target: don't swap MMU/no-MMU work areas
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74 static int jim_target(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
75
76 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
78
79 /* targets */
80 extern target_type_t arm7tdmi_target;
81 extern target_type_t arm720t_target;
82 extern target_type_t arm9tdmi_target;
83 extern target_type_t arm920t_target;
84 extern target_type_t arm966e_target;
85 extern target_type_t arm926ejs_target;
86 extern target_type_t fa526_target;
87 extern target_type_t feroceon_target;
88 extern target_type_t dragonite_target;
89 extern target_type_t xscale_target;
90 extern target_type_t cortexm3_target;
91 extern target_type_t cortexa8_target;
92 extern target_type_t arm11_target;
93 extern target_type_t mips_m4k_target;
94 extern target_type_t avr_target;
95
96 target_type_t *target_types[] =
97 {
98 &arm7tdmi_target,
99 &arm9tdmi_target,
100 &arm920t_target,
101 &arm720t_target,
102 &arm966e_target,
103 &arm926ejs_target,
104 &fa526_target,
105 &feroceon_target,
106 &dragonite_target,
107 &xscale_target,
108 &cortexm3_target,
109 &cortexa8_target,
110 &arm11_target,
111 &mips_m4k_target,
112 &avr_target,
113 NULL,
114 };
115
116 target_t *all_targets = NULL;
117 target_event_callback_t *target_event_callbacks = NULL;
118 target_timer_callback_t *target_timer_callbacks = NULL;
119
120 const Jim_Nvp nvp_assert[] = {
121 { .name = "assert", NVP_ASSERT },
122 { .name = "deassert", NVP_DEASSERT },
123 { .name = "T", NVP_ASSERT },
124 { .name = "F", NVP_DEASSERT },
125 { .name = "t", NVP_ASSERT },
126 { .name = "f", NVP_DEASSERT },
127 { .name = NULL, .value = -1 }
128 };
129
130 const Jim_Nvp nvp_error_target[] = {
131 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
132 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
133 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
134 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
135 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
136 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
137 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
138 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
139 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
140 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
141 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
142 { .value = -1, .name = NULL }
143 };
144
145 const char *target_strerror_safe(int err)
146 {
147 const Jim_Nvp *n;
148
149 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
150 if (n->name == NULL) {
151 return "unknown";
152 } else {
153 return n->name;
154 }
155 }
156
157 static const Jim_Nvp nvp_target_event[] = {
158 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
159 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
160
161 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
162 { .value = TARGET_EVENT_HALTED, .name = "halted" },
163 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
164 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
165 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
166
167 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
168 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
169
170 /* historical name */
171
172 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
173
174 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
175 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
176 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
177 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
178 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
179 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
180 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
181 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
182 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
183 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
184
185 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
186 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
187
188 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
189 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
190
191 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
192 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
193
194 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
195 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
196
197 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
198 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
199
200 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
201 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
202 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
203
204 { .name = NULL, .value = -1 }
205 };
206
207 const Jim_Nvp nvp_target_state[] = {
208 { .name = "unknown", .value = TARGET_UNKNOWN },
209 { .name = "running", .value = TARGET_RUNNING },
210 { .name = "halted", .value = TARGET_HALTED },
211 { .name = "reset", .value = TARGET_RESET },
212 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
213 { .name = NULL, .value = -1 },
214 };
215
216 const Jim_Nvp nvp_target_debug_reason [] = {
217 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
218 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
219 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
220 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
221 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
222 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
223 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
224 { .name = NULL, .value = -1 },
225 };
226
227 const Jim_Nvp nvp_target_endian[] = {
228 { .name = "big", .value = TARGET_BIG_ENDIAN },
229 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
230 { .name = "be", .value = TARGET_BIG_ENDIAN },
231 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
232 { .name = NULL, .value = -1 },
233 };
234
235 const Jim_Nvp nvp_reset_modes[] = {
236 { .name = "unknown", .value = RESET_UNKNOWN },
237 { .name = "run" , .value = RESET_RUN },
238 { .name = "halt" , .value = RESET_HALT },
239 { .name = "init" , .value = RESET_INIT },
240 { .name = NULL , .value = -1 },
241 };
242
243 const char *
244 target_state_name( target_t *t )
245 {
246 const char *cp;
247 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
248 if( !cp ){
249 LOG_ERROR("Invalid target state: %d", (int)(t->state));
250 cp = "(*BUG*unknown*BUG*)";
251 }
252 return cp;
253 }
254
255 /* determine the number of the new target */
256 static int new_target_number(void)
257 {
258 target_t *t;
259 int x;
260
261 /* number is 0 based */
262 x = -1;
263 t = all_targets;
264 while (t) {
265 if (x < t->target_number) {
266 x = t->target_number;
267 }
268 t = t->next;
269 }
270 return x + 1;
271 }
272
273 /* read a uint32_t from a buffer in target memory endianness */
274 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
275 {
276 if (target->endianness == TARGET_LITTLE_ENDIAN)
277 return le_to_h_u32(buffer);
278 else
279 return be_to_h_u32(buffer);
280 }
281
282 /* read a uint16_t from a buffer in target memory endianness */
283 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
284 {
285 if (target->endianness == TARGET_LITTLE_ENDIAN)
286 return le_to_h_u16(buffer);
287 else
288 return be_to_h_u16(buffer);
289 }
290
291 /* read a uint8_t from a buffer in target memory endianness */
292 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
293 {
294 return *buffer & 0x0ff;
295 }
296
297 /* write a uint32_t to a buffer in target memory endianness */
298 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
299 {
300 if (target->endianness == TARGET_LITTLE_ENDIAN)
301 h_u32_to_le(buffer, value);
302 else
303 h_u32_to_be(buffer, value);
304 }
305
306 /* write a uint16_t to a buffer in target memory endianness */
307 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
308 {
309 if (target->endianness == TARGET_LITTLE_ENDIAN)
310 h_u16_to_le(buffer, value);
311 else
312 h_u16_to_be(buffer, value);
313 }
314
315 /* write a uint8_t to a buffer in target memory endianness */
316 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
317 {
318 *buffer = value;
319 }
320
321 /* return a pointer to a configured target; id is name or number */
322 target_t *get_target(const char *id)
323 {
324 target_t *target;
325
326 /* try as tcltarget name */
327 for (target = all_targets; target; target = target->next) {
328 if (target->cmd_name == NULL)
329 continue;
330 if (strcmp(id, target->cmd_name) == 0)
331 return target;
332 }
333
334 /* It's OK to remove this fallback sometime after August 2010 or so */
335
336 /* no match, try as number */
337 unsigned num;
338 if (parse_uint(id, &num) != ERROR_OK)
339 return NULL;
340
341 for (target = all_targets; target; target = target->next) {
342 if (target->target_number == (int)num) {
343 LOG_WARNING("use '%s' as target identifier, not '%u'",
344 target->cmd_name, num);
345 return target;
346 }
347 }
348
349 return NULL;
350 }
351
352 /* returns a pointer to the n-th configured target */
353 static target_t *get_target_by_num(int num)
354 {
355 target_t *target = all_targets;
356
357 while (target) {
358 if (target->target_number == num) {
359 return target;
360 }
361 target = target->next;
362 }
363
364 return NULL;
365 }
366
367 target_t* get_current_target(command_context_t *cmd_ctx)
368 {
369 target_t *target = get_target_by_num(cmd_ctx->current_target);
370
371 if (target == NULL)
372 {
373 LOG_ERROR("BUG: current_target out of bounds");
374 exit(-1);
375 }
376
377 return target;
378 }
379
380 int target_poll(struct target_s *target)
381 {
382 int retval;
383
384 /* We can't poll until after examine */
385 if (!target_was_examined(target))
386 {
387 /* Fail silently lest we pollute the log */
388 return ERROR_FAIL;
389 }
390
391 retval = target->type->poll(target);
392 if (retval != ERROR_OK)
393 return retval;
394
395 if (target->halt_issued)
396 {
397 if (target->state == TARGET_HALTED)
398 {
399 target->halt_issued = false;
400 } else
401 {
402 long long t = timeval_ms() - target->halt_issued_time;
403 if (t>1000)
404 {
405 target->halt_issued = false;
406 LOG_INFO("Halt timed out, wake up GDB.");
407 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
408 }
409 }
410 }
411
412 return ERROR_OK;
413 }
414
415 int target_halt(struct target_s *target)
416 {
417 int retval;
418 /* We can't poll until after examine */
419 if (!target_was_examined(target))
420 {
421 LOG_ERROR("Target not examined yet");
422 return ERROR_FAIL;
423 }
424
425 retval = target->type->halt(target);
426 if (retval != ERROR_OK)
427 return retval;
428
429 target->halt_issued = true;
430 target->halt_issued_time = timeval_ms();
431
432 return ERROR_OK;
433 }
434
435 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
436 {
437 int retval;
438
439 /* We can't poll until after examine */
440 if (!target_was_examined(target))
441 {
442 LOG_ERROR("Target not examined yet");
443 return ERROR_FAIL;
444 }
445
446 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
447 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
448 * the application.
449 */
450 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
451 return retval;
452
453 return retval;
454 }
455
456 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
457 {
458 char buf[100];
459 int retval;
460 Jim_Nvp *n;
461 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
462 if (n->name == NULL) {
463 LOG_ERROR("invalid reset mode");
464 return ERROR_FAIL;
465 }
466
467 /* disable polling during reset to make reset event scripts
468 * more predictable, i.e. dr/irscan & pathmove in events will
469 * not have JTAG operations injected into the middle of a sequence.
470 */
471 bool save_poll = jtag_poll_get_enabled();
472
473 jtag_poll_set_enabled(false);
474
475 sprintf(buf, "ocd_process_reset %s", n->name);
476 retval = Jim_Eval(interp, buf);
477
478 jtag_poll_set_enabled(save_poll);
479
480 if (retval != JIM_OK) {
481 Jim_PrintErrorMessage(interp);
482 return ERROR_FAIL;
483 }
484
485 /* We want any events to be processed before the prompt */
486 retval = target_call_timer_callbacks_now();
487
488 return retval;
489 }
490
491 static int default_virt2phys(struct target_s *target, uint32_t virtual, uint32_t *physical)
492 {
493 *physical = virtual;
494 return ERROR_OK;
495 }
496
497 static int default_mmu(struct target_s *target, int *enabled)
498 {
499 LOG_ERROR("Not implemented.");
500 return ERROR_FAIL;
501 }
502
503 static int default_has_mmu(struct target_s *target, bool *has_mmu)
504 {
505 *has_mmu = true;
506 return ERROR_OK;
507 }
508
509 static int default_examine(struct target_s *target)
510 {
511 target_set_examined(target);
512 return ERROR_OK;
513 }
514
515 int target_examine_one(struct target_s *target)
516 {
517 return target->type->examine(target);
518 }
519
520 static int jtag_enable_callback(enum jtag_event event, void *priv)
521 {
522 target_t *target = priv;
523
524 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
525 return ERROR_OK;
526
527 jtag_unregister_event_callback(jtag_enable_callback, target);
528 return target_examine_one(target);
529 }
530
531
532 /* Targets that correctly implement init + examine, i.e.
533 * no communication with target during init:
534 *
535 * XScale
536 */
537 int target_examine(void)
538 {
539 int retval = ERROR_OK;
540 target_t *target;
541
542 for (target = all_targets; target; target = target->next)
543 {
544 /* defer examination, but don't skip it */
545 if (!target->tap->enabled) {
546 jtag_register_event_callback(jtag_enable_callback,
547 target);
548 continue;
549 }
550 if ((retval = target_examine_one(target)) != ERROR_OK)
551 return retval;
552 }
553 return retval;
554 }
555 const char *target_get_name(struct target_s *target)
556 {
557 return target->type->name;
558 }
559
560 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
561 {
562 if (!target_was_examined(target))
563 {
564 LOG_ERROR("Target not examined yet");
565 return ERROR_FAIL;
566 }
567 return target->type->write_memory_imp(target, address, size, count, buffer);
568 }
569
570 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
571 {
572 if (!target_was_examined(target))
573 {
574 LOG_ERROR("Target not examined yet");
575 return ERROR_FAIL;
576 }
577 return target->type->read_memory_imp(target, address, size, count, buffer);
578 }
579
580 static int target_soft_reset_halt_imp(struct target_s *target)
581 {
582 if (!target_was_examined(target))
583 {
584 LOG_ERROR("Target not examined yet");
585 return ERROR_FAIL;
586 }
587 if (!target->type->soft_reset_halt_imp) {
588 LOG_ERROR("Target %s does not support soft_reset_halt",
589 target->cmd_name);
590 return ERROR_FAIL;
591 }
592 return target->type->soft_reset_halt_imp(target);
593 }
594
595 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
596 {
597 if (!target_was_examined(target))
598 {
599 LOG_ERROR("Target not examined yet");
600 return ERROR_FAIL;
601 }
602 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
603 }
604
605 int target_read_memory(struct target_s *target,
606 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
607 {
608 return target->type->read_memory(target, address, size, count, buffer);
609 }
610
611 int target_read_phys_memory(struct target_s *target,
612 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
613 {
614 return target->type->read_phys_memory(target, address, size, count, buffer);
615 }
616
617 int target_write_memory(struct target_s *target,
618 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
619 {
620 return target->type->write_memory(target, address, size, count, buffer);
621 }
622
623 int target_write_phys_memory(struct target_s *target,
624 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
625 {
626 return target->type->write_phys_memory(target, address, size, count, buffer);
627 }
628
629 int target_bulk_write_memory(struct target_s *target,
630 uint32_t address, uint32_t count, uint8_t *buffer)
631 {
632 return target->type->bulk_write_memory(target, address, count, buffer);
633 }
634
635 int target_add_breakpoint(struct target_s *target,
636 struct breakpoint_s *breakpoint)
637 {
638 return target->type->add_breakpoint(target, breakpoint);
639 }
640 int target_remove_breakpoint(struct target_s *target,
641 struct breakpoint_s *breakpoint)
642 {
643 return target->type->remove_breakpoint(target, breakpoint);
644 }
645
646 int target_add_watchpoint(struct target_s *target,
647 struct watchpoint_s *watchpoint)
648 {
649 return target->type->add_watchpoint(target, watchpoint);
650 }
651 int target_remove_watchpoint(struct target_s *target,
652 struct watchpoint_s *watchpoint)
653 {
654 return target->type->remove_watchpoint(target, watchpoint);
655 }
656
657 int target_get_gdb_reg_list(struct target_s *target,
658 struct reg_s **reg_list[], int *reg_list_size)
659 {
660 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
661 }
662 int target_step(struct target_s *target,
663 int current, uint32_t address, int handle_breakpoints)
664 {
665 return target->type->step(target, current, address, handle_breakpoints);
666 }
667
668
669 int target_run_algorithm(struct target_s *target,
670 int num_mem_params, mem_param_t *mem_params,
671 int num_reg_params, reg_param_t *reg_param,
672 uint32_t entry_point, uint32_t exit_point,
673 int timeout_ms, void *arch_info)
674 {
675 return target->type->run_algorithm(target,
676 num_mem_params, mem_params, num_reg_params, reg_param,
677 entry_point, exit_point, timeout_ms, arch_info);
678 }
679
680 /// @returns @c true if the target has been examined.
681 bool target_was_examined(struct target_s *target)
682 {
683 return target->type->examined;
684 }
685 /// Sets the @c examined flag for the given target.
686 void target_set_examined(struct target_s *target)
687 {
688 target->type->examined = true;
689 }
690 // Reset the @c examined flag for the given target.
691 void target_reset_examined(struct target_s *target)
692 {
693 target->type->examined = false;
694 }
695
696
697
698 static int default_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
699 {
700 LOG_ERROR("Not implemented");
701 return ERROR_FAIL;
702 }
703
704 static int default_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
705 {
706 LOG_ERROR("Not implemented");
707 return ERROR_FAIL;
708 }
709
710 static int arm_cp_check(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
711 {
712 /* basic check */
713 if (!target_was_examined(target))
714 {
715 LOG_ERROR("Target not examined yet");
716 return ERROR_FAIL;
717 }
718
719 if ((cpnum <0) || (cpnum > 15))
720 {
721 LOG_ERROR("Illegal co-processor %d", cpnum);
722 return ERROR_FAIL;
723 }
724
725 if (op1 > 7)
726 {
727 LOG_ERROR("Illegal op1");
728 return ERROR_FAIL;
729 }
730
731 if (op2 > 7)
732 {
733 LOG_ERROR("Illegal op2");
734 return ERROR_FAIL;
735 }
736
737 if (CRn > 15)
738 {
739 LOG_ERROR("Illegal CRn");
740 return ERROR_FAIL;
741 }
742
743 if (CRm > 15)
744 {
745 LOG_ERROR("Illegal CRm");
746 return ERROR_FAIL;
747 }
748
749 return ERROR_OK;
750 }
751
752 int target_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
753 {
754 int retval;
755
756 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
757 if (retval != ERROR_OK)
758 return retval;
759
760 return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
761 }
762
763 int target_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
764 {
765 int retval;
766
767 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
768 if (retval != ERROR_OK)
769 return retval;
770
771 return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
772 }
773
774 static int default_read_phys_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
775 {
776 int retval;
777 bool mmu;
778 retval = target->type->has_mmu(target, &mmu);
779 if (retval != ERROR_OK)
780 return retval;
781 if (mmu)
782 {
783 LOG_ERROR("Not implemented");
784 return ERROR_FAIL;
785 }
786 return target_read_memory(target, address, size, count, buffer);
787 }
788
789 static int default_write_phys_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
790 {
791 int retval;
792 bool mmu;
793 retval = target->type->has_mmu(target, &mmu);
794 if (retval != ERROR_OK)
795 return retval;
796 if (mmu)
797 {
798 LOG_ERROR("Not implemented");
799 return ERROR_FAIL;
800 }
801 return target_write_memory(target, address, size, count, buffer);
802 }
803
804
805 int target_init(struct command_context_s *cmd_ctx)
806 {
807 target_t *target = all_targets;
808 int retval;
809
810 while (target)
811 {
812 target_reset_examined(target);
813 if (target->type->examine == NULL)
814 {
815 target->type->examine = default_examine;
816 }
817
818 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
819 {
820 LOG_ERROR("target '%s' init failed", target_get_name(target));
821 return retval;
822 }
823
824 /* Set up default functions if none are provided by target */
825 if (target->type->virt2phys == NULL)
826 {
827 target->type->virt2phys = default_virt2phys;
828 }
829
830 if (target->type->read_phys_memory == NULL)
831 {
832 target->type->read_phys_memory = default_read_phys_memory;
833 }
834
835 if (target->type->write_phys_memory == NULL)
836 {
837 target->type->write_phys_memory = default_write_phys_memory;
838 }
839
840 if (target->type->mcr == NULL)
841 {
842 target->type->mcr = default_mcr;
843 } else
844 {
845 /* FIX! multiple targets will generally register global commands
846 * multiple times. Only register this one if *one* of the
847 * targets need the command. Hmm... make it a command on the
848 * Jim Tcl target object?
849 */
850 register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
851 }
852
853 if (target->type->mrc == NULL)
854 {
855 target->type->mrc = default_mrc;
856 } else
857 {
858 register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
859 }
860
861
862 /* a non-invasive way(in terms of patches) to add some code that
863 * runs before the type->write/read_memory implementation
864 */
865 target->type->write_memory_imp = target->type->write_memory;
866 target->type->write_memory = target_write_memory_imp;
867 target->type->read_memory_imp = target->type->read_memory;
868 target->type->read_memory = target_read_memory_imp;
869 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
870 target->type->soft_reset_halt = target_soft_reset_halt_imp;
871 target->type->run_algorithm_imp = target->type->run_algorithm;
872 target->type->run_algorithm = target_run_algorithm_imp;
873
874 if (target->type->mmu == NULL)
875 {
876 target->type->mmu = default_mmu;
877 }
878 if (target->type->has_mmu == NULL)
879 {
880 target->type->has_mmu = default_has_mmu;
881 }
882 target = target->next;
883 }
884
885 if (all_targets)
886 {
887 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
888 return retval;
889 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
890 return retval;
891 }
892
893 return ERROR_OK;
894 }
895
896 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
897 {
898 target_event_callback_t **callbacks_p = &target_event_callbacks;
899
900 if (callback == NULL)
901 {
902 return ERROR_INVALID_ARGUMENTS;
903 }
904
905 if (*callbacks_p)
906 {
907 while ((*callbacks_p)->next)
908 callbacks_p = &((*callbacks_p)->next);
909 callbacks_p = &((*callbacks_p)->next);
910 }
911
912 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
913 (*callbacks_p)->callback = callback;
914 (*callbacks_p)->priv = priv;
915 (*callbacks_p)->next = NULL;
916
917 return ERROR_OK;
918 }
919
920 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
921 {
922 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
923 struct timeval now;
924
925 if (callback == NULL)
926 {
927 return ERROR_INVALID_ARGUMENTS;
928 }
929
930 if (*callbacks_p)
931 {
932 while ((*callbacks_p)->next)
933 callbacks_p = &((*callbacks_p)->next);
934 callbacks_p = &((*callbacks_p)->next);
935 }
936
937 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
938 (*callbacks_p)->callback = callback;
939 (*callbacks_p)->periodic = periodic;
940 (*callbacks_p)->time_ms = time_ms;
941
942 gettimeofday(&now, NULL);
943 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
944 time_ms -= (time_ms % 1000);
945 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
946 if ((*callbacks_p)->when.tv_usec > 1000000)
947 {
948 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
949 (*callbacks_p)->when.tv_sec += 1;
950 }
951
952 (*callbacks_p)->priv = priv;
953 (*callbacks_p)->next = NULL;
954
955 return ERROR_OK;
956 }
957
958 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
959 {
960 target_event_callback_t **p = &target_event_callbacks;
961 target_event_callback_t *c = target_event_callbacks;
962
963 if (callback == NULL)
964 {
965 return ERROR_INVALID_ARGUMENTS;
966 }
967
968 while (c)
969 {
970 target_event_callback_t *next = c->next;
971 if ((c->callback == callback) && (c->priv == priv))
972 {
973 *p = next;
974 free(c);
975 return ERROR_OK;
976 }
977 else
978 p = &(c->next);
979 c = next;
980 }
981
982 return ERROR_OK;
983 }
984
985 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
986 {
987 target_timer_callback_t **p = &target_timer_callbacks;
988 target_timer_callback_t *c = target_timer_callbacks;
989
990 if (callback == NULL)
991 {
992 return ERROR_INVALID_ARGUMENTS;
993 }
994
995 while (c)
996 {
997 target_timer_callback_t *next = c->next;
998 if ((c->callback == callback) && (c->priv == priv))
999 {
1000 *p = next;
1001 free(c);
1002 return ERROR_OK;
1003 }
1004 else
1005 p = &(c->next);
1006 c = next;
1007 }
1008
1009 return ERROR_OK;
1010 }
1011
1012 int target_call_event_callbacks(target_t *target, enum target_event event)
1013 {
1014 target_event_callback_t *callback = target_event_callbacks;
1015 target_event_callback_t *next_callback;
1016
1017 if (event == TARGET_EVENT_HALTED)
1018 {
1019 /* execute early halted first */
1020 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1021 }
1022
1023 LOG_DEBUG("target event %i (%s)",
1024 event,
1025 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1026
1027 target_handle_event(target, event);
1028
1029 while (callback)
1030 {
1031 next_callback = callback->next;
1032 callback->callback(target, event, callback->priv);
1033 callback = next_callback;
1034 }
1035
1036 return ERROR_OK;
1037 }
1038
1039 static int target_timer_callback_periodic_restart(
1040 target_timer_callback_t *cb, struct timeval *now)
1041 {
1042 int time_ms = cb->time_ms;
1043 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1044 time_ms -= (time_ms % 1000);
1045 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1046 if (cb->when.tv_usec > 1000000)
1047 {
1048 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1049 cb->when.tv_sec += 1;
1050 }
1051 return ERROR_OK;
1052 }
1053
1054 static int target_call_timer_callback(target_timer_callback_t *cb,
1055 struct timeval *now)
1056 {
1057 cb->callback(cb->priv);
1058
1059 if (cb->periodic)
1060 return target_timer_callback_periodic_restart(cb, now);
1061
1062 return target_unregister_timer_callback(cb->callback, cb->priv);
1063 }
1064
1065 static int target_call_timer_callbacks_check_time(int checktime)
1066 {
1067 keep_alive();
1068
1069 struct timeval now;
1070 gettimeofday(&now, NULL);
1071
1072 target_timer_callback_t *callback = target_timer_callbacks;
1073 while (callback)
1074 {
1075 // cleaning up may unregister and free this callback
1076 target_timer_callback_t *next_callback = callback->next;
1077
1078 bool call_it = callback->callback &&
1079 ((!checktime && callback->periodic) ||
1080 now.tv_sec > callback->when.tv_sec ||
1081 (now.tv_sec == callback->when.tv_sec &&
1082 now.tv_usec >= callback->when.tv_usec));
1083
1084 if (call_it)
1085 {
1086 int retval = target_call_timer_callback(callback, &now);
1087 if (retval != ERROR_OK)
1088 return retval;
1089 }
1090
1091 callback = next_callback;
1092 }
1093
1094 return ERROR_OK;
1095 }
1096
1097 int target_call_timer_callbacks(void)
1098 {
1099 return target_call_timer_callbacks_check_time(1);
1100 }
1101
1102 /* invoke periodic callbacks immediately */
1103 int target_call_timer_callbacks_now(void)
1104 {
1105 return target_call_timer_callbacks_check_time(0);
1106 }
1107
1108 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
1109 {
1110 working_area_t *c = target->working_areas;
1111 working_area_t *new_wa = NULL;
1112
1113 /* Reevaluate working area address based on MMU state*/
1114 if (target->working_areas == NULL)
1115 {
1116 int retval;
1117 int enabled;
1118
1119 retval = target->type->mmu(target, &enabled);
1120 if (retval != ERROR_OK)
1121 {
1122 return retval;
1123 }
1124
1125 if (!enabled) {
1126 if (target->working_area_phys_spec) {
1127 LOG_DEBUG("MMU disabled, using physical "
1128 "address for working memory 0x%08x",
1129 (unsigned)target->working_area_phys);
1130 target->working_area = target->working_area_phys;
1131 } else {
1132 LOG_ERROR("No working memory available. "
1133 "Specify -work-area-phys to target.");
1134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1135 }
1136 } else {
1137 if (target->working_area_virt_spec) {
1138 LOG_DEBUG("MMU enabled, using virtual "
1139 "address for working memory 0x%08x",
1140 (unsigned)target->working_area_virt);
1141 target->working_area = target->working_area_virt;
1142 } else {
1143 LOG_ERROR("No working memory available. "
1144 "Specify -work-area-virt to target.");
1145 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1146 }
1147 }
1148 }
1149
1150 /* only allocate multiples of 4 byte */
1151 if (size % 4)
1152 {
1153 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1154 size = (size + 3) & (~3);
1155 }
1156
1157 /* see if there's already a matching working area */
1158 while (c)
1159 {
1160 if ((c->free) && (c->size == size))
1161 {
1162 new_wa = c;
1163 break;
1164 }
1165 c = c->next;
1166 }
1167
1168 /* if not, allocate a new one */
1169 if (!new_wa)
1170 {
1171 working_area_t **p = &target->working_areas;
1172 uint32_t first_free = target->working_area;
1173 uint32_t free_size = target->working_area_size;
1174
1175 c = target->working_areas;
1176 while (c)
1177 {
1178 first_free += c->size;
1179 free_size -= c->size;
1180 p = &c->next;
1181 c = c->next;
1182 }
1183
1184 if (free_size < size)
1185 {
1186 LOG_WARNING("not enough working area available(requested %u, free %u)",
1187 (unsigned)(size), (unsigned)(free_size));
1188 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1189 }
1190
1191 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1192
1193 new_wa = malloc(sizeof(working_area_t));
1194 new_wa->next = NULL;
1195 new_wa->size = size;
1196 new_wa->address = first_free;
1197
1198 if (target->backup_working_area)
1199 {
1200 int retval;
1201 new_wa->backup = malloc(new_wa->size);
1202 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1203 {
1204 free(new_wa->backup);
1205 free(new_wa);
1206 return retval;
1207 }
1208 }
1209 else
1210 {
1211 new_wa->backup = NULL;
1212 }
1213
1214 /* put new entry in list */
1215 *p = new_wa;
1216 }
1217
1218 /* mark as used, and return the new (reused) area */
1219 new_wa->free = 0;
1220 *area = new_wa;
1221
1222 /* user pointer */
1223 new_wa->user = area;
1224
1225 return ERROR_OK;
1226 }
1227
1228 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1229 {
1230 if (area->free)
1231 return ERROR_OK;
1232
1233 if (restore && target->backup_working_area)
1234 {
1235 int retval;
1236 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1237 return retval;
1238 }
1239
1240 area->free = 1;
1241
1242 /* mark user pointer invalid */
1243 *area->user = NULL;
1244 area->user = NULL;
1245
1246 return ERROR_OK;
1247 }
1248
1249 int target_free_working_area(struct target_s *target, working_area_t *area)
1250 {
1251 return target_free_working_area_restore(target, area, 1);
1252 }
1253
1254 /* free resources and restore memory, if restoring memory fails,
1255 * free up resources anyway
1256 */
1257 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1258 {
1259 working_area_t *c = target->working_areas;
1260
1261 while (c)
1262 {
1263 working_area_t *next = c->next;
1264 target_free_working_area_restore(target, c, restore);
1265
1266 if (c->backup)
1267 free(c->backup);
1268
1269 free(c);
1270
1271 c = next;
1272 }
1273
1274 target->working_areas = NULL;
1275 }
1276
1277 void target_free_all_working_areas(struct target_s *target)
1278 {
1279 target_free_all_working_areas_restore(target, 1);
1280 }
1281
1282 int target_register_commands(struct command_context_s *cmd_ctx)
1283 {
1284
1285 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1286
1287
1288
1289
1290 register_jim(cmd_ctx, "target", jim_target, "configure target");
1291
1292 return ERROR_OK;
1293 }
1294
1295 int target_arch_state(struct target_s *target)
1296 {
1297 int retval;
1298 if (target == NULL)
1299 {
1300 LOG_USER("No target has been configured");
1301 return ERROR_OK;
1302 }
1303
1304 LOG_USER("target state: %s", target_state_name( target ));
1305
1306 if (target->state != TARGET_HALTED)
1307 return ERROR_OK;
1308
1309 retval = target->type->arch_state(target);
1310 return retval;
1311 }
1312
1313 /* Single aligned words are guaranteed to use 16 or 32 bit access
1314 * mode respectively, otherwise data is handled as quickly as
1315 * possible
1316 */
1317 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1318 {
1319 int retval;
1320 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1321 (int)size, (unsigned)address);
1322
1323 if (!target_was_examined(target))
1324 {
1325 LOG_ERROR("Target not examined yet");
1326 return ERROR_FAIL;
1327 }
1328
1329 if (size == 0) {
1330 return ERROR_OK;
1331 }
1332
1333 if ((address + size - 1) < address)
1334 {
1335 /* GDB can request this when e.g. PC is 0xfffffffc*/
1336 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1337 (unsigned)address,
1338 (unsigned)size);
1339 return ERROR_FAIL;
1340 }
1341
1342 if (((address % 2) == 0) && (size == 2))
1343 {
1344 return target_write_memory(target, address, 2, 1, buffer);
1345 }
1346
1347 /* handle unaligned head bytes */
1348 if (address % 4)
1349 {
1350 uint32_t unaligned = 4 - (address % 4);
1351
1352 if (unaligned > size)
1353 unaligned = size;
1354
1355 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1356 return retval;
1357
1358 buffer += unaligned;
1359 address += unaligned;
1360 size -= unaligned;
1361 }
1362
1363 /* handle aligned words */
1364 if (size >= 4)
1365 {
1366 int aligned = size - (size % 4);
1367
1368 /* use bulk writes above a certain limit. This may have to be changed */
1369 if (aligned > 128)
1370 {
1371 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1372 return retval;
1373 }
1374 else
1375 {
1376 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1377 return retval;
1378 }
1379
1380 buffer += aligned;
1381 address += aligned;
1382 size -= aligned;
1383 }
1384
1385 /* handle tail writes of less than 4 bytes */
1386 if (size > 0)
1387 {
1388 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1389 return retval;
1390 }
1391
1392 return ERROR_OK;
1393 }
1394
1395 /* Single aligned words are guaranteed to use 16 or 32 bit access
1396 * mode respectively, otherwise data is handled as quickly as
1397 * possible
1398 */
1399 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1400 {
1401 int retval;
1402 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1403 (int)size, (unsigned)address);
1404
1405 if (!target_was_examined(target))
1406 {
1407 LOG_ERROR("Target not examined yet");
1408 return ERROR_FAIL;
1409 }
1410
1411 if (size == 0) {
1412 return ERROR_OK;
1413 }
1414
1415 if ((address + size - 1) < address)
1416 {
1417 /* GDB can request this when e.g. PC is 0xfffffffc*/
1418 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1419 address,
1420 size);
1421 return ERROR_FAIL;
1422 }
1423
1424 if (((address % 2) == 0) && (size == 2))
1425 {
1426 return target_read_memory(target, address, 2, 1, buffer);
1427 }
1428
1429 /* handle unaligned head bytes */
1430 if (address % 4)
1431 {
1432 uint32_t unaligned = 4 - (address % 4);
1433
1434 if (unaligned > size)
1435 unaligned = size;
1436
1437 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1438 return retval;
1439
1440 buffer += unaligned;
1441 address += unaligned;
1442 size -= unaligned;
1443 }
1444
1445 /* handle aligned words */
1446 if (size >= 4)
1447 {
1448 int aligned = size - (size % 4);
1449
1450 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1451 return retval;
1452
1453 buffer += aligned;
1454 address += aligned;
1455 size -= aligned;
1456 }
1457
1458 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1459 if(size >=2)
1460 {
1461 int aligned = size - (size%2);
1462 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1463 if (retval != ERROR_OK)
1464 return retval;
1465
1466 buffer += aligned;
1467 address += aligned;
1468 size -= aligned;
1469 }
1470 /* handle tail writes of less than 4 bytes */
1471 if (size > 0)
1472 {
1473 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1474 return retval;
1475 }
1476
1477 return ERROR_OK;
1478 }
1479
1480 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1481 {
1482 uint8_t *buffer;
1483 int retval;
1484 uint32_t i;
1485 uint32_t checksum = 0;
1486 if (!target_was_examined(target))
1487 {
1488 LOG_ERROR("Target not examined yet");
1489 return ERROR_FAIL;
1490 }
1491
1492 if ((retval = target->type->checksum_memory(target, address,
1493 size, &checksum)) != ERROR_OK)
1494 {
1495 buffer = malloc(size);
1496 if (buffer == NULL)
1497 {
1498 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1499 return ERROR_INVALID_ARGUMENTS;
1500 }
1501 retval = target_read_buffer(target, address, size, buffer);
1502 if (retval != ERROR_OK)
1503 {
1504 free(buffer);
1505 return retval;
1506 }
1507
1508 /* convert to target endianess */
1509 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1510 {
1511 uint32_t target_data;
1512 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1513 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1514 }
1515
1516 retval = image_calculate_checksum(buffer, size, &checksum);
1517 free(buffer);
1518 }
1519
1520 *crc = checksum;
1521
1522 return retval;
1523 }
1524
1525 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1526 {
1527 int retval;
1528 if (!target_was_examined(target))
1529 {
1530 LOG_ERROR("Target not examined yet");
1531 return ERROR_FAIL;
1532 }
1533
1534 if (target->type->blank_check_memory == 0)
1535 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1536
1537 retval = target->type->blank_check_memory(target, address, size, blank);
1538
1539 return retval;
1540 }
1541
1542 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1543 {
1544 uint8_t value_buf[4];
1545 if (!target_was_examined(target))
1546 {
1547 LOG_ERROR("Target not examined yet");
1548 return ERROR_FAIL;
1549 }
1550
1551 int retval = target_read_memory(target, address, 4, 1, value_buf);
1552
1553 if (retval == ERROR_OK)
1554 {
1555 *value = target_buffer_get_u32(target, value_buf);
1556 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1557 address,
1558 *value);
1559 }
1560 else
1561 {
1562 *value = 0x0;
1563 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1564 address);
1565 }
1566
1567 return retval;
1568 }
1569
1570 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1571 {
1572 uint8_t value_buf[2];
1573 if (!target_was_examined(target))
1574 {
1575 LOG_ERROR("Target not examined yet");
1576 return ERROR_FAIL;
1577 }
1578
1579 int retval = target_read_memory(target, address, 2, 1, value_buf);
1580
1581 if (retval == ERROR_OK)
1582 {
1583 *value = target_buffer_get_u16(target, value_buf);
1584 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1585 address,
1586 *value);
1587 }
1588 else
1589 {
1590 *value = 0x0;
1591 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1592 address);
1593 }
1594
1595 return retval;
1596 }
1597
1598 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1599 {
1600 int retval = target_read_memory(target, address, 1, 1, value);
1601 if (!target_was_examined(target))
1602 {
1603 LOG_ERROR("Target not examined yet");
1604 return ERROR_FAIL;
1605 }
1606
1607 if (retval == ERROR_OK)
1608 {
1609 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1610 address,
1611 *value);
1612 }
1613 else
1614 {
1615 *value = 0x0;
1616 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1617 address);
1618 }
1619
1620 return retval;
1621 }
1622
1623 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1624 {
1625 int retval;
1626 uint8_t value_buf[4];
1627 if (!target_was_examined(target))
1628 {
1629 LOG_ERROR("Target not examined yet");
1630 return ERROR_FAIL;
1631 }
1632
1633 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1634 address,
1635 value);
1636
1637 target_buffer_set_u32(target, value_buf, value);
1638 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1639 {
1640 LOG_DEBUG("failed: %i", retval);
1641 }
1642
1643 return retval;
1644 }
1645
1646 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1647 {
1648 int retval;
1649 uint8_t value_buf[2];
1650 if (!target_was_examined(target))
1651 {
1652 LOG_ERROR("Target not examined yet");
1653 return ERROR_FAIL;
1654 }
1655
1656 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1657 address,
1658 value);
1659
1660 target_buffer_set_u16(target, value_buf, value);
1661 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1662 {
1663 LOG_DEBUG("failed: %i", retval);
1664 }
1665
1666 return retval;
1667 }
1668
1669 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1670 {
1671 int retval;
1672 if (!target_was_examined(target))
1673 {
1674 LOG_ERROR("Target not examined yet");
1675 return ERROR_FAIL;
1676 }
1677
1678 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1679 address, value);
1680
1681 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1682 {
1683 LOG_DEBUG("failed: %i", retval);
1684 }
1685
1686 return retval;
1687 }
1688
1689 int target_register_user_commands(struct command_context_s *cmd_ctx)
1690 {
1691 int retval = ERROR_OK;
1692
1693
1694 /* script procedures */
1695 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1696 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1697 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH = 32/16/8> <ADDRESS> <COUNT>");
1698
1699 register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1700 "same args as load_image, image stored in memory - mainly for profiling purposes");
1701
1702 register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1703 "loads active fast load image to current target - mainly for profiling purposes");
1704
1705
1706 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1707 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1708 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1709 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1710 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1711 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1712 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1713 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run | halt | init] - default is run");
1714 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1715
1716 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words [phys] <addr> [count]");
1717 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words [phys] <addr> [count]");
1718 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes [phys] <addr> [count]");
1719
1720 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word [phys] <addr> <value> [count]");
1721 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word [phys] <addr> <value> [count]");
1722 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte [phys] <addr> <value> [count]");
1723
1724 register_command(cmd_ctx, NULL, "bp",
1725 handle_bp_command, COMMAND_EXEC,
1726 "list or set breakpoint [<address> <length> [hw]]");
1727 register_command(cmd_ctx, NULL, "rbp",
1728 handle_rbp_command, COMMAND_EXEC,
1729 "remove breakpoint <address>");
1730 register_command(cmd_ctx, NULL, "wp",
1731 handle_wp_command, COMMAND_EXEC,
1732 "list or set watchpoint "
1733 "[<address> <length> <r/w/a> [value] [mask]]");
1734 register_command(cmd_ctx, NULL, "rwp",
1735 handle_rwp_command, COMMAND_EXEC,
1736 "remove watchpoint <address>");
1737
1738 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1739 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1740 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1741 register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1742
1743 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1744 return retval;
1745 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1746 return retval;
1747
1748 return retval;
1749 }
1750
1751 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1752 {
1753 target_t *target = all_targets;
1754
1755 if (argc == 1)
1756 {
1757 target = get_target(args[0]);
1758 if (target == NULL) {
1759 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1760 goto DumpTargets;
1761 }
1762 if (!target->tap->enabled) {
1763 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1764 "can't be the current target\n",
1765 target->tap->dotted_name);
1766 return ERROR_FAIL;
1767 }
1768
1769 cmd_ctx->current_target = target->target_number;
1770 return ERROR_OK;
1771 }
1772 DumpTargets:
1773
1774 target = all_targets;
1775 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1776 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1777 while (target)
1778 {
1779 const char *state;
1780 char marker = ' ';
1781
1782 if (target->tap->enabled)
1783 state = target_state_name( target );
1784 else
1785 state = "tap-disabled";
1786
1787 if (cmd_ctx->current_target == target->target_number)
1788 marker = '*';
1789
1790 /* keep columns lined up to match the headers above */
1791 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1792 target->target_number,
1793 marker,
1794 target->cmd_name,
1795 target_get_name(target),
1796 Jim_Nvp_value2name_simple(nvp_target_endian,
1797 target->endianness)->name,
1798 target->tap->dotted_name,
1799 state);
1800 target = target->next;
1801 }
1802
1803 return ERROR_OK;
1804 }
1805
1806 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1807
1808 static int powerDropout;
1809 static int srstAsserted;
1810
1811 static int runPowerRestore;
1812 static int runPowerDropout;
1813 static int runSrstAsserted;
1814 static int runSrstDeasserted;
1815
1816 static int sense_handler(void)
1817 {
1818 static int prevSrstAsserted = 0;
1819 static int prevPowerdropout = 0;
1820
1821 int retval;
1822 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1823 return retval;
1824
1825 int powerRestored;
1826 powerRestored = prevPowerdropout && !powerDropout;
1827 if (powerRestored)
1828 {
1829 runPowerRestore = 1;
1830 }
1831
1832 long long current = timeval_ms();
1833 static long long lastPower = 0;
1834 int waitMore = lastPower + 2000 > current;
1835 if (powerDropout && !waitMore)
1836 {
1837 runPowerDropout = 1;
1838 lastPower = current;
1839 }
1840
1841 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1842 return retval;
1843
1844 int srstDeasserted;
1845 srstDeasserted = prevSrstAsserted && !srstAsserted;
1846
1847 static long long lastSrst = 0;
1848 waitMore = lastSrst + 2000 > current;
1849 if (srstDeasserted && !waitMore)
1850 {
1851 runSrstDeasserted = 1;
1852 lastSrst = current;
1853 }
1854
1855 if (!prevSrstAsserted && srstAsserted)
1856 {
1857 runSrstAsserted = 1;
1858 }
1859
1860 prevSrstAsserted = srstAsserted;
1861 prevPowerdropout = powerDropout;
1862
1863 if (srstDeasserted || powerRestored)
1864 {
1865 /* Other than logging the event we can't do anything here.
1866 * Issuing a reset is a particularly bad idea as we might
1867 * be inside a reset already.
1868 */
1869 }
1870
1871 return ERROR_OK;
1872 }
1873
1874 static void target_call_event_callbacks_all(enum target_event e) {
1875 target_t *target;
1876 target = all_targets;
1877 while (target) {
1878 target_call_event_callbacks(target, e);
1879 target = target->next;
1880 }
1881 }
1882
1883 /* process target state changes */
1884 int handle_target(void *priv)
1885 {
1886 int retval = ERROR_OK;
1887
1888 /* we do not want to recurse here... */
1889 static int recursive = 0;
1890 if (! recursive)
1891 {
1892 recursive = 1;
1893 sense_handler();
1894 /* danger! running these procedures can trigger srst assertions and power dropouts.
1895 * We need to avoid an infinite loop/recursion here and we do that by
1896 * clearing the flags after running these events.
1897 */
1898 int did_something = 0;
1899 if (runSrstAsserted)
1900 {
1901 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1902 Jim_Eval(interp, "srst_asserted");
1903 did_something = 1;
1904 }
1905 if (runSrstDeasserted)
1906 {
1907 Jim_Eval(interp, "srst_deasserted");
1908 did_something = 1;
1909 }
1910 if (runPowerDropout)
1911 {
1912 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1913 Jim_Eval(interp, "power_dropout");
1914 did_something = 1;
1915 }
1916 if (runPowerRestore)
1917 {
1918 Jim_Eval(interp, "power_restore");
1919 did_something = 1;
1920 }
1921
1922 if (did_something)
1923 {
1924 /* clear detect flags */
1925 sense_handler();
1926 }
1927
1928 /* clear action flags */
1929
1930 runSrstAsserted = 0;
1931 runSrstDeasserted = 0;
1932 runPowerRestore = 0;
1933 runPowerDropout = 0;
1934
1935 recursive = 0;
1936 }
1937
1938 /* Poll targets for state changes unless that's globally disabled.
1939 * Skip targets that are currently disabled.
1940 */
1941 for (target_t *target = all_targets;
1942 is_jtag_poll_safe() && target;
1943 target = target->next)
1944 {
1945 if (!target->tap->enabled)
1946 continue;
1947
1948 /* only poll target if we've got power and srst isn't asserted */
1949 if (!powerDropout && !srstAsserted)
1950 {
1951 /* polling may fail silently until the target has been examined */
1952 if ((retval = target_poll(target)) != ERROR_OK)
1953 {
1954 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1955 return retval;
1956 }
1957 }
1958 }
1959
1960 return retval;
1961 }
1962
1963 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1964 {
1965 target_t *target;
1966 reg_t *reg = NULL;
1967 int count = 0;
1968 char *value;
1969
1970 LOG_DEBUG("-");
1971
1972 target = get_current_target(cmd_ctx);
1973
1974 /* list all available registers for the current target */
1975 if (argc == 0)
1976 {
1977 reg_cache_t *cache = target->reg_cache;
1978
1979 count = 0;
1980 while (cache)
1981 {
1982 int i;
1983
1984 command_print(cmd_ctx, "===== %s", cache->name);
1985
1986 for (i = 0, reg = cache->reg_list;
1987 i < cache->num_regs;
1988 i++, reg++, count++)
1989 {
1990 /* only print cached values if they are valid */
1991 if (reg->valid) {
1992 value = buf_to_str(reg->value,
1993 reg->size, 16);
1994 command_print(cmd_ctx,
1995 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1996 count, reg->name,
1997 reg->size, value,
1998 reg->dirty
1999 ? " (dirty)"
2000 : "");
2001 free(value);
2002 } else {
2003 command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
2004 count, reg->name,
2005 reg->size) ;
2006 }
2007 }
2008 cache = cache->next;
2009 }
2010
2011 return ERROR_OK;
2012 }
2013
2014 /* access a single register by its ordinal number */
2015 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
2016 {
2017 unsigned num;
2018 COMMAND_PARSE_NUMBER(uint, args[0], num);
2019
2020 reg_cache_t *cache = target->reg_cache;
2021 count = 0;
2022 while (cache)
2023 {
2024 int i;
2025 for (i = 0; i < cache->num_regs; i++)
2026 {
2027 if (count++ == (int)num)
2028 {
2029 reg = &cache->reg_list[i];
2030 break;
2031 }
2032 }
2033 if (reg)
2034 break;
2035 cache = cache->next;
2036 }
2037
2038 if (!reg)
2039 {
2040 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2041 return ERROR_OK;
2042 }
2043 } else /* access a single register by its name */
2044 {
2045 reg = register_get_by_name(target->reg_cache, args[0], 1);
2046
2047 if (!reg)
2048 {
2049 command_print(cmd_ctx, "register %s not found in current target", args[0]);
2050 return ERROR_OK;
2051 }
2052 }
2053
2054 /* display a register */
2055 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
2056 {
2057 if ((argc == 2) && (strcmp(args[1], "force") == 0))
2058 reg->valid = 0;
2059
2060 if (reg->valid == 0)
2061 {
2062 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
2063 arch_type->get(reg);
2064 }
2065 value = buf_to_str(reg->value, reg->size, 16);
2066 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2067 free(value);
2068 return ERROR_OK;
2069 }
2070
2071 /* set register value */
2072 if (argc == 2)
2073 {
2074 uint8_t *buf = malloc(CEIL(reg->size, 8));
2075 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
2076
2077 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
2078 arch_type->set(reg, buf);
2079
2080 value = buf_to_str(reg->value, reg->size, 16);
2081 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2082 free(value);
2083
2084 free(buf);
2085
2086 return ERROR_OK;
2087 }
2088
2089 command_print(cmd_ctx, "usage: reg <#|name> [value]");
2090
2091 return ERROR_OK;
2092 }
2093
2094 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2095 {
2096 int retval = ERROR_OK;
2097 target_t *target = get_current_target(cmd_ctx);
2098
2099 if (argc == 0)
2100 {
2101 command_print(cmd_ctx, "background polling: %s",
2102 jtag_poll_get_enabled() ? "on" : "off");
2103 command_print(cmd_ctx, "TAP: %s (%s)",
2104 target->tap->dotted_name,
2105 target->tap->enabled ? "enabled" : "disabled");
2106 if (!target->tap->enabled)
2107 return ERROR_OK;
2108 if ((retval = target_poll(target)) != ERROR_OK)
2109 return retval;
2110 if ((retval = target_arch_state(target)) != ERROR_OK)
2111 return retval;
2112
2113 }
2114 else if (argc == 1)
2115 {
2116 if (strcmp(args[0], "on") == 0)
2117 {
2118 jtag_poll_set_enabled(true);
2119 }
2120 else if (strcmp(args[0], "off") == 0)
2121 {
2122 jtag_poll_set_enabled(false);
2123 }
2124 else
2125 {
2126 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2127 }
2128 } else
2129 {
2130 return ERROR_COMMAND_SYNTAX_ERROR;
2131 }
2132
2133 return retval;
2134 }
2135
2136 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2137 {
2138 if (argc > 1)
2139 return ERROR_COMMAND_SYNTAX_ERROR;
2140
2141 unsigned ms = 5000;
2142 if (1 == argc)
2143 {
2144 int retval = parse_uint(args[0], &ms);
2145 if (ERROR_OK != retval)
2146 {
2147 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
2148 return ERROR_COMMAND_SYNTAX_ERROR;
2149 }
2150 // convert seconds (given) to milliseconds (needed)
2151 ms *= 1000;
2152 }
2153
2154 target_t *target = get_current_target(cmd_ctx);
2155 return target_wait_state(target, TARGET_HALTED, ms);
2156 }
2157
2158 /* wait for target state to change. The trick here is to have a low
2159 * latency for short waits and not to suck up all the CPU time
2160 * on longer waits.
2161 *
2162 * After 500ms, keep_alive() is invoked
2163 */
2164 int target_wait_state(target_t *target, enum target_state state, int ms)
2165 {
2166 int retval;
2167 long long then = 0, cur;
2168 int once = 1;
2169
2170 for (;;)
2171 {
2172 if ((retval = target_poll(target)) != ERROR_OK)
2173 return retval;
2174 if (target->state == state)
2175 {
2176 break;
2177 }
2178 cur = timeval_ms();
2179 if (once)
2180 {
2181 once = 0;
2182 then = timeval_ms();
2183 LOG_DEBUG("waiting for target %s...",
2184 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2185 }
2186
2187 if (cur-then > 500)
2188 {
2189 keep_alive();
2190 }
2191
2192 if ((cur-then) > ms)
2193 {
2194 LOG_ERROR("timed out while waiting for target %s",
2195 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2196 return ERROR_FAIL;
2197 }
2198 }
2199
2200 return ERROR_OK;
2201 }
2202
2203 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2204 {
2205 LOG_DEBUG("-");
2206
2207 target_t *target = get_current_target(cmd_ctx);
2208 int retval = target_halt(target);
2209 if (ERROR_OK != retval)
2210 return retval;
2211
2212 if (argc == 1)
2213 {
2214 unsigned wait;
2215 retval = parse_uint(args[0], &wait);
2216 if (ERROR_OK != retval)
2217 return ERROR_COMMAND_SYNTAX_ERROR;
2218 if (!wait)
2219 return ERROR_OK;
2220 }
2221
2222 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
2223 }
2224
2225 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2226 {
2227 target_t *target = get_current_target(cmd_ctx);
2228
2229 LOG_USER("requesting target halt and executing a soft reset");
2230
2231 target->type->soft_reset_halt(target);
2232
2233 return ERROR_OK;
2234 }
2235
2236 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2237 {
2238 if (argc > 1)
2239 return ERROR_COMMAND_SYNTAX_ERROR;
2240
2241 enum target_reset_mode reset_mode = RESET_RUN;
2242 if (argc == 1)
2243 {
2244 const Jim_Nvp *n;
2245 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2246 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2247 return ERROR_COMMAND_SYNTAX_ERROR;
2248 }
2249 reset_mode = n->value;
2250 }
2251
2252 /* reset *all* targets */
2253 return target_process_reset(cmd_ctx, reset_mode);
2254 }
2255
2256
2257 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2258 {
2259 int current = 1;
2260 if (argc > 1)
2261 return ERROR_COMMAND_SYNTAX_ERROR;
2262
2263 target_t *target = get_current_target(cmd_ctx);
2264 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2265
2266 /* with no args, resume from current pc, addr = 0,
2267 * with one arguments, addr = args[0],
2268 * handle breakpoints, not debugging */
2269 uint32_t addr = 0;
2270 if (argc == 1)
2271 {
2272 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2273 current = 0;
2274 }
2275
2276 return target_resume(target, current, addr, 1, 0);
2277 }
2278
2279 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2280 {
2281 if (argc > 1)
2282 return ERROR_COMMAND_SYNTAX_ERROR;
2283
2284 LOG_DEBUG("-");
2285
2286 /* with no args, step from current pc, addr = 0,
2287 * with one argument addr = args[0],
2288 * handle breakpoints, debugging */
2289 uint32_t addr = 0;
2290 int current_pc = 1;
2291 if (argc == 1)
2292 {
2293 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2294 current_pc = 0;
2295 }
2296
2297 target_t *target = get_current_target(cmd_ctx);
2298
2299 return target->type->step(target, current_pc, addr, 1);
2300 }
2301
2302 static void handle_md_output(struct command_context_s *cmd_ctx,
2303 struct target_s *target, uint32_t address, unsigned size,
2304 unsigned count, const uint8_t *buffer)
2305 {
2306 const unsigned line_bytecnt = 32;
2307 unsigned line_modulo = line_bytecnt / size;
2308
2309 char output[line_bytecnt * 4 + 1];
2310 unsigned output_len = 0;
2311
2312 const char *value_fmt;
2313 switch (size) {
2314 case 4: value_fmt = "%8.8x "; break;
2315 case 2: value_fmt = "%4.2x "; break;
2316 case 1: value_fmt = "%2.2x "; break;
2317 default:
2318 LOG_ERROR("invalid memory read size: %u", size);
2319 exit(-1);
2320 }
2321
2322 for (unsigned i = 0; i < count; i++)
2323 {
2324 if (i % line_modulo == 0)
2325 {
2326 output_len += snprintf(output + output_len,
2327 sizeof(output) - output_len,
2328 "0x%8.8x: ",
2329 (unsigned)(address + (i*size)));
2330 }
2331
2332 uint32_t value = 0;
2333 const uint8_t *value_ptr = buffer + i * size;
2334 switch (size) {
2335 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2336 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2337 case 1: value = *value_ptr;
2338 }
2339 output_len += snprintf(output + output_len,
2340 sizeof(output) - output_len,
2341 value_fmt, value);
2342
2343 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2344 {
2345 command_print(cmd_ctx, "%s", output);
2346 output_len = 0;
2347 }
2348 }
2349 }
2350
2351 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2352 {
2353 if (argc < 1)
2354 return ERROR_COMMAND_SYNTAX_ERROR;
2355
2356 unsigned size = 0;
2357 switch (cmd[2]) {
2358 case 'w': size = 4; break;
2359 case 'h': size = 2; break;
2360 case 'b': size = 1; break;
2361 default: return ERROR_COMMAND_SYNTAX_ERROR;
2362 }
2363
2364 bool physical=strcmp(args[0], "phys")==0;
2365 int (*fn)(struct target_s *target,
2366 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2367 if (physical)
2368 {
2369 argc--;
2370 args++;
2371 fn=target_read_phys_memory;
2372 } else
2373 {
2374 fn=target_read_memory;
2375 }
2376 if ((argc < 1) || (argc > 2))
2377 {
2378 return ERROR_COMMAND_SYNTAX_ERROR;
2379 }
2380
2381 uint32_t address;
2382 COMMAND_PARSE_NUMBER(u32, args[0], address);
2383
2384 unsigned count = 1;
2385 if (argc == 2)
2386 COMMAND_PARSE_NUMBER(uint, args[1], count);
2387
2388 uint8_t *buffer = calloc(count, size);
2389
2390 target_t *target = get_current_target(cmd_ctx);
2391 int retval = fn(target, address, size, count, buffer);
2392 if (ERROR_OK == retval)
2393 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2394
2395 free(buffer);
2396
2397 return retval;
2398 }
2399
2400 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2401 {
2402 if (argc < 2)
2403 {
2404 return ERROR_COMMAND_SYNTAX_ERROR;
2405 }
2406 bool physical=strcmp(args[0], "phys")==0;
2407 int (*fn)(struct target_s *target,
2408 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2409 if (physical)
2410 {
2411 argc--;
2412 args++;
2413 fn=target_write_phys_memory;
2414 } else
2415 {
2416 fn=target_write_memory;
2417 }
2418 if ((argc < 2) || (argc > 3))
2419 return ERROR_COMMAND_SYNTAX_ERROR;
2420
2421 uint32_t address;
2422 COMMAND_PARSE_NUMBER(u32, args[0], address);
2423
2424 uint32_t value;
2425 COMMAND_PARSE_NUMBER(u32, args[1], value);
2426
2427 unsigned count = 1;
2428 if (argc == 3)
2429 COMMAND_PARSE_NUMBER(uint, args[2], count);
2430
2431 target_t *target = get_current_target(cmd_ctx);
2432 unsigned wordsize;
2433 uint8_t value_buf[4];
2434 switch (cmd[2])
2435 {
2436 case 'w':
2437 wordsize = 4;
2438 target_buffer_set_u32(target, value_buf, value);
2439 break;
2440 case 'h':
2441 wordsize = 2;
2442 target_buffer_set_u16(target, value_buf, value);
2443 break;
2444 case 'b':
2445 wordsize = 1;
2446 value_buf[0] = value;
2447 break;
2448 default:
2449 return ERROR_COMMAND_SYNTAX_ERROR;
2450 }
2451 for (unsigned i = 0; i < count; i++)
2452 {
2453 int retval = fn(target,
2454 address + i * wordsize, wordsize, 1, value_buf);
2455 if (ERROR_OK != retval)
2456 return retval;
2457 keep_alive();
2458 }
2459
2460 return ERROR_OK;
2461
2462 }
2463
2464 static int parse_load_image_command_args(struct command_context_s *cmd_ctx,
2465 char **args, int argc, image_t *image,
2466 uint32_t *min_address, uint32_t *max_address)
2467 {
2468 if (argc < 1 || argc > 5)
2469 return ERROR_COMMAND_SYNTAX_ERROR;
2470
2471 /* a base address isn't always necessary,
2472 * default to 0x0 (i.e. don't relocate) */
2473 if (argc >= 2)
2474 {
2475 uint32_t addr;
2476 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2477 image->base_address = addr;
2478 image->base_address_set = 1;
2479 }
2480 else
2481 image->base_address_set = 0;
2482
2483 image->start_address_set = 0;
2484
2485 if (argc >= 4)
2486 {
2487 COMMAND_PARSE_NUMBER(u32, args[3], *min_address);
2488 }
2489 if (argc == 5)
2490 {
2491 COMMAND_PARSE_NUMBER(u32, args[4], *max_address);
2492 // use size (given) to find max (required)
2493 *max_address += *min_address;
2494 }
2495
2496 if (*min_address > *max_address)
2497 return ERROR_COMMAND_SYNTAX_ERROR;
2498
2499 return ERROR_OK;
2500 }
2501
2502 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2503 {
2504 uint8_t *buffer;
2505 uint32_t buf_cnt;
2506 uint32_t image_size;
2507 uint32_t min_address = 0;
2508 uint32_t max_address = 0xffffffff;
2509 int i;
2510 int retvaltemp;
2511
2512 image_t image;
2513
2514 duration_t duration;
2515 char *duration_text;
2516
2517 int retval = parse_load_image_command_args(cmd_ctx, args, argc,
2518 &image, &min_address, &max_address);
2519 if (ERROR_OK != retval)
2520 return retval;
2521
2522 target_t *target = get_current_target(cmd_ctx);
2523 duration_start_measure(&duration);
2524
2525 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2526 {
2527 return ERROR_OK;
2528 }
2529
2530 image_size = 0x0;
2531 retval = ERROR_OK;
2532 for (i = 0; i < image.num_sections; i++)
2533 {
2534 buffer = malloc(image.sections[i].size);
2535 if (buffer == NULL)
2536 {
2537 command_print(cmd_ctx,
2538 "error allocating buffer for section (%d bytes)",
2539 (int)(image.sections[i].size));
2540 break;
2541 }
2542
2543 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2544 {
2545 free(buffer);
2546 break;
2547 }
2548
2549 uint32_t offset = 0;
2550 uint32_t length = buf_cnt;
2551
2552 /* DANGER!!! beware of unsigned comparision here!!! */
2553
2554 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2555 (image.sections[i].base_address < max_address))
2556 {
2557 if (image.sections[i].base_address < min_address)
2558 {
2559 /* clip addresses below */
2560 offset += min_address-image.sections[i].base_address;
2561 length -= offset;
2562 }
2563
2564 if (image.sections[i].base_address + buf_cnt > max_address)
2565 {
2566 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2567 }
2568
2569 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2570 {
2571 free(buffer);
2572 break;
2573 }
2574 image_size += length;
2575 command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2576 (unsigned int)length,
2577 image.sections[i].base_address + offset);
2578 }
2579
2580 free(buffer);
2581 }
2582
2583 if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2584 {
2585 image_close(&image);
2586 return retvaltemp;
2587 }
2588
2589 if (retval == ERROR_OK)
2590 {
2591 command_print(cmd_ctx, "downloaded %u byte in %s",
2592 (unsigned int)image_size,
2593 duration_text);
2594 }
2595 free(duration_text);
2596
2597 image_close(&image);
2598
2599 return retval;
2600
2601 }
2602
2603 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2604 {
2605 fileio_t fileio;
2606
2607 uint8_t buffer[560];
2608 int retvaltemp;
2609
2610 duration_t duration;
2611 char *duration_text;
2612
2613 target_t *target = get_current_target(cmd_ctx);
2614
2615 if (argc != 3)
2616 {
2617 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2618 return ERROR_OK;
2619 }
2620
2621 uint32_t address;
2622 COMMAND_PARSE_NUMBER(u32, args[1], address);
2623 uint32_t size;
2624 COMMAND_PARSE_NUMBER(u32, args[2], size);
2625
2626 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2627 {
2628 return ERROR_OK;
2629 }
2630
2631 duration_start_measure(&duration);
2632
2633 int retval = ERROR_OK;
2634 while (size > 0)
2635 {
2636 uint32_t size_written;
2637 uint32_t this_run_size = (size > 560) ? 560 : size;
2638 retval = target_read_buffer(target, address, this_run_size, buffer);
2639 if (retval != ERROR_OK)
2640 {
2641 break;
2642 }
2643
2644 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2645 if (retval != ERROR_OK)
2646 {
2647 break;
2648 }
2649
2650 size -= this_run_size;
2651 address += this_run_size;
2652 }
2653
2654 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2655 return retvaltemp;
2656
2657 if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2658 return retvaltemp;
2659
2660 if (retval == ERROR_OK)
2661 {
2662 command_print(cmd_ctx, "dumped %lld byte in %s",
2663 fileio.size, duration_text);
2664 free(duration_text);
2665 }
2666
2667 return retval;
2668 }
2669
2670 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2671 {
2672 uint8_t *buffer;
2673 uint32_t buf_cnt;
2674 uint32_t image_size;
2675 int i;
2676 int retval, retvaltemp;
2677 uint32_t checksum = 0;
2678 uint32_t mem_checksum = 0;
2679
2680 image_t image;
2681
2682 duration_t duration;
2683 char *duration_text;
2684
2685 target_t *target = get_current_target(cmd_ctx);
2686
2687 if (argc < 1)
2688 {
2689 return ERROR_COMMAND_SYNTAX_ERROR;
2690 }
2691
2692 if (!target)
2693 {
2694 LOG_ERROR("no target selected");
2695 return ERROR_FAIL;
2696 }
2697
2698 duration_start_measure(&duration);
2699
2700 if (argc >= 2)
2701 {
2702 uint32_t addr;
2703 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2704 image.base_address = addr;
2705 image.base_address_set = 1;
2706 }
2707 else
2708 {
2709 image.base_address_set = 0;
2710 image.base_address = 0x0;
2711 }
2712
2713 image.start_address_set = 0;
2714
2715 if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2716 {
2717 return retval;
2718 }
2719
2720 image_size = 0x0;
2721 retval = ERROR_OK;
2722 for (i = 0; i < image.num_sections; i++)
2723 {
2724 buffer = malloc(image.sections[i].size);
2725 if (buffer == NULL)
2726 {
2727 command_print(cmd_ctx,
2728 "error allocating buffer for section (%d bytes)",
2729 (int)(image.sections[i].size));
2730 break;
2731 }
2732 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2733 {
2734 free(buffer);
2735 break;
2736 }
2737
2738 if (verify)
2739 {
2740 /* calculate checksum of image */
2741 image_calculate_checksum(buffer, buf_cnt, &checksum);
2742
2743 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2744 if (retval != ERROR_OK)
2745 {
2746 free(buffer);
2747 break;
2748 }
2749
2750 if (checksum != mem_checksum)
2751 {
2752 /* failed crc checksum, fall back to a binary compare */
2753 uint8_t *data;
2754
2755 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2756
2757 data = (uint8_t*)malloc(buf_cnt);
2758
2759 /* Can we use 32bit word accesses? */
2760 int size = 1;
2761 int count = buf_cnt;
2762 if ((count % 4) == 0)
2763 {
2764 size *= 4;
2765 count /= 4;
2766 }
2767 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2768 if (retval == ERROR_OK)
2769 {
2770 uint32_t t;
2771 for (t = 0; t < buf_cnt; t++)
2772 {
2773 if (data[t] != buffer[t])
2774 {
2775 command_print(cmd_ctx,
2776 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2777 (unsigned)(t + image.sections[i].base_address),
2778 data[t],
2779 buffer[t]);
2780 free(data);
2781 free(buffer);
2782 retval = ERROR_FAIL;
2783 goto done;
2784 }
2785 if ((t%16384) == 0)
2786 {
2787 keep_alive();
2788 }
2789 }
2790 }
2791
2792 free(data);
2793 }
2794 } else
2795 {
2796 command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2797 image.sections[i].base_address,
2798 buf_cnt);
2799 }
2800
2801 free(buffer);
2802 image_size += buf_cnt;
2803 }
2804 done:
2805
2806 if ((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2807 {
2808 image_close(&image);
2809 return retvaltemp;
2810 }
2811
2812 if (retval == ERROR_OK)
2813 {
2814 command_print(cmd_ctx, "verified %u bytes in %s",
2815 (unsigned int)image_size,
2816 duration_text);
2817 }
2818 free(duration_text);
2819
2820 image_close(&image);
2821
2822 return retval;
2823 }
2824
2825 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2826 {
2827 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2828 }
2829
2830 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2831 {
2832 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2833 }
2834
2835 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2836 {
2837 target_t *target = get_current_target(cmd_ctx);
2838 breakpoint_t *breakpoint = target->breakpoints;
2839 while (breakpoint)
2840 {
2841 if (breakpoint->type == BKPT_SOFT)
2842 {
2843 char* buf = buf_to_str(breakpoint->orig_instr,
2844 breakpoint->length, 16);
2845 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2846 breakpoint->address,
2847 breakpoint->length,
2848 breakpoint->set, buf);
2849 free(buf);
2850 }
2851 else
2852 {
2853 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2854 breakpoint->address,
2855 breakpoint->length, breakpoint->set);
2856 }
2857
2858 breakpoint = breakpoint->next;
2859 }
2860 return ERROR_OK;
2861 }
2862
2863 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2864 uint32_t addr, uint32_t length, int hw)
2865 {
2866 target_t *target = get_current_target(cmd_ctx);
2867 int retval = breakpoint_add(target, addr, length, hw);
2868 if (ERROR_OK == retval)
2869 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2870 else
2871 LOG_ERROR("Failure setting breakpoint");
2872 return retval;
2873 }
2874
2875 static int handle_bp_command(struct command_context_s *cmd_ctx,
2876 char *cmd, char **args, int argc)
2877 {
2878 if (argc == 0)
2879 return handle_bp_command_list(cmd_ctx);
2880
2881 if (argc < 2 || argc > 3)
2882 {
2883 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2884 return ERROR_COMMAND_SYNTAX_ERROR;
2885 }
2886
2887 uint32_t addr;
2888 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2889 uint32_t length;
2890 COMMAND_PARSE_NUMBER(u32, args[1], length);
2891
2892 int hw = BKPT_SOFT;
2893 if (argc == 3)
2894 {
2895 if (strcmp(args[2], "hw") == 0)
2896 hw = BKPT_HARD;
2897 else
2898 return ERROR_COMMAND_SYNTAX_ERROR;
2899 }
2900
2901 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2902 }
2903
2904 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2905 {
2906 if (argc != 1)
2907 return ERROR_COMMAND_SYNTAX_ERROR;
2908
2909 uint32_t addr;
2910 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2911
2912 target_t *target = get_current_target(cmd_ctx);
2913 breakpoint_remove(target, addr);
2914
2915 return ERROR_OK;
2916 }
2917
2918 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2919 {
2920 target_t *target = get_current_target(cmd_ctx);
2921
2922 if (argc == 0)
2923 {
2924 watchpoint_t *watchpoint = target->watchpoints;
2925
2926 while (watchpoint)
2927 {
2928 command_print(cmd_ctx,
2929 "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
2930 watchpoint->address,
2931 watchpoint->length,
2932 (int)(watchpoint->rw),
2933 watchpoint->value,
2934 watchpoint->mask);
2935 watchpoint = watchpoint->next;
2936 }
2937 return ERROR_OK;
2938 }
2939
2940 enum watchpoint_rw type = WPT_ACCESS;
2941 uint32_t addr = 0;
2942 uint32_t length = 0;
2943 uint32_t data_value = 0x0;
2944 uint32_t data_mask = 0xffffffff;
2945
2946 switch (argc)
2947 {
2948 case 5:
2949 COMMAND_PARSE_NUMBER(u32, args[4], data_mask);
2950 // fall through
2951 case 4:
2952 COMMAND_PARSE_NUMBER(u32, args[3], data_value);
2953 // fall through
2954 case 3:
2955 switch (args[2][0])
2956 {
2957 case 'r':
2958 type = WPT_READ;
2959 break;
2960 case 'w':
2961 type = WPT_WRITE;
2962 break;
2963 case 'a':
2964 type = WPT_ACCESS;
2965 break;
2966 default:
2967 LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2968 return ERROR_COMMAND_SYNTAX_ERROR;
2969 }
2970 // fall through
2971 case 2:
2972 COMMAND_PARSE_NUMBER(u32, args[1], length);
2973 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2974 break;
2975
2976 default:
2977 command_print(cmd_ctx, "usage: wp [address length "
2978 "[(r|w|a) [value [mask]]]]");
2979 return ERROR_COMMAND_SYNTAX_ERROR;
2980 }
2981
2982 int retval = watchpoint_add(target, addr, length, type,
2983 data_value, data_mask);
2984 if (ERROR_OK != retval)
2985 LOG_ERROR("Failure setting watchpoints");
2986
2987 return retval;
2988 }
2989
2990 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2991 {
2992 if (argc != 1)
2993 return ERROR_COMMAND_SYNTAX_ERROR;
2994
2995 uint32_t addr;
2996 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2997
2998 target_t *target = get_current_target(cmd_ctx);
2999 watchpoint_remove(target, addr);
3000
3001 return ERROR_OK;
3002 }
3003
3004
3005 /**
3006 * Translate a virtual address to a physical address.
3007 *
3008 * The low-level target implementation must have logged a detailed error
3009 * which is forwarded to telnet/GDB session.
3010 */
3011 static int handle_virt2phys_command(command_context_t *cmd_ctx,
3012 char *cmd, char **args, int argc)
3013 {
3014 if (argc != 1)
3015 return ERROR_COMMAND_SYNTAX_ERROR;
3016
3017 uint32_t va;
3018 COMMAND_PARSE_NUMBER(u32, args[0], va);
3019 uint32_t pa;
3020
3021 target_t *target = get_current_target(cmd_ctx);
3022 int retval = target->type->virt2phys(target, va, &pa);
3023 if (retval == ERROR_OK)
3024 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
3025
3026 return retval;
3027 }
3028
3029 static void writeData(FILE *f, const void *data, size_t len)
3030 {
3031 size_t written = fwrite(data, 1, len, f);
3032 if (written != len)
3033 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3034 }
3035
3036 static void writeLong(FILE *f, int l)
3037 {
3038 int i;
3039 for (i = 0; i < 4; i++)
3040 {
3041 char c = (l >> (i*8))&0xff;
3042 writeData(f, &c, 1);
3043 }
3044
3045 }
3046
3047 static void writeString(FILE *f, char *s)
3048 {
3049 writeData(f, s, strlen(s));
3050 }
3051
3052 /* Dump a gmon.out histogram file. */
3053 static void writeGmon(uint32_t *samples, uint32_t sampleNum, char *filename)
3054 {
3055 uint32_t i;
3056 FILE *f = fopen(filename, "w");
3057 if (f == NULL)
3058 return;
3059 writeString(f, "gmon");
3060 writeLong(f, 0x00000001); /* Version */
3061 writeLong(f, 0); /* padding */
3062 writeLong(f, 0); /* padding */
3063 writeLong(f, 0); /* padding */
3064
3065 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3066 writeData(f, &zero, 1);
3067
3068 /* figure out bucket size */
3069 uint32_t min = samples[0];
3070 uint32_t max = samples[0];
3071 for (i = 0; i < sampleNum; i++)
3072 {
3073 if (min > samples[i])
3074 {
3075 min = samples[i];
3076 }
3077 if (max < samples[i])
3078 {
3079 max = samples[i];
3080 }
3081 }
3082
3083 int addressSpace = (max-min + 1);
3084
3085 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3086 uint32_t length = addressSpace;
3087 if (length > maxBuckets)
3088 {
3089 length = maxBuckets;
3090 }
3091 int *buckets = malloc(sizeof(int)*length);
3092 if (buckets == NULL)
3093 {
3094 fclose(f);
3095 return;
3096 }
3097 memset(buckets, 0, sizeof(int)*length);
3098 for (i = 0; i < sampleNum;i++)
3099 {
3100 uint32_t address = samples[i];
3101 long long a = address-min;
3102 long long b = length-1;
3103 long long c = addressSpace-1;
3104 int index = (a*b)/c; /* danger!!!! int32 overflows */
3105 buckets[index]++;
3106 }
3107
3108 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3109 writeLong(f, min); /* low_pc */
3110 writeLong(f, max); /* high_pc */
3111 writeLong(f, length); /* # of samples */
3112 writeLong(f, 64000000); /* 64MHz */
3113 writeString(f, "seconds");
3114 for (i = 0; i < (15-strlen("seconds")); i++)
3115 writeData(f, &zero, 1);
3116 writeString(f, "s");
3117
3118 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3119
3120 char *data = malloc(2*length);
3121 if (data != NULL)
3122 {
3123 for (i = 0; i < length;i++)
3124 {
3125 int val;
3126 val = buckets[i];
3127 if (val > 65535)
3128 {
3129 val = 65535;
3130 }
3131 data[i*2]=val&0xff;
3132 data[i*2 + 1]=(val >> 8)&0xff;
3133 }
3134 free(buckets);
3135 writeData(f, data, length * 2);
3136 free(data);
3137 } else
3138 {
3139 free(buckets);
3140 }
3141
3142 fclose(f);
3143 }
3144
3145