interp
, const char *varname
, int idx
, uint32_t val
)
3108 Jim_Obj
*nameObjPtr
, *valObjPtr
;
3111 namebuf
= alloc_printf("%s(%d)", varname
, idx
);
3115 nameObjPtr
= Jim_NewStringObj(interp
, namebuf
, -1);
3116 valObjPtr
= Jim_NewIntObj(interp
, val
);
3117 if (!nameObjPtr
|| !valObjPtr
)
3123 Jim_IncrRefCount(nameObjPtr
);
3124 Jim_IncrRefCount(valObjPtr
);
3125 result
= Jim_SetVariable(interp
, nameObjPtr
, valObjPtr
);
3126 Jim_DecrRefCount(interp
, nameObjPtr
);
3127 Jim_DecrRefCount(interp
, valObjPtr
);
3129 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3133 static int jim_mem2array(Jim_Interp
*interp
, int argc
, Jim_Obj
*const *argv
)
3135 command_context_t
*context
;
3138 context
= Jim_GetAssocData(interp
, "context");
3139 if (context
== NULL
)
3141 LOG_ERROR("mem2array: no command context");
3144 target
= get_current_target(context
);
3147 LOG_ERROR("mem2array: no current target");
3151 return target_mem2array(interp
, target
, argc
-1, argv
+ 1);
3154 static int target_mem2array(Jim_Interp
*interp
, target_t
*target
, int argc
, Jim_Obj
*const *argv
)
3162 const char *varname
;
3163 uint8_t buffer
[4096];
3167 /* argv[1] = name of array to receive the data
3168 * argv[2] = desired width
3169 * argv[3] = memory address
3170 * argv[4] = count of times to read
3173 Jim_WrongNumArgs(interp
, 1, argv
, "varname width addr nelems");
3176 varname
= Jim_GetString(argv
[0], &len
);
3177 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3179 e
= Jim_GetLong(interp
, argv
[1], &l
);
3185 e
= Jim_GetLong(interp
, argv
[2], &l
);
3190 e
= Jim_GetLong(interp
, argv
[3], &l
);
3206 Jim_SetResult(interp
, Jim_NewEmptyStringObj(interp
));
3207 Jim_AppendStrings(interp
, Jim_GetResult(interp
), "Invalid width param, must be 8/16/32", NULL
);