1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
63 static int target_read_buffer_default(struct target
*target
, uint32_t address
,
64 uint32_t count
, uint8_t *buffer
);
65 static int target_write_buffer_default(struct target
*target
, uint32_t address
,
66 uint32_t count
, const uint8_t *buffer
);
67 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
68 int argc
, Jim_Obj
* const *argv
);
69 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
70 int argc
, Jim_Obj
* const *argv
);
71 static int target_register_user_commands(struct command_context
*cmd_ctx
);
72 static int target_get_gdb_fileio_info_default(struct target
*target
,
73 struct gdb_fileio_info
*fileio_info
);
74 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
75 int fileio_errno
, bool ctrl_c
);
76 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
77 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
);
80 extern struct target_type arm7tdmi_target
;
81 extern struct target_type arm720t_target
;
82 extern struct target_type arm9tdmi_target
;
83 extern struct target_type arm920t_target
;
84 extern struct target_type arm966e_target
;
85 extern struct target_type arm946e_target
;
86 extern struct target_type arm926ejs_target
;
87 extern struct target_type fa526_target
;
88 extern struct target_type feroceon_target
;
89 extern struct target_type dragonite_target
;
90 extern struct target_type xscale_target
;
91 extern struct target_type cortexm_target
;
92 extern struct target_type cortexa_target
;
93 extern struct target_type cortexr4_target
;
94 extern struct target_type arm11_target
;
95 extern struct target_type mips_m4k_target
;
96 extern struct target_type avr_target
;
97 extern struct target_type dsp563xx_target
;
98 extern struct target_type dsp5680xx_target
;
99 extern struct target_type testee_target
;
100 extern struct target_type avr32_ap7k_target
;
101 extern struct target_type hla_target
;
102 extern struct target_type nds32_v2_target
;
103 extern struct target_type nds32_v3_target
;
104 extern struct target_type nds32_v3m_target
;
105 extern struct target_type or1k_target
;
106 extern struct target_type quark_x10xx_target
;
108 static struct target_type
*target_types
[] = {
139 struct target
*all_targets
;
140 static struct target_event_callback
*target_event_callbacks
;
141 static struct target_timer_callback
*target_timer_callbacks
;
142 LIST_HEAD(target_reset_callback_list
);
143 static const int polling_interval
= 100;
145 static const Jim_Nvp nvp_assert
[] = {
146 { .name
= "assert", NVP_ASSERT
},
147 { .name
= "deassert", NVP_DEASSERT
},
148 { .name
= "T", NVP_ASSERT
},
149 { .name
= "F", NVP_DEASSERT
},
150 { .name
= "t", NVP_ASSERT
},
151 { .name
= "f", NVP_DEASSERT
},
152 { .name
= NULL
, .value
= -1 }
155 static const Jim_Nvp nvp_error_target
[] = {
156 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
157 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
158 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
159 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
160 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
161 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
162 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
163 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
164 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
165 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
166 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
167 { .value
= -1, .name
= NULL
}
170 static const char *target_strerror_safe(int err
)
174 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
181 static const Jim_Nvp nvp_target_event
[] = {
183 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
184 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
185 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
186 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
187 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
189 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
190 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
192 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
193 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
194 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
195 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
196 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
197 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
198 { .value
= TARGET_EVENT_RESET_HALT_PRE
, .name
= "reset-halt-pre" },
199 { .value
= TARGET_EVENT_RESET_HALT_POST
, .name
= "reset-halt-post" },
200 { .value
= TARGET_EVENT_RESET_WAIT_PRE
, .name
= "reset-wait-pre" },
201 { .value
= TARGET_EVENT_RESET_WAIT_POST
, .name
= "reset-wait-post" },
202 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
203 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
205 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
206 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
208 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
209 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
211 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
212 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
214 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
215 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
217 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
218 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
220 { .value
= TARGET_EVENT_TRACE_CONFIG
, .name
= "trace-config" },
222 { .name
= NULL
, .value
= -1 }
225 static const Jim_Nvp nvp_target_state
[] = {
226 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
227 { .name
= "running", .value
= TARGET_RUNNING
},
228 { .name
= "halted", .value
= TARGET_HALTED
},
229 { .name
= "reset", .value
= TARGET_RESET
},
230 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
231 { .name
= NULL
, .value
= -1 },
234 static const Jim_Nvp nvp_target_debug_reason
[] = {
235 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
236 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
237 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
238 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
239 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
240 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
241 { .name
= "program-exit" , .value
= DBG_REASON_EXIT
},
242 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
243 { .name
= NULL
, .value
= -1 },
246 static const Jim_Nvp nvp_target_endian
[] = {
247 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
248 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
249 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
250 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
251 { .name
= NULL
, .value
= -1 },
254 static const Jim_Nvp nvp_reset_modes
[] = {
255 { .name
= "unknown", .value
= RESET_UNKNOWN
},
256 { .name
= "run" , .value
= RESET_RUN
},
257 { .name
= "halt" , .value
= RESET_HALT
},
258 { .name
= "init" , .value
= RESET_INIT
},
259 { .name
= NULL
, .value
= -1 },
262 const char *debug_reason_name(struct target
*t
)
266 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
267 t
->debug_reason
)->name
;
269 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
270 cp
= "(*BUG*unknown*BUG*)";
275 const char *target_state_name(struct target
*t
)
278 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
280 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
281 cp
= "(*BUG*unknown*BUG*)";
286 const char *target_event_name(enum target_event event
)
289 cp
= Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
;
291 LOG_ERROR("Invalid target event: %d", (int)(event
));
292 cp
= "(*BUG*unknown*BUG*)";
297 const char *target_reset_mode_name(enum target_reset_mode reset_mode
)
300 cp
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
;
302 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode
));
303 cp
= "(*BUG*unknown*BUG*)";
308 /* determine the number of the new target */
309 static int new_target_number(void)
314 /* number is 0 based */
318 if (x
< t
->target_number
)
319 x
= t
->target_number
;
325 /* read a uint64_t from a buffer in target memory endianness */
326 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
328 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
329 return le_to_h_u64(buffer
);
331 return be_to_h_u64(buffer
);
334 /* read a uint32_t from a buffer in target memory endianness */
335 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
337 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
338 return le_to_h_u32(buffer
);
340 return be_to_h_u32(buffer
);
343 /* read a uint24_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
346 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
347 return le_to_h_u24(buffer
);
349 return be_to_h_u24(buffer
);
352 /* read a uint16_t from a buffer in target memory endianness */
353 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
355 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
356 return le_to_h_u16(buffer
);
358 return be_to_h_u16(buffer
);
361 /* read a uint8_t from a buffer in target memory endianness */
362 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
364 return *buffer
& 0x0ff;
367 /* write a uint64_t to a buffer in target memory endianness */
368 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
370 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
371 h_u64_to_le(buffer
, value
);
373 h_u64_to_be(buffer
, value
);
376 /* write a uint32_t to a buffer in target memory endianness */
377 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
379 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
380 h_u32_to_le(buffer
, value
);
382 h_u32_to_be(buffer
, value
);
385 /* write a uint24_t to a buffer in target memory endianness */
386 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
388 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
389 h_u24_to_le(buffer
, value
);
391 h_u24_to_be(buffer
, value
);
394 /* write a uint16_t to a buffer in target memory endianness */
395 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
397 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
398 h_u16_to_le(buffer
, value
);
400 h_u16_to_be(buffer
, value
);
403 /* write a uint8_t to a buffer in target memory endianness */
404 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
409 /* write a uint64_t array to a buffer in target memory endianness */
410 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
413 for (i
= 0; i
< count
; i
++)
414 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
417 /* write a uint32_t array to a buffer in target memory endianness */
418 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
421 for (i
= 0; i
< count
; i
++)
422 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
425 /* write a uint16_t array to a buffer in target memory endianness */
426 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
429 for (i
= 0; i
< count
; i
++)
430 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
433 /* write a uint64_t array to a buffer in target memory endianness */
434 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
437 for (i
= 0; i
< count
; i
++)
438 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
441 /* write a uint32_t array to a buffer in target memory endianness */
442 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
445 for (i
= 0; i
< count
; i
++)
446 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
449 /* write a uint16_t array to a buffer in target memory endianness */
450 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
453 for (i
= 0; i
< count
; i
++)
454 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
457 /* return a pointer to a configured target; id is name or number */
458 struct target
*get_target(const char *id
)
460 struct target
*target
;
462 /* try as tcltarget name */
463 for (target
= all_targets
; target
; target
= target
->next
) {
464 if (target_name(target
) == NULL
)
466 if (strcmp(id
, target_name(target
)) == 0)
470 /* It's OK to remove this fallback sometime after August 2010 or so */
472 /* no match, try as number */
474 if (parse_uint(id
, &num
) != ERROR_OK
)
477 for (target
= all_targets
; target
; target
= target
->next
) {
478 if (target
->target_number
== (int)num
) {
479 LOG_WARNING("use '%s' as target identifier, not '%u'",
480 target_name(target
), num
);
488 /* returns a pointer to the n-th configured target */
489 struct target
*get_target_by_num(int num
)
491 struct target
*target
= all_targets
;
494 if (target
->target_number
== num
)
496 target
= target
->next
;
502 struct target
*get_current_target(struct command_context
*cmd_ctx
)
504 struct target
*target
= get_target_by_num(cmd_ctx
->current_target
);
506 if (target
== NULL
) {
507 LOG_ERROR("BUG: current_target out of bounds");
514 int target_poll(struct target
*target
)
518 /* We can't poll until after examine */
519 if (!target_was_examined(target
)) {
520 /* Fail silently lest we pollute the log */
524 retval
= target
->type
->poll(target
);
525 if (retval
!= ERROR_OK
)
528 if (target
->halt_issued
) {
529 if (target
->state
== TARGET_HALTED
)
530 target
->halt_issued
= false;
532 long long t
= timeval_ms() - target
->halt_issued_time
;
533 if (t
> DEFAULT_HALT_TIMEOUT
) {
534 target
->halt_issued
= false;
535 LOG_INFO("Halt timed out, wake up GDB.");
536 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
544 int target_halt(struct target
*target
)
547 /* We can't poll until after examine */
548 if (!target_was_examined(target
)) {
549 LOG_ERROR("Target not examined yet");
553 retval
= target
->type
->halt(target
);
554 if (retval
!= ERROR_OK
)
557 target
->halt_issued
= true;
558 target
->halt_issued_time
= timeval_ms();
564 * Make the target (re)start executing using its saved execution
565 * context (possibly with some modifications).
567 * @param target Which target should start executing.
568 * @param current True to use the target's saved program counter instead
569 * of the address parameter
570 * @param address Optionally used as the program counter.
571 * @param handle_breakpoints True iff breakpoints at the resumption PC
572 * should be skipped. (For example, maybe execution was stopped by
573 * such a breakpoint, in which case it would be counterprodutive to
575 * @param debug_execution False if all working areas allocated by OpenOCD
576 * should be released and/or restored to their original contents.
577 * (This would for example be true to run some downloaded "helper"
578 * algorithm code, which resides in one such working buffer and uses
579 * another for data storage.)
581 * @todo Resolve the ambiguity about what the "debug_execution" flag
582 * signifies. For example, Target implementations don't agree on how
583 * it relates to invalidation of the register cache, or to whether
584 * breakpoints and watchpoints should be enabled. (It would seem wrong
585 * to enable breakpoints when running downloaded "helper" algorithms
586 * (debug_execution true), since the breakpoints would be set to match
587 * target firmware being debugged, not the helper algorithm.... and
588 * enabling them could cause such helpers to malfunction (for example,
589 * by overwriting data with a breakpoint instruction. On the other
590 * hand the infrastructure for running such helpers might use this
591 * procedure but rely on hardware breakpoint to detect termination.)
593 int target_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
597 /* We can't poll until after examine */
598 if (!target_was_examined(target
)) {
599 LOG_ERROR("Target not examined yet");
603 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
605 /* note that resume *must* be asynchronous. The CPU can halt before
606 * we poll. The CPU can even halt at the current PC as a result of
607 * a software breakpoint being inserted by (a bug?) the application.
609 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
610 if (retval
!= ERROR_OK
)
613 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
618 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
623 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
624 if (n
->name
== NULL
) {
625 LOG_ERROR("invalid reset mode");
629 struct target
*target
;
630 for (target
= all_targets
; target
; target
= target
->next
)
631 target_call_reset_callbacks(target
, reset_mode
);
633 /* disable polling during reset to make reset event scripts
634 * more predictable, i.e. dr/irscan & pathmove in events will
635 * not have JTAG operations injected into the middle of a sequence.
637 bool save_poll
= jtag_poll_get_enabled();
639 jtag_poll_set_enabled(false);
641 sprintf(buf
, "ocd_process_reset %s", n
->name
);
642 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
644 jtag_poll_set_enabled(save_poll
);
646 if (retval
!= JIM_OK
) {
647 Jim_MakeErrorMessage(cmd_ctx
->interp
);
648 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
652 /* We want any events to be processed before the prompt */
653 retval
= target_call_timer_callbacks_now();
655 for (target
= all_targets
; target
; target
= target
->next
) {
656 target
->type
->check_reset(target
);
657 target
->running_alg
= false;
663 static int identity_virt2phys(struct target
*target
,
664 uint32_t virtual, uint32_t *physical
)
670 static int no_mmu(struct target
*target
, int *enabled
)
676 static int default_examine(struct target
*target
)
678 target_set_examined(target
);
682 /* no check by default */
683 static int default_check_reset(struct target
*target
)
688 int target_examine_one(struct target
*target
)
690 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
692 int retval
= target
->type
->examine(target
);
693 if (retval
!= ERROR_OK
)
696 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
701 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
703 struct target
*target
= priv
;
705 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
708 jtag_unregister_event_callback(jtag_enable_callback
, target
);
710 return target_examine_one(target
);
713 /* Targets that correctly implement init + examine, i.e.
714 * no communication with target during init:
718 int target_examine(void)
720 int retval
= ERROR_OK
;
721 struct target
*target
;
723 for (target
= all_targets
; target
; target
= target
->next
) {
724 /* defer examination, but don't skip it */
725 if (!target
->tap
->enabled
) {
726 jtag_register_event_callback(jtag_enable_callback
,
731 retval
= target_examine_one(target
);
732 if (retval
!= ERROR_OK
)
738 const char *target_type_name(struct target
*target
)
740 return target
->type
->name
;
743 static int target_soft_reset_halt(struct target
*target
)
745 if (!target_was_examined(target
)) {
746 LOG_ERROR("Target not examined yet");
749 if (!target
->type
->soft_reset_halt
) {
750 LOG_ERROR("Target %s does not support soft_reset_halt",
751 target_name(target
));
754 return target
->type
->soft_reset_halt(target
);
758 * Downloads a target-specific native code algorithm to the target,
759 * and executes it. * Note that some targets may need to set up, enable,
760 * and tear down a breakpoint (hard or * soft) to detect algorithm
761 * termination, while others may support lower overhead schemes where
762 * soft breakpoints embedded in the algorithm automatically terminate the
765 * @param target used to run the algorithm
766 * @param arch_info target-specific description of the algorithm.
768 int target_run_algorithm(struct target
*target
,
769 int num_mem_params
, struct mem_param
*mem_params
,
770 int num_reg_params
, struct reg_param
*reg_param
,
771 uint32_t entry_point
, uint32_t exit_point
,
772 int timeout_ms
, void *arch_info
)
774 int retval
= ERROR_FAIL
;
776 if (!target_was_examined(target
)) {
777 LOG_ERROR("Target not examined yet");
780 if (!target
->type
->run_algorithm
) {
781 LOG_ERROR("Target type '%s' does not support %s",
782 target_type_name(target
), __func__
);
786 target
->running_alg
= true;
787 retval
= target
->type
->run_algorithm(target
,
788 num_mem_params
, mem_params
,
789 num_reg_params
, reg_param
,
790 entry_point
, exit_point
, timeout_ms
, arch_info
);
791 target
->running_alg
= false;
798 * Downloads a target-specific native code algorithm to the target,
799 * executes and leaves it running.
801 * @param target used to run the algorithm
802 * @param arch_info target-specific description of the algorithm.
804 int target_start_algorithm(struct target
*target
,
805 int num_mem_params
, struct mem_param
*mem_params
,
806 int num_reg_params
, struct reg_param
*reg_params
,
807 uint32_t entry_point
, uint32_t exit_point
,
810 int retval
= ERROR_FAIL
;
812 if (!target_was_examined(target
)) {
813 LOG_ERROR("Target not examined yet");
816 if (!target
->type
->start_algorithm
) {
817 LOG_ERROR("Target type '%s' does not support %s",
818 target_type_name(target
), __func__
);
821 if (target
->running_alg
) {
822 LOG_ERROR("Target is already running an algorithm");
826 target
->running_alg
= true;
827 retval
= target
->type
->start_algorithm(target
,
828 num_mem_params
, mem_params
,
829 num_reg_params
, reg_params
,
830 entry_point
, exit_point
, arch_info
);
837 * Waits for an algorithm started with target_start_algorithm() to complete.
839 * @param target used to run the algorithm
840 * @param arch_info target-specific description of the algorithm.
842 int target_wait_algorithm(struct target
*target
,
843 int num_mem_params
, struct mem_param
*mem_params
,
844 int num_reg_params
, struct reg_param
*reg_params
,
845 uint32_t exit_point
, int timeout_ms
,
848 int retval
= ERROR_FAIL
;
850 if (!target
->type
->wait_algorithm
) {
851 LOG_ERROR("Target type '%s' does not support %s",
852 target_type_name(target
), __func__
);
855 if (!target
->running_alg
) {
856 LOG_ERROR("Target is not running an algorithm");
860 retval
= target
->type
->wait_algorithm(target
,
861 num_mem_params
, mem_params
,
862 num_reg_params
, reg_params
,
863 exit_point
, timeout_ms
, arch_info
);
864 if (retval
!= ERROR_TARGET_TIMEOUT
)
865 target
->running_alg
= false;
872 * Executes a target-specific native code algorithm in the target.
873 * It differs from target_run_algorithm in that the algorithm is asynchronous.
874 * Because of this it requires an compliant algorithm:
875 * see contrib/loaders/flash/stm32f1x.S for example.
877 * @param target used to run the algorithm
880 int target_run_flash_async_algorithm(struct target
*target
,
881 const uint8_t *buffer
, uint32_t count
, int block_size
,
882 int num_mem_params
, struct mem_param
*mem_params
,
883 int num_reg_params
, struct reg_param
*reg_params
,
884 uint32_t buffer_start
, uint32_t buffer_size
,
885 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
890 const uint8_t *buffer_orig
= buffer
;
892 /* Set up working area. First word is write pointer, second word is read pointer,
893 * rest is fifo data area. */
894 uint32_t wp_addr
= buffer_start
;
895 uint32_t rp_addr
= buffer_start
+ 4;
896 uint32_t fifo_start_addr
= buffer_start
+ 8;
897 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
899 uint32_t wp
= fifo_start_addr
;
900 uint32_t rp
= fifo_start_addr
;
902 /* validate block_size is 2^n */
903 assert(!block_size
|| !(block_size
& (block_size
- 1)));
905 retval
= target_write_u32(target
, wp_addr
, wp
);
906 if (retval
!= ERROR_OK
)
908 retval
= target_write_u32(target
, rp_addr
, rp
);
909 if (retval
!= ERROR_OK
)
912 /* Start up algorithm on target and let it idle while writing the first chunk */
913 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
914 num_reg_params
, reg_params
,
919 if (retval
!= ERROR_OK
) {
920 LOG_ERROR("error starting target flash write algorithm");
926 retval
= target_read_u32(target
, rp_addr
, &rp
);
927 if (retval
!= ERROR_OK
) {
928 LOG_ERROR("failed to get read pointer");
932 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
933 (size_t) (buffer
- buffer_orig
), count
, wp
, rp
);
936 LOG_ERROR("flash write algorithm aborted by target");
937 retval
= ERROR_FLASH_OPERATION_FAILED
;
941 if (((rp
- fifo_start_addr
) & (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
942 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
946 /* Count the number of bytes available in the fifo without
947 * crossing the wrap around. Make sure to not fill it completely,
948 * because that would make wp == rp and that's the empty condition. */
949 uint32_t thisrun_bytes
;
951 thisrun_bytes
= rp
- wp
- block_size
;
952 else if (rp
> fifo_start_addr
)
953 thisrun_bytes
= fifo_end_addr
- wp
;
955 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
957 if (thisrun_bytes
== 0) {
958 /* Throttle polling a bit if transfer is (much) faster than flash
959 * programming. The exact delay shouldn't matter as long as it's
960 * less than buffer size / flash speed. This is very unlikely to
961 * run when using high latency connections such as USB. */
964 /* to stop an infinite loop on some targets check and increment a timeout
965 * this issue was observed on a stellaris using the new ICDI interface */
966 if (timeout
++ >= 500) {
967 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
968 return ERROR_FLASH_OPERATION_FAILED
;
973 /* reset our timeout */
976 /* Limit to the amount of data we actually want to write */
977 if (thisrun_bytes
> count
* block_size
)
978 thisrun_bytes
= count
* block_size
;
980 /* Write data to fifo */
981 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
982 if (retval
!= ERROR_OK
)
985 /* Update counters and wrap write pointer */
986 buffer
+= thisrun_bytes
;
987 count
-= thisrun_bytes
/ block_size
;
989 if (wp
>= fifo_end_addr
)
990 wp
= fifo_start_addr
;
992 /* Store updated write pointer to target */
993 retval
= target_write_u32(target
, wp_addr
, wp
);
994 if (retval
!= ERROR_OK
)
998 if (retval
!= ERROR_OK
) {
999 /* abort flash write algorithm on target */
1000 target_write_u32(target
, wp_addr
, 0);
1003 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
1004 num_reg_params
, reg_params
,
1009 if (retval2
!= ERROR_OK
) {
1010 LOG_ERROR("error waiting for target flash write algorithm");
1017 int target_read_memory(struct target
*target
,
1018 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1020 if (!target_was_examined(target
)) {
1021 LOG_ERROR("Target not examined yet");
1024 if (!target
->type
->read_memory
) {
1025 LOG_ERROR("Target %s doesn't support read_memory", target_name(target
));
1028 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
1031 int target_read_phys_memory(struct target
*target
,
1032 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1034 if (!target_was_examined(target
)) {
1035 LOG_ERROR("Target not examined yet");
1038 if (!target
->type
->read_phys_memory
) {
1039 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target
));
1042 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1045 int target_write_memory(struct target
*target
,
1046 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1048 if (!target_was_examined(target
)) {
1049 LOG_ERROR("Target not examined yet");
1052 if (!target
->type
->write_memory
) {
1053 LOG_ERROR("Target %s doesn't support write_memory", target_name(target
));
1056 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1059 int target_write_phys_memory(struct target
*target
,
1060 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1062 if (!target_was_examined(target
)) {
1063 LOG_ERROR("Target not examined yet");
1066 if (!target
->type
->write_phys_memory
) {
1067 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target
));
1070 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1073 int target_add_breakpoint(struct target
*target
,
1074 struct breakpoint
*breakpoint
)
1076 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1077 LOG_WARNING("target %s is not halted", target_name(target
));
1078 return ERROR_TARGET_NOT_HALTED
;
1080 return target
->type
->add_breakpoint(target
, breakpoint
);
1083 int target_add_context_breakpoint(struct target
*target
,
1084 struct breakpoint
*breakpoint
)
1086 if (target
->state
!= TARGET_HALTED
) {
1087 LOG_WARNING("target %s is not halted", target_name(target
));
1088 return ERROR_TARGET_NOT_HALTED
;
1090 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1093 int target_add_hybrid_breakpoint(struct target
*target
,
1094 struct breakpoint
*breakpoint
)
1096 if (target
->state
!= TARGET_HALTED
) {
1097 LOG_WARNING("target %s is not halted", target_name(target
));
1098 return ERROR_TARGET_NOT_HALTED
;
1100 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1103 int target_remove_breakpoint(struct target
*target
,
1104 struct breakpoint
*breakpoint
)
1106 return target
->type
->remove_breakpoint(target
, breakpoint
);
1109 int target_add_watchpoint(struct target
*target
,
1110 struct watchpoint
*watchpoint
)
1112 if (target
->state
!= TARGET_HALTED
) {
1113 LOG_WARNING("target %s is not halted", target_name(target
));
1114 return ERROR_TARGET_NOT_HALTED
;
1116 return target
->type
->add_watchpoint(target
, watchpoint
);
1118 int target_remove_watchpoint(struct target
*target
,
1119 struct watchpoint
*watchpoint
)
1121 return target
->type
->remove_watchpoint(target
, watchpoint
);
1123 int target_hit_watchpoint(struct target
*target
,
1124 struct watchpoint
**hit_watchpoint
)
1126 if (target
->state
!= TARGET_HALTED
) {
1127 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1128 return ERROR_TARGET_NOT_HALTED
;
1131 if (target
->type
->hit_watchpoint
== NULL
) {
1132 /* For backward compatible, if hit_watchpoint is not implemented,
1133 * return ERROR_FAIL such that gdb_server will not take the nonsense
1138 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1141 int target_get_gdb_reg_list(struct target
*target
,
1142 struct reg
**reg_list
[], int *reg_list_size
,
1143 enum target_register_class reg_class
)
1145 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1147 int target_step(struct target
*target
,
1148 int current
, uint32_t address
, int handle_breakpoints
)
1150 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1153 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1155 if (target
->state
!= TARGET_HALTED
) {
1156 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1157 return ERROR_TARGET_NOT_HALTED
;
1159 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1162 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1164 if (target
->state
!= TARGET_HALTED
) {
1165 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1166 return ERROR_TARGET_NOT_HALTED
;
1168 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1171 int target_profiling(struct target
*target
, uint32_t *samples
,
1172 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1174 if (target
->state
!= TARGET_HALTED
) {
1175 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1176 return ERROR_TARGET_NOT_HALTED
;
1178 return target
->type
->profiling(target
, samples
, max_num_samples
,
1179 num_samples
, seconds
);
1183 * Reset the @c examined flag for the given target.
1184 * Pure paranoia -- targets are zeroed on allocation.
1186 static void target_reset_examined(struct target
*target
)
1188 target
->examined
= false;
1191 static int handle_target(void *priv
);
1193 static int target_init_one(struct command_context
*cmd_ctx
,
1194 struct target
*target
)
1196 target_reset_examined(target
);
1198 struct target_type
*type
= target
->type
;
1199 if (type
->examine
== NULL
)
1200 type
->examine
= default_examine
;
1202 if (type
->check_reset
== NULL
)
1203 type
->check_reset
= default_check_reset
;
1205 assert(type
->init_target
!= NULL
);
1207 int retval
= type
->init_target(cmd_ctx
, target
);
1208 if (ERROR_OK
!= retval
) {
1209 LOG_ERROR("target '%s' init failed", target_name(target
));
1213 /* Sanity-check MMU support ... stub in what we must, to help
1214 * implement it in stages, but warn if we need to do so.
1217 if (type
->virt2phys
== NULL
) {
1218 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1219 type
->virt2phys
= identity_virt2phys
;
1222 /* Make sure no-MMU targets all behave the same: make no
1223 * distinction between physical and virtual addresses, and
1224 * ensure that virt2phys() is always an identity mapping.
1226 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1227 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1230 type
->write_phys_memory
= type
->write_memory
;
1231 type
->read_phys_memory
= type
->read_memory
;
1232 type
->virt2phys
= identity_virt2phys
;
1235 if (target
->type
->read_buffer
== NULL
)
1236 target
->type
->read_buffer
= target_read_buffer_default
;
1238 if (target
->type
->write_buffer
== NULL
)
1239 target
->type
->write_buffer
= target_write_buffer_default
;
1241 if (target
->type
->get_gdb_fileio_info
== NULL
)
1242 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1244 if (target
->type
->gdb_fileio_end
== NULL
)
1245 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1247 if (target
->type
->profiling
== NULL
)
1248 target
->type
->profiling
= target_profiling_default
;
1253 static int target_init(struct command_context
*cmd_ctx
)
1255 struct target
*target
;
1258 for (target
= all_targets
; target
; target
= target
->next
) {
1259 retval
= target_init_one(cmd_ctx
, target
);
1260 if (ERROR_OK
!= retval
)
1267 retval
= target_register_user_commands(cmd_ctx
);
1268 if (ERROR_OK
!= retval
)
1271 retval
= target_register_timer_callback(&handle_target
,
1272 polling_interval
, 1, cmd_ctx
->interp
);
1273 if (ERROR_OK
!= retval
)
1279 COMMAND_HANDLER(handle_target_init_command
)
1284 return ERROR_COMMAND_SYNTAX_ERROR
;
1286 static bool target_initialized
;
1287 if (target_initialized
) {
1288 LOG_INFO("'target init' has already been called");
1291 target_initialized
= true;
1293 retval
= command_run_line(CMD_CTX
, "init_targets");
1294 if (ERROR_OK
!= retval
)
1297 retval
= command_run_line(CMD_CTX
, "init_target_events");
1298 if (ERROR_OK
!= retval
)
1301 retval
= command_run_line(CMD_CTX
, "init_board");
1302 if (ERROR_OK
!= retval
)
1305 LOG_DEBUG("Initializing targets...");
1306 return target_init(CMD_CTX
);
1309 int target_register_event_callback(int (*callback
)(struct target
*target
,
1310 enum target_event event
, void *priv
), void *priv
)
1312 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1314 if (callback
== NULL
)
1315 return ERROR_COMMAND_SYNTAX_ERROR
;
1318 while ((*callbacks_p
)->next
)
1319 callbacks_p
= &((*callbacks_p
)->next
);
1320 callbacks_p
= &((*callbacks_p
)->next
);
1323 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1324 (*callbacks_p
)->callback
= callback
;
1325 (*callbacks_p
)->priv
= priv
;
1326 (*callbacks_p
)->next
= NULL
;
1331 int target_register_reset_callback(int (*callback
)(struct target
*target
,
1332 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1334 struct target_reset_callback
*entry
;
1336 if (callback
== NULL
)
1337 return ERROR_COMMAND_SYNTAX_ERROR
;
1339 entry
= malloc(sizeof(struct target_reset_callback
));
1340 if (entry
== NULL
) {
1341 LOG_ERROR("error allocating buffer for reset callback entry");
1342 return ERROR_COMMAND_SYNTAX_ERROR
;
1345 entry
->callback
= callback
;
1347 list_add(&entry
->list
, &target_reset_callback_list
);
1353 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1355 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1358 if (callback
== NULL
)
1359 return ERROR_COMMAND_SYNTAX_ERROR
;
1362 while ((*callbacks_p
)->next
)
1363 callbacks_p
= &((*callbacks_p
)->next
);
1364 callbacks_p
= &((*callbacks_p
)->next
);
1367 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1368 (*callbacks_p
)->callback
= callback
;
1369 (*callbacks_p
)->periodic
= periodic
;
1370 (*callbacks_p
)->time_ms
= time_ms
;
1371 (*callbacks_p
)->removed
= false;
1373 gettimeofday(&now
, NULL
);
1374 (*callbacks_p
)->when
.tv_usec
= now
.tv_usec
+ (time_ms
% 1000) * 1000;
1375 time_ms
-= (time_ms
% 1000);
1376 (*callbacks_p
)->when
.tv_sec
= now
.tv_sec
+ (time_ms
/ 1000);
1377 if ((*callbacks_p
)->when
.tv_usec
> 1000000) {
1378 (*callbacks_p
)->when
.tv_usec
= (*callbacks_p
)->when
.tv_usec
- 1000000;
1379 (*callbacks_p
)->when
.tv_sec
+= 1;
1382 (*callbacks_p
)->priv
= priv
;
1383 (*callbacks_p
)->next
= NULL
;
1388 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1389 enum target_event event
, void *priv
), void *priv
)
1391 struct target_event_callback
**p
= &target_event_callbacks
;
1392 struct target_event_callback
*c
= target_event_callbacks
;
1394 if (callback
== NULL
)
1395 return ERROR_COMMAND_SYNTAX_ERROR
;
1398 struct target_event_callback
*next
= c
->next
;
1399 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1411 int target_unregister_reset_callback(int (*callback
)(struct target
*target
,
1412 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1414 struct target_reset_callback
*entry
;
1416 if (callback
== NULL
)
1417 return ERROR_COMMAND_SYNTAX_ERROR
;
1419 list_for_each_entry(entry
, &target_reset_callback_list
, list
) {
1420 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1421 list_del(&entry
->list
);
1430 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1432 if (callback
== NULL
)
1433 return ERROR_COMMAND_SYNTAX_ERROR
;
1435 for (struct target_timer_callback
*c
= target_timer_callbacks
;
1437 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1446 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1448 struct target_event_callback
*callback
= target_event_callbacks
;
1449 struct target_event_callback
*next_callback
;
1451 if (event
== TARGET_EVENT_HALTED
) {
1452 /* execute early halted first */
1453 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1456 LOG_DEBUG("target event %i (%s)", event
,
1457 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1459 target_handle_event(target
, event
);
1462 next_callback
= callback
->next
;
1463 callback
->callback(target
, event
, callback
->priv
);
1464 callback
= next_callback
;
1470 int target_call_reset_callbacks(struct target
*target
, enum target_reset_mode reset_mode
)
1472 struct target_reset_callback
*callback
;
1474 LOG_DEBUG("target reset %i (%s)", reset_mode
,
1475 Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
);
1477 list_for_each_entry(callback
, &target_reset_callback_list
, list
)
1478 callback
->callback(target
, reset_mode
, callback
->priv
);
1483 static int target_timer_callback_periodic_restart(
1484 struct target_timer_callback
*cb
, struct timeval
*now
)
1486 int time_ms
= cb
->time_ms
;
1487 cb
->when
.tv_usec
= now
->tv_usec
+ (time_ms
% 1000) * 1000;
1488 time_ms
-= (time_ms
% 1000);
1489 cb
->when
.tv_sec
= now
->tv_sec
+ time_ms
/ 1000;
1490 if (cb
->when
.tv_usec
> 1000000) {
1491 cb
->when
.tv_usec
= cb
->when
.tv_usec
- 1000000;
1492 cb
->when
.tv_sec
+= 1;
1497 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1498 struct timeval
*now
)
1500 cb
->callback(cb
->priv
);
1503 return target_timer_callback_periodic_restart(cb
, now
);
1505 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1508 static int target_call_timer_callbacks_check_time(int checktime
)
1510 static bool callback_processing
;
1512 /* Do not allow nesting */
1513 if (callback_processing
)
1516 callback_processing
= true;
1521 gettimeofday(&now
, NULL
);
1523 /* Store an address of the place containing a pointer to the
1524 * next item; initially, that's a standalone "root of the
1525 * list" variable. */
1526 struct target_timer_callback
**callback
= &target_timer_callbacks
;
1528 if ((*callback
)->removed
) {
1529 struct target_timer_callback
*p
= *callback
;
1530 *callback
= (*callback
)->next
;
1535 bool call_it
= (*callback
)->callback
&&
1536 ((!checktime
&& (*callback
)->periodic
) ||
1537 now
.tv_sec
> (*callback
)->when
.tv_sec
||
1538 (now
.tv_sec
== (*callback
)->when
.tv_sec
&&
1539 now
.tv_usec
>= (*callback
)->when
.tv_usec
));
1542 target_call_timer_callback(*callback
, &now
);
1544 callback
= &(*callback
)->next
;
1547 callback_processing
= false;
1551 int target_call_timer_callbacks(void)
1553 return target_call_timer_callbacks_check_time(1);
1556 /* invoke periodic callbacks immediately */
1557 int target_call_timer_callbacks_now(void)
1559 return target_call_timer_callbacks_check_time(0);
1562 /* Prints the working area layout for debug purposes */
1563 static void print_wa_layout(struct target
*target
)
1565 struct working_area
*c
= target
->working_areas
;
1568 LOG_DEBUG("%c%c 0x%08"PRIx32
"-0x%08"PRIx32
" (%"PRIu32
" bytes)",
1569 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1570 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1575 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1576 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1578 assert(area
->free
); /* Shouldn't split an allocated area */
1579 assert(size
<= area
->size
); /* Caller should guarantee this */
1581 /* Split only if not already the right size */
1582 if (size
< area
->size
) {
1583 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1588 new_wa
->next
= area
->next
;
1589 new_wa
->size
= area
->size
- size
;
1590 new_wa
->address
= area
->address
+ size
;
1591 new_wa
->backup
= NULL
;
1592 new_wa
->user
= NULL
;
1593 new_wa
->free
= true;
1595 area
->next
= new_wa
;
1598 /* If backup memory was allocated to this area, it has the wrong size
1599 * now so free it and it will be reallocated if/when needed */
1602 area
->backup
= NULL
;
1607 /* Merge all adjacent free areas into one */
1608 static void target_merge_working_areas(struct target
*target
)
1610 struct working_area
*c
= target
->working_areas
;
1612 while (c
&& c
->next
) {
1613 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1615 /* Find two adjacent free areas */
1616 if (c
->free
&& c
->next
->free
) {
1617 /* Merge the last into the first */
1618 c
->size
+= c
->next
->size
;
1620 /* Remove the last */
1621 struct working_area
*to_be_freed
= c
->next
;
1622 c
->next
= c
->next
->next
;
1623 if (to_be_freed
->backup
)
1624 free(to_be_freed
->backup
);
1627 /* If backup memory was allocated to the remaining area, it's has
1628 * the wrong size now */
1639 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1641 /* Reevaluate working area address based on MMU state*/
1642 if (target
->working_areas
== NULL
) {
1646 retval
= target
->type
->mmu(target
, &enabled
);
1647 if (retval
!= ERROR_OK
)
1651 if (target
->working_area_phys_spec
) {
1652 LOG_DEBUG("MMU disabled, using physical "
1653 "address for working memory 0x%08"PRIx32
,
1654 target
->working_area_phys
);
1655 target
->working_area
= target
->working_area_phys
;
1657 LOG_ERROR("No working memory available. "
1658 "Specify -work-area-phys to target.");
1659 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1662 if (target
->working_area_virt_spec
) {
1663 LOG_DEBUG("MMU enabled, using virtual "
1664 "address for working memory 0x%08"PRIx32
,
1665 target
->working_area_virt
);
1666 target
->working_area
= target
->working_area_virt
;
1668 LOG_ERROR("No working memory available. "
1669 "Specify -work-area-virt to target.");
1670 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1674 /* Set up initial working area on first call */
1675 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1677 new_wa
->next
= NULL
;
1678 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1679 new_wa
->address
= target
->working_area
;
1680 new_wa
->backup
= NULL
;
1681 new_wa
->user
= NULL
;
1682 new_wa
->free
= true;
1685 target
->working_areas
= new_wa
;
1688 /* only allocate multiples of 4 byte */
1690 size
= (size
+ 3) & (~3UL);
1692 struct working_area
*c
= target
->working_areas
;
1694 /* Find the first large enough working area */
1696 if (c
->free
&& c
->size
>= size
)
1702 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1704 /* Split the working area into the requested size */
1705 target_split_working_area(c
, size
);
1707 LOG_DEBUG("allocated new working area of %"PRIu32
" bytes at address 0x%08"PRIx32
, size
, c
->address
);
1709 if (target
->backup_working_area
) {
1710 if (c
->backup
== NULL
) {
1711 c
->backup
= malloc(c
->size
);
1712 if (c
->backup
== NULL
)
1716 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1717 if (retval
!= ERROR_OK
)
1721 /* mark as used, and return the new (reused) area */
1728 print_wa_layout(target
);
1733 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1737 retval
= target_alloc_working_area_try(target
, size
, area
);
1738 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1739 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1744 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1746 int retval
= ERROR_OK
;
1748 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1749 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1750 if (retval
!= ERROR_OK
)
1751 LOG_ERROR("failed to restore %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1752 area
->size
, area
->address
);
1758 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1759 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1761 int retval
= ERROR_OK
;
1767 retval
= target_restore_working_area(target
, area
);
1768 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1769 if (retval
!= ERROR_OK
)
1775 LOG_DEBUG("freed %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1776 area
->size
, area
->address
);
1778 /* mark user pointer invalid */
1779 /* TODO: Is this really safe? It points to some previous caller's memory.
1780 * How could we know that the area pointer is still in that place and not
1781 * some other vital data? What's the purpose of this, anyway? */
1785 target_merge_working_areas(target
);
1787 print_wa_layout(target
);
1792 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1794 return target_free_working_area_restore(target
, area
, 1);
1797 void target_quit(void)
1799 struct target_event_callback
*pe
= target_event_callbacks
;
1801 struct target_event_callback
*t
= pe
->next
;
1805 target_event_callbacks
= NULL
;
1807 struct target_timer_callback
*pt
= target_timer_callbacks
;
1809 struct target_timer_callback
*t
= pt
->next
;
1813 target_timer_callbacks
= NULL
;
1815 for (struct target
*target
= all_targets
;
1816 target
; target
= target
->next
) {
1817 if (target
->type
->deinit_target
)
1818 target
->type
->deinit_target(target
);
1822 /* free resources and restore memory, if restoring memory fails,
1823 * free up resources anyway
1825 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1827 struct working_area
*c
= target
->working_areas
;
1829 LOG_DEBUG("freeing all working areas");
1831 /* Loop through all areas, restoring the allocated ones and marking them as free */
1835 target_restore_working_area(target
, c
);
1837 *c
->user
= NULL
; /* Same as above */
1843 /* Run a merge pass to combine all areas into one */
1844 target_merge_working_areas(target
);
1846 print_wa_layout(target
);
1849 void target_free_all_working_areas(struct target
*target
)
1851 target_free_all_working_areas_restore(target
, 1);
1854 /* Find the largest number of bytes that can be allocated */
1855 uint32_t target_get_working_area_avail(struct target
*target
)
1857 struct working_area
*c
= target
->working_areas
;
1858 uint32_t max_size
= 0;
1861 return target
->working_area_size
;
1864 if (c
->free
&& max_size
< c
->size
)
1873 int target_arch_state(struct target
*target
)
1876 if (target
== NULL
) {
1877 LOG_USER("No target has been configured");
1881 LOG_USER("target state: %s", target_state_name(target
));
1883 if (target
->state
!= TARGET_HALTED
)
1886 retval
= target
->type
->arch_state(target
);
1890 static int target_get_gdb_fileio_info_default(struct target
*target
,
1891 struct gdb_fileio_info
*fileio_info
)
1893 /* If target does not support semi-hosting function, target
1894 has no need to provide .get_gdb_fileio_info callback.
1895 It just return ERROR_FAIL and gdb_server will return "Txx"
1896 as target halted every time. */
1900 static int target_gdb_fileio_end_default(struct target
*target
,
1901 int retcode
, int fileio_errno
, bool ctrl_c
)
1906 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
1907 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1909 struct timeval timeout
, now
;
1911 gettimeofday(&timeout
, NULL
);
1912 timeval_add_time(&timeout
, seconds
, 0);
1914 LOG_INFO("Starting profiling. Halting and resuming the"
1915 " target as often as we can...");
1917 uint32_t sample_count
= 0;
1918 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1919 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
1921 int retval
= ERROR_OK
;
1923 target_poll(target
);
1924 if (target
->state
== TARGET_HALTED
) {
1925 uint32_t t
= buf_get_u32(reg
->value
, 0, 32);
1926 samples
[sample_count
++] = t
;
1927 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1928 retval
= target_resume(target
, 1, 0, 0, 0);
1929 target_poll(target
);
1930 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1931 } else if (target
->state
== TARGET_RUNNING
) {
1932 /* We want to quickly sample the PC. */
1933 retval
= target_halt(target
);
1935 LOG_INFO("Target not halted or running");
1940 if (retval
!= ERROR_OK
)
1943 gettimeofday(&now
, NULL
);
1944 if ((sample_count
>= max_num_samples
) ||
1945 ((now
.tv_sec
>= timeout
.tv_sec
) && (now
.tv_usec
>= timeout
.tv_usec
))) {
1946 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
1951 *num_samples
= sample_count
;
1955 /* Single aligned words are guaranteed to use 16 or 32 bit access
1956 * mode respectively, otherwise data is handled as quickly as
1959 int target_write_buffer(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
1961 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1962 (int)size
, (unsigned)address
);
1964 if (!target_was_examined(target
)) {
1965 LOG_ERROR("Target not examined yet");
1972 if ((address
+ size
- 1) < address
) {
1973 /* GDB can request this when e.g. PC is 0xfffffffc*/
1974 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1980 return target
->type
->write_buffer(target
, address
, size
, buffer
);
1983 static int target_write_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, const uint8_t *buffer
)
1987 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1988 * will have something to do with the size we leave to it. */
1989 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
1990 if (address
& size
) {
1991 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
1992 if (retval
!= ERROR_OK
)
2000 /* Write the data with as large access size as possible. */
2001 for (; size
> 0; size
/= 2) {
2002 uint32_t aligned
= count
- count
% size
;
2004 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
2005 if (retval
!= ERROR_OK
)
2016 /* Single aligned words are guaranteed to use 16 or 32 bit access
2017 * mode respectively, otherwise data is handled as quickly as
2020 int target_read_buffer(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
2022 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2023 (int)size
, (unsigned)address
);
2025 if (!target_was_examined(target
)) {
2026 LOG_ERROR("Target not examined yet");
2033 if ((address
+ size
- 1) < address
) {
2034 /* GDB can request this when e.g. PC is 0xfffffffc*/
2035 LOG_ERROR("address + size wrapped(0x%08" PRIx32
", 0x%08" PRIx32
")",
2041 return target
->type
->read_buffer(target
, address
, size
, buffer
);
2044 static int target_read_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
2048 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2049 * will have something to do with the size we leave to it. */
2050 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2051 if (address
& size
) {
2052 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
2053 if (retval
!= ERROR_OK
)
2061 /* Read the data with as large access size as possible. */
2062 for (; size
> 0; size
/= 2) {
2063 uint32_t aligned
= count
- count
% size
;
2065 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
2066 if (retval
!= ERROR_OK
)
2077 int target_checksum_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* crc
)
2082 uint32_t checksum
= 0;
2083 if (!target_was_examined(target
)) {
2084 LOG_ERROR("Target not examined yet");
2088 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
2089 if (retval
!= ERROR_OK
) {
2090 buffer
= malloc(size
);
2091 if (buffer
== NULL
) {
2092 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size
);
2093 return ERROR_COMMAND_SYNTAX_ERROR
;
2095 retval
= target_read_buffer(target
, address
, size
, buffer
);
2096 if (retval
!= ERROR_OK
) {
2101 /* convert to target endianness */
2102 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
2103 uint32_t target_data
;
2104 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
2105 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2108 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2117 int target_blank_check_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* blank
)
2120 if (!target_was_examined(target
)) {
2121 LOG_ERROR("Target not examined yet");
2125 if (target
->type
->blank_check_memory
== 0)
2126 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2128 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
);
2133 int target_read_u64(struct target
*target
, uint64_t address
, uint64_t *value
)
2135 uint8_t value_buf
[8];
2136 if (!target_was_examined(target
)) {
2137 LOG_ERROR("Target not examined yet");
2141 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2143 if (retval
== ERROR_OK
) {
2144 *value
= target_buffer_get_u64(target
, value_buf
);
2145 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2150 LOG_DEBUG("address: 0x%" PRIx64
" failed",
2157 int target_read_u32(struct target
*target
, uint32_t address
, uint32_t *value
)
2159 uint8_t value_buf
[4];
2160 if (!target_was_examined(target
)) {
2161 LOG_ERROR("Target not examined yet");
2165 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2167 if (retval
== ERROR_OK
) {
2168 *value
= target_buffer_get_u32(target
, value_buf
);
2169 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2174 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2181 int target_read_u16(struct target
*target
, uint32_t address
, uint16_t *value
)
2183 uint8_t value_buf
[2];
2184 if (!target_was_examined(target
)) {
2185 LOG_ERROR("Target not examined yet");
2189 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2191 if (retval
== ERROR_OK
) {
2192 *value
= target_buffer_get_u16(target
, value_buf
);
2193 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%4.4x",
2198 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2205 int target_read_u8(struct target
*target
, uint32_t address
, uint8_t *value
)
2207 if (!target_was_examined(target
)) {
2208 LOG_ERROR("Target not examined yet");
2212 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2214 if (retval
== ERROR_OK
) {
2215 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2220 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2227 int target_write_u64(struct target
*target
, uint64_t address
, uint64_t value
)
2230 uint8_t value_buf
[8];
2231 if (!target_was_examined(target
)) {
2232 LOG_ERROR("Target not examined yet");
2236 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2240 target_buffer_set_u64(target
, value_buf
, value
);
2241 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2242 if (retval
!= ERROR_OK
)
2243 LOG_DEBUG("failed: %i", retval
);
2248 int target_write_u32(struct target
*target
, uint32_t address
, uint32_t value
)
2251 uint8_t value_buf
[4];
2252 if (!target_was_examined(target
)) {
2253 LOG_ERROR("Target not examined yet");
2257 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2261 target_buffer_set_u32(target
, value_buf
, value
);
2262 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2263 if (retval
!= ERROR_OK
)
2264 LOG_DEBUG("failed: %i", retval
);
2269 int target_write_u16(struct target
*target
, uint32_t address
, uint16_t value
)
2272 uint8_t value_buf
[2];
2273 if (!target_was_examined(target
)) {
2274 LOG_ERROR("Target not examined yet");
2278 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8x",
2282 target_buffer_set_u16(target
, value_buf
, value
);
2283 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2284 if (retval
!= ERROR_OK
)
2285 LOG_DEBUG("failed: %i", retval
);
2290 int target_write_u8(struct target
*target
, uint32_t address
, uint8_t value
)
2293 if (!target_was_examined(target
)) {
2294 LOG_ERROR("Target not examined yet");
2298 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2301 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2302 if (retval
!= ERROR_OK
)
2303 LOG_DEBUG("failed: %i", retval
);
2308 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2310 struct target
*target
= get_target(name
);
2311 if (target
== NULL
) {
2312 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2315 if (!target
->tap
->enabled
) {
2316 LOG_USER("Target: TAP %s is disabled, "
2317 "can't be the current target\n",
2318 target
->tap
->dotted_name
);
2322 cmd_ctx
->current_target
= target
->target_number
;
2327 COMMAND_HANDLER(handle_targets_command
)
2329 int retval
= ERROR_OK
;
2330 if (CMD_ARGC
== 1) {
2331 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2332 if (retval
== ERROR_OK
) {
2338 struct target
*target
= all_targets
;
2339 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2340 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2345 if (target
->tap
->enabled
)
2346 state
= target_state_name(target
);
2348 state
= "tap-disabled";
2350 if (CMD_CTX
->current_target
== target
->target_number
)
2353 /* keep columns lined up to match the headers above */
2354 command_print(CMD_CTX
,
2355 "%2d%c %-18s %-10s %-6s %-18s %s",
2356 target
->target_number
,
2358 target_name(target
),
2359 target_type_name(target
),
2360 Jim_Nvp_value2name_simple(nvp_target_endian
,
2361 target
->endianness
)->name
,
2362 target
->tap
->dotted_name
,
2364 target
= target
->next
;
2370 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2372 static int powerDropout
;
2373 static int srstAsserted
;
2375 static int runPowerRestore
;
2376 static int runPowerDropout
;
2377 static int runSrstAsserted
;
2378 static int runSrstDeasserted
;
2380 static int sense_handler(void)
2382 static int prevSrstAsserted
;
2383 static int prevPowerdropout
;
2385 int retval
= jtag_power_dropout(&powerDropout
);
2386 if (retval
!= ERROR_OK
)
2390 powerRestored
= prevPowerdropout
&& !powerDropout
;
2392 runPowerRestore
= 1;
2394 long long current
= timeval_ms();
2395 static long long lastPower
;
2396 int waitMore
= lastPower
+ 2000 > current
;
2397 if (powerDropout
&& !waitMore
) {
2398 runPowerDropout
= 1;
2399 lastPower
= current
;
2402 retval
= jtag_srst_asserted(&srstAsserted
);
2403 if (retval
!= ERROR_OK
)
2407 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2409 static long long lastSrst
;
2410 waitMore
= lastSrst
+ 2000 > current
;
2411 if (srstDeasserted
&& !waitMore
) {
2412 runSrstDeasserted
= 1;
2416 if (!prevSrstAsserted
&& srstAsserted
)
2417 runSrstAsserted
= 1;
2419 prevSrstAsserted
= srstAsserted
;
2420 prevPowerdropout
= powerDropout
;
2422 if (srstDeasserted
|| powerRestored
) {
2423 /* Other than logging the event we can't do anything here.
2424 * Issuing a reset is a particularly bad idea as we might
2425 * be inside a reset already.
2432 /* process target state changes */
2433 static int handle_target(void *priv
)
2435 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2436 int retval
= ERROR_OK
;
2438 if (!is_jtag_poll_safe()) {
2439 /* polling is disabled currently */
2443 /* we do not want to recurse here... */
2444 static int recursive
;
2448 /* danger! running these procedures can trigger srst assertions and power dropouts.
2449 * We need to avoid an infinite loop/recursion here and we do that by
2450 * clearing the flags after running these events.
2452 int did_something
= 0;
2453 if (runSrstAsserted
) {
2454 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2455 Jim_Eval(interp
, "srst_asserted");
2458 if (runSrstDeasserted
) {
2459 Jim_Eval(interp
, "srst_deasserted");
2462 if (runPowerDropout
) {
2463 LOG_INFO("Power dropout detected, running power_dropout proc.");
2464 Jim_Eval(interp
, "power_dropout");
2467 if (runPowerRestore
) {
2468 Jim_Eval(interp
, "power_restore");
2472 if (did_something
) {
2473 /* clear detect flags */
2477 /* clear action flags */
2479 runSrstAsserted
= 0;
2480 runSrstDeasserted
= 0;
2481 runPowerRestore
= 0;
2482 runPowerDropout
= 0;
2487 /* Poll targets for state changes unless that's globally disabled.
2488 * Skip targets that are currently disabled.
2490 for (struct target
*target
= all_targets
;
2491 is_jtag_poll_safe() && target
;
2492 target
= target
->next
) {
2494 if (!target_was_examined(target
))
2497 if (!target
->tap
->enabled
)
2500 if (target
->backoff
.times
> target
->backoff
.count
) {
2501 /* do not poll this time as we failed previously */
2502 target
->backoff
.count
++;
2505 target
->backoff
.count
= 0;
2507 /* only poll target if we've got power and srst isn't asserted */
2508 if (!powerDropout
&& !srstAsserted
) {
2509 /* polling may fail silently until the target has been examined */
2510 retval
= target_poll(target
);
2511 if (retval
!= ERROR_OK
) {
2512 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2513 if (target
->backoff
.times
* polling_interval
< 5000) {
2514 target
->backoff
.times
*= 2;
2515 target
->backoff
.times
++;
2518 /* Tell GDB to halt the debugger. This allows the user to
2519 * run monitor commands to handle the situation.
2521 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2523 if (target
->backoff
.times
> 0) {
2524 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target
));
2525 target_reset_examined(target
);
2526 retval
= target_examine_one(target
);
2527 /* Target examination could have failed due to unstable connection,
2528 * but we set the examined flag anyway to repoll it later */
2529 if (retval
!= ERROR_OK
) {
2530 target
->examined
= true;
2531 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2532 target
->backoff
.times
* polling_interval
);
2537 /* Since we succeeded, we reset backoff count */
2538 target
->backoff
.times
= 0;
2545 COMMAND_HANDLER(handle_reg_command
)
2547 struct target
*target
;
2548 struct reg
*reg
= NULL
;
2554 target
= get_current_target(CMD_CTX
);
2556 /* list all available registers for the current target */
2557 if (CMD_ARGC
== 0) {
2558 struct reg_cache
*cache
= target
->reg_cache
;
2564 command_print(CMD_CTX
, "===== %s", cache
->name
);
2566 for (i
= 0, reg
= cache
->reg_list
;
2567 i
< cache
->num_regs
;
2568 i
++, reg
++, count
++) {
2569 /* only print cached values if they are valid */
2571 value
= buf_to_str(reg
->value
,
2573 command_print(CMD_CTX
,
2574 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2582 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2587 cache
= cache
->next
;
2593 /* access a single register by its ordinal number */
2594 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2596 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2598 struct reg_cache
*cache
= target
->reg_cache
;
2602 for (i
= 0; i
< cache
->num_regs
; i
++) {
2603 if (count
++ == num
) {
2604 reg
= &cache
->reg_list
[i
];
2610 cache
= cache
->next
;
2614 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2615 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2619 /* access a single register by its name */
2620 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2623 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2628 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2630 /* display a register */
2631 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2632 && (CMD_ARGV
[1][0] <= '9')))) {
2633 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2636 if (reg
->valid
== 0)
2637 reg
->type
->get(reg
);
2638 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2639 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2644 /* set register value */
2645 if (CMD_ARGC
== 2) {
2646 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2649 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2651 reg
->type
->set(reg
, buf
);
2653 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2654 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2662 return ERROR_COMMAND_SYNTAX_ERROR
;
2665 COMMAND_HANDLER(handle_poll_command
)
2667 int retval
= ERROR_OK
;
2668 struct target
*target
= get_current_target(CMD_CTX
);
2670 if (CMD_ARGC
== 0) {
2671 command_print(CMD_CTX
, "background polling: %s",
2672 jtag_poll_get_enabled() ? "on" : "off");
2673 command_print(CMD_CTX
, "TAP: %s (%s)",
2674 target
->tap
->dotted_name
,
2675 target
->tap
->enabled
? "enabled" : "disabled");
2676 if (!target
->tap
->enabled
)
2678 retval
= target_poll(target
);
2679 if (retval
!= ERROR_OK
)
2681 retval
= target_arch_state(target
);
2682 if (retval
!= ERROR_OK
)
2684 } else if (CMD_ARGC
== 1) {
2686 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2687 jtag_poll_set_enabled(enable
);
2689 return ERROR_COMMAND_SYNTAX_ERROR
;
2694 COMMAND_HANDLER(handle_wait_halt_command
)
2697 return ERROR_COMMAND_SYNTAX_ERROR
;
2699 unsigned ms
= DEFAULT_HALT_TIMEOUT
;
2700 if (1 == CMD_ARGC
) {
2701 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2702 if (ERROR_OK
!= retval
)
2703 return ERROR_COMMAND_SYNTAX_ERROR
;
2706 struct target
*target
= get_current_target(CMD_CTX
);
2707 return target_wait_state(target
, TARGET_HALTED
, ms
);
2710 /* wait for target state to change. The trick here is to have a low
2711 * latency for short waits and not to suck up all the CPU time
2714 * After 500ms, keep_alive() is invoked
2716 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2719 long long then
= 0, cur
;
2723 retval
= target_poll(target
);
2724 if (retval
!= ERROR_OK
)
2726 if (target
->state
== state
)
2731 then
= timeval_ms();
2732 LOG_DEBUG("waiting for target %s...",
2733 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2739 if ((cur
-then
) > ms
) {
2740 LOG_ERROR("timed out while waiting for target %s",
2741 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2749 COMMAND_HANDLER(handle_halt_command
)
2753 struct target
*target
= get_current_target(CMD_CTX
);
2754 int retval
= target_halt(target
);
2755 if (ERROR_OK
!= retval
)
2758 if (CMD_ARGC
== 1) {
2759 unsigned wait_local
;
2760 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2761 if (ERROR_OK
!= retval
)
2762 return ERROR_COMMAND_SYNTAX_ERROR
;
2767 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2770 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2772 struct target
*target
= get_current_target(CMD_CTX
);
2774 LOG_USER("requesting target halt and executing a soft reset");
2776 target_soft_reset_halt(target
);
2781 COMMAND_HANDLER(handle_reset_command
)
2784 return ERROR_COMMAND_SYNTAX_ERROR
;
2786 enum target_reset_mode reset_mode
= RESET_RUN
;
2787 if (CMD_ARGC
== 1) {
2789 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
2790 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
2791 return ERROR_COMMAND_SYNTAX_ERROR
;
2792 reset_mode
= n
->value
;
2795 /* reset *all* targets */
2796 return target_process_reset(CMD_CTX
, reset_mode
);
2800 COMMAND_HANDLER(handle_resume_command
)
2804 return ERROR_COMMAND_SYNTAX_ERROR
;
2806 struct target
*target
= get_current_target(CMD_CTX
);
2808 /* with no CMD_ARGV, resume from current pc, addr = 0,
2809 * with one arguments, addr = CMD_ARGV[0],
2810 * handle breakpoints, not debugging */
2812 if (CMD_ARGC
== 1) {
2813 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2817 return target_resume(target
, current
, addr
, 1, 0);
2820 COMMAND_HANDLER(handle_step_command
)
2823 return ERROR_COMMAND_SYNTAX_ERROR
;
2827 /* with no CMD_ARGV, step from current pc, addr = 0,
2828 * with one argument addr = CMD_ARGV[0],
2829 * handle breakpoints, debugging */
2832 if (CMD_ARGC
== 1) {
2833 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2837 struct target
*target
= get_current_target(CMD_CTX
);
2839 return target
->type
->step(target
, current_pc
, addr
, 1);
2842 static void handle_md_output(struct command_context
*cmd_ctx
,
2843 struct target
*target
, uint32_t address
, unsigned size
,
2844 unsigned count
, const uint8_t *buffer
)
2846 const unsigned line_bytecnt
= 32;
2847 unsigned line_modulo
= line_bytecnt
/ size
;
2849 char output
[line_bytecnt
* 4 + 1];
2850 unsigned output_len
= 0;
2852 const char *value_fmt
;
2855 value_fmt
= "%8.8x ";
2858 value_fmt
= "%4.4x ";
2861 value_fmt
= "%2.2x ";
2864 /* "can't happen", caller checked */
2865 LOG_ERROR("invalid memory read size: %u", size
);
2869 for (unsigned i
= 0; i
< count
; i
++) {
2870 if (i
% line_modulo
== 0) {
2871 output_len
+= snprintf(output
+ output_len
,
2872 sizeof(output
) - output_len
,
2874 (unsigned)(address
+ (i
*size
)));
2878 const uint8_t *value_ptr
= buffer
+ i
* size
;
2881 value
= target_buffer_get_u32(target
, value_ptr
);
2884 value
= target_buffer_get_u16(target
, value_ptr
);
2889 output_len
+= snprintf(output
+ output_len
,
2890 sizeof(output
) - output_len
,
2893 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
2894 command_print(cmd_ctx
, "%s", output
);
2900 COMMAND_HANDLER(handle_md_command
)
2903 return ERROR_COMMAND_SYNTAX_ERROR
;
2906 switch (CMD_NAME
[2]) {
2917 return ERROR_COMMAND_SYNTAX_ERROR
;
2920 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2921 int (*fn
)(struct target
*target
,
2922 uint32_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
2926 fn
= target_read_phys_memory
;
2928 fn
= target_read_memory
;
2929 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
2930 return ERROR_COMMAND_SYNTAX_ERROR
;
2933 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2937 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
2939 uint8_t *buffer
= calloc(count
, size
);
2941 struct target
*target
= get_current_target(CMD_CTX
);
2942 int retval
= fn(target
, address
, size
, count
, buffer
);
2943 if (ERROR_OK
== retval
)
2944 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
2951 typedef int (*target_write_fn
)(struct target
*target
,
2952 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
2954 static int target_fill_mem(struct target
*target
,
2963 /* We have to write in reasonably large chunks to be able
2964 * to fill large memory areas with any sane speed */
2965 const unsigned chunk_size
= 16384;
2966 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
2967 if (target_buf
== NULL
) {
2968 LOG_ERROR("Out of memory");
2972 for (unsigned i
= 0; i
< chunk_size
; i
++) {
2973 switch (data_size
) {
2975 target_buffer_set_u32(target
, target_buf
+ i
* data_size
, b
);
2978 target_buffer_set_u16(target
, target_buf
+ i
* data_size
, b
);
2981 target_buffer_set_u8(target
, target_buf
+ i
* data_size
, b
);
2988 int retval
= ERROR_OK
;
2990 for (unsigned x
= 0; x
< c
; x
+= chunk_size
) {
2993 if (current
> chunk_size
)
2994 current
= chunk_size
;
2995 retval
= fn(target
, address
+ x
* data_size
, data_size
, current
, target_buf
);
2996 if (retval
!= ERROR_OK
)
2998 /* avoid GDB timeouts */
3007 COMMAND_HANDLER(handle_mw_command
)
3010 return ERROR_COMMAND_SYNTAX_ERROR
;
3011 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
3016 fn
= target_write_phys_memory
;
3018 fn
= target_write_memory
;
3019 if ((CMD_ARGC
< 2) || (CMD_ARGC
> 3))
3020 return ERROR_COMMAND_SYNTAX_ERROR
;
3023 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
3026 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
3030 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[2], count
);
3032 struct target
*target
= get_current_target(CMD_CTX
);
3034 switch (CMD_NAME
[2]) {
3045 return ERROR_COMMAND_SYNTAX_ERROR
;
3048 return target_fill_mem(target
, address
, fn
, wordsize
, value
, count
);
3051 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV
, struct image
*image
,
3052 uint32_t *min_address
, uint32_t *max_address
)
3054 if (CMD_ARGC
< 1 || CMD_ARGC
> 5)
3055 return ERROR_COMMAND_SYNTAX_ERROR
;
3057 /* a base address isn't always necessary,
3058 * default to 0x0 (i.e. don't relocate) */
3059 if (CMD_ARGC
>= 2) {
3061 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
3062 image
->base_address
= addr
;
3063 image
->base_address_set
= 1;
3065 image
->base_address_set
= 0;
3067 image
->start_address_set
= 0;
3070 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], *min_address
);
3071 if (CMD_ARGC
== 5) {
3072 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], *max_address
);
3073 /* use size (given) to find max (required) */
3074 *max_address
+= *min_address
;
3077 if (*min_address
> *max_address
)
3078 return ERROR_COMMAND_SYNTAX_ERROR
;
3083 COMMAND_HANDLER(handle_load_image_command
)
3087 uint32_t image_size
;
3088 uint32_t min_address
= 0;
3089 uint32_t max_address
= 0xffffffff;
3093 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
3094 &image
, &min_address
, &max_address
);
3095 if (ERROR_OK
!= retval
)
3098 struct target
*target
= get_current_target(CMD_CTX
);
3100 struct duration bench
;
3101 duration_start(&bench
);
3103 if (image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
) != ERROR_OK
)
3108 for (i
= 0; i
< image
.num_sections
; i
++) {
3109 buffer
= malloc(image
.sections
[i
].size
);
3110 if (buffer
== NULL
) {
3111 command_print(CMD_CTX
,
3112 "error allocating buffer for section (%d bytes)",
3113 (int)(image
.sections
[i
].size
));
3117 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3118 if (retval
!= ERROR_OK
) {
3123 uint32_t offset
= 0;
3124 uint32_t length
= buf_cnt
;
3126 /* DANGER!!! beware of unsigned comparision here!!! */
3128 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
3129 (image
.sections
[i
].base_address
< max_address
)) {
3131 if (image
.sections
[i
].base_address
< min_address
) {
3132 /* clip addresses below */
3133 offset
+= min_address
-image
.sections
[i
].base_address
;
3137 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
3138 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
3140 retval
= target_write_buffer(target
,
3141 image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
);
3142 if (retval
!= ERROR_OK
) {
3146 image_size
+= length
;
3147 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8" PRIx32
"",
3148 (unsigned int)length
,
3149 image
.sections
[i
].base_address
+ offset
);
3155 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3156 command_print(CMD_CTX
, "downloaded %" PRIu32
" bytes "
3157 "in %fs (%0.3f KiB/s)", image_size
,
3158 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3161 image_close(&image
);
3167 COMMAND_HANDLER(handle_dump_image_command
)
3169 struct fileio fileio
;
3171 int retval
, retvaltemp
;
3172 uint32_t address
, size
;
3173 struct duration bench
;
3174 struct target
*target
= get_current_target(CMD_CTX
);