68f93210a5e400f6122b2147f70f34f641db08f1
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111
112 static struct target_type *target_types[] = {
113 &arm7tdmi_target,
114 &arm9tdmi_target,
115 &arm920t_target,
116 &arm720t_target,
117 &arm966e_target,
118 &arm946e_target,
119 &arm926ejs_target,
120 &fa526_target,
121 &feroceon_target,
122 &dragonite_target,
123 &xscale_target,
124 &cortexm_target,
125 &cortexa_target,
126 &cortexr4_target,
127 &arm11_target,
128 &ls1_sap_target,
129 &mips_m4k_target,
130 &avr_target,
131 &dsp563xx_target,
132 &dsp5680xx_target,
133 &testee_target,
134 &avr32_ap7k_target,
135 &hla_target,
136 &nds32_v2_target,
137 &nds32_v3_target,
138 &nds32_v3m_target,
139 &or1k_target,
140 &quark_x10xx_target,
141 &quark_d20xx_target,
142 &stm8_target,
143 &riscv_target,
144 #if BUILD_TARGET64
145 &aarch64_target,
146 #endif
147 NULL,
148 };
149
150 struct target *all_targets;
151 static struct target_event_callback *target_event_callbacks;
152 static struct target_timer_callback *target_timer_callbacks;
153 LIST_HEAD(target_reset_callback_list);
154 LIST_HEAD(target_trace_callback_list);
155 static const int polling_interval = 100;
156
157 static const Jim_Nvp nvp_assert[] = {
158 { .name = "assert", NVP_ASSERT },
159 { .name = "deassert", NVP_DEASSERT },
160 { .name = "T", NVP_ASSERT },
161 { .name = "F", NVP_DEASSERT },
162 { .name = "t", NVP_ASSERT },
163 { .name = "f", NVP_DEASSERT },
164 { .name = NULL, .value = -1 }
165 };
166
167 static const Jim_Nvp nvp_error_target[] = {
168 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
169 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
170 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
171 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
172 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
173 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
174 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
175 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
176 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
177 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
178 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
179 { .value = -1, .name = NULL }
180 };
181
182 static const char *target_strerror_safe(int err)
183 {
184 const Jim_Nvp *n;
185
186 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
187 if (n->name == NULL)
188 return "unknown";
189 else
190 return n->name;
191 }
192
193 static const Jim_Nvp nvp_target_event[] = {
194
195 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
196 { .value = TARGET_EVENT_HALTED, .name = "halted" },
197 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
198 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
199 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
200
201 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
202 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
203
204 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
205 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
206 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
207 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
208 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
209 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
210 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
211 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
212
213 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
214 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
215
216 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
217 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
218
219 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
220 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
221
222 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
223 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
224
225 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
226 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
227
228 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
229
230 { .name = NULL, .value = -1 }
231 };
232
233 static const Jim_Nvp nvp_target_state[] = {
234 { .name = "unknown", .value = TARGET_UNKNOWN },
235 { .name = "running", .value = TARGET_RUNNING },
236 { .name = "halted", .value = TARGET_HALTED },
237 { .name = "reset", .value = TARGET_RESET },
238 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
239 { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_debug_reason[] = {
243 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
244 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
245 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
246 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
247 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
248 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
249 { .name = "program-exit" , .value = DBG_REASON_EXIT },
250 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
251 { .name = NULL, .value = -1 },
252 };
253
254 static const Jim_Nvp nvp_target_endian[] = {
255 { .name = "big", .value = TARGET_BIG_ENDIAN },
256 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
257 { .name = "be", .value = TARGET_BIG_ENDIAN },
258 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
259 { .name = NULL, .value = -1 },
260 };
261
262 static const Jim_Nvp nvp_reset_modes[] = {
263 { .name = "unknown", .value = RESET_UNKNOWN },
264 { .name = "run" , .value = RESET_RUN },
265 { .name = "halt" , .value = RESET_HALT },
266 { .name = "init" , .value = RESET_INIT },
267 { .name = NULL , .value = -1 },
268 };
269
270 const char *debug_reason_name(struct target *t)
271 {
272 const char *cp;
273
274 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
275 t->debug_reason)->name;
276 if (!cp) {
277 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
278 cp = "(*BUG*unknown*BUG*)";
279 }
280 return cp;
281 }
282
283 const char *target_state_name(struct target *t)
284 {
285 const char *cp;
286 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
287 if (!cp) {
288 LOG_ERROR("Invalid target state: %d", (int)(t->state));
289 cp = "(*BUG*unknown*BUG*)";
290 }
291
292 if (!target_was_examined(t) && t->defer_examine)
293 cp = "examine deferred";
294
295 return cp;
296 }
297
298 const char *target_event_name(enum target_event event)
299 {
300 const char *cp;
301 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
302 if (!cp) {
303 LOG_ERROR("Invalid target event: %d", (int)(event));
304 cp = "(*BUG*unknown*BUG*)";
305 }
306 return cp;
307 }
308
309 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
310 {
311 const char *cp;
312 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
313 if (!cp) {
314 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
315 cp = "(*BUG*unknown*BUG*)";
316 }
317 return cp;
318 }
319
320 /* determine the number of the new target */
321 static int new_target_number(void)
322 {
323 struct target *t;
324 int x;
325
326 /* number is 0 based */
327 x = -1;
328 t = all_targets;
329 while (t) {
330 if (x < t->target_number)
331 x = t->target_number;
332 t = t->next;
333 }
334 return x + 1;
335 }
336
337 /* read a uint64_t from a buffer in target memory endianness */
338 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
339 {
340 if (target->endianness == TARGET_LITTLE_ENDIAN)
341 return le_to_h_u64(buffer);
342 else
343 return be_to_h_u64(buffer);
344 }
345
346 /* read a uint32_t from a buffer in target memory endianness */
347 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
348 {
349 if (target->endianness == TARGET_LITTLE_ENDIAN)
350 return le_to_h_u32(buffer);
351 else
352 return be_to_h_u32(buffer);
353 }
354
355 /* read a uint24_t from a buffer in target memory endianness */
356 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
357 {
358 if (target->endianness == TARGET_LITTLE_ENDIAN)
359 return le_to_h_u24(buffer);
360 else
361 return be_to_h_u24(buffer);
362 }
363
364 /* read a uint16_t from a buffer in target memory endianness */
365 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
366 {
367 if (target->endianness == TARGET_LITTLE_ENDIAN)
368 return le_to_h_u16(buffer);
369 else
370 return be_to_h_u16(buffer);
371 }
372
373 /* read a uint8_t from a buffer in target memory endianness */
374 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
375 {
376 return *buffer & 0x0ff;
377 }
378
379 /* write a uint64_t to a buffer in target memory endianness */
380 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
381 {
382 if (target->endianness == TARGET_LITTLE_ENDIAN)
383 h_u64_to_le(buffer, value);
384 else
385 h_u64_to_be(buffer, value);
386 }
387
388 /* write a uint32_t to a buffer in target memory endianness */
389 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
390 {
391 if (target->endianness == TARGET_LITTLE_ENDIAN)
392 h_u32_to_le(buffer, value);
393 else
394 h_u32_to_be(buffer, value);
395 }
396
397 /* write a uint24_t to a buffer in target memory endianness */
398 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
399 {
400 if (target->endianness == TARGET_LITTLE_ENDIAN)
401 h_u24_to_le(buffer, value);
402 else
403 h_u24_to_be(buffer, value);
404 }
405
406 /* write a uint16_t to a buffer in target memory endianness */
407 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
408 {
409 if (target->endianness == TARGET_LITTLE_ENDIAN)
410 h_u16_to_le(buffer, value);
411 else
412 h_u16_to_be(buffer, value);
413 }
414
415 /* write a uint8_t to a buffer in target memory endianness */
416 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
417 {
418 *buffer = value;
419 }
420
421 /* write a uint64_t array to a buffer in target memory endianness */
422 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
423 {
424 uint32_t i;
425 for (i = 0; i < count; i++)
426 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
427 }
428
429 /* write a uint32_t array to a buffer in target memory endianness */
430 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
431 {
432 uint32_t i;
433 for (i = 0; i < count; i++)
434 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
435 }
436
437 /* write a uint16_t array to a buffer in target memory endianness */
438 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
439 {
440 uint32_t i;
441 for (i = 0; i < count; i++)
442 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
443 }
444
445 /* write a uint64_t array to a buffer in target memory endianness */
446 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
447 {
448 uint32_t i;
449 for (i = 0; i < count; i++)
450 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
451 }
452
453 /* write a uint32_t array to a buffer in target memory endianness */
454 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
455 {
456 uint32_t i;
457 for (i = 0; i < count; i++)
458 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
459 }
460
461 /* write a uint16_t array to a buffer in target memory endianness */
462 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
463 {
464 uint32_t i;
465 for (i = 0; i < count; i++)
466 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
467 }
468
469 /* return a pointer to a configured target; id is name or number */
470 struct target *get_target(const char *id)
471 {
472 struct target *target;
473
474 /* try as tcltarget name */
475 for (target = all_targets; target; target = target->next) {
476 if (target_name(target) == NULL)
477 continue;
478 if (strcmp(id, target_name(target)) == 0)
479 return target;
480 }
481
482 /* It's OK to remove this fallback sometime after August 2010 or so */
483
484 /* no match, try as number */
485 unsigned num;
486 if (parse_uint(id, &num) != ERROR_OK)
487 return NULL;
488
489 for (target = all_targets; target; target = target->next) {
490 if (target->target_number == (int)num) {
491 LOG_WARNING("use '%s' as target identifier, not '%u'",
492 target_name(target), num);
493 return target;
494 }
495 }
496
497 return NULL;
498 }
499
500 /* returns a pointer to the n-th configured target */
501 struct target *get_target_by_num(int num)
502 {
503 struct target *target = all_targets;
504
505 while (target) {
506 if (target->target_number == num)
507 return target;
508 target = target->next;
509 }
510
511 return NULL;
512 }
513
514 struct target *get_current_target(struct command_context *cmd_ctx)
515 {
516 struct target *target = cmd_ctx->current_target_override
517 ? cmd_ctx->current_target_override
518 : cmd_ctx->current_target;
519
520 if (target == NULL) {
521 LOG_ERROR("BUG: current_target out of bounds");
522 exit(-1);
523 }
524
525 return target;
526 }
527
528 int target_poll(struct target *target)
529 {
530 int retval;
531
532 /* We can't poll until after examine */
533 if (!target_was_examined(target)) {
534 /* Fail silently lest we pollute the log */
535 return ERROR_FAIL;
536 }
537
538 retval = target->type->poll(target);
539 if (retval != ERROR_OK)
540 return retval;
541
542 if (target->halt_issued) {
543 if (target->state == TARGET_HALTED)
544 target->halt_issued = false;
545 else {
546 int64_t t = timeval_ms() - target->halt_issued_time;
547 if (t > DEFAULT_HALT_TIMEOUT) {
548 target->halt_issued = false;
549 LOG_INFO("Halt timed out, wake up GDB.");
550 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
551 }
552 }
553 }
554
555 return ERROR_OK;
556 }
557
558 int target_halt(struct target *target)
559 {
560 int retval;
561 /* We can't poll until after examine */
562 if (!target_was_examined(target)) {
563 LOG_ERROR("Target not examined yet");
564 return ERROR_FAIL;
565 }
566
567 retval = target->type->halt(target);
568 if (retval != ERROR_OK)
569 return retval;
570
571 target->halt_issued = true;
572 target->halt_issued_time = timeval_ms();
573
574 return ERROR_OK;
575 }
576
577 /**
578 * Make the target (re)start executing using its saved execution
579 * context (possibly with some modifications).
580 *
581 * @param target Which target should start executing.
582 * @param current True to use the target's saved program counter instead
583 * of the address parameter
584 * @param address Optionally used as the program counter.
585 * @param handle_breakpoints True iff breakpoints at the resumption PC
586 * should be skipped. (For example, maybe execution was stopped by
587 * such a breakpoint, in which case it would be counterprodutive to
588 * let it re-trigger.
589 * @param debug_execution False if all working areas allocated by OpenOCD
590 * should be released and/or restored to their original contents.
591 * (This would for example be true to run some downloaded "helper"
592 * algorithm code, which resides in one such working buffer and uses
593 * another for data storage.)
594 *
595 * @todo Resolve the ambiguity about what the "debug_execution" flag
596 * signifies. For example, Target implementations don't agree on how
597 * it relates to invalidation of the register cache, or to whether
598 * breakpoints and watchpoints should be enabled. (It would seem wrong
599 * to enable breakpoints when running downloaded "helper" algorithms
600 * (debug_execution true), since the breakpoints would be set to match
601 * target firmware being debugged, not the helper algorithm.... and
602 * enabling them could cause such helpers to malfunction (for example,
603 * by overwriting data with a breakpoint instruction. On the other
604 * hand the infrastructure for running such helpers might use this
605 * procedure but rely on hardware breakpoint to detect termination.)
606 */
607 int target_resume(struct target *target, int current, target_addr_t address,
608 int handle_breakpoints, int debug_execution)
609 {
610 int retval;
611
612 /* We can't poll until after examine */
613 if (!target_was_examined(target)) {
614 LOG_ERROR("Target not examined yet");
615 return ERROR_FAIL;
616 }
617
618 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
619
620 /* note that resume *must* be asynchronous. The CPU can halt before
621 * we poll. The CPU can even halt at the current PC as a result of
622 * a software breakpoint being inserted by (a bug?) the application.
623 */
624 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
625 if (retval != ERROR_OK)
626 return retval;
627
628 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
629
630 return retval;
631 }
632
633 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
634 {
635 char buf[100];
636 int retval;
637 Jim_Nvp *n;
638 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
639 if (n->name == NULL) {
640 LOG_ERROR("invalid reset mode");
641 return ERROR_FAIL;
642 }
643
644 struct target *target;
645 for (target = all_targets; target; target = target->next)
646 target_call_reset_callbacks(target, reset_mode);
647
648 /* disable polling during reset to make reset event scripts
649 * more predictable, i.e. dr/irscan & pathmove in events will
650 * not have JTAG operations injected into the middle of a sequence.
651 */
652 bool save_poll = jtag_poll_get_enabled();
653
654 jtag_poll_set_enabled(false);
655
656 sprintf(buf, "ocd_process_reset %s", n->name);
657 retval = Jim_Eval(cmd_ctx->interp, buf);
658
659 jtag_poll_set_enabled(save_poll);
660
661 if (retval != JIM_OK) {
662 Jim_MakeErrorMessage(cmd_ctx->interp);
663 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
664 return ERROR_FAIL;
665 }
666
667 /* We want any events to be processed before the prompt */
668 retval = target_call_timer_callbacks_now();
669
670 for (target = all_targets; target; target = target->next) {
671 target->type->check_reset(target);
672 target->running_alg = false;
673 }
674
675 return retval;
676 }
677
678 static int identity_virt2phys(struct target *target,
679 target_addr_t virtual, target_addr_t *physical)
680 {
681 *physical = virtual;
682 return ERROR_OK;
683 }
684
685 static int no_mmu(struct target *target, int *enabled)
686 {
687 *enabled = 0;
688 return ERROR_OK;
689 }
690
691 static int default_examine(struct target *target)
692 {
693 target_set_examined(target);
694 return ERROR_OK;
695 }
696
697 /* no check by default */
698 static int default_check_reset(struct target *target)
699 {
700 return ERROR_OK;
701 }
702
703 int target_examine_one(struct target *target)
704 {
705 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
706
707 int retval = target->type->examine(target);
708 if (retval != ERROR_OK)
709 return retval;
710
711 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
712
713 return ERROR_OK;
714 }
715
716 static int jtag_enable_callback(enum jtag_event event, void *priv)
717 {
718 struct target *target = priv;
719
720 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
721 return ERROR_OK;
722
723 jtag_unregister_event_callback(jtag_enable_callback, target);
724
725 return target_examine_one(target);
726 }
727
728 /* Targets that correctly implement init + examine, i.e.
729 * no communication with target during init:
730 *
731 * XScale
732 */
733 int target_examine(void)
734 {
735 int retval = ERROR_OK;
736 struct target *target;
737
738 for (target = all_targets; target; target = target->next) {
739 /* defer examination, but don't skip it */
740 if (!target->tap->enabled) {
741 jtag_register_event_callback(jtag_enable_callback,
742 target);
743 continue;
744 }
745
746 if (target->defer_examine)
747 continue;
748
749 retval = target_examine_one(target);
750 if (retval != ERROR_OK)
751 return retval;
752 }
753 return retval;
754 }
755
756 const char *target_type_name(struct target *target)
757 {
758 return target->type->name;
759 }
760
761 static int target_soft_reset_halt(struct target *target)
762 {
763 if (!target_was_examined(target)) {
764 LOG_ERROR("Target not examined yet");
765 return ERROR_FAIL;
766 }
767 if (!target->type->soft_reset_halt) {
768 LOG_ERROR("Target %s does not support soft_reset_halt",
769 target_name(target));
770 return ERROR_FAIL;
771 }
772 return target->type->soft_reset_halt(target);
773 }
774
775 /**
776 * Downloads a target-specific native code algorithm to the target,
777 * and executes it. * Note that some targets may need to set up, enable,
778 * and tear down a breakpoint (hard or * soft) to detect algorithm
779 * termination, while others may support lower overhead schemes where
780 * soft breakpoints embedded in the algorithm automatically terminate the
781 * algorithm.
782 *
783 * @param target used to run the algorithm
784 * @param arch_info target-specific description of the algorithm.
785 */
786 int target_run_algorithm(struct target *target,
787 int num_mem_params, struct mem_param *mem_params,
788 int num_reg_params, struct reg_param *reg_param,
789 uint32_t entry_point, uint32_t exit_point,
790 int timeout_ms, void *arch_info)
791 {
792 int retval = ERROR_FAIL;
793
794 if (!target_was_examined(target)) {
795 LOG_ERROR("Target not examined yet");
796 goto done;
797 }
798 if (!target->type->run_algorithm) {
799 LOG_ERROR("Target type '%s' does not support %s",
800 target_type_name(target), __func__);
801 goto done;
802 }
803
804 target->running_alg = true;
805 retval = target->type->run_algorithm(target,
806 num_mem_params, mem_params,
807 num_reg_params, reg_param,
808 entry_point, exit_point, timeout_ms, arch_info);
809 target->running_alg = false;
810
811 done:
812 return retval;
813 }
814
815 /**
816 * Executes a target-specific native code algorithm and leaves it running.
817 *
818 * @param target used to run the algorithm
819 * @param arch_info target-specific description of the algorithm.
820 */
821 int target_start_algorithm(struct target *target,
822 int num_mem_params, struct mem_param *mem_params,
823 int num_reg_params, struct reg_param *reg_params,
824 uint32_t entry_point, uint32_t exit_point,
825 void *arch_info)
826 {
827 int retval = ERROR_FAIL;
828
829 if (!target_was_examined(target)) {
830 LOG_ERROR("Target not examined yet");
831 goto done;
832 }
833 if (!target->type->start_algorithm) {
834 LOG_ERROR("Target type '%s' does not support %s",
835 target_type_name(target), __func__);
836 goto done;
837 }
838 if (target->running_alg) {
839 LOG_ERROR("Target is already running an algorithm");
840 goto done;
841 }
842
843 target->running_alg = true;
844 retval = target->type->start_algorithm(target,
845 num_mem_params, mem_params,
846 num_reg_params, reg_params,
847 entry_point, exit_point, arch_info);
848
849 done:
850 return retval;
851 }
852
853 /**
854 * Waits for an algorithm started with target_start_algorithm() to complete.
855 *
856 * @param target used to run the algorithm
857 * @param arch_info target-specific description of the algorithm.
858 */
859 int target_wait_algorithm(struct target *target,
860 int num_mem_params, struct mem_param *mem_params,
861 int num_reg_params, struct reg_param *reg_params,
862 uint32_t exit_point, int timeout_ms,
863 void *arch_info)
864 {
865 int retval = ERROR_FAIL;
866
867 if (!target->type->wait_algorithm) {
868 LOG_ERROR("Target type '%s' does not support %s",
869 target_type_name(target), __func__);
870 goto done;
871 }
872 if (!target->running_alg) {
873 LOG_ERROR("Target is not running an algorithm");
874 goto done;
875 }
876
877 retval = target->type->wait_algorithm(target,
878 num_mem_params, mem_params,
879 num_reg_params, reg_params,
880 exit_point, timeout_ms, arch_info);
881 if (retval != ERROR_TARGET_TIMEOUT)
882 target->running_alg = false;
883
884 done:
885 return retval;
886 }
887
888 /**
889 * Streams data to a circular buffer on target intended for consumption by code
890 * running asynchronously on target.
891 *
892 * This is intended for applications where target-specific native code runs
893 * on the target, receives data from the circular buffer, does something with
894 * it (most likely writing it to a flash memory), and advances the circular
895 * buffer pointer.
896 *
897 * This assumes that the helper algorithm has already been loaded to the target,
898 * but has not been started yet. Given memory and register parameters are passed
899 * to the algorithm.
900 *
901 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
902 * following format:
903 *
904 * [buffer_start + 0, buffer_start + 4):
905 * Write Pointer address (aka head). Written and updated by this
906 * routine when new data is written to the circular buffer.
907 * [buffer_start + 4, buffer_start + 8):
908 * Read Pointer address (aka tail). Updated by code running on the
909 * target after it consumes data.
910 * [buffer_start + 8, buffer_start + buffer_size):
911 * Circular buffer contents.
912 *
913 * See contrib/loaders/flash/stm32f1x.S for an example.
914 *
915 * @param target used to run the algorithm
916 * @param buffer address on the host where data to be sent is located
917 * @param count number of blocks to send
918 * @param block_size size in bytes of each block
919 * @param num_mem_params count of memory-based params to pass to algorithm
920 * @param mem_params memory-based params to pass to algorithm
921 * @param num_reg_params count of register-based params to pass to algorithm
922 * @param reg_params memory-based params to pass to algorithm
923 * @param buffer_start address on the target of the circular buffer structure
924 * @param buffer_size size of the circular buffer structure
925 * @param entry_point address on the target to execute to start the algorithm
926 * @param exit_point address at which to set a breakpoint to catch the
927 * end of the algorithm; can be 0 if target triggers a breakpoint itself
928 */
929
930 int target_run_flash_async_algorithm(struct target *target,
931 const uint8_t *buffer, uint32_t count, int block_size,
932 int num_mem_params, struct mem_param *mem_params,
933 int num_reg_params, struct reg_param *reg_params,
934 uint32_t buffer_start, uint32_t buffer_size,
935 uint32_t entry_point, uint32_t exit_point, void *arch_info)
936 {
937 int retval;
938 int timeout = 0;
939
940 const uint8_t *buffer_orig = buffer;
941
942 /* Set up working area. First word is write pointer, second word is read pointer,
943 * rest is fifo data area. */
944 uint32_t wp_addr = buffer_start;
945 uint32_t rp_addr = buffer_start + 4;
946 uint32_t fifo_start_addr = buffer_start + 8;
947 uint32_t fifo_end_addr = buffer_start + buffer_size;
948
949 uint32_t wp = fifo_start_addr;
950 uint32_t rp = fifo_start_addr;
951
952 /* validate block_size is 2^n */
953 assert(!block_size || !(block_size & (block_size - 1)));
954
955 retval = target_write_u32(target, wp_addr, wp);
956 if (retval != ERROR_OK)
957 return retval;
958 retval = target_write_u32(target, rp_addr, rp);
959 if (retval != ERROR_OK)
960 return retval;
961
962 /* Start up algorithm on target and let it idle while writing the first chunk */
963 retval = target_start_algorithm(target, num_mem_params, mem_params,
964 num_reg_params, reg_params,
965 entry_point,
966 exit_point,
967 arch_info);
968
969 if (retval != ERROR_OK) {
970 LOG_ERROR("error starting target flash write algorithm");
971 return retval;
972 }
973
974 while (count > 0) {
975
976 retval = target_read_u32(target, rp_addr, &rp);
977 if (retval != ERROR_OK) {
978 LOG_ERROR("failed to get read pointer");
979 break;
980 }
981
982 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
983 (size_t) (buffer - buffer_orig), count, wp, rp);
984
985 if (rp == 0) {
986 LOG_ERROR("flash write algorithm aborted by target");
987 retval = ERROR_FLASH_OPERATION_FAILED;
988 break;
989 }
990
991 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
992 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
993 break;
994 }
995
996 /* Count the number of bytes available in the fifo without
997 * crossing the wrap around. Make sure to not fill it completely,
998 * because that would make wp == rp and that's the empty condition. */
999 uint32_t thisrun_bytes;
1000 if (rp > wp)
1001 thisrun_bytes = rp - wp - block_size;
1002 else if (rp > fifo_start_addr)
1003 thisrun_bytes = fifo_end_addr - wp;
1004 else
1005 thisrun_bytes = fifo_end_addr - wp - block_size;
1006
1007 if (thisrun_bytes == 0) {
1008 /* Throttle polling a bit if transfer is (much) faster than flash
1009 * programming. The exact delay shouldn't matter as long as it's
1010 * less than buffer size / flash speed. This is very unlikely to
1011 * run when using high latency connections such as USB. */
1012 alive_sleep(10);
1013
1014 /* to stop an infinite loop on some targets check and increment a timeout
1015 * this issue was observed on a stellaris using the new ICDI interface */
1016 if (timeout++ >= 500) {
1017 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1018 return ERROR_FLASH_OPERATION_FAILED;
1019 }
1020 continue;
1021 }
1022
1023 /* reset our timeout */
1024 timeout = 0;
1025
1026 /* Limit to the amount of data we actually want to write */
1027 if (thisrun_bytes > count * block_size)
1028 thisrun_bytes = count * block_size;
1029
1030 /* Write data to fifo */
1031 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1032 if (retval != ERROR_OK)
1033 break;
1034
1035 /* Update counters and wrap write pointer */
1036 buffer += thisrun_bytes;
1037 count -= thisrun_bytes / block_size;
1038 wp += thisrun_bytes;
1039 if (wp >= fifo_end_addr)
1040 wp = fifo_start_addr;
1041
1042 /* Store updated write pointer to target */
1043 retval = target_write_u32(target, wp_addr, wp);
1044 if (retval != ERROR_OK)
1045 break;
1046 }
1047
1048 if (retval != ERROR_OK) {
1049 /* abort flash write algorithm on target */
1050 target_write_u32(target, wp_addr, 0);
1051 }
1052
1053 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1054 num_reg_params, reg_params,
1055 exit_point,
1056 10000,
1057 arch_info);
1058
1059 if (retval2 != ERROR_OK) {
1060 LOG_ERROR("error waiting for target flash write algorithm");
1061 retval = retval2;
1062 }
1063
1064 if (retval == ERROR_OK) {
1065 /* check if algorithm set rp = 0 after fifo writer loop finished */
1066 retval = target_read_u32(target, rp_addr, &rp);
1067 if (retval == ERROR_OK && rp == 0) {
1068 LOG_ERROR("flash write algorithm aborted by target");
1069 retval = ERROR_FLASH_OPERATION_FAILED;
1070 }
1071 }
1072
1073 return retval;
1074 }
1075
1076 int target_read_memory(struct target *target,
1077 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1078 {
1079 if (!target_was_examined(target)) {
1080 LOG_ERROR("Target not examined yet");
1081 return ERROR_FAIL;
1082 }
1083 if (!target->type->read_memory) {
1084 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1085 return ERROR_FAIL;
1086 }
1087 return target->type->read_memory(target, address, size, count, buffer);
1088 }
1089
1090 int target_read_phys_memory(struct target *target,
1091 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1092 {
1093 if (!target_was_examined(target)) {
1094 LOG_ERROR("Target not examined yet");
1095 return ERROR_FAIL;
1096 }
1097 if (!target->type->read_phys_memory) {
1098 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1099 return ERROR_FAIL;
1100 }
1101 return target->type->read_phys_memory(target, address, size, count, buffer);
1102 }
1103
1104 int target_write_memory(struct target *target,
1105 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1106 {
1107 if (!target_was_examined(target)) {
1108 LOG_ERROR("Target not examined yet");
1109 return ERROR_FAIL;
1110 }
1111 if (!target->type->write_memory) {
1112 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1113 return ERROR_FAIL;
1114 }
1115 return target->type->write_memory(target, address, size, count, buffer);
1116 }
1117
1118 int target_write_phys_memory(struct target *target,
1119 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1120 {
1121 if (!target_was_examined(target)) {
1122 LOG_ERROR("Target not examined yet");
1123 return ERROR_FAIL;
1124 }
1125 if (!target->type->write_phys_memory) {
1126 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1127 return ERROR_FAIL;
1128 }
1129 return target->type->write_phys_memory(target, address, size, count, buffer);
1130 }
1131
1132 int target_add_breakpoint(struct target *target,
1133 struct breakpoint *breakpoint)
1134 {
1135 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1136 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1137 return ERROR_TARGET_NOT_HALTED;
1138 }
1139 return target->type->add_breakpoint(target, breakpoint);
1140 }
1141
1142 int target_add_context_breakpoint(struct target *target,
1143 struct breakpoint *breakpoint)
1144 {
1145 if (target->state != TARGET_HALTED) {
1146 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1147 return ERROR_TARGET_NOT_HALTED;
1148 }
1149 return target->type->add_context_breakpoint(target, breakpoint);
1150 }
1151
1152 int target_add_hybrid_breakpoint(struct target *target,
1153 struct breakpoint *breakpoint)
1154 {
1155 if (target->state != TARGET_HALTED) {
1156 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1157 return ERROR_TARGET_NOT_HALTED;
1158 }
1159 return target->type->add_hybrid_breakpoint(target, breakpoint);
1160 }
1161
1162 int target_remove_breakpoint(struct target *target,
1163 struct breakpoint *breakpoint)
1164 {
1165 return target->type->remove_breakpoint(target, breakpoint);
1166 }
1167
1168 int target_add_watchpoint(struct target *target,
1169 struct watchpoint *watchpoint)
1170 {
1171 if (target->state != TARGET_HALTED) {
1172 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1173 return ERROR_TARGET_NOT_HALTED;
1174 }
1175 return target->type->add_watchpoint(target, watchpoint);
1176 }
1177 int target_remove_watchpoint(struct target *target,
1178 struct watchpoint *watchpoint)
1179 {
1180 return target->type->remove_watchpoint(target, watchpoint);
1181 }
1182 int target_hit_watchpoint(struct target *target,
1183 struct watchpoint **hit_watchpoint)
1184 {
1185 if (target->state != TARGET_HALTED) {
1186 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1187 return ERROR_TARGET_NOT_HALTED;
1188 }
1189
1190 if (target->type->hit_watchpoint == NULL) {
1191 /* For backward compatible, if hit_watchpoint is not implemented,
1192 * return ERROR_FAIL such that gdb_server will not take the nonsense
1193 * information. */
1194 return ERROR_FAIL;
1195 }
1196
1197 return target->type->hit_watchpoint(target, hit_watchpoint);
1198 }
1199
1200 int target_get_gdb_reg_list(struct target *target,
1201 struct reg **reg_list[], int *reg_list_size,
1202 enum target_register_class reg_class)
1203 {
1204 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1205 }
1206 int target_step(struct target *target,
1207 int current, target_addr_t address, int handle_breakpoints)
1208 {
1209 return target->type->step(target, current, address, handle_breakpoints);
1210 }
1211
1212 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1213 {
1214 if (target->state != TARGET_HALTED) {
1215 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1216 return ERROR_TARGET_NOT_HALTED;
1217 }
1218 return target->type->get_gdb_fileio_info(target, fileio_info);
1219 }
1220
1221 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1222 {
1223 if (target->state != TARGET_HALTED) {
1224 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1225 return ERROR_TARGET_NOT_HALTED;
1226 }
1227 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1228 }
1229
1230 int target_profiling(struct target *target, uint32_t *samples,
1231 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1232 {
1233 if (target->state != TARGET_HALTED) {
1234 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1235 return ERROR_TARGET_NOT_HALTED;
1236 }
1237 return target->type->profiling(target, samples, max_num_samples,
1238 num_samples, seconds);
1239 }
1240
1241 /**
1242 * Reset the @c examined flag for the given target.
1243 * Pure paranoia -- targets are zeroed on allocation.
1244 */
1245 static void target_reset_examined(struct target *target)
1246 {
1247 target->examined = false;
1248 }
1249
1250 static int handle_target(void *priv);
1251
1252 static int target_init_one(struct command_context *cmd_ctx,
1253 struct target *target)
1254 {
1255 target_reset_examined(target);
1256
1257 struct target_type *type = target->type;
1258 if (type->examine == NULL)
1259 type->examine = default_examine;
1260
1261 if (type->check_reset == NULL)
1262 type->check_reset = default_check_reset;
1263
1264 assert(type->init_target != NULL);
1265
1266 int retval = type->init_target(cmd_ctx, target);
1267 if (ERROR_OK != retval) {
1268 LOG_ERROR("target '%s' init failed", target_name(target));
1269 return retval;
1270 }
1271
1272 /* Sanity-check MMU support ... stub in what we must, to help
1273 * implement it in stages, but warn if we need to do so.
1274 */
1275 if (type->mmu) {
1276 if (type->virt2phys == NULL) {
1277 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1278 type->virt2phys = identity_virt2phys;
1279 }
1280 } else {
1281 /* Make sure no-MMU targets all behave the same: make no
1282 * distinction between physical and virtual addresses, and
1283 * ensure that virt2phys() is always an identity mapping.
1284 */
1285 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1286 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1287
1288 type->mmu = no_mmu;
1289 type->write_phys_memory = type->write_memory;
1290 type->read_phys_memory = type->read_memory;
1291 type->virt2phys = identity_virt2phys;
1292 }
1293
1294 if (target->type->read_buffer == NULL)
1295 target->type->read_buffer = target_read_buffer_default;
1296
1297 if (target->type->write_buffer == NULL)
1298 target->type->write_buffer = target_write_buffer_default;
1299
1300 if (target->type->get_gdb_fileio_info == NULL)
1301 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1302
1303 if (target->type->gdb_fileio_end == NULL)
1304 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1305
1306 if (target->type->profiling == NULL)
1307 target->type->profiling = target_profiling_default;
1308
1309 return ERROR_OK;
1310 }
1311
1312 static int target_init(struct command_context *cmd_ctx)
1313 {
1314 struct target *target;
1315 int retval;
1316
1317 for (target = all_targets; target; target = target->next) {
1318 retval = target_init_one(cmd_ctx, target);
1319 if (ERROR_OK != retval)
1320 return retval;
1321 }
1322
1323 if (!all_targets)
1324 return ERROR_OK;
1325
1326 retval = target_register_user_commands(cmd_ctx);
1327 if (ERROR_OK != retval)
1328 return retval;
1329
1330 retval = target_register_timer_callback(&handle_target,
1331 polling_interval, 1, cmd_ctx->interp);
1332 if (ERROR_OK != retval)
1333 return retval;
1334
1335 return ERROR_OK;
1336 }
1337
1338 COMMAND_HANDLER(handle_target_init_command)
1339 {
1340 int retval;
1341
1342 if (CMD_ARGC != 0)
1343 return ERROR_COMMAND_SYNTAX_ERROR;
1344
1345 static bool target_initialized;
1346 if (target_initialized) {
1347 LOG_INFO("'target init' has already been called");
1348 return ERROR_OK;
1349 }
1350 target_initialized = true;
1351
1352 retval = command_run_line(CMD_CTX, "init_targets");
1353 if (ERROR_OK != retval)
1354 return retval;
1355
1356 retval = command_run_line(CMD_CTX, "init_target_events");
1357 if (ERROR_OK != retval)
1358 return retval;
1359
1360 retval = command_run_line(CMD_CTX, "init_board");
1361 if (ERROR_OK != retval)
1362 return retval;
1363
1364 LOG_DEBUG("Initializing targets...");
1365 return target_init(CMD_CTX);
1366 }
1367
1368 int target_register_event_callback(int (*callback)(struct target *target,
1369 enum target_event event, void *priv), void *priv)
1370 {
1371 struct target_event_callback **callbacks_p = &target_event_callbacks;
1372
1373 if (callback == NULL)
1374 return ERROR_COMMAND_SYNTAX_ERROR;
1375
1376 if (*callbacks_p) {
1377 while ((*callbacks_p)->next)
1378 callbacks_p = &((*callbacks_p)->next);
1379 callbacks_p = &((*callbacks_p)->next);
1380 }
1381
1382 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1383 (*callbacks_p)->callback = callback;
1384 (*callbacks_p)->priv = priv;
1385 (*callbacks_p)->next = NULL;
1386
1387 return ERROR_OK;
1388 }
1389
1390 int target_register_reset_callback(int (*callback)(struct target *target,
1391 enum target_reset_mode reset_mode, void *priv), void *priv)
1392 {
1393 struct target_reset_callback *entry;
1394
1395 if (callback == NULL)
1396 return ERROR_COMMAND_SYNTAX_ERROR;
1397
1398 entry = malloc(sizeof(struct target_reset_callback));
1399 if (entry == NULL) {
1400 LOG_ERROR("error allocating buffer for reset callback entry");
1401 return ERROR_COMMAND_SYNTAX_ERROR;
1402 }
1403
1404 entry->callback = callback;
1405 entry->priv = priv;
1406 list_add(&entry->list, &target_reset_callback_list);
1407
1408
1409 return ERROR_OK;
1410 }
1411
1412 int target_register_trace_callback(int (*callback)(struct target *target,
1413 size_t len, uint8_t *data, void *priv), void *priv)
1414 {
1415 struct target_trace_callback *entry;
1416
1417 if (callback == NULL)
1418 return ERROR_COMMAND_SYNTAX_ERROR;
1419
1420 entry = malloc(sizeof(struct target_trace_callback));
1421 if (entry == NULL) {
1422 LOG_ERROR("error allocating buffer for trace callback entry");
1423 return ERROR_COMMAND_SYNTAX_ERROR;
1424 }
1425
1426 entry->callback = callback;
1427 entry->priv = priv;
1428 list_add(&entry->list, &target_trace_callback_list);
1429
1430
1431 return ERROR_OK;
1432 }
1433
1434 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1435 {
1436 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1437
1438 if (callback == NULL)
1439 return ERROR_COMMAND_SYNTAX_ERROR;
1440
1441 if (*callbacks_p) {
1442 while ((*callbacks_p)->next)
1443 callbacks_p = &((*callbacks_p)->next);
1444 callbacks_p = &((*callbacks_p)->next);
1445 }
1446
1447 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1448 (*callbacks_p)->callback = callback;
1449 (*callbacks_p)->periodic = periodic;
1450 (*callbacks_p)->time_ms = time_ms;
1451 (*callbacks_p)->removed = false;
1452
1453 gettimeofday(&(*callbacks_p)->when, NULL);
1454 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1455
1456 (*callbacks_p)->priv = priv;
1457 (*callbacks_p)->next = NULL;
1458
1459 return ERROR_OK;
1460 }
1461
1462 int target_unregister_event_callback(int (*callback)(struct target *target,
1463 enum target_event event, void *priv), void *priv)
1464 {
1465 struct target_event_callback **p = &target_event_callbacks;
1466 struct target_event_callback *c = target_event_callbacks;
1467
1468 if (callback == NULL)
1469 return ERROR_COMMAND_SYNTAX_ERROR;
1470
1471 while (c) {
1472 struct target_event_callback *next = c->next;
1473 if ((c->callback == callback) && (c->priv == priv)) {
1474 *p = next;
1475 free(c);
1476 return ERROR_OK;
1477 } else
1478 p = &(c->next);
1479 c = next;
1480 }
1481
1482 return ERROR_OK;
1483 }
1484
1485 int target_unregister_reset_callback(int (*callback)(struct target *target,
1486 enum target_reset_mode reset_mode, void *priv), void *priv)
1487 {
1488 struct target_reset_callback *entry;
1489
1490 if (callback == NULL)
1491 return ERROR_COMMAND_SYNTAX_ERROR;
1492
1493 list_for_each_entry(entry, &target_reset_callback_list, list) {
1494 if (entry->callback == callback && entry->priv == priv) {
1495 list_del(&entry->list);
1496 free(entry);
1497 break;
1498 }
1499 }
1500
1501 return ERROR_OK;
1502 }
1503
1504 int target_unregister_trace_callback(int (*callback)(struct target *target,
1505 size_t len, uint8_t *data, void *priv), void *priv)
1506 {
1507 struct target_trace_callback *entry;
1508
1509 if (callback == NULL)
1510 return ERROR_COMMAND_SYNTAX_ERROR;
1511
1512 list_for_each_entry(entry, &target_trace_callback_list, list) {
1513 if (entry->callback == callback && entry->priv == priv) {
1514 list_del(&entry->list);
1515 free(entry);
1516 break;
1517 }
1518 }
1519
1520 return ERROR_OK;
1521 }
1522
1523 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1524 {
1525 if (callback == NULL)
1526 return ERROR_COMMAND_SYNTAX_ERROR;
1527
1528 for (struct target_timer_callback *c = target_timer_callbacks;
1529 c; c = c->next) {
1530 if ((c->callback == callback) && (c->priv == priv)) {
1531 c->removed = true;
1532 return ERROR_OK;
1533 }
1534 }
1535
1536 return ERROR_FAIL;
1537 }
1538
1539 int target_call_event_callbacks(struct target *target, enum target_event event)
1540 {
1541 struct target_event_callback *callback = target_event_callbacks;
1542 struct target_event_callback *next_callback;
1543
1544 if (event == TARGET_EVENT_HALTED) {
1545 /* execute early halted first */
1546 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1547 }
1548
1549 LOG_DEBUG("target event %i (%s)", event,
1550 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1551
1552 target_handle_event(target, event);
1553
1554 while (callback) {
1555 next_callback = callback->next;
1556 callback->callback(target, event, callback->priv);
1557 callback = next_callback;
1558 }
1559
1560 return ERROR_OK;
1561 }
1562
1563 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1564 {
1565 struct target_reset_callback *callback;
1566
1567 LOG_DEBUG("target reset %i (%s)", reset_mode,
1568 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1569
1570 list_for_each_entry(callback, &target_reset_callback_list, list)
1571 callback->callback(target, reset_mode, callback->priv);
1572
1573 return ERROR_OK;
1574 }
1575
1576 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1577 {
1578 struct target_trace_callback *callback;
1579
1580 list_for_each_entry(callback, &target_trace_callback_list, list)
1581 callback->callback(target, len, data, callback->priv);
1582
1583 return ERROR_OK;
1584 }
1585
1586 static int target_timer_callback_periodic_restart(
1587 struct target_timer_callback *cb, struct timeval *now)
1588 {
1589 cb->when = *now;
1590 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1591 return ERROR_OK;
1592 }
1593
1594 static int target_call_timer_callback(struct target_timer_callback *cb,
1595 struct timeval *now)
1596 {
1597 cb->callback(cb->priv);
1598
1599 if (cb->periodic)
1600 return target_timer_callback_periodic_restart(cb, now);
1601
1602 return target_unregister_timer_callback(cb->callback, cb->priv);
1603 }
1604
1605 static int target_call_timer_callbacks_check_time(int checktime)
1606 {
1607 static bool callback_processing;
1608
1609 /* Do not allow nesting */
1610 if (callback_processing)
1611 return ERROR_OK;
1612
1613 callback_processing = true;
1614
1615 keep_alive();
1616
1617 struct timeval now;
1618 gettimeofday(&now, NULL);
1619
1620 /* Store an address of the place containing a pointer to the
1621 * next item; initially, that's a standalone "root of the
1622 * list" variable. */
1623 struct target_timer_callback **callback = &target_timer_callbacks;
1624 while (*callback) {
1625 if ((*callback)->removed) {
1626 struct target_timer_callback *p = *callback;
1627 *callback = (*callback)->next;
1628 free(p);
1629 continue;
1630 }
1631
1632 bool call_it = (*callback)->callback &&
1633 ((!checktime && (*callback)->periodic) ||
1634 timeval_compare(&now, &(*callback)->when) >= 0);
1635
1636 if (call_it)
1637 target_call_timer_callback(*callback, &now);
1638
1639 callback = &(*callback)->next;
1640 }
1641
1642 callback_processing = false;
1643 return ERROR_OK;
1644 }
1645
1646 int target_call_timer_callbacks(void)
1647 {
1648 return target_call_timer_callbacks_check_time(1);
1649 }
1650
1651 /* invoke periodic callbacks immediately */
1652 int target_call_timer_callbacks_now(void)
1653 {
1654 return target_call_timer_callbacks_check_time(0);
1655 }
1656
1657 /* Prints the working area layout for debug purposes */
1658 static void print_wa_layout(struct target *target)
1659 {
1660 struct working_area *c = target->working_areas;
1661
1662 while (c) {
1663 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1664 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1665 c->address, c->address + c->size - 1, c->size);
1666 c = c->next;
1667 }
1668 }
1669
1670 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1671 static void target_split_working_area(struct working_area *area, uint32_t size)
1672 {
1673 assert(area->free); /* Shouldn't split an allocated area */
1674 assert(size <= area->size); /* Caller should guarantee this */
1675
1676 /* Split only if not already the right size */
1677 if (size < area->size) {
1678 struct working_area *new_wa = malloc(sizeof(*new_wa));
1679
1680 if (new_wa == NULL)
1681 return;
1682
1683 new_wa->next = area->next;
1684 new_wa->size = area->size - size;
1685 new_wa->address = area->address + size;
1686 new_wa->backup = NULL;
1687 new_wa->user = NULL;
1688 new_wa->free = true;
1689
1690 area->next = new_wa;
1691 area->size = size;
1692
1693 /* If backup memory was allocated to this area, it has the wrong size
1694 * now so free it and it will be reallocated if/when needed */
1695 if (area->backup) {
1696 free(area->backup);
1697 area->backup = NULL;
1698 }
1699 }
1700 }
1701
1702 /* Merge all adjacent free areas into one */
1703 static void target_merge_working_areas(struct target *target)
1704 {
1705 struct working_area *c = target->working_areas;
1706
1707 while (c && c->next) {
1708 assert(c->next->address == c->address + c->size); /* This is an invariant */
1709
1710 /* Find two adjacent free areas */
1711 if (c->free && c->next->free) {
1712 /* Merge the last into the first */
1713 c->size += c->next->size;
1714
1715 /* Remove the last */
1716 struct working_area *to_be_freed = c->next;
1717 c->next = c->next->next;
1718 if (to_be_freed->backup)
1719 free(to_be_freed->backup);
1720 free(to_be_freed);
1721
1722 /* If backup memory was allocated to the remaining area, it's has
1723 * the wrong size now */
1724 if (c->backup) {
1725 free(c->backup);
1726 c->backup = NULL;
1727 }
1728 } else {
1729 c = c->next;
1730 }
1731 }
1732 }
1733
1734 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1735 {
1736 /* Reevaluate working area address based on MMU state*/
1737 if (target->working_areas == NULL) {
1738 int retval;
1739 int enabled;
1740
1741 retval = target->type->mmu(target, &enabled);
1742 if (retval != ERROR_OK)
1743 return retval;
1744
1745 if (!enabled) {
1746 if (target->working_area_phys_spec) {
1747 LOG_DEBUG("MMU disabled, using physical "
1748 "address for working memory " TARGET_ADDR_FMT,
1749 target->working_area_phys);
1750 target->working_area = target->working_area_phys;
1751 } else {
1752 LOG_ERROR("No working memory available. "
1753 "Specify -work-area-phys to target.");
1754 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1755 }
1756 } else {
1757 if (target->working_area_virt_spec) {
1758 LOG_DEBUG("MMU enabled, using virtual "
1759 "address for working memory " TARGET_ADDR_FMT,
1760 target->working_area_virt);
1761 target->working_area = target->working_area_virt;
1762 } else {
1763 LOG_ERROR("No working memory available. "
1764 "Specify -work-area-virt to target.");
1765 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1766 }
1767 }
1768
1769 /* Set up initial working area on first call */
1770 struct working_area *new_wa = malloc(sizeof(*new_wa));
1771 if (new_wa) {
1772 new_wa->next = NULL;
1773 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1774 new_wa->address = target->working_area;
1775 new_wa->backup = NULL;
1776 new_wa->user = NULL;
1777 new_wa->free = true;
1778 }
1779
1780 target->working_areas = new_wa;
1781 }
1782
1783 /* only allocate multiples of 4 byte */
1784 if (size % 4)
1785 size = (size + 3) & (~3UL);
1786
1787 struct working_area *c = target->working_areas;
1788
1789 /* Find the first large enough working area */
1790 while (c) {
1791 if (c->free && c->size >= size)
1792 break;
1793 c = c->next;
1794 }
1795
1796 if (c == NULL)
1797 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1798
1799 /* Split the working area into the requested size */
1800 target_split_working_area(c, size);
1801
1802 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1803 size, c->address);
1804
1805 if (target->backup_working_area) {
1806 if (c->backup == NULL) {
1807 c->backup = malloc(c->size);
1808 if (c->backup == NULL)
1809 return ERROR_FAIL;
1810 }
1811
1812 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1813 if (retval != ERROR_OK)
1814 return retval;
1815 }
1816
1817 /* mark as used, and return the new (reused) area */
1818 c->free = false;
1819 *area = c;
1820
1821 /* user pointer */
1822 c->user = area;
1823
1824 print_wa_layout(target);
1825
1826 return ERROR_OK;
1827 }
1828
1829 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1830 {
1831 int retval;
1832
1833 retval = target_alloc_working_area_try(target, size, area);
1834 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1835 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1836 return retval;
1837
1838 }
1839
1840 static int target_restore_working_area(struct target *target, struct working_area *area)
1841 {
1842 int retval = ERROR_OK;
1843
1844 if (target->backup_working_area && area->backup != NULL) {
1845 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1846 if (retval != ERROR_OK)
1847 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1848 area->size, area->address);
1849 }
1850
1851 return retval;
1852 }
1853
1854 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1855 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1856 {
1857 int retval = ERROR_OK;
1858
1859 if (area->free)
1860 return retval;
1861
1862 if (restore) {
1863 retval = target_restore_working_area(target, area);
1864 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1865 if (retval != ERROR_OK)
1866 return retval;
1867 }
1868
1869 area->free = true;
1870
1871 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1872 area->size, area->address);
1873
1874 /* mark user pointer invalid */
1875 /* TODO: Is this really safe? It points to some previous caller's memory.
1876 * How could we know that the area pointer is still in that place and not
1877 * some other vital data? What's the purpose of this, anyway? */
1878 *area->user = NULL;
1879 area->user = NULL;
1880
1881 target_merge_working_areas(target);
1882
1883 print_wa_layout(target);
1884
1885 return retval;
1886 }
1887
1888 int target_free_working_area(struct target *target, struct working_area *area)
1889 {
1890 return target_free_working_area_restore(target, area, 1);
1891 }
1892
1893 static void target_destroy(struct target *target)
1894 {
1895 if (target->type->deinit_target)
1896 target->type->deinit_target(target);
1897
1898 if (target->semihosting)
1899 free(target->semihosting);
1900
1901 jtag_unregister_event_callback(jtag_enable_callback, target);
1902
1903 struct target_event_action *teap = target->event_action;
1904 while (teap) {
1905 struct target_event_action *next = teap->next;
1906 Jim_DecrRefCount(teap->interp, teap->body);
1907 free(teap);
1908 teap = next;
1909 }
1910
1911 target_free_all_working_areas(target);
1912 /* Now we have none or only one working area marked as free */
1913 if (target->working_areas) {
1914 free(target->working_areas->backup);
1915 free(target->working_areas);
1916 }
1917
1918 /* release the targets SMP list */
1919 if (target->smp) {
1920 struct target_list *head = target->head;
1921 while (head != NULL) {
1922 struct target_list *pos = head->next;
1923 head->target->smp = 0;
1924 free(head);
1925 head = pos;
1926 }
1927 target->smp = 0;
1928 }
1929
1930 free(target->type);
1931 free(target->trace_info);
1932 free(target->fileio_info);
1933 free(target->cmd_name);
1934 free(target);
1935 }
1936
1937 void target_quit(void)
1938 {
1939 struct target_event_callback *pe = target_event_callbacks;
1940 while (pe) {
1941 struct target_event_callback *t = pe->next;
1942 free(pe);
1943 pe = t;
1944 }
1945 target_event_callbacks = NULL;
1946
1947 struct target_timer_callback *pt = target_timer_callbacks;
1948 while (pt) {
1949 struct target_timer_callback *t = pt->next;
1950 free(pt);
1951 pt = t;
1952 }
1953 target_timer_callbacks = NULL;
1954
1955 for (struct target *target = all_targets; target;) {
1956 struct target *tmp;
1957
1958 tmp = target->next;
1959 target_destroy(target);
1960 target = tmp;
1961 }
1962
1963 all_targets = NULL;
1964 }
1965
1966 /* free resources and restore memory, if restoring memory fails,
1967 * free up resources anyway
1968 */
1969 static void target_free_all_working_areas_restore(struct target *target, int restore)
1970 {
1971 struct working_area *c = target->working_areas;
1972
1973 LOG_DEBUG("freeing all working areas");
1974
1975 /* Loop through all areas, restoring the allocated ones and marking them as free */
1976 while (c) {
1977 if (!c->free) {
1978 if (restore)
1979 target_restore_working_area(target, c);
1980 c->free = true;
1981 *c->user = NULL; /* Same as above */
1982 c->user = NULL;
1983 }
1984 c = c->next;
1985 }
1986
1987 /* Run a merge pass to combine all areas into one */
1988 target_merge_working_areas(target);
1989
1990 print_wa_layout(target);
1991 }
1992
1993 void target_free_all_working_areas(struct target *target)
1994 {
1995 target_free_all_working_areas_restore(target, 1);
1996 }
1997
1998 /* Find the largest number of bytes that can be allocated */
1999 uint32_t target_get_working_area_avail(struct target *target)
2000 {
2001 struct working_area *c = target->working_areas;
2002 uint32_t max_size = 0;
2003
2004 if (c == NULL)
2005 return target->working_area_size;
2006
2007 while (c) {
2008 if (c->free && max_size < c->size)
2009 max_size = c->size;
2010
2011 c = c->next;
2012 }
2013
2014 return max_size;
2015 }
2016
2017 int target_arch_state(struct target *target)
2018 {
2019 int retval;
2020 if (target == NULL) {
2021 LOG_WARNING("No target has been configured");
2022 return ERROR_OK;
2023 }
2024
2025 if (target->state != TARGET_HALTED)
2026 return ERROR_OK;
2027
2028 retval = target->type->arch_state(target);
2029 return retval;
2030 }
2031
2032 static int target_get_gdb_fileio_info_default(struct target *target,
2033 struct gdb_fileio_info *fileio_info)
2034 {
2035 /* If target does not support semi-hosting function, target
2036 has no need to provide .get_gdb_fileio_info callback.
2037 It just return ERROR_FAIL and gdb_server will return "Txx"
2038 as target halted every time. */
2039 return ERROR_FAIL;
2040 }
2041
2042 static int target_gdb_fileio_end_default(struct target *target,
2043 int retcode, int fileio_errno, bool ctrl_c)
2044 {
2045 return ERROR_OK;
2046 }
2047
2048 static int target_profiling_default(struct target *target, uint32_t *samples,
2049 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2050 {
2051 struct timeval timeout, now;
2052
2053 gettimeofday(&timeout, NULL);
2054 timeval_add_time(&timeout, seconds, 0);
2055
2056 LOG_INFO("Starting profiling. Halting and resuming the"
2057 " target as often as we can...");
2058
2059 uint32_t sample_count = 0;
2060 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2061 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2062
2063 int retval = ERROR_OK;
2064 for (;;) {
2065 target_poll(target);
2066 if (target->state == TARGET_HALTED) {
2067 uint32_t t = buf_get_u32(reg->value, 0, 32);
2068 samples[sample_count++] = t;
2069 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2070 retval = target_resume(target, 1, 0, 0, 0);
2071 target_poll(target);
2072 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2073 } else if (target->state == TARGET_RUNNING) {
2074 /* We want to quickly sample the PC. */
2075 retval = target_halt(target);
2076 } else {
2077 LOG_INFO("Target not halted or running");
2078 retval = ERROR_OK;
2079 break;
2080 }
2081
2082 if (retval != ERROR_OK)
2083 break;
2084
2085 gettimeofday(&now, NULL);
2086 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2087 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2088 break;
2089 }
2090 }
2091
2092 *num_samples = sample_count;
2093 return retval;
2094 }
2095
2096 /* Single aligned words are guaranteed to use 16 or 32 bit access
2097 * mode respectively, otherwise data is handled as quickly as
2098 * possible
2099 */
2100 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2101 {
2102 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2103 size, address);
2104
2105 if (!target_was_examined(target)) {
2106 LOG_ERROR("Target not examined yet");
2107 return ERROR_FAIL;
2108 }
2109
2110 if (size == 0)
2111 return ERROR_OK;
2112
2113 if ((address + size - 1) < address) {
2114 /* GDB can request this when e.g. PC is 0xfffffffc */
2115 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2116 address,
2117 size);
2118 return ERROR_FAIL;
2119 }
2120
2121 return target->type->write_buffer(target, address, size, buffer);
2122 }
2123
2124 static int target_write_buffer_default(struct target *target,
2125 target_addr_t address, uint32_t count, const uint8_t *buffer)
2126 {
2127 uint32_t size;
2128
2129 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2130 * will have something to do with the size we leave to it. */
2131 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2132 if (address & size) {
2133 int retval = target_write_memory(target, address, size, 1, buffer);
2134 if (retval != ERROR_OK)
2135 return retval;
2136 address += size;
2137 count -= size;
2138 buffer += size;
2139 }
2140 }
2141
2142 /* Write the data with as large access size as possible. */
2143 for (; size > 0; size /= 2) {
2144 uint32_t aligned = count - count % size;
2145 if (aligned > 0) {
2146 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2147 if (retval != ERROR_OK)
2148 return retval;
2149 address += aligned;
2150 count -= aligned;
2151 buffer += aligned;
2152 }
2153 }
2154
2155 return ERROR_OK;
2156 }
2157
2158 /* Single aligned words are guaranteed to use 16 or 32 bit access
2159 * mode respectively, otherwise data is handled as quickly as
2160 * possible
2161 */
2162 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2163 {
2164 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2165 size, address);
2166
2167 if (!target_was_examined(target)) {
2168 LOG_ERROR("Target not examined yet");
2169 return ERROR_FAIL;
2170 }
2171
2172 if (size == 0)
2173 return ERROR_OK;
2174
2175 if ((address + size - 1) < address) {
2176 /* GDB can request this when e.g. PC is 0xfffffffc */
2177 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2178 address,
2179 size);
2180 return ERROR_FAIL;
2181 }
2182
2183 return target->type->read_buffer(target, address, size, buffer);
2184 }
2185
2186 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2187 {
2188 uint32_t size;
2189
2190 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2191 * will have something to do with the size we leave to it. */
2192 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2193 if (address & size) {
2194 int retval = target_read_memory(target, address, size, 1, buffer);
2195 if (retval != ERROR_OK)
2196 return retval;
2197 address += size;
2198 count -= size;
2199 buffer += size;
2200 }
2201 }
2202
2203 /* Read the data with as large access size as possible. */
2204 for (; size > 0; size /= 2) {
2205 uint32_t aligned = count - count % size;
2206 if (aligned > 0) {
2207 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2208 if (retval != ERROR_OK)
2209 return retval;
2210 address += aligned;
2211 count -= aligned;
2212 buffer += aligned;
2213 }
2214 }
2215
2216 return ERROR_OK;
2217 }
2218
2219 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2220 {
2221 uint8_t *buffer;
2222 int retval;
2223 uint32_t i;
2224 uint32_t checksum = 0;
2225 if (!target_was_examined(target)) {
2226 LOG_ERROR("Target not examined yet");
2227 return ERROR_FAIL;
2228 }
2229
2230 retval = target->type->checksum_memory(target, address, size, &checksum);
2231 if (retval != ERROR_OK) {
2232 buffer = malloc(size);
2233 if (buffer == NULL) {
2234 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2235 return ERROR_COMMAND_SYNTAX_ERROR;
2236 }
2237 retval = target_read_buffer(target, address, size, buffer);
2238 if (retval != ERROR_OK) {
2239 free(buffer);
2240 return retval;
2241 }
2242
2243 /* convert to target endianness */
2244 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2245 uint32_t target_data;
2246 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2247 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2248 }
2249
2250 retval = image_calculate_checksum(buffer, size, &checksum);
2251 free(buffer);
2252 }
2253
2254 *crc = checksum;
2255
2256 return retval;
2257 }
2258
2259 int target_blank_check_memory(struct target *target,
2260 struct target_memory_check_block *blocks, int num_blocks,
2261 uint8_t erased_value)
2262 {
2263 if (!target_was_examined(target)) {
2264 LOG_ERROR("Target not examined yet");
2265 return ERROR_FAIL;
2266 }
2267
2268 if (target->type->blank_check_memory == NULL)
2269 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2270
2271 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2272 }
2273
2274 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2275 {
2276 uint8_t value_buf[8];
2277 if (!target_was_examined(target)) {
2278 LOG_ERROR("Target not examined yet");
2279 return ERROR_FAIL;
2280 }
2281
2282 int retval = target_read_memory(target, address, 8, 1, value_buf);
2283
2284 if (retval == ERROR_OK) {
2285 *value = target_buffer_get_u64(target, value_buf);
2286 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2287 address,
2288 *value);
2289 } else {
2290 *value = 0x0;
2291 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2292 address);
2293 }
2294
2295 return retval;
2296 }
2297
2298 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2299 {
2300 uint8_t value_buf[4];
2301 if (!target_was_examined(target)) {
2302 LOG_ERROR("Target not examined yet");
2303 return ERROR_FAIL;
2304 }
2305
2306 int retval = target_read_memory(target, address, 4, 1, value_buf);
2307
2308 if (retval == ERROR_OK) {
2309 *value = target_buffer_get_u32(target, value_buf);
2310 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2311 address,
2312 *value);
2313 } else {
2314 *value = 0x0;
2315 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2316 address);
2317 }
2318
2319 return retval;
2320 }
2321
2322 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2323 {
2324 uint8_t value_buf[2];
2325 if (!target_was_examined(target)) {
2326 LOG_ERROR("Target not examined yet");
2327 return ERROR_FAIL;
2328 }
2329
2330 int retval = target_read_memory(target, address, 2, 1, value_buf);
2331
2332 if (retval == ERROR_OK) {
2333 *value = target_buffer_get_u16(target, value_buf);
2334 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2335 address,
2336 *value);
2337 } else {
2338 *value = 0x0;
2339 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2340 address);
2341 }
2342
2343 return retval;
2344 }
2345
2346 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2347 {
2348 if (!target_was_examined(target)) {
2349 LOG_ERROR("Target not examined yet");
2350 return ERROR_FAIL;
2351 }
2352
2353 int retval = target_read_memory(target, address, 1, 1, value);
2354
2355 if (retval == ERROR_OK) {
2356 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2357 address,
2358 *value);
2359 } else {
2360 *value = 0x0;
2361 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2362 address);
2363 }
2364
2365 return retval;
2366 }
2367
2368 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2369 {
2370 int retval;
2371 uint8_t value_buf[8];
2372 if (!target_was_examined(target)) {
2373 LOG_ERROR("Target not examined yet");
2374 return ERROR_FAIL;
2375 }
2376
2377 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2378 address,
2379 value);
2380
2381 target_buffer_set_u64(target, value_buf, value);
2382 retval = target_write_memory(target, address, 8, 1, value_buf);
2383 if (retval != ERROR_OK)
2384 LOG_DEBUG("failed: %i", retval);
2385
2386 return retval;
2387 }
2388
2389 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2390 {
2391 int retval;
2392 uint8_t value_buf[4];
2393 if (!target_was_examined(target)) {
2394 LOG_ERROR("Target not examined yet");
2395 return ERROR_FAIL;
2396 }
2397
2398 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2399 address,
2400 value);
2401
2402 target_buffer_set_u32(target, value_buf, value);
2403 retval = target_write_memory(target, address, 4, 1, value_buf);
2404 if (retval != ERROR_OK)
2405 LOG_DEBUG("failed: %i", retval);
2406
2407 return retval;
2408 }
2409
2410 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2411 {
2412 int retval;
2413 uint8_t value_buf[2];
2414 if (!target_was_examined(target)) {
2415 LOG_ERROR("Target not examined yet");
2416 return ERROR_FAIL;
2417 }
2418
2419 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2420 address,
2421 value);
2422
2423 target_buffer_set_u16(target, value_buf, value);
2424 retval = target_write_memory(target, address, 2, 1, value_buf);
2425 if (retval != ERROR_OK)
2426 LOG_DEBUG("failed: %i", retval);
2427
2428 return retval;
2429 }
2430
2431 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2432 {
2433 int retval;
2434 if (!target_was_examined(target)) {
2435 LOG_ERROR("Target not examined yet");
2436 return ERROR_FAIL;
2437 }
2438
2439 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2440 address, value);
2441
2442 retval = target_write_memory(target, address, 1, 1, &value);
2443 if (retval != ERROR_OK)
2444 LOG_DEBUG("failed: %i", retval);
2445
2446 return retval;
2447 }
2448
2449 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2450 {
2451 int retval;
2452 uint8_t value_buf[8];
2453 if (!target_was_examined(target)) {
2454 LOG_ERROR("Target not examined yet");
2455 return ERROR_FAIL;
2456 }
2457
2458 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2459 address,
2460 value);
2461
2462 target_buffer_set_u64(target, value_buf, value);
2463 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2464 if (retval != ERROR_OK)
2465 LOG_DEBUG("failed: %i", retval);
2466
2467 return retval;
2468 }
2469
2470 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2471 {
2472 int retval;
2473 uint8_t value_buf[4];
2474 if (!target_was_examined(target)) {
2475 LOG_ERROR("Target not examined yet");
2476 return ERROR_FAIL;
2477 }
2478
2479 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2480 address,
2481 value);
2482
2483 target_buffer_set_u32(target, value_buf, value);
2484 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2485 if (retval != ERROR_OK)
2486 LOG_DEBUG("failed: %i", retval);
2487
2488 return retval;
2489 }
2490
2491 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2492 {
2493 int retval;
2494 uint8_t value_buf[2];
2495 if (!target_was_examined(target)) {
2496 LOG_ERROR("Target not examined yet");
2497 return ERROR_FAIL;
2498 }
2499
2500 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2501 address,
2502 value);
2503
2504 target_buffer_set_u16(target, value_buf, value);
2505 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2506 if (retval != ERROR_OK)
2507 LOG_DEBUG("failed: %i", retval);
2508
2509 return retval;
2510 }
2511
2512 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2513 {
2514 int retval;
2515 if (!target_was_examined(target)) {
2516 LOG_ERROR("Target not examined yet");
2517 return ERROR_FAIL;
2518 }
2519
2520 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2521 address, value);
2522
2523 retval = target_write_phys_memory(target, address, 1, 1, &value);
2524 if (retval != ERROR_OK)
2525 LOG_DEBUG("failed: %i", retval);
2526
2527 return retval;
2528 }
2529
2530 static int find_target(struct command_context *cmd_ctx, const char *name)
2531 {
2532 struct target *target = get_target(name);
2533 if (target == NULL) {
2534 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2535 return ERROR_FAIL;
2536 }
2537 if (!target->tap->enabled) {
2538 LOG_USER("Target: TAP %s is disabled, "
2539 "can't be the current target\n",
2540 target->tap->dotted_name);
2541 return ERROR_FAIL;
2542 }
2543
2544 cmd_ctx->current_target = target;
2545 if (cmd_ctx->current_target_override)
2546 cmd_ctx->current_target_override = target;
2547
2548 return ERROR_OK;
2549 }
2550
2551
2552 COMMAND_HANDLER(handle_targets_command)
2553 {
2554 int retval = ERROR_OK;
2555 if (CMD_ARGC == 1) {
2556 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2557 if (retval == ERROR_OK) {
2558 /* we're done! */
2559 return retval;
2560 }
2561 }
2562
2563 struct target *target = all_targets;
2564 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2565 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2566 while (target) {
2567 const char *state;
2568 char marker = ' ';
2569
2570 if (target->tap->enabled)
2571 state = target_state_name(target);
2572 else
2573 state = "tap-disabled";
2574
2575 if (CMD_CTX->current_target == target)
2576 marker = '*';
2577
2578 /* keep columns lined up to match the headers above */
2579 command_print(CMD_CTX,
2580 "%2d%c %-18s %-10s %-6s %-18s %s",
2581 target->target_number,
2582 marker,
2583 target_name(target),
2584 target_type_name(target),
2585 Jim_Nvp_value2name_simple(nvp_target_endian,
2586 target->endianness)->name,
2587 target->tap->dotted_name,
2588 state);
2589 target = target->next;
2590 }
2591
2592 return retval;
2593 }
2594
2595 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2596
2597 static int powerDropout;
2598 static int srstAsserted;
2599
2600 static int runPowerRestore;
2601 static int runPowerDropout;
2602 static int runSrstAsserted;
2603 static int runSrstDeasserted;
2604
2605 static int sense_handler(void)
2606 {
2607 static int prevSrstAsserted;
2608 static int prevPowerdropout;
2609
2610 int retval = jtag_power_dropout(&powerDropout);
2611 if (retval != ERROR_OK)
2612 return retval;
2613
2614 int powerRestored;
2615 powerRestored = prevPowerdropout && !powerDropout;
2616 if (powerRestored)
2617 runPowerRestore = 1;
2618
2619 int64_t current = timeval_ms();
2620 static int64_t lastPower;
2621 bool waitMore = lastPower + 2000 > current;
2622 if (powerDropout && !waitMore) {
2623 runPowerDropout = 1;
2624 lastPower = current;
2625 }
2626
2627 retval = jtag_srst_asserted(&srstAsserted);
2628 if (retval != ERROR_OK)
2629 return retval;
2630
2631 int srstDeasserted;
2632 srstDeasserted = prevSrstAsserted && !srstAsserted;
2633
2634 static int64_t lastSrst;
2635 waitMore = lastSrst + 2000 > current;
2636 if (srstDeasserted && !waitMore) {
2637 runSrstDeasserted = 1;
2638 lastSrst = current;
2639 }
2640
2641 if (!prevSrstAsserted && srstAsserted)
2642 runSrstAsserted = 1;
2643
2644 prevSrstAsserted = srstAsserted;
2645 prevPowerdropout = powerDropout;
2646
2647 if (srstDeasserted || powerRestored) {
2648 /* Other than logging the event we can't do anything here.
2649 * Issuing a reset is a particularly bad idea as we might
2650 * be inside a reset already.
2651 */
2652 }
2653
2654 return ERROR_OK;
2655 }
2656
2657 /* process target state changes */
2658 static int handle_target(void *priv)
2659 {
2660 Jim_Interp *interp = (Jim_Interp *)priv;
2661 int retval = ERROR_OK;
2662
2663 if (!is_jtag_poll_safe()) {
2664 /* polling is disabled currently */
2665 return ERROR_OK;
2666 }
2667
2668 /* we do not want to recurse here... */
2669 static int recursive;
2670 if (!recursive) {
2671 recursive = 1;
2672 sense_handler();
2673 /* danger! running these procedures can trigger srst assertions and power dropouts.
2674 * We need to avoid an infinite loop/recursion here and we do that by
2675 * clearing the flags after running these events.
2676 */
2677 int did_something = 0;
2678 if (runSrstAsserted) {
2679 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2680 Jim_Eval(interp, "srst_asserted");
2681 did_something = 1;
2682 }
2683 if (runSrstDeasserted) {
2684 Jim_Eval(interp, "srst_deasserted");
2685 did_something = 1;
2686 }
2687 if (runPowerDropout) {
2688 LOG_INFO("Power dropout detected, running power_dropout proc.");
2689 Jim_Eval(interp, "power_dropout");
2690 did_something = 1;
2691 }
2692 if (runPowerRestore) {
2693 Jim_Eval(interp, "power_restore");
2694 did_something = 1;
2695 }
2696
2697 if (did_something) {
2698 /* clear detect flags */
2699 sense_handler();
2700 }
2701
2702 /* clear action flags */
2703
2704 runSrstAsserted = 0;
2705 runSrstDeasserted = 0;
2706 runPowerRestore = 0;
2707 runPowerDropout = 0;
2708
2709 recursive = 0;
2710 }
2711
2712 /* Poll targets for state changes unless that's globally disabled.
2713 * Skip targets that are currently disabled.
2714 */
2715 for (struct target *target = all_targets;
2716 is_jtag_poll_safe() && target;
2717 target = target->next) {
2718
2719 if (!target_was_examined(target))
2720 continue;
2721
2722 if (!target->tap->enabled)
2723 continue;
2724
2725 if (target->backoff.times > target->backoff.count) {
2726 /* do not poll this time as we failed previously */
2727 target->backoff.count++;
2728 continue;
2729 }
2730 target->backoff.count = 0;
2731
2732 /* only poll target if we've got power and srst isn't asserted */
2733 if (!powerDropout && !srstAsserted) {
2734 /* polling may fail silently until the target has been examined */
2735 retval = target_poll(target);
2736 if (retval != ERROR_OK) {
2737 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2738 if (target->backoff.times * polling_interval < 5000) {
2739 target->backoff.times *= 2;
2740 target->backoff.times++;
2741 }
2742
2743 /* Tell GDB to halt the debugger. This allows the user to
2744 * run monitor commands to handle the situation.
2745 */
2746 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2747 }
2748 if (target->backoff.times > 0) {
2749 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2750 target_reset_examined(target);
2751 retval = target_examine_one(target);
2752 /* Target examination could have failed due to unstable connection,
2753 * but we set the examined flag anyway to repoll it later */
2754 if (retval != ERROR_OK) {
2755 target->examined = true;
2756 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2757 target->backoff.times * polling_interval);
2758 return retval;
2759 }
2760 }
2761
2762 /* Since we succeeded, we reset backoff count */
2763 target->backoff.times = 0;
2764 }
2765 }
2766
2767 return retval;
2768 }
2769
2770 COMMAND_HANDLER(handle_reg_command)
2771 {
2772 struct target *target;
2773 struct reg *reg = NULL;
2774 unsigned count = 0;
2775 char *value;
2776
2777 LOG_DEBUG("-");
2778
2779 target = get_current_target(CMD_CTX);
2780
2781 /* list all available registers for the current target */
2782 if (CMD_ARGC == 0) {
2783 struct reg_cache *cache = target->reg_cache;
2784
2785 count = 0;
2786 while (cache) {
2787 unsigned i;
2788
2789 command_print(CMD_CTX, "===== %s", cache->name);
2790
2791 for (i = 0, reg = cache->reg_list;
2792 i < cache->num_regs;
2793 i++, reg++, count++) {
2794 /* only print cached values if they are valid */
2795 if (reg->valid) {
2796 value = buf_to_str(reg->value,
2797 reg->size, 16);
2798 command_print(CMD_CTX,
2799 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2800 count, reg->name,
2801 reg->size, value,
2802 reg->dirty
2803 ? " (dirty)"
2804 : "");
2805 free(value);
2806 } else {
2807 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2808 count, reg->name,
2809 reg->size) ;
2810 }
2811 }
2812 cache = cache->next;
2813 }
2814
2815 return ERROR_OK;
2816 }
2817
2818 /* access a single register by its ordinal number */
2819 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2820 unsigned num;
2821 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2822
2823 struct reg_cache *cache = target->reg_cache;
2824 count = 0;
2825 while (cache) {
2826 unsigned i;
2827 for (i = 0; i < cache->num_regs; i++) {
2828 if (count++ == num) {
2829 reg = &cache->reg_list[i];
2830 break;
2831 }
2832 }
2833 if (reg)
2834 break;
2835 cache = cache->next;
2836 }
2837
2838 if (!reg) {
2839 command_print(CMD_CTX, "%i is out of bounds, the current target "
2840 "has only %i registers (0 - %i)", num, count, count - 1);
2841 return ERROR_OK;
2842 }
2843 } else {
2844 /* access a single register by its name */
2845 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2846
2847 if (!reg) {
2848 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2849 return ERROR_OK;
2850 }
2851 }
2852
2853 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2854
2855 /* display a register */
2856 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2857 && (CMD_ARGV[1][0] <= '9')))) {
2858 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2859 reg->valid = 0;
2860
2861 if (reg->valid == 0)
2862 reg->type->get(reg);
2863 value = buf_to_str(reg->value, reg->size, 16);
2864 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2865 free(value);
2866 return ERROR_OK;
2867 }
2868
2869 /* set register value */
2870 if (CMD_ARGC == 2) {
2871 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2872 if (buf == NULL)
2873 return ERROR_FAIL;
2874 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2875
2876 reg->type->set(reg, buf);
2877
2878 value = buf_to_str(reg->value, reg->size, 16);
2879 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2880 free(value);
2881
2882 free(buf);
2883
2884 return ERROR_OK;
2885 }
2886
2887 return ERROR_COMMAND_SYNTAX_ERROR;
2888 }
2889
2890 COMMAND_HANDLER(handle_poll_command)
2891 {
2892 int retval = ERROR_OK;
2893 struct target *target = get_current_target(CMD_CTX);
2894
2895 if (CMD_ARGC == 0) {
2896 command_print(CMD_CTX, "background polling: %s",
2897 jtag_poll_get_enabled() ? "on" : "off");
2898 command_print(CMD_CTX, "TAP: %s (%s)",
2899 target->tap->dotted_name,
2900 target->tap->enabled ? "enabled" : "disabled");
2901 if (!target->tap->enabled)
2902 return ERROR_OK;
2903 retval = target_poll(target);
2904 if (retval != ERROR_OK)
2905 return retval;
2906 retval = target_arch_state(target);
2907 if (retval != ERROR_OK)
2908 return retval;
2909 } else if (CMD_ARGC == 1) {
2910 bool enable;
2911 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2912 jtag_poll_set_enabled(enable);
2913 } else
2914 return ERROR_COMMAND_SYNTAX_ERROR;
2915
2916 return retval;
2917 }
2918
2919 COMMAND_HANDLER(handle_wait_halt_command)
2920 {
2921 if (CMD_ARGC > 1)
2922 return ERROR_COMMAND_SYNTAX_ERROR;
2923
2924 unsigned ms = DEFAULT_HALT_TIMEOUT;
2925 if (1 == CMD_ARGC) {
2926 int retval = parse_uint(CMD_ARGV[0], &ms);
2927 if (ERROR_OK != retval)
2928 return ERROR_COMMAND_SYNTAX_ERROR;
2929 }
2930
2931 struct target *target = get_current_target(CMD_CTX);
2932 return target_wait_state(target, TARGET_HALTED, ms);
2933 }
2934
2935 /* wait for target state to change. The trick here is to have a low
2936 * latency for short waits and not to suck up all the CPU time
2937 * on longer waits.
2938 *
2939 * After 500ms, keep_alive() is invoked
2940 */
2941 int target_wait_state(struct target *target, enum target_state state, int ms)
2942 {
2943 int retval;
2944 int64_t then = 0, cur;
2945 bool once = true;
2946
2947 for (;;) {
2948 retval = target_poll(target);
2949 if (retval != ERROR_OK)
2950 return retval;
2951 if (target->state == state)
2952 break;
2953 cur = timeval_ms();
2954 if (once) {
2955 once = false;
2956 then = timeval_ms();
2957 LOG_DEBUG("waiting for target %s...",
2958 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2959 }
2960
2961 if (cur-then > 500)
2962 keep_alive();
2963
2964 if ((cur-then) > ms) {
2965 LOG_ERROR("timed out while waiting for target %s",
2966 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2967 return ERROR_FAIL;
2968 }
2969 }
2970
2971 return ERROR_OK;
2972 }
2973
2974 COMMAND_HANDLER(handle_halt_command)
2975 {
2976 LOG_DEBUG("-");
2977
2978 struct target *target = get_current_target(CMD_CTX);
2979
2980 target->verbose_halt_msg = true;
2981
2982 int retval = target_halt(target);
2983 if (ERROR_OK != retval)
2984 return retval;
2985
2986 if (CMD_ARGC == 1) {
2987 unsigned wait_local;
2988 retval = parse_uint(CMD_ARGV[0], &wait_local);
2989 if (ERROR_OK != retval)
2990 return ERROR_COMMAND_SYNTAX_ERROR;
2991 if (!wait_local)
2992 return ERROR_OK;
2993 }
2994
2995 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2996 }
2997
2998 COMMAND_HANDLER(handle_soft_reset_halt_command)
2999 {
3000 struct target *target = get_current_target(CMD_CTX);
3001
3002 LOG_USER("requesting target halt and executing a soft reset");
3003
3004 target_soft_reset_halt(target);
3005
3006 return ERROR_OK;
3007 }
3008
3009 COMMAND_HANDLER(handle_reset_command)
3010 {
3011 if (CMD_ARGC > 1)
3012 return ERROR_COMMAND_SYNTAX_ERROR;
3013
3014 enum target_reset_mode reset_mode = RESET_RUN;
3015 if (CMD_ARGC == 1) {
3016 const Jim_Nvp *n;
3017 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3018 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3019 return ERROR_COMMAND_SYNTAX_ERROR;
3020 reset_mode = n->value;
3021 }
3022
3023 /* reset *all* targets */
3024 return target_process_reset(CMD_CTX, reset_mode);
3025 }
3026
3027
3028 COMMAND_HANDLER(handle_resume_command)
3029 {
3030 int current = 1;
3031 if (CMD_ARGC > 1)
3032 return ERROR_COMMAND_SYNTAX_ERROR;
3033
3034 struct target *target = get_current_target(CMD_CTX);
3035
3036 /* with no CMD_ARGV, resume from current pc, addr = 0,
3037 * with one arguments, addr = CMD_ARGV[0],
3038 * handle breakpoints, not debugging */
3039 target_addr_t addr = 0;
3040 if (CMD_ARGC == 1) {
3041 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3042 current = 0;
3043 }
3044
3045 return target_resume(target, current, addr, 1, 0);
3046 }
3047
3048 COMMAND_HANDLER(handle_step_command)
3049 {
3050 if (CMD_ARGC > 1)
3051 return ERROR_COMMAND_SYNTAX_ERROR;
3052
3053 LOG_DEBUG("-");
3054
3055 /* with no CMD_ARGV, step from current pc, addr = 0,
3056 * with one argument addr = CMD_ARGV[0],
3057 * handle breakpoints, debugging */
3058 target_addr_t addr = 0;
3059 int current_pc = 1;
3060 if (CMD_ARGC == 1) {
3061 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3062 current_pc = 0;
3063 }
3064
3065 struct target *target = get_current_target(CMD_CTX);
3066
3067 return target->type->step(target, current_pc, addr, 1);
3068 }
3069
3070 static void handle_md_output(struct command_context *cmd_ctx,
3071 struct target *target, target_addr_t address, unsigned size,
3072 unsigned count, const uint8_t *buffer)
3073 {
3074 const unsigned line_bytecnt = 32;
3075 unsigned line_modulo = line_bytecnt / size;
3076
3077 char output[line_bytecnt * 4 + 1];
3078 unsigned output_len = 0;
3079
3080 const char *value_fmt;
3081 switch (size) {
3082 case 8:
3083 value_fmt = "%16.16"PRIx64" ";
3084 break;
3085 case 4:
3086 value_fmt = "%8.8"PRIx64" ";
3087 break;
3088 case 2:
3089 value_fmt = "%4.4"PRIx64" ";
3090 break;
3091 case 1:
3092 value_fmt = "%2.2"PRIx64" ";
3093 break;
3094 default:
3095 /* "can't happen", caller checked */
3096 LOG_ERROR("invalid memory read size: %u", size);
3097 return;
3098 }
3099
3100 for (unsigned i = 0; i < count; i++) {
3101 if (i % line_modulo == 0) {
3102 output_len += snprintf(output + output_len,
3103 sizeof(output) - output_len,
3104 TARGET_ADDR_FMT ": ",
3105 (address + (i * size)));
3106 }
3107
3108 uint64_t value = 0;
3109 const uint8_t *value_ptr = buffer + i * size;
3110 switch (size) {
3111 case 8:
3112 value = target_buffer_get_u64(target, value_ptr);
3113 break;
3114 case 4:
3115 value = target_buffer_get_u32(target, value_ptr);
3116 break;
3117 case 2:
3118 value = target_buffer_get_u16(target, value_ptr);
3119 break;
3120 case 1:
3121 value = *value_ptr;
3122 }
3123 output_len += snprintf(output + output_len,
3124 sizeof(output) - output_len,
3125 value_fmt, value);
3126
3127 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3128 command_print(cmd_ctx, "%s", output);
3129 output_len = 0;
3130 }
3131 }
3132 }
3133
3134 COMMAND_HANDLER(handle_md_command)
3135 {
3136 if (CMD_ARGC < 1)
3137 return ERROR_COMMAND_SYNTAX_ERROR;
3138
3139 unsigned size = 0;
3140 switch (CMD_NAME[2]) {
3141 case 'd':
3142 size = 8;
3143 break;
3144 case 'w':
3145 size = 4;
3146 break;
3147 case 'h':
3148 size = 2;
3149 break;
3150 case 'b':
3151 size = 1;
3152 break;
3153 default:
3154 return ERROR_COMMAND_SYNTAX_ERROR;
3155 }
3156
3157 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3158 int (*fn)(struct target *target,
3159 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3160 if (physical) {
3161 CMD_ARGC--;
3162 CMD_ARGV++;
3163 fn = target_read_phys_memory;
3164 } else
3165 fn = target_read_memory;
3166 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3167 return ERROR_COMMAND_SYNTAX_ERROR;
3168
3169 target_addr_t address;
3170 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3171
3172 unsigned count = 1;
3173 if (CMD_ARGC == 2)
3174 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3175
3176 uint8_t *buffer = calloc(count, size);
3177 if (buffer == NULL) {
3178 LOG_ERROR("Failed to allocate md read buffer");
3179 return ERROR_FAIL;
3180 }
3181
3182 struct target *target = get_current_target(CMD_CTX);
3183 int retval = fn(target, address, size, count, buffer);
3184 if (ERROR_OK == retval)
3185 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3186
3187 free(buffer);
3188
3189 return retval;
3190 }
3191
3192 typedef int (*target_write_fn)(struct target *target,
3193 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3194
3195 static int target_fill_mem(struct target *target,
3196 target_addr_t address,
3197 target_write_fn fn,
3198 unsigned data_size,
3199 /* value */
3200 uint64_t b,
3201 /* count */
3202 unsigned c)
3203 {
3204 /* We have to write in reasonably large chunks to be able
3205 * to fill large memory areas with any sane speed */
3206 const unsigned chunk_size = 16384;
3207 uint8_t *target_buf = malloc(chunk_size * data_size);
3208 if (target_buf == NULL) {
3209 LOG_ERROR("Out of memory");
3210 return ERROR_FAIL;
3211 }
3212
3213 for (unsigned i = 0; i < chunk_size; i++) {
3214 switch (data_size) {
3215 case 8:
3216 target_buffer_set_u64(target, target_buf + i * data_size, b);
3217 break;
3218 case 4:
3219 target_buffer_set_u32(target, target_buf + i * data_size, b);
3220 break;
3221 case 2:
3222 target_buffer_set_u16(target, target_buf + i * data_size, b);
3223 break;
3224 case 1:
3225 target_buffer_set_u8(target, target_buf + i * data_size, b);
3226 break;
3227 default:
3228 exit(-1);
3229 }
3230 }
3231
3232 int retval = ERROR_OK;
3233
3234 for (unsigned x = 0; x < c; x += chunk_size) {
3235 unsigned current;
3236 current = c - x;
3237 if (current > chunk_size)
3238 current = chunk_size;
3239 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3240 if (retval != ERROR_OK)
3241 break;
3242 /* avoid GDB timeouts */
3243 keep_alive();
3244 }
3245 free(target_buf);
3246
3247 return retval;
3248 }
3249
3250
3251 COMMAND_HANDLER(handle_mw_command)
3252 {
3253 if (CMD_ARGC < 2)
3254 return ERROR_COMMAND_SYNTAX_ERROR;
3255 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3256 target_write_fn fn;
3257 if (physical) {
3258 CMD_ARGC--;
3259 CMD_ARGV++;
3260 fn = target_write_phys_memory;
3261 } else
3262 fn = target_write_memory;
3263 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3264 return ERROR_COMMAND_SYNTAX_ERROR;
3265
3266 target_addr_t address;
3267 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3268
3269 target_addr_t value;
3270 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3271
3272 unsigned count = 1;
3273 if (CMD_ARGC == 3)
3274 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3275
3276 struct target *target = get_current_target(CMD_CTX);
3277 unsigned wordsize;
3278 switch (CMD_NAME[2]) {
3279 case 'd':
3280 wordsize = 8;
3281 break;
3282 case 'w':
3283 wordsize = 4;
3284 break;
3285 case 'h':
3286 wordsize = 2;
3287 break;
3288 case 'b':
3289 wordsize = 1;
3290 break;
3291 default:
3292 return ERROR_COMMAND_SYNTAX_ERROR;
3293 }
3294
3295 return target_fill_mem(target, address, fn, wordsize, value, count);
3296 }
3297
3298 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3299 target_addr_t *min_address, target_addr_t *max_address)
3300 {
3301 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3302 return ERROR_COMMAND_SYNTAX_ERROR;
3303
3304 /* a base address isn't always necessary,
3305 * default to 0x0 (i.e. don't relocate) */
3306 if (CMD_ARGC >= 2) {
3307 target_addr_t addr;
3308 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3309 image->base_address = addr;
3310 image->base_address_set = 1;
3311 } else
3312 image->base_address_set = 0;
3313
3314 image->start_address_set = 0;
3315
3316 if (CMD_ARGC >= 4)
3317 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3318 if (CMD_ARGC == 5) {
3319 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3320 /* use size (given) to find max (required) */
3321 *max_address += *min_address;
3322 }
3323
3324 if (*min_address > *max_address)
3325 return ERROR_COMMAND_SYNTAX_ERROR;
3326
3327 return ERROR_OK;
3328 }
3329
3330 COMMAND_HANDLER(handle_load_image_command)
3331 {
3332 uint8_t *buffer;
3333 size_t buf_cnt;
3334 uint32_t image_size;
3335 target_addr_t min_address = 0;
3336 target_addr_t max_address = -1;
3337 int i;
3338 struct image image;
3339
3340 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3341 &image, &min_address, &max_address);
3342 if (ERROR_OK != retval)
3343 return retval;
3344
3345 struct target *target = get_current_target(CMD_CTX);
3346
3347 struct duration bench;
3348 duration_start(&bench);
3349
3350 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3351 return ERROR_FAIL;
3352
3353 image_size = 0x0;
3354 retval = ERROR_OK;
3355 for (i = 0; i < image.num_sections; i++) {
3356 buffer = malloc(image.sections[i].size);
3357 if (buffer == NULL) {
3358 command_print(CMD_CTX,
3359 "error allocating buffer for section (%d bytes)",
3360 (int)(image.sections[i].size));
3361 retval = ERROR_FAIL;
3362 break;
3363 }
3364
3365 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3366 if (retval != ERROR_OK) {
3367 free(buffer);
3368 break;
3369 }
3370
3371 uint32_t offset = 0;
3372 uint32_t length = buf_cnt;
3373
3374 /* DANGER!!! beware of unsigned comparision here!!! */
3375
3376 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3377 (image.sections[i].base_address < max_address)) {
3378
3379 if (image.sections[i].base_address < min_address) {
3380 /* clip addresses below */
3381 offset += min_address-image.sections[i].base_address;
3382 length -= offset;
3383 }
3384
3385 if (image.sections[i].base_address + buf_cnt > max_address)
3386 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3387
3388 retval = target_write_buffer(target,
3389 image.sections[i].base_address + offset, length, buffer + offset);
3390 if (retval != ERROR_OK) {
3391 free(buffer);
3392 break;
3393 }
3394 image_size += length;
3395 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3396 (unsigned int)length,
3397 image.sections[i].base_address + offset);
3398 }
3399
3400 free(buffer);
3401 }
3402
3403 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3404 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3405 "in %fs (%0.3f KiB/s)", image_size,
3406 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3407 }
3408
3409 image_close(&image);
3410
3411 return retval;
3412
3413 }
3414
3415 COMMAND_HANDLER(handle_dump_image_command)
3416 {
3417 struct fileio *fileio;
3418 uint8_t *buffer;
3419 int retval, retvaltemp;
3420 target_addr_t address, size;
3421 struct duration bench;
3422 struct target *target = get_current_target(CMD_CTX);
3423
3424 if (CMD_ARGC != 3)
3425 return ERROR_COMMAND_SYNTAX_ERROR;
3426
3427 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3428 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3429
3430 uint32_t buf_size = (size > 4096) ? 4096 : size;
3431 buffer = malloc(buf_size);
3432 if (!buffer)
3433 return ERROR_FAIL;
3434
3435 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3436 if (retval != ERROR_OK) {
3437 free(buffer);
3438 return retval;
3439 }
3440
3441 duration_start(&bench);
3442
3443 while (size > 0) {
3444 size_t size_written;
3445 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3446 retval = target_read_buffer(target, address, this_run_size, buffer);
3447 if (retval != ERROR_OK)
3448 break;
3449
3450 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3451 if (retval != ERROR_OK)
3452 break;
3453
3454 size -= this_run_size;
3455 address += this_run_size;
3456 }
3457
3458 free(buffer);
3459
3460 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3461 size_t filesize;
3462 retval = fileio_size(fileio, &filesize);
3463 if (retval != ERROR_OK)
3464 return retval;
3465 command_print(CMD_CTX,
3466 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3467 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3468 }
3469
3470 retvaltemp = fileio_close(fileio);
3471 if (retvaltemp != ERROR_OK)
3472 return retvaltemp;
3473
3474 return retval;
3475 }
3476
3477 enum verify_mode {
3478 IMAGE_TEST = 0,
3479 IMAGE_VERIFY = 1,
3480 IMAGE_CHECKSUM_ONLY = 2
3481 };
3482
3483 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3484 {
3485 uint8_t *buffer;
3486 size_t buf_cnt;
3487 uint32_t image_size;
3488 int i;
3489 int retval;
3490 uint32_t checksum = 0;
3491 uint32_t mem_checksum = 0;
3492
3493 struct image image;
3494
3495 struct target *target = get_current_target(CMD_CTX);
3496
3497 if (CMD_ARGC < 1)
3498 return ERROR_COMMAND_SYNTAX_ERROR;
3499
3500 if (!target) {
3501 LOG_ERROR("no target selected");
3502 return ERROR_FAIL;
3503 }
3504
3505 struct duration bench;
3506 duration_start(&bench);
3507
3508 if (CMD_ARGC >= 2) {
3509 target_addr_t addr;
3510 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3511 image.base_address = addr;
3512 image.base_address_set = 1;
3513 } else {
3514 image.base_address_set = 0;
3515 image.base_address = 0x0;
3516 }
3517
3518 image.start_address_set = 0;
3519
3520 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3521 if (retval != ERROR_OK)
3522 return retval;
3523
3524 image_size = 0x0;
3525 int diffs = 0;
3526 retval = ERROR_OK;
3527 for (i = 0; i < image.num_sections; i++) {
3528 buffer = malloc(image.sections[i].size);
3529 if (buffer == NULL) {
3530 command_print(CMD_CTX,
3531 "error allocating buffer for section (%d bytes)",
3532 (int)(image.sections[i].size));
3533 break;
3534 }
3535 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3536 if (retval != ERROR_OK) {
3537 free(buffer);
3538 break;
3539 }
3540
3541 if (verify >= IMAGE_VERIFY) {
3542 /* calculate checksum of image */
3543 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3544 if (retval != ERROR_OK) {
3545 free(buffer);
3546 break;
3547 }
3548
3549 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3550 if (retval != ERROR_OK) {
3551 free(buffer);
3552 break;
3553 }
3554 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3555 LOG_ERROR("checksum mismatch");
3556 free(buffer);
3557 retval = ERROR_FAIL;
3558 goto done;
3559 }
3560 if (checksum != mem_checksum) {
3561 /* failed crc checksum, fall back to a binary compare */
3562 uint8_t *data;
3563
3564 if (diffs == 0)
3565 LOG_ERROR("checksum mismatch - attempting binary compare");
3566
3567 data = malloc(buf_cnt);
3568
3569 /* Can we use 32bit word accesses? */
3570 int size = 1;
3571 int count = buf_cnt;
3572 if ((count % 4) == 0) {
3573 size *= 4;
3574 count /= 4;
3575 }
3576 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3577 if (retval == ERROR_OK) {
3578 uint32_t t;
3579 for (t = 0; t < buf_cnt; t++) {
3580 if (data[t] != buffer[t]) {
3581 command_print(CMD_CTX,
3582 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3583 diffs,
3584 (unsigned)(t + image.sections[i].base_address),
3585 data[t],
3586 buffer[t]);
3587 if (diffs++ >= 127) {
3588 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3589 free(data);
3590 free(buffer);
3591 goto done;
3592 }
3593 }
3594 keep_alive();
3595 }
3596 }
3597 free(data);
3598 }
3599 } else {
3600 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3601 image.sections[i].base_address,
3602 buf_cnt);
3603 }
3604
3605 free(buffer);
3606 image_size += buf_cnt;
3607 }
3608 if (diffs > 0)
3609 command_print(CMD_CTX, "No more differences found.");
3610 done:
3611 if (diffs > 0)
3612 retval = ERROR_FAIL;
3613 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3614 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3615 "in %fs (%0.3f KiB/s)", image_size,
3616 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3617 }
3618
3619 image_close(&image);
3620
3621 return retval;
3622 }
3623
3624 COMMAND_HANDLER(handle_verify_image_checksum_command)
3625 {
3626 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3627 }
3628
3629 COMMAND_HANDLER(handle_verify_image_command)
3630 {
3631 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3632 }
3633
3634 COMMAND_HANDLER(handle_test_image_command)
3635 {
3636 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3637 }
3638
3639 static int handle_bp_command_list(struct command_context *cmd_ctx)
3640 {
3641 struct target *target = get_current_target(cmd_ctx);
3642 struct breakpoint *breakpoint = target->breakpoints;
3643 while (breakpoint) {
3644 if (breakpoint->type == BKPT_SOFT) {
3645 char *buf = buf_to_str(breakpoint->orig_instr,
3646 breakpoint->length, 16);
3647 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3648 breakpoint->address,
3649 breakpoint->length,
3650 breakpoint->set, buf);
3651 free(buf);
3652 } else {
3653 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3654 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3655 breakpoint->asid,
3656 breakpoint->length, breakpoint->set);
3657 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3658 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3659 breakpoint->address,
3660 breakpoint->length, breakpoint->set);
3661 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3662 breakpoint->asid);
3663 } else
3664 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3665 breakpoint->address,
3666 breakpoint->length, breakpoint->set);
3667 }
3668
3669 breakpoint = breakpoint->next;
3670 }
3671 return ERROR_OK;
3672 }
3673
3674 static int handle_bp_command_set(struct command_context *cmd_ctx,
3675 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3676 {
3677 struct target *target = get_current_target(cmd_ctx);
3678 int retval;
3679
3680 if (asid == 0) {
3681 retval = breakpoint_add(target, addr, length, hw);