target: check memory handlers before use for all types
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &mips_m4k_target,
125 &avr_target,
126 &dsp563xx_target,
127 &dsp5680xx_target,
128 &testee_target,
129 &avr32_ap7k_target,
130 &hla_target,
131 &nds32_v2_target,
132 &nds32_v3_target,
133 &nds32_v3m_target,
134 &or1k_target,
135 &quark_x10xx_target,
136 NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 LIST_HEAD(target_reset_callback_list);
143 static const int polling_interval = 100;
144
145 static const Jim_Nvp nvp_assert[] = {
146 { .name = "assert", NVP_ASSERT },
147 { .name = "deassert", NVP_DEASSERT },
148 { .name = "T", NVP_ASSERT },
149 { .name = "F", NVP_DEASSERT },
150 { .name = "t", NVP_ASSERT },
151 { .name = "f", NVP_DEASSERT },
152 { .name = NULL, .value = -1 }
153 };
154
155 static const Jim_Nvp nvp_error_target[] = {
156 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
157 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
158 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
159 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
160 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
161 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
162 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
163 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
164 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
165 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
166 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
167 { .value = -1, .name = NULL }
168 };
169
170 static const char *target_strerror_safe(int err)
171 {
172 const Jim_Nvp *n;
173
174 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
175 if (n->name == NULL)
176 return "unknown";
177 else
178 return n->name;
179 }
180
181 static const Jim_Nvp nvp_target_event[] = {
182
183 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
184 { .value = TARGET_EVENT_HALTED, .name = "halted" },
185 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
186 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
187 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
188
189 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
190 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
191
192 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
193 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
194 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
195 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
196 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
197 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
198 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
199 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
200 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
201 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
202 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
203 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
204
205 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
206 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
207
208 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
209 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
210
211 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
212 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
213
214 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
215 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
216
217 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
218 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
219
220 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
221
222 { .name = NULL, .value = -1 }
223 };
224
225 static const Jim_Nvp nvp_target_state[] = {
226 { .name = "unknown", .value = TARGET_UNKNOWN },
227 { .name = "running", .value = TARGET_RUNNING },
228 { .name = "halted", .value = TARGET_HALTED },
229 { .name = "reset", .value = TARGET_RESET },
230 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
231 { .name = NULL, .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_target_debug_reason[] = {
235 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
236 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
237 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
238 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
239 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
240 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
241 { .name = "program-exit" , .value = DBG_REASON_EXIT },
242 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
243 { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_target_endian[] = {
247 { .name = "big", .value = TARGET_BIG_ENDIAN },
248 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
249 { .name = "be", .value = TARGET_BIG_ENDIAN },
250 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
251 { .name = NULL, .value = -1 },
252 };
253
254 static const Jim_Nvp nvp_reset_modes[] = {
255 { .name = "unknown", .value = RESET_UNKNOWN },
256 { .name = "run" , .value = RESET_RUN },
257 { .name = "halt" , .value = RESET_HALT },
258 { .name = "init" , .value = RESET_INIT },
259 { .name = NULL , .value = -1 },
260 };
261
262 const char *debug_reason_name(struct target *t)
263 {
264 const char *cp;
265
266 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
267 t->debug_reason)->name;
268 if (!cp) {
269 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
270 cp = "(*BUG*unknown*BUG*)";
271 }
272 return cp;
273 }
274
275 const char *target_state_name(struct target *t)
276 {
277 const char *cp;
278 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
279 if (!cp) {
280 LOG_ERROR("Invalid target state: %d", (int)(t->state));
281 cp = "(*BUG*unknown*BUG*)";
282 }
283 return cp;
284 }
285
286 const char *target_event_name(enum target_event event)
287 {
288 const char *cp;
289 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
290 if (!cp) {
291 LOG_ERROR("Invalid target event: %d", (int)(event));
292 cp = "(*BUG*unknown*BUG*)";
293 }
294 return cp;
295 }
296
297 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
298 {
299 const char *cp;
300 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
301 if (!cp) {
302 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
303 cp = "(*BUG*unknown*BUG*)";
304 }
305 return cp;
306 }
307
308 /* determine the number of the new target */
309 static int new_target_number(void)
310 {
311 struct target *t;
312 int x;
313
314 /* number is 0 based */
315 x = -1;
316 t = all_targets;
317 while (t) {
318 if (x < t->target_number)
319 x = t->target_number;
320 t = t->next;
321 }
322 return x + 1;
323 }
324
325 /* read a uint64_t from a buffer in target memory endianness */
326 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
327 {
328 if (target->endianness == TARGET_LITTLE_ENDIAN)
329 return le_to_h_u64(buffer);
330 else
331 return be_to_h_u64(buffer);
332 }
333
334 /* read a uint32_t from a buffer in target memory endianness */
335 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
336 {
337 if (target->endianness == TARGET_LITTLE_ENDIAN)
338 return le_to_h_u32(buffer);
339 else
340 return be_to_h_u32(buffer);
341 }
342
343 /* read a uint24_t from a buffer in target memory endianness */
344 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
345 {
346 if (target->endianness == TARGET_LITTLE_ENDIAN)
347 return le_to_h_u24(buffer);
348 else
349 return be_to_h_u24(buffer);
350 }
351
352 /* read a uint16_t from a buffer in target memory endianness */
353 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
354 {
355 if (target->endianness == TARGET_LITTLE_ENDIAN)
356 return le_to_h_u16(buffer);
357 else
358 return be_to_h_u16(buffer);
359 }
360
361 /* read a uint8_t from a buffer in target memory endianness */
362 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
363 {
364 return *buffer & 0x0ff;
365 }
366
367 /* write a uint64_t to a buffer in target memory endianness */
368 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
369 {
370 if (target->endianness == TARGET_LITTLE_ENDIAN)
371 h_u64_to_le(buffer, value);
372 else
373 h_u64_to_be(buffer, value);
374 }
375
376 /* write a uint32_t to a buffer in target memory endianness */
377 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
378 {
379 if (target->endianness == TARGET_LITTLE_ENDIAN)
380 h_u32_to_le(buffer, value);
381 else
382 h_u32_to_be(buffer, value);
383 }
384
385 /* write a uint24_t to a buffer in target memory endianness */
386 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
387 {
388 if (target->endianness == TARGET_LITTLE_ENDIAN)
389 h_u24_to_le(buffer, value);
390 else
391 h_u24_to_be(buffer, value);
392 }
393
394 /* write a uint16_t to a buffer in target memory endianness */
395 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
396 {
397 if (target->endianness == TARGET_LITTLE_ENDIAN)
398 h_u16_to_le(buffer, value);
399 else
400 h_u16_to_be(buffer, value);
401 }
402
403 /* write a uint8_t to a buffer in target memory endianness */
404 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
405 {
406 *buffer = value;
407 }
408
409 /* write a uint64_t array to a buffer in target memory endianness */
410 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
411 {
412 uint32_t i;
413 for (i = 0; i < count; i++)
414 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
415 }
416
417 /* write a uint32_t array to a buffer in target memory endianness */
418 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
419 {
420 uint32_t i;
421 for (i = 0; i < count; i++)
422 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
423 }
424
425 /* write a uint16_t array to a buffer in target memory endianness */
426 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
427 {
428 uint32_t i;
429 for (i = 0; i < count; i++)
430 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
431 }
432
433 /* write a uint64_t array to a buffer in target memory endianness */
434 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
435 {
436 uint32_t i;
437 for (i = 0; i < count; i++)
438 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
439 }
440
441 /* write a uint32_t array to a buffer in target memory endianness */
442 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
443 {
444 uint32_t i;
445 for (i = 0; i < count; i++)
446 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
447 }
448
449 /* write a uint16_t array to a buffer in target memory endianness */
450 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
451 {
452 uint32_t i;
453 for (i = 0; i < count; i++)
454 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
455 }
456
457 /* return a pointer to a configured target; id is name or number */
458 struct target *get_target(const char *id)
459 {
460 struct target *target;
461
462 /* try as tcltarget name */
463 for (target = all_targets; target; target = target->next) {
464 if (target_name(target) == NULL)
465 continue;
466 if (strcmp(id, target_name(target)) == 0)
467 return target;
468 }
469
470 /* It's OK to remove this fallback sometime after August 2010 or so */
471
472 /* no match, try as number */
473 unsigned num;
474 if (parse_uint(id, &num) != ERROR_OK)
475 return NULL;
476
477 for (target = all_targets; target; target = target->next) {
478 if (target->target_number == (int)num) {
479 LOG_WARNING("use '%s' as target identifier, not '%u'",
480 target_name(target), num);
481 return target;
482 }
483 }
484
485 return NULL;
486 }
487
488 /* returns a pointer to the n-th configured target */
489 struct target *get_target_by_num(int num)
490 {
491 struct target *target = all_targets;
492
493 while (target) {
494 if (target->target_number == num)
495 return target;
496 target = target->next;
497 }
498
499 return NULL;
500 }
501
502 struct target *get_current_target(struct command_context *cmd_ctx)
503 {
504 struct target *target = get_target_by_num(cmd_ctx->current_target);
505
506 if (target == NULL) {
507 LOG_ERROR("BUG: current_target out of bounds");
508 exit(-1);
509 }
510
511 return target;
512 }
513
514 int target_poll(struct target *target)
515 {
516 int retval;
517
518 /* We can't poll until after examine */
519 if (!target_was_examined(target)) {
520 /* Fail silently lest we pollute the log */
521 return ERROR_FAIL;
522 }
523
524 retval = target->type->poll(target);
525 if (retval != ERROR_OK)
526 return retval;
527
528 if (target->halt_issued) {
529 if (target->state == TARGET_HALTED)
530 target->halt_issued = false;
531 else {
532 long long t = timeval_ms() - target->halt_issued_time;
533 if (t > DEFAULT_HALT_TIMEOUT) {
534 target->halt_issued = false;
535 LOG_INFO("Halt timed out, wake up GDB.");
536 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
537 }
538 }
539 }
540
541 return ERROR_OK;
542 }
543
544 int target_halt(struct target *target)
545 {
546 int retval;
547 /* We can't poll until after examine */
548 if (!target_was_examined(target)) {
549 LOG_ERROR("Target not examined yet");
550 return ERROR_FAIL;
551 }
552
553 retval = target->type->halt(target);
554 if (retval != ERROR_OK)
555 return retval;
556
557 target->halt_issued = true;
558 target->halt_issued_time = timeval_ms();
559
560 return ERROR_OK;
561 }
562
563 /**
564 * Make the target (re)start executing using its saved execution
565 * context (possibly with some modifications).
566 *
567 * @param target Which target should start executing.
568 * @param current True to use the target's saved program counter instead
569 * of the address parameter
570 * @param address Optionally used as the program counter.
571 * @param handle_breakpoints True iff breakpoints at the resumption PC
572 * should be skipped. (For example, maybe execution was stopped by
573 * such a breakpoint, in which case it would be counterprodutive to
574 * let it re-trigger.
575 * @param debug_execution False if all working areas allocated by OpenOCD
576 * should be released and/or restored to their original contents.
577 * (This would for example be true to run some downloaded "helper"
578 * algorithm code, which resides in one such working buffer and uses
579 * another for data storage.)
580 *
581 * @todo Resolve the ambiguity about what the "debug_execution" flag
582 * signifies. For example, Target implementations don't agree on how
583 * it relates to invalidation of the register cache, or to whether
584 * breakpoints and watchpoints should be enabled. (It would seem wrong
585 * to enable breakpoints when running downloaded "helper" algorithms
586 * (debug_execution true), since the breakpoints would be set to match
587 * target firmware being debugged, not the helper algorithm.... and
588 * enabling them could cause such helpers to malfunction (for example,
589 * by overwriting data with a breakpoint instruction. On the other
590 * hand the infrastructure for running such helpers might use this
591 * procedure but rely on hardware breakpoint to detect termination.)
592 */
593 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
594 {
595 int retval;
596
597 /* We can't poll until after examine */
598 if (!target_was_examined(target)) {
599 LOG_ERROR("Target not examined yet");
600 return ERROR_FAIL;
601 }
602
603 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
604
605 /* note that resume *must* be asynchronous. The CPU can halt before
606 * we poll. The CPU can even halt at the current PC as a result of
607 * a software breakpoint being inserted by (a bug?) the application.
608 */
609 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
610 if (retval != ERROR_OK)
611 return retval;
612
613 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
614
615 return retval;
616 }
617
618 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
619 {
620 char buf[100];
621 int retval;
622 Jim_Nvp *n;
623 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
624 if (n->name == NULL) {
625 LOG_ERROR("invalid reset mode");
626 return ERROR_FAIL;
627 }
628
629 struct target *target;
630 for (target = all_targets; target; target = target->next)
631 target_call_reset_callbacks(target, reset_mode);
632
633 /* disable polling during reset to make reset event scripts
634 * more predictable, i.e. dr/irscan & pathmove in events will
635 * not have JTAG operations injected into the middle of a sequence.
636 */
637 bool save_poll = jtag_poll_get_enabled();
638
639 jtag_poll_set_enabled(false);
640
641 sprintf(buf, "ocd_process_reset %s", n->name);
642 retval = Jim_Eval(cmd_ctx->interp, buf);
643
644 jtag_poll_set_enabled(save_poll);
645
646 if (retval != JIM_OK) {
647 Jim_MakeErrorMessage(cmd_ctx->interp);
648 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
649 return ERROR_FAIL;
650 }
651
652 /* We want any events to be processed before the prompt */
653 retval = target_call_timer_callbacks_now();
654
655 for (target = all_targets; target; target = target->next) {
656 target->type->check_reset(target);
657 target->running_alg = false;
658 }
659
660 return retval;
661 }
662
663 static int identity_virt2phys(struct target *target,
664 uint32_t virtual, uint32_t *physical)
665 {
666 *physical = virtual;
667 return ERROR_OK;
668 }
669
670 static int no_mmu(struct target *target, int *enabled)
671 {
672 *enabled = 0;
673 return ERROR_OK;
674 }
675
676 static int default_examine(struct target *target)
677 {
678 target_set_examined(target);
679 return ERROR_OK;
680 }
681
682 /* no check by default */
683 static int default_check_reset(struct target *target)
684 {
685 return ERROR_OK;
686 }
687
688 int target_examine_one(struct target *target)
689 {
690 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
691
692 int retval = target->type->examine(target);
693 if (retval != ERROR_OK)
694 return retval;
695
696 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
697
698 return ERROR_OK;
699 }
700
701 static int jtag_enable_callback(enum jtag_event event, void *priv)
702 {
703 struct target *target = priv;
704
705 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
706 return ERROR_OK;
707
708 jtag_unregister_event_callback(jtag_enable_callback, target);
709
710 return target_examine_one(target);
711 }
712
713 /* Targets that correctly implement init + examine, i.e.
714 * no communication with target during init:
715 *
716 * XScale
717 */
718 int target_examine(void)
719 {
720 int retval = ERROR_OK;
721 struct target *target;
722
723 for (target = all_targets; target; target = target->next) {
724 /* defer examination, but don't skip it */
725 if (!target->tap->enabled) {
726 jtag_register_event_callback(jtag_enable_callback,
727 target);
728 continue;
729 }
730
731 retval = target_examine_one(target);
732 if (retval != ERROR_OK)
733 return retval;
734 }
735 return retval;
736 }
737
738 const char *target_type_name(struct target *target)
739 {
740 return target->type->name;
741 }
742
743 static int target_soft_reset_halt(struct target *target)
744 {
745 if (!target_was_examined(target)) {
746 LOG_ERROR("Target not examined yet");
747 return ERROR_FAIL;
748 }
749 if (!target->type->soft_reset_halt) {
750 LOG_ERROR("Target %s does not support soft_reset_halt",
751 target_name(target));
752 return ERROR_FAIL;
753 }
754 return target->type->soft_reset_halt(target);
755 }
756
757 /**
758 * Downloads a target-specific native code algorithm to the target,
759 * and executes it. * Note that some targets may need to set up, enable,
760 * and tear down a breakpoint (hard or * soft) to detect algorithm
761 * termination, while others may support lower overhead schemes where
762 * soft breakpoints embedded in the algorithm automatically terminate the
763 * algorithm.
764 *
765 * @param target used to run the algorithm
766 * @param arch_info target-specific description of the algorithm.
767 */
768 int target_run_algorithm(struct target *target,
769 int num_mem_params, struct mem_param *mem_params,
770 int num_reg_params, struct reg_param *reg_param,
771 uint32_t entry_point, uint32_t exit_point,
772 int timeout_ms, void *arch_info)
773 {
774 int retval = ERROR_FAIL;
775
776 if (!target_was_examined(target)) {
777 LOG_ERROR("Target not examined yet");
778 goto done;
779 }
780 if (!target->type->run_algorithm) {
781 LOG_ERROR("Target type '%s' does not support %s",
782 target_type_name(target), __func__);
783 goto done;
784 }
785
786 target->running_alg = true;
787 retval = target->type->run_algorithm(target,
788 num_mem_params, mem_params,
789 num_reg_params, reg_param,
790 entry_point, exit_point, timeout_ms, arch_info);
791 target->running_alg = false;
792
793 done:
794 return retval;
795 }
796
797 /**
798 * Downloads a target-specific native code algorithm to the target,
799 * executes and leaves it running.
800 *
801 * @param target used to run the algorithm
802 * @param arch_info target-specific description of the algorithm.
803 */
804 int target_start_algorithm(struct target *target,
805 int num_mem_params, struct mem_param *mem_params,
806 int num_reg_params, struct reg_param *reg_params,
807 uint32_t entry_point, uint32_t exit_point,
808 void *arch_info)
809 {
810 int retval = ERROR_FAIL;
811
812 if (!target_was_examined(target)) {
813 LOG_ERROR("Target not examined yet");
814 goto done;
815 }
816 if (!target->type->start_algorithm) {
817 LOG_ERROR("Target type '%s' does not support %s",
818 target_type_name(target), __func__);
819 goto done;
820 }
821 if (target->running_alg) {
822 LOG_ERROR("Target is already running an algorithm");
823 goto done;
824 }
825
826 target->running_alg = true;
827 retval = target->type->start_algorithm(target,
828 num_mem_params, mem_params,
829 num_reg_params, reg_params,
830 entry_point, exit_point, arch_info);
831
832 done:
833 return retval;
834 }
835
836 /**
837 * Waits for an algorithm started with target_start_algorithm() to complete.
838 *
839 * @param target used to run the algorithm
840 * @param arch_info target-specific description of the algorithm.
841 */
842 int target_wait_algorithm(struct target *target,
843 int num_mem_params, struct mem_param *mem_params,
844 int num_reg_params, struct reg_param *reg_params,
845 uint32_t exit_point, int timeout_ms,
846 void *arch_info)
847 {
848 int retval = ERROR_FAIL;
849
850 if (!target->type->wait_algorithm) {
851 LOG_ERROR("Target type '%s' does not support %s",
852 target_type_name(target), __func__);
853 goto done;
854 }
855 if (!target->running_alg) {
856 LOG_ERROR("Target is not running an algorithm");
857 goto done;
858 }
859
860 retval = target->type->wait_algorithm(target,
861 num_mem_params, mem_params,
862 num_reg_params, reg_params,
863 exit_point, timeout_ms, arch_info);
864 if (retval != ERROR_TARGET_TIMEOUT)
865 target->running_alg = false;
866
867 done:
868 return retval;
869 }
870
871 /**
872 * Executes a target-specific native code algorithm in the target.
873 * It differs from target_run_algorithm in that the algorithm is asynchronous.
874 * Because of this it requires an compliant algorithm:
875 * see contrib/loaders/flash/stm32f1x.S for example.
876 *
877 * @param target used to run the algorithm
878 */
879
880 int target_run_flash_async_algorithm(struct target *target,
881 const uint8_t *buffer, uint32_t count, int block_size,
882 int num_mem_params, struct mem_param *mem_params,
883 int num_reg_params, struct reg_param *reg_params,
884 uint32_t buffer_start, uint32_t buffer_size,
885 uint32_t entry_point, uint32_t exit_point, void *arch_info)
886 {
887 int retval;
888 int timeout = 0;
889
890 const uint8_t *buffer_orig = buffer;
891
892 /* Set up working area. First word is write pointer, second word is read pointer,
893 * rest is fifo data area. */
894 uint32_t wp_addr = buffer_start;
895 uint32_t rp_addr = buffer_start + 4;
896 uint32_t fifo_start_addr = buffer_start + 8;
897 uint32_t fifo_end_addr = buffer_start + buffer_size;
898
899 uint32_t wp = fifo_start_addr;
900 uint32_t rp = fifo_start_addr;
901
902 /* validate block_size is 2^n */
903 assert(!block_size || !(block_size & (block_size - 1)));
904
905 retval = target_write_u32(target, wp_addr, wp);
906 if (retval != ERROR_OK)
907 return retval;
908 retval = target_write_u32(target, rp_addr, rp);
909 if (retval != ERROR_OK)
910 return retval;
911
912 /* Start up algorithm on target and let it idle while writing the first chunk */
913 retval = target_start_algorithm(target, num_mem_params, mem_params,
914 num_reg_params, reg_params,
915 entry_point,
916 exit_point,
917 arch_info);
918
919 if (retval != ERROR_OK) {
920 LOG_ERROR("error starting target flash write algorithm");
921 return retval;
922 }
923
924 while (count > 0) {
925
926 retval = target_read_u32(target, rp_addr, &rp);
927 if (retval != ERROR_OK) {
928 LOG_ERROR("failed to get read pointer");
929 break;
930 }
931
932 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
933 (size_t) (buffer - buffer_orig), count, wp, rp);
934
935 if (rp == 0) {
936 LOG_ERROR("flash write algorithm aborted by target");
937 retval = ERROR_FLASH_OPERATION_FAILED;
938 break;
939 }
940
941 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
942 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
943 break;
944 }
945
946 /* Count the number of bytes available in the fifo without
947 * crossing the wrap around. Make sure to not fill it completely,
948 * because that would make wp == rp and that's the empty condition. */
949 uint32_t thisrun_bytes;
950 if (rp > wp)
951 thisrun_bytes = rp - wp - block_size;
952 else if (rp > fifo_start_addr)
953 thisrun_bytes = fifo_end_addr - wp;
954 else
955 thisrun_bytes = fifo_end_addr - wp - block_size;
956
957 if (thisrun_bytes == 0) {
958 /* Throttle polling a bit if transfer is (much) faster than flash
959 * programming. The exact delay shouldn't matter as long as it's
960 * less than buffer size / flash speed. This is very unlikely to
961 * run when using high latency connections such as USB. */
962 alive_sleep(10);
963
964 /* to stop an infinite loop on some targets check and increment a timeout
965 * this issue was observed on a stellaris using the new ICDI interface */
966 if (timeout++ >= 500) {
967 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
968 return ERROR_FLASH_OPERATION_FAILED;
969 }
970 continue;
971 }
972
973 /* reset our timeout */
974 timeout = 0;
975
976 /* Limit to the amount of data we actually want to write */
977 if (thisrun_bytes > count * block_size)
978 thisrun_bytes = count * block_size;
979
980 /* Write data to fifo */
981 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
982 if (retval != ERROR_OK)
983 break;
984
985 /* Update counters and wrap write pointer */
986 buffer += thisrun_bytes;
987 count -= thisrun_bytes / block_size;
988 wp += thisrun_bytes;
989 if (wp >= fifo_end_addr)
990 wp = fifo_start_addr;
991
992 /* Store updated write pointer to target */
993 retval = target_write_u32(target, wp_addr, wp);
994 if (retval != ERROR_OK)
995 break;
996 }
997
998 if (retval != ERROR_OK) {
999 /* abort flash write algorithm on target */
1000 target_write_u32(target, wp_addr, 0);
1001 }
1002
1003 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1004 num_reg_params, reg_params,
1005 exit_point,
1006 10000,
1007 arch_info);
1008
1009 if (retval2 != ERROR_OK) {
1010 LOG_ERROR("error waiting for target flash write algorithm");
1011 retval = retval2;
1012 }
1013
1014 return retval;
1015 }
1016
1017 int target_read_memory(struct target *target,
1018 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1019 {
1020 if (!target_was_examined(target)) {
1021 LOG_ERROR("Target not examined yet");
1022 return ERROR_FAIL;
1023 }
1024 if (!target->type->read_memory) {
1025 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1026 return ERROR_FAIL;
1027 }
1028 return target->type->read_memory(target, address, size, count, buffer);
1029 }
1030
1031 int target_read_phys_memory(struct target *target,
1032 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1033 {
1034 if (!target_was_examined(target)) {
1035 LOG_ERROR("Target not examined yet");
1036 return ERROR_FAIL;
1037 }
1038 if (!target->type->read_phys_memory) {
1039 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1040 return ERROR_FAIL;
1041 }
1042 return target->type->read_phys_memory(target, address, size, count, buffer);
1043 }
1044
1045 int target_write_memory(struct target *target,
1046 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1047 {
1048 if (!target_was_examined(target)) {
1049 LOG_ERROR("Target not examined yet");
1050 return ERROR_FAIL;
1051 }
1052 if (!target->type->write_memory) {
1053 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1054 return ERROR_FAIL;
1055 }
1056 return target->type->write_memory(target, address, size, count, buffer);
1057 }
1058
1059 int target_write_phys_memory(struct target *target,
1060 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1061 {
1062 if (!target_was_examined(target)) {
1063 LOG_ERROR("Target not examined yet");
1064 return ERROR_FAIL;
1065 }
1066 if (!target->type->write_phys_memory) {
1067 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1068 return ERROR_FAIL;
1069 }
1070 return target->type->write_phys_memory(target, address, size, count, buffer);
1071 }
1072
1073 int target_add_breakpoint(struct target *target,
1074 struct breakpoint *breakpoint)
1075 {
1076 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1077 LOG_WARNING("target %s is not halted", target_name(target));
1078 return ERROR_TARGET_NOT_HALTED;
1079 }
1080 return target->type->add_breakpoint(target, breakpoint);
1081 }
1082
1083 int target_add_context_breakpoint(struct target *target,
1084 struct breakpoint *breakpoint)
1085 {
1086 if (target->state != TARGET_HALTED) {
1087 LOG_WARNING("target %s is not halted", target_name(target));
1088 return ERROR_TARGET_NOT_HALTED;
1089 }
1090 return target->type->add_context_breakpoint(target, breakpoint);
1091 }
1092
1093 int target_add_hybrid_breakpoint(struct target *target,
1094 struct breakpoint *breakpoint)
1095 {
1096 if (target->state != TARGET_HALTED) {
1097 LOG_WARNING("target %s is not halted", target_name(target));
1098 return ERROR_TARGET_NOT_HALTED;
1099 }
1100 return target->type->add_hybrid_breakpoint(target, breakpoint);
1101 }
1102
1103 int target_remove_breakpoint(struct target *target,
1104 struct breakpoint *breakpoint)
1105 {
1106 return target->type->remove_breakpoint(target, breakpoint);
1107 }
1108
1109 int target_add_watchpoint(struct target *target,
1110 struct watchpoint *watchpoint)
1111 {
1112 if (target->state != TARGET_HALTED) {
1113 LOG_WARNING("target %s is not halted", target_name(target));
1114 return ERROR_TARGET_NOT_HALTED;
1115 }
1116 return target->type->add_watchpoint(target, watchpoint);
1117 }
1118 int target_remove_watchpoint(struct target *target,
1119 struct watchpoint *watchpoint)
1120 {
1121 return target->type->remove_watchpoint(target, watchpoint);
1122 }
1123 int target_hit_watchpoint(struct target *target,
1124 struct watchpoint **hit_watchpoint)
1125 {
1126 if (target->state != TARGET_HALTED) {
1127 LOG_WARNING("target %s is not halted", target->cmd_name);
1128 return ERROR_TARGET_NOT_HALTED;
1129 }
1130
1131 if (target->type->hit_watchpoint == NULL) {
1132 /* For backward compatible, if hit_watchpoint is not implemented,
1133 * return ERROR_FAIL such that gdb_server will not take the nonsense
1134 * information. */
1135 return ERROR_FAIL;
1136 }
1137
1138 return target->type->hit_watchpoint(target, hit_watchpoint);
1139 }
1140
1141 int target_get_gdb_reg_list(struct target *target,
1142 struct reg **reg_list[], int *reg_list_size,
1143 enum target_register_class reg_class)
1144 {
1145 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1146 }
1147 int target_step(struct target *target,
1148 int current, uint32_t address, int handle_breakpoints)
1149 {
1150 return target->type->step(target, current, address, handle_breakpoints);
1151 }
1152
1153 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1154 {
1155 if (target->state != TARGET_HALTED) {
1156 LOG_WARNING("target %s is not halted", target->cmd_name);
1157 return ERROR_TARGET_NOT_HALTED;
1158 }
1159 return target->type->get_gdb_fileio_info(target, fileio_info);
1160 }
1161
1162 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1163 {
1164 if (target->state != TARGET_HALTED) {
1165 LOG_WARNING("target %s is not halted", target->cmd_name);
1166 return ERROR_TARGET_NOT_HALTED;
1167 }
1168 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1169 }
1170
1171 int target_profiling(struct target *target, uint32_t *samples,
1172 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1173 {
1174 if (target->state != TARGET_HALTED) {
1175 LOG_WARNING("target %s is not halted", target->cmd_name);
1176 return ERROR_TARGET_NOT_HALTED;
1177 }
1178 return target->type->profiling(target, samples, max_num_samples,
1179 num_samples, seconds);
1180 }
1181
1182 /**
1183 * Reset the @c examined flag for the given target.
1184 * Pure paranoia -- targets are zeroed on allocation.
1185 */
1186 static void target_reset_examined(struct target *target)
1187 {
1188 target->examined = false;
1189 }
1190
1191 static int handle_target(void *priv);
1192
1193 static int target_init_one(struct command_context *cmd_ctx,
1194 struct target *target)
1195 {
1196 target_reset_examined(target);
1197
1198 struct target_type *type = target->type;
1199 if (type->examine == NULL)
1200 type->examine = default_examine;
1201
1202 if (type->check_reset == NULL)
1203 type->check_reset = default_check_reset;
1204
1205 assert(type->init_target != NULL);
1206
1207 int retval = type->init_target(cmd_ctx, target);
1208 if (ERROR_OK != retval) {
1209 LOG_ERROR("target '%s' init failed", target_name(target));
1210 return retval;
1211 }
1212
1213 /* Sanity-check MMU support ... stub in what we must, to help
1214 * implement it in stages, but warn if we need to do so.
1215 */
1216 if (type->mmu) {
1217 if (type->virt2phys == NULL) {
1218 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1219 type->virt2phys = identity_virt2phys;
1220 }
1221 } else {
1222 /* Make sure no-MMU targets all behave the same: make no
1223 * distinction between physical and virtual addresses, and
1224 * ensure that virt2phys() is always an identity mapping.
1225 */
1226 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1227 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1228
1229 type->mmu = no_mmu;
1230 type->write_phys_memory = type->write_memory;
1231 type->read_phys_memory = type->read_memory;
1232 type->virt2phys = identity_virt2phys;
1233 }
1234
1235 if (target->type->read_buffer == NULL)
1236 target->type->read_buffer = target_read_buffer_default;
1237
1238 if (target->type->write_buffer == NULL)
1239 target->type->write_buffer = target_write_buffer_default;
1240
1241 if (target->type->get_gdb_fileio_info == NULL)
1242 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1243
1244 if (target->type->gdb_fileio_end == NULL)
1245 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1246
1247 if (target->type->profiling == NULL)
1248 target->type->profiling = target_profiling_default;
1249
1250 return ERROR_OK;
1251 }
1252
1253 static int target_init(struct command_context *cmd_ctx)
1254 {
1255 struct target *target;
1256 int retval;
1257
1258 for (target = all_targets; target; target = target->next) {
1259 retval = target_init_one(cmd_ctx, target);
1260 if (ERROR_OK != retval)
1261 return retval;
1262 }
1263
1264 if (!all_targets)
1265 return ERROR_OK;
1266
1267 retval = target_register_user_commands(cmd_ctx);
1268 if (ERROR_OK != retval)
1269 return retval;
1270
1271 retval = target_register_timer_callback(&handle_target,
1272 polling_interval, 1, cmd_ctx->interp);
1273 if (ERROR_OK != retval)
1274 return retval;
1275
1276 return ERROR_OK;
1277 }
1278
1279 COMMAND_HANDLER(handle_target_init_command)
1280 {
1281 int retval;
1282
1283 if (CMD_ARGC != 0)
1284 return ERROR_COMMAND_SYNTAX_ERROR;
1285
1286 static bool target_initialized;
1287 if (target_initialized) {
1288 LOG_INFO("'target init' has already been called");
1289 return ERROR_OK;
1290 }
1291 target_initialized = true;
1292
1293 retval = command_run_line(CMD_CTX, "init_targets");
1294 if (ERROR_OK != retval)
1295 return retval;
1296
1297 retval = command_run_line(CMD_CTX, "init_target_events");
1298 if (ERROR_OK != retval)
1299 return retval;
1300
1301 retval = command_run_line(CMD_CTX, "init_board");
1302 if (ERROR_OK != retval)
1303 return retval;
1304
1305 LOG_DEBUG("Initializing targets...");
1306 return target_init(CMD_CTX);
1307 }
1308
1309 int target_register_event_callback(int (*callback)(struct target *target,
1310 enum target_event event, void *priv), void *priv)
1311 {
1312 struct target_event_callback **callbacks_p = &target_event_callbacks;
1313
1314 if (callback == NULL)
1315 return ERROR_COMMAND_SYNTAX_ERROR;
1316
1317 if (*callbacks_p) {
1318 while ((*callbacks_p)->next)
1319 callbacks_p = &((*callbacks_p)->next);
1320 callbacks_p = &((*callbacks_p)->next);
1321 }
1322
1323 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1324 (*callbacks_p)->callback = callback;
1325 (*callbacks_p)->priv = priv;
1326 (*callbacks_p)->next = NULL;
1327
1328 return ERROR_OK;
1329 }
1330
1331 int target_register_reset_callback(int (*callback)(struct target *target,
1332 enum target_reset_mode reset_mode, void *priv), void *priv)
1333 {
1334 struct target_reset_callback *entry;
1335
1336 if (callback == NULL)
1337 return ERROR_COMMAND_SYNTAX_ERROR;
1338
1339 entry = malloc(sizeof(struct target_reset_callback));
1340 if (entry == NULL) {
1341 LOG_ERROR("error allocating buffer for reset callback entry");
1342 return ERROR_COMMAND_SYNTAX_ERROR;
1343 }
1344
1345 entry->callback = callback;
1346 entry->priv = priv;
1347 list_add(&entry->list, &target_reset_callback_list);
1348
1349
1350 return ERROR_OK;
1351 }
1352
1353 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1354 {
1355 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1356 struct timeval now;
1357
1358 if (callback == NULL)
1359 return ERROR_COMMAND_SYNTAX_ERROR;
1360
1361 if (*callbacks_p) {
1362 while ((*callbacks_p)->next)
1363 callbacks_p = &((*callbacks_p)->next);
1364 callbacks_p = &((*callbacks_p)->next);
1365 }
1366
1367 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1368 (*callbacks_p)->callback = callback;
1369 (*callbacks_p)->periodic = periodic;
1370 (*callbacks_p)->time_ms = time_ms;
1371 (*callbacks_p)->removed = false;
1372
1373 gettimeofday(&now, NULL);
1374 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1375 time_ms -= (time_ms % 1000);
1376 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1377 if ((*callbacks_p)->when.tv_usec > 1000000) {
1378 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1379 (*callbacks_p)->when.tv_sec += 1;
1380 }
1381
1382 (*callbacks_p)->priv = priv;
1383 (*callbacks_p)->next = NULL;
1384
1385 return ERROR_OK;
1386 }
1387
1388 int target_unregister_event_callback(int (*callback)(struct target *target,
1389 enum target_event event, void *priv), void *priv)
1390 {
1391 struct target_event_callback **p = &target_event_callbacks;
1392 struct target_event_callback *c = target_event_callbacks;
1393
1394 if (callback == NULL)
1395 return ERROR_COMMAND_SYNTAX_ERROR;
1396
1397 while (c) {
1398 struct target_event_callback *next = c->next;
1399 if ((c->callback == callback) && (c->priv == priv)) {
1400 *p = next;
1401 free(c);
1402 return ERROR_OK;
1403 } else
1404 p = &(c->next);
1405 c = next;
1406 }
1407
1408 return ERROR_OK;
1409 }
1410
1411 int target_unregister_reset_callback(int (*callback)(struct target *target,
1412 enum target_reset_mode reset_mode, void *priv), void *priv)
1413 {
1414 struct target_reset_callback *entry;
1415
1416 if (callback == NULL)
1417 return ERROR_COMMAND_SYNTAX_ERROR;
1418
1419 list_for_each_entry(entry, &target_reset_callback_list, list) {
1420 if (entry->callback == callback && entry->priv == priv) {
1421 list_del(&entry->list);
1422 free(entry);
1423 break;
1424 }
1425 }
1426
1427 return ERROR_OK;
1428 }
1429
1430 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1431 {
1432 if (callback == NULL)
1433 return ERROR_COMMAND_SYNTAX_ERROR;
1434
1435 for (struct target_timer_callback *c = target_timer_callbacks;
1436 c; c = c->next) {
1437 if ((c->callback == callback) && (c->priv == priv)) {
1438 c->removed = true;
1439 return ERROR_OK;
1440 }
1441 }
1442
1443 return ERROR_FAIL;
1444 }
1445
1446 int target_call_event_callbacks(struct target *target, enum target_event event)
1447 {
1448 struct target_event_callback *callback = target_event_callbacks;
1449 struct target_event_callback *next_callback;
1450
1451 if (event == TARGET_EVENT_HALTED) {
1452 /* execute early halted first */
1453 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1454 }
1455
1456 LOG_DEBUG("target event %i (%s)", event,
1457 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1458
1459 target_handle_event(target, event);
1460
1461 while (callback) {
1462 next_callback = callback->next;
1463 callback->callback(target, event, callback->priv);
1464 callback = next_callback;
1465 }
1466
1467 return ERROR_OK;
1468 }
1469
1470 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1471 {
1472 struct target_reset_callback *callback;
1473
1474 LOG_DEBUG("target reset %i (%s)", reset_mode,
1475 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1476
1477 list_for_each_entry(callback, &target_reset_callback_list, list)
1478 callback->callback(target, reset_mode, callback->priv);
1479
1480 return ERROR_OK;
1481 }
1482
1483 static int target_timer_callback_periodic_restart(
1484 struct target_timer_callback *cb, struct timeval *now)
1485 {
1486 int time_ms = cb->time_ms;
1487 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1488 time_ms -= (time_ms % 1000);
1489 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1490 if (cb->when.tv_usec > 1000000) {
1491 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1492 cb->when.tv_sec += 1;
1493 }
1494 return ERROR_OK;
1495 }
1496
1497 static int target_call_timer_callback(struct target_timer_callback *cb,
1498 struct timeval *now)
1499 {
1500 cb->callback(cb->priv);
1501
1502 if (cb->periodic)
1503 return target_timer_callback_periodic_restart(cb, now);
1504
1505 return target_unregister_timer_callback(cb->callback, cb->priv);
1506 }
1507
1508 static int target_call_timer_callbacks_check_time(int checktime)
1509 {
1510 static bool callback_processing;
1511
1512 /* Do not allow nesting */
1513 if (callback_processing)
1514 return ERROR_OK;
1515
1516 callback_processing = true;
1517
1518 keep_alive();
1519
1520 struct timeval now;
1521 gettimeofday(&now, NULL);
1522
1523 /* Store an address of the place containing a pointer to the
1524 * next item; initially, that's a standalone "root of the
1525 * list" variable. */
1526 struct target_timer_callback **callback = &target_timer_callbacks;
1527 while (*callback) {
1528 if ((*callback)->removed) {
1529 struct target_timer_callback *p = *callback;
1530 *callback = (*callback)->next;
1531 free(p);
1532 continue;
1533 }
1534
1535 bool call_it = (*callback)->callback &&
1536 ((!checktime && (*callback)->periodic) ||
1537 now.tv_sec > (*callback)->when.tv_sec ||
1538 (now.tv_sec == (*callback)->when.tv_sec &&
1539 now.tv_usec >= (*callback)->when.tv_usec));
1540
1541 if (call_it)
1542 target_call_timer_callback(*callback, &now);
1543
1544 callback = &(*callback)->next;
1545 }
1546
1547 callback_processing = false;
1548 return ERROR_OK;
1549 }
1550
1551 int target_call_timer_callbacks(void)
1552 {
1553 return target_call_timer_callbacks_check_time(1);
1554 }
1555
1556 /* invoke periodic callbacks immediately */
1557 int target_call_timer_callbacks_now(void)
1558 {
1559 return target_call_timer_callbacks_check_time(0);
1560 }
1561
1562 /* Prints the working area layout for debug purposes */
1563 static void print_wa_layout(struct target *target)
1564 {
1565 struct working_area *c = target->working_areas;
1566
1567 while (c) {
1568 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1569 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1570 c->address, c->address + c->size - 1, c->size);
1571 c = c->next;
1572 }
1573 }
1574
1575 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1576 static void target_split_working_area(struct working_area *area, uint32_t size)
1577 {
1578 assert(area->free); /* Shouldn't split an allocated area */
1579 assert(size <= area->size); /* Caller should guarantee this */
1580
1581 /* Split only if not already the right size */
1582 if (size < area->size) {
1583 struct working_area *new_wa = malloc(sizeof(*new_wa));
1584
1585 if (new_wa == NULL)
1586 return;
1587
1588 new_wa->next = area->next;
1589 new_wa->size = area->size - size;
1590 new_wa->address = area->address + size;
1591 new_wa->backup = NULL;
1592 new_wa->user = NULL;
1593 new_wa->free = true;
1594
1595 area->next = new_wa;
1596 area->size = size;
1597
1598 /* If backup memory was allocated to this area, it has the wrong size
1599 * now so free it and it will be reallocated if/when needed */
1600 if (area->backup) {
1601 free(area->backup);
1602 area->backup = NULL;
1603 }
1604 }
1605 }
1606
1607 /* Merge all adjacent free areas into one */
1608 static void target_merge_working_areas(struct target *target)
1609 {
1610 struct working_area *c = target->working_areas;
1611
1612 while (c && c->next) {
1613 assert(c->next->address == c->address + c->size); /* This is an invariant */
1614
1615 /* Find two adjacent free areas */
1616 if (c->free && c->next->free) {
1617 /* Merge the last into the first */
1618 c->size += c->next->size;
1619
1620 /* Remove the last */
1621 struct working_area *to_be_freed = c->next;
1622 c->next = c->next->next;
1623 if (to_be_freed->backup)
1624 free(to_be_freed->backup);
1625 free(to_be_freed);
1626
1627 /* If backup memory was allocated to the remaining area, it's has
1628 * the wrong size now */
1629 if (c->backup) {
1630 free(c->backup);
1631 c->backup = NULL;
1632 }
1633 } else {
1634 c = c->next;
1635 }
1636 }
1637 }
1638
1639 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1640 {
1641 /* Reevaluate working area address based on MMU state*/
1642 if (target->working_areas == NULL) {
1643 int retval;
1644 int enabled;
1645
1646 retval = target->type->mmu(target, &enabled);
1647 if (retval != ERROR_OK)
1648 return retval;
1649
1650 if (!enabled) {
1651 if (target->working_area_phys_spec) {
1652 LOG_DEBUG("MMU disabled, using physical "
1653 "address for working memory 0x%08"PRIx32,
1654 target->working_area_phys);
1655 target->working_area = target->working_area_phys;
1656 } else {
1657 LOG_ERROR("No working memory available. "
1658 "Specify -work-area-phys to target.");
1659 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1660 }
1661 } else {
1662 if (target->working_area_virt_spec) {
1663 LOG_DEBUG("MMU enabled, using virtual "
1664 "address for working memory 0x%08"PRIx32,
1665 target->working_area_virt);
1666 target->working_area = target->working_area_virt;
1667 } else {
1668 LOG_ERROR("No working memory available. "
1669 "Specify -work-area-virt to target.");
1670 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1671 }
1672 }
1673
1674 /* Set up initial working area on first call */
1675 struct working_area *new_wa = malloc(sizeof(*new_wa));
1676 if (new_wa) {
1677 new_wa->next = NULL;
1678 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1679 new_wa->address = target->working_area;
1680 new_wa->backup = NULL;
1681 new_wa->user = NULL;
1682 new_wa->free = true;
1683 }
1684
1685 target->working_areas = new_wa;
1686 }
1687
1688 /* only allocate multiples of 4 byte */
1689 if (size % 4)
1690 size = (size + 3) & (~3UL);
1691
1692 struct working_area *c = target->working_areas;
1693
1694 /* Find the first large enough working area */
1695 while (c) {
1696 if (c->free && c->size >= size)
1697 break;
1698 c = c->next;
1699 }
1700
1701 if (c == NULL)
1702 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1703
1704 /* Split the working area into the requested size */
1705 target_split_working_area(c, size);
1706
1707 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1708
1709 if (target->backup_working_area) {
1710 if (c->backup == NULL) {
1711 c->backup = malloc(c->size);
1712 if (c->backup == NULL)
1713 return ERROR_FAIL;
1714 }
1715
1716 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1717 if (retval != ERROR_OK)
1718 return retval;
1719 }
1720
1721 /* mark as used, and return the new (reused) area */
1722 c->free = false;
1723 *area = c;
1724
1725 /* user pointer */
1726 c->user = area;
1727
1728 print_wa_layout(target);
1729
1730 return ERROR_OK;
1731 }
1732
1733 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1734 {
1735 int retval;
1736
1737 retval = target_alloc_working_area_try(target, size, area);
1738 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1739 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1740 return retval;
1741
1742 }
1743
1744 static int target_restore_working_area(struct target *target, struct working_area *area)
1745 {
1746 int retval = ERROR_OK;
1747
1748 if (target->backup_working_area && area->backup != NULL) {
1749 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1750 if (retval != ERROR_OK)
1751 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1752 area->size, area->address);
1753 }
1754
1755 return retval;
1756 }
1757
1758 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1759 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1760 {
1761 int retval = ERROR_OK;
1762
1763 if (area->free)
1764 return retval;
1765
1766 if (restore) {
1767 retval = target_restore_working_area(target, area);
1768 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1769 if (retval != ERROR_OK)
1770 return retval;
1771 }
1772
1773 area->free = true;
1774
1775 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1776 area->size, area->address);
1777
1778 /* mark user pointer invalid */
1779 /* TODO: Is this really safe? It points to some previous caller's memory.
1780 * How could we know that the area pointer is still in that place and not
1781 * some other vital data? What's the purpose of this, anyway? */
1782 *area->user = NULL;
1783 area->user = NULL;
1784
1785 target_merge_working_areas(target);
1786
1787 print_wa_layout(target);
1788
1789 return retval;
1790 }
1791
1792 int target_free_working_area(struct target *target, struct working_area *area)
1793 {
1794 return target_free_working_area_restore(target, area, 1);
1795 }
1796
1797 void target_quit(void)
1798 {
1799 struct target_event_callback *pe = target_event_callbacks;
1800 while (pe) {
1801 struct target_event_callback *t = pe->next;
1802 free(pe);
1803 pe = t;
1804 }
1805 target_event_callbacks = NULL;
1806
1807 struct target_timer_callback *pt = target_timer_callbacks;
1808 while (pt) {
1809 struct target_timer_callback *t = pt->next;
1810 free(pt);
1811 pt = t;
1812 }
1813 target_timer_callbacks = NULL;
1814
1815 for (struct target *target = all_targets;
1816 target; target = target->next) {
1817 if (target->type->deinit_target)
1818 target->type->deinit_target(target);
1819 }
1820 }
1821
1822 /* free resources and restore memory, if restoring memory fails,
1823 * free up resources anyway
1824 */
1825 static void target_free_all_working_areas_restore(struct target *target, int restore)
1826 {
1827 struct working_area *c = target->working_areas;
1828
1829 LOG_DEBUG("freeing all working areas");
1830
1831 /* Loop through all areas, restoring the allocated ones and marking them as free */
1832 while (c) {
1833 if (!c->free) {
1834 if (restore)
1835 target_restore_working_area(target, c);
1836 c->free = true;
1837 *c->user = NULL; /* Same as above */
1838 c->user = NULL;
1839 }
1840 c = c->next;
1841 }
1842
1843 /* Run a merge pass to combine all areas into one */
1844 target_merge_working_areas(target);
1845
1846 print_wa_layout(target);
1847 }
1848
1849 void target_free_all_working_areas(struct target *target)
1850 {
1851 target_free_all_working_areas_restore(target, 1);
1852 }
1853
1854 /* Find the largest number of bytes that can be allocated */
1855 uint32_t target_get_working_area_avail(struct target *target)
1856 {
1857 struct working_area *c = target->working_areas;
1858 uint32_t max_size = 0;
1859
1860 if (c == NULL)
1861 return target->working_area_size;
1862
1863 while (c) {
1864 if (c->free && max_size < c->size)
1865 max_size = c->size;
1866
1867 c = c->next;
1868 }
1869
1870 return max_size;
1871 }
1872
1873 int target_arch_state(struct target *target)
1874 {
1875 int retval;
1876 if (target == NULL) {
1877 LOG_USER("No target has been configured");
1878 return ERROR_OK;
1879 }
1880
1881 LOG_USER("target state: %s", target_state_name(target));
1882
1883 if (target->state != TARGET_HALTED)
1884 return ERROR_OK;
1885
1886 retval = target->type->arch_state(target);
1887 return retval;
1888 }
1889
1890 static int target_get_gdb_fileio_info_default(struct target *target,
1891 struct gdb_fileio_info *fileio_info)
1892 {
1893 /* If target does not support semi-hosting function, target
1894 has no need to provide .get_gdb_fileio_info callback.
1895 It just return ERROR_FAIL and gdb_server will return "Txx"
1896 as target halted every time. */
1897 return ERROR_FAIL;
1898 }
1899
1900 static int target_gdb_fileio_end_default(struct target *target,
1901 int retcode, int fileio_errno, bool ctrl_c)
1902 {
1903 return ERROR_OK;
1904 }
1905
1906 static int target_profiling_default(struct target *target, uint32_t *samples,
1907 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1908 {
1909 struct timeval timeout, now;
1910
1911 gettimeofday(&timeout, NULL);
1912 timeval_add_time(&timeout, seconds, 0);
1913
1914 LOG_INFO("Starting profiling. Halting and resuming the"
1915 " target as often as we can...");
1916
1917 uint32_t sample_count = 0;
1918 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1919 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1920
1921 int retval = ERROR_OK;
1922 for (;;) {
1923 target_poll(target);
1924 if (target->state == TARGET_HALTED) {
1925 uint32_t t = buf_get_u32(reg->value, 0, 32);
1926 samples[sample_count++] = t;
1927 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1928 retval = target_resume(target, 1, 0, 0, 0);
1929 target_poll(target);
1930 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1931 } else if (target->state == TARGET_RUNNING) {
1932 /* We want to quickly sample the PC. */
1933 retval = target_halt(target);
1934 } else {
1935 LOG_INFO("Target not halted or running");
1936 retval = ERROR_OK;
1937 break;
1938 }
1939
1940 if (retval != ERROR_OK)
1941 break;
1942
1943 gettimeofday(&now, NULL);
1944 if ((sample_count >= max_num_samples) ||
1945 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1946 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1947 break;
1948 }
1949 }
1950
1951 *num_samples = sample_count;
1952 return retval;
1953 }
1954
1955 /* Single aligned words are guaranteed to use 16 or 32 bit access
1956 * mode respectively, otherwise data is handled as quickly as
1957 * possible
1958 */
1959 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1960 {
1961 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1962 (int)size, (unsigned)address);
1963
1964 if (!target_was_examined(target)) {
1965 LOG_ERROR("Target not examined yet");
1966 return ERROR_FAIL;
1967 }
1968
1969 if (size == 0)
1970 return ERROR_OK;
1971
1972 if ((address + size - 1) < address) {
1973 /* GDB can request this when e.g. PC is 0xfffffffc*/
1974 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1975 (unsigned)address,
1976 (unsigned)size);
1977 return ERROR_FAIL;
1978 }
1979
1980 return target->type->write_buffer(target, address, size, buffer);
1981 }
1982
1983 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1984 {
1985 uint32_t size;
1986
1987 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1988 * will have something to do with the size we leave to it. */
1989 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1990 if (address & size) {
1991 int retval = target_write_memory(target, address, size, 1, buffer);
1992 if (retval != ERROR_OK)
1993 return retval;
1994 address += size;
1995 count -= size;
1996 buffer += size;
1997 }
1998 }
1999
2000 /* Write the data with as large access size as possible. */
2001 for (; size > 0; size /= 2) {
2002 uint32_t aligned = count - count % size;
2003 if (aligned > 0) {
2004 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2005 if (retval != ERROR_OK)
2006 return retval;
2007 address += aligned;
2008 count -= aligned;
2009 buffer += aligned;
2010 }
2011 }
2012
2013 return ERROR_OK;
2014 }
2015
2016 /* Single aligned words are guaranteed to use 16 or 32 bit access
2017 * mode respectively, otherwise data is handled as quickly as
2018 * possible
2019 */
2020 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2021 {
2022 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2023 (int)size, (unsigned)address);
2024
2025 if (!target_was_examined(target)) {
2026 LOG_ERROR("Target not examined yet");
2027 return ERROR_FAIL;
2028 }
2029
2030 if (size == 0)
2031 return ERROR_OK;
2032
2033 if ((address + size - 1) < address) {
2034 /* GDB can request this when e.g. PC is 0xfffffffc*/
2035 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2036 address,
2037 size);
2038 return ERROR_FAIL;
2039 }
2040
2041 return target->type->read_buffer(target, address, size, buffer);
2042 }
2043
2044 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2045 {
2046 uint32_t size;
2047
2048 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2049 * will have something to do with the size we leave to it. */
2050 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2051 if (address & size) {
2052 int retval = target_read_memory(target, address, size, 1, buffer);
2053 if (retval != ERROR_OK)
2054 return retval;
2055 address += size;
2056 count -= size;
2057 buffer += size;
2058 }
2059 }
2060
2061 /* Read the data with as large access size as possible. */
2062 for (; size > 0; size /= 2) {
2063 uint32_t aligned = count - count % size;
2064 if (aligned > 0) {
2065 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2066 if (retval != ERROR_OK)
2067 return retval;
2068 address += aligned;
2069 count -= aligned;
2070 buffer += aligned;
2071 }
2072 }
2073
2074 return ERROR_OK;
2075 }
2076
2077 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2078 {
2079 uint8_t *buffer;
2080 int retval;
2081 uint32_t i;
2082 uint32_t checksum = 0;
2083 if (!target_was_examined(target)) {
2084 LOG_ERROR("Target not examined yet");
2085 return ERROR_FAIL;
2086 }
2087
2088 retval = target->type->checksum_memory(target, address, size, &checksum);
2089 if (retval != ERROR_OK) {
2090 buffer = malloc(size);
2091 if (buffer == NULL) {
2092 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2093 return ERROR_COMMAND_SYNTAX_ERROR;
2094 }
2095 retval = target_read_buffer(target, address, size, buffer);
2096 if (retval != ERROR_OK) {
2097 free(buffer);
2098 return retval;
2099 }
2100
2101 /* convert to target endianness */
2102 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2103 uint32_t target_data;
2104 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2105 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2106 }
2107
2108 retval = image_calculate_checksum(buffer, size, &checksum);
2109 free(buffer);
2110 }
2111
2112 *crc = checksum;
2113
2114 return retval;
2115 }
2116
2117 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2118 {
2119 int retval;
2120 if (!target_was_examined(target)) {
2121 LOG_ERROR("Target not examined yet");
2122 return ERROR_FAIL;
2123 }
2124
2125 if (target->type->blank_check_memory == 0)
2126 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2127
2128 retval = target->type->blank_check_memory(target, address, size, blank);
2129
2130 return retval;
2131 }
2132
2133 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2134 {
2135 uint8_t value_buf[8];
2136 if (!target_was_examined(target)) {
2137 LOG_ERROR("Target not examined yet");
2138 return ERROR_FAIL;
2139 }
2140
2141 int retval = target_read_memory(target, address, 8, 1, value_buf);
2142
2143 if (retval == ERROR_OK) {
2144 *value = target_buffer_get_u64(target, value_buf);
2145 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2146 address,
2147 *value);
2148 } else {
2149 *value = 0x0;
2150 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2151 address);
2152 }
2153
2154 return retval;
2155 }
2156
2157 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2158 {
2159 uint8_t value_buf[4];
2160 if (!target_was_examined(target)) {
2161 LOG_ERROR("Target not examined yet");
2162 return ERROR_FAIL;
2163 }
2164
2165 int retval = target_read_memory(target, address, 4, 1, value_buf);
2166
2167 if (retval == ERROR_OK) {
2168 *value = target_buffer_get_u32(target, value_buf);
2169 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2170 address,
2171 *value);
2172 } else {
2173 *value = 0x0;
2174 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2175 address);
2176 }
2177
2178 return retval;
2179 }
2180
2181 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2182 {
2183 uint8_t value_buf[2];
2184 if (!target_was_examined(target)) {
2185 LOG_ERROR("Target not examined yet");
2186 return ERROR_FAIL;
2187 }
2188
2189 int retval = target_read_memory(target, address, 2, 1, value_buf);
2190
2191 if (retval == ERROR_OK) {
2192 *value = target_buffer_get_u16(target, value_buf);
2193 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2194 address,
2195 *value);
2196 } else {
2197 *value = 0x0;
2198 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2199 address);
2200 }
2201
2202 return retval;
2203 }
2204
2205 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2206 {
2207 if (!target_was_examined(target)) {
2208 LOG_ERROR("Target not examined yet");
2209 return ERROR_FAIL;
2210 }
2211
2212 int retval = target_read_memory(target, address, 1, 1, value);
2213
2214 if (retval == ERROR_OK) {
2215 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2216 address,
2217 *value);
2218 } else {
2219 *value = 0x0;
2220 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2221 address);
2222 }
2223
2224 return retval;
2225 }
2226
2227 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2228 {
2229 int retval;
2230 uint8_t value_buf[8];
2231 if (!target_was_examined(target)) {
2232 LOG_ERROR("Target not examined yet");
2233 return ERROR_FAIL;
2234 }
2235
2236 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2237 address,
2238 value);
2239
2240 target_buffer_set_u64(target, value_buf, value);
2241 retval = target_write_memory(target, address, 8, 1, value_buf);
2242 if (retval != ERROR_OK)
2243 LOG_DEBUG("failed: %i", retval);
2244
2245 return retval;
2246 }
2247
2248 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2249 {
2250 int retval;
2251 uint8_t value_buf[4];
2252 if (!target_was_examined(target)) {
2253 LOG_ERROR("Target not examined yet");
2254 return ERROR_FAIL;
2255 }
2256
2257 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2258 address,
2259 value);
2260
2261 target_buffer_set_u32(target, value_buf, value);
2262 retval = target_write_memory(target, address, 4, 1, value_buf);
2263 if (retval != ERROR_OK)
2264 LOG_DEBUG("failed: %i", retval);
2265
2266 return retval;
2267 }
2268
2269 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2270 {
2271 int retval;
2272 uint8_t value_buf[2];
2273 if (!target_was_examined(target)) {
2274 LOG_ERROR("Target not examined yet");
2275 return ERROR_FAIL;
2276 }
2277
2278 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2279 address,
2280 value);
2281
2282 target_buffer_set_u16(target, value_buf, value);
2283 retval = target_write_memory(target, address, 2, 1, value_buf);
2284 if (retval != ERROR_OK)
2285 LOG_DEBUG("failed: %i", retval);
2286
2287 return retval;
2288 }
2289
2290 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2291 {
2292 int retval;
2293 if (!target_was_examined(target)) {
2294 LOG_ERROR("Target not examined yet");
2295 return ERROR_FAIL;
2296 }
2297
2298 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2299 address, value);
2300
2301 retval = target_write_memory(target, address, 1, 1, &value);
2302 if (retval != ERROR_OK)
2303 LOG_DEBUG("failed: %i", retval);
2304
2305 return retval;
2306 }
2307
2308 static int find_target(struct command_context *cmd_ctx, const char *name)
2309 {
2310 struct target *target = get_target(name);
2311 if (target == NULL) {
2312 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2313 return ERROR_FAIL;
2314 }
2315 if (!target->tap->enabled) {
2316 LOG_USER("Target: TAP %s is disabled, "
2317 "can't be the current target\n",
2318 target->tap->dotted_name);
2319 return ERROR_FAIL;
2320 }
2321
2322 cmd_ctx->current_target = target->target_number;
2323 return ERROR_OK;
2324 }
2325
2326
2327 COMMAND_HANDLER(handle_targets_command)
2328 {
2329 int retval = ERROR_OK;
2330 if (CMD_ARGC == 1) {
2331 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2332 if (retval == ERROR_OK) {
2333 /* we're done! */
2334 return retval;
2335 }
2336 }
2337
2338 struct target *target = all_targets;
2339 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2340 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2341 while (target) {
2342 const char *state;
2343 char marker = ' ';
2344
2345 if (target->tap->enabled)
2346 state = target_state_name(target);
2347 else
2348 state = "tap-disabled";
2349
2350 if (CMD_CTX->current_target == target->target_number)
2351 marker = '*';
2352
2353 /* keep columns lined up to match the headers above */
2354 command_print(CMD_CTX,
2355 "%2d%c %-18s %-10s %-6s %-18s %s",
2356 target->target_number,
2357 marker,
2358 target_name(target),
2359 target_type_name(target),
2360 Jim_Nvp_value2name_simple(nvp_target_endian,
2361 target->endianness)->name,
2362 target->tap->dotted_name,
2363 state);
2364 target = target->next;
2365 }
2366
2367 return retval;
2368 }
2369
2370 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2371
2372 static int powerDropout;
2373 static int srstAsserted;
2374
2375 static int runPowerRestore;
2376 static int runPowerDropout;
2377 static int runSrstAsserted;
2378 static int runSrstDeasserted;
2379
2380 static int sense_handler(void)
2381 {
2382 static int prevSrstAsserted;
2383 static int prevPowerdropout;
2384
2385 int retval = jtag_power_dropout(&powerDropout);
2386 if (retval != ERROR_OK)
2387 return retval;
2388
2389 int powerRestored;
2390 powerRestored = prevPowerdropout && !powerDropout;
2391 if (powerRestored)
2392 runPowerRestore = 1;
2393
2394 long long current = timeval_ms();
2395 static long long lastPower;
2396 int waitMore = lastPower + 2000 > current;
2397 if (powerDropout && !waitMore) {
2398 runPowerDropout = 1;
2399 lastPower = current;
2400 }
2401
2402 retval = jtag_srst_asserted(&srstAsserted);
2403 if (retval != ERROR_OK)
2404 return retval;
2405
2406 int srstDeasserted;
2407 srstDeasserted = prevSrstAsserted && !srstAsserted;
2408
2409 static long long lastSrst;
2410 waitMore = lastSrst + 2000 > current;
2411 if (srstDeasserted && !waitMore) {
2412 runSrstDeasserted = 1;
2413 lastSrst = current;
2414 }
2415
2416 if (!prevSrstAsserted && srstAsserted)
2417 runSrstAsserted = 1;
2418
2419 prevSrstAsserted = srstAsserted;
2420 prevPowerdropout = powerDropout;
2421
2422 if (srstDeasserted || powerRestored) {
2423 /* Other than logging the event we can't do anything here.
2424 * Issuing a reset is a particularly bad idea as we might
2425 * be inside a reset already.
2426 */
2427 }
2428
2429 return ERROR_OK;
2430 }
2431
2432 /* process target state changes */
2433 static int handle_target(void *priv)
2434 {
2435 Jim_Interp *interp = (Jim_Interp *)priv;
2436 int retval = ERROR_OK;
2437
2438 if (!is_jtag_poll_safe()) {
2439 /* polling is disabled currently */
2440 return ERROR_OK;
2441 }
2442
2443 /* we do not want to recurse here... */
2444 static int recursive;
2445 if (!recursive) {
2446 recursive = 1;
2447 sense_handler();
2448 /* danger! running these procedures can trigger srst assertions and power dropouts.
2449 * We need to avoid an infinite loop/recursion here and we do that by
2450 * clearing the flags after running these events.
2451 */
2452 int did_something = 0;
2453 if (runSrstAsserted) {
2454 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2455 Jim_Eval(interp, "srst_asserted");
2456 did_something = 1;
2457 }
2458 if (runSrstDeasserted) {
2459 Jim_Eval(interp, "srst_deasserted");
2460 did_something = 1;
2461 }
2462 if (runPowerDropout) {
2463 LOG_INFO("Power dropout detected, running power_dropout proc.");
2464 Jim_Eval(interp, "power_dropout");
2465 did_something = 1;
2466 }
2467 if (runPowerRestore) {
2468 Jim_Eval(interp, "power_restore");
2469 did_something = 1;
2470 }
2471
2472 if (did_something) {
2473 /* clear detect flags */
2474 sense_handler();
2475 }
2476
2477 /* clear action flags */
2478
2479 runSrstAsserted = 0;
2480 runSrstDeasserted = 0;
2481 runPowerRestore = 0;
2482 runPowerDropout = 0;
2483
2484 recursive = 0;
2485 }
2486
2487 /* Poll targets for state changes unless that's globally disabled.
2488 * Skip targets that are currently disabled.
2489 */
2490 for (struct target *target = all_targets;
2491 is_jtag_poll_safe() && target;
2492 target = target->next) {
2493
2494 if (!target_was_examined(target))
2495 continue;
2496
2497 if (!target->tap->enabled)
2498 continue;
2499
2500 if (target->backoff.times > target->backoff.count) {
2501 /* do not poll this time as we failed previously */
2502 target->backoff.count++;
2503 continue;
2504 }
2505 target->backoff.count = 0;
2506
2507 /* only poll target if we've got power and srst isn't asserted */
2508 if (!powerDropout && !srstAsserted) {
2509 /* polling may fail silently until the target has been examined */
2510 retval = target_poll(target);
2511 if (retval != ERROR_OK) {
2512 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2513 if (target->backoff.times * polling_interval < 5000) {
2514 target->backoff.times *= 2;
2515 target->backoff.times++;
2516 }
2517
2518 /* Tell GDB to halt the debugger. This allows the user to
2519 * run monitor commands to handle the situation.
2520 */
2521 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2522 }
2523 if (target->backoff.times > 0) {
2524 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2525 target_reset_examined(target);
2526 retval = target_examine_one(target);
2527 /* Target examination could have failed due to unstable connection,
2528 * but we set the examined flag anyway to repoll it later */
2529 if (retval != ERROR_OK) {
2530 target->examined = true;
2531 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2532 target->backoff.times * polling_interval);
2533 return retval;
2534 }
2535 }
2536
2537 /* Since we succeeded, we reset backoff count */
2538 target->backoff.times = 0;
2539 }
2540 }
2541
2542 return retval;
2543 }
2544
2545 COMMAND_HANDLER(handle_reg_command)
2546 {
2547 struct target *target;
2548 struct reg *reg = NULL;
2549 unsigned count = 0;
2550 char *value;
2551
2552 LOG_DEBUG("-");
2553
2554 target = get_current_target(CMD_CTX);
2555
2556 /* list all available registers for the current target */
2557 if (CMD_ARGC == 0) {
2558 struct reg_cache *cache = target->reg_cache;
2559
2560 count = 0;
2561 while (cache) {
2562 unsigned i;
2563
2564 command_print(CMD_CTX, "===== %s", cache->name);
2565
2566 for (i = 0, reg = cache->reg_list;
2567 i < cache->num_regs;
2568 i++, reg++, count++) {
2569 /* only print cached values if they are valid */
2570 if (reg->valid) {
2571 value = buf_to_str(reg->value,
2572 reg->size, 16);
2573 command_print(CMD_CTX,
2574 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2575 count, reg->name,
2576 reg->size, value,
2577 reg->dirty
2578 ? " (dirty)"
2579 : "");
2580 free(value);
2581 } else {
2582 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2583 count, reg->name,
2584 reg->size) ;
2585 }
2586 }
2587 cache = cache->next;
2588 }
2589
2590 return ERROR_OK;
2591 }
2592
2593 /* access a single register by its ordinal number */
2594 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2595 unsigned num;
2596 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2597
2598 struct reg_cache *cache = target->reg_cache;
2599 count = 0;
2600 while (cache) {
2601 unsigned i;
2602 for (i = 0; i < cache->num_regs; i++) {
2603 if (count++ == num) {
2604 reg = &cache->reg_list[i];
2605 break;
2606 }
2607 }
2608 if (reg)
2609 break;
2610 cache = cache->next;
2611 }
2612
2613 if (!reg) {
2614 command_print(CMD_CTX, "%i is out of bounds, the current target "
2615 "has only %i registers (0 - %i)", num, count, count - 1);
2616 return ERROR_OK;
2617 }
2618 } else {
2619 /* access a single register by its name */
2620 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2621
2622 if (!reg) {
2623 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2624 return ERROR_OK;
2625 }
2626 }
2627
2628 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2629
2630 /* display a register */
2631 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2632 && (CMD_ARGV[1][0] <= '9')))) {
2633 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2634 reg->valid = 0;
2635
2636 if (reg->valid == 0)
2637 reg->type->get(reg);
2638 value = buf_to_str(reg->value, reg->size, 16);
2639 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2640 free(value);
2641 return ERROR_OK;
2642 }
2643
2644 /* set register value */
2645 if (CMD_ARGC == 2) {
2646 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2647 if (buf == NULL)
2648 return ERROR_FAIL;
2649 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2650
2651 reg->type->set(reg, buf);
2652
2653 value = buf_to_str(reg->value, reg->size, 16);
2654 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2655 free(value);
2656
2657 free(buf);
2658
2659 return ERROR_OK;
2660 }
2661
2662 return ERROR_COMMAND_SYNTAX_ERROR;
2663 }
2664
2665 COMMAND_HANDLER(handle_poll_command)
2666 {
2667 int retval = ERROR_OK;
2668 struct target *target = get_current_target(CMD_CTX);
2669
2670 if (CMD_ARGC == 0) {
2671 command_print(CMD_CTX, "background polling: %s",
2672 jtag_poll_get_enabled() ? "on" : "off");
2673 command_print(CMD_CTX, "TAP: %s (%s)",
2674 target->tap->dotted_name,
2675 target->tap->enabled ? "enabled" : "disabled");
2676 if (!target->tap->enabled)
2677 return ERROR_OK;
2678 retval = target_poll(target);
2679 if (retval != ERROR_OK)
2680 return retval;
2681 retval = target_arch_state(target);
2682 if (retval != ERROR_OK)
2683 return retval;
2684 } else if (CMD_ARGC == 1) {
2685 bool enable;
2686 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2687 jtag_poll_set_enabled(enable);
2688 } else
2689 return ERROR_COMMAND_SYNTAX_ERROR;
2690
2691 return retval;
2692 }
2693
2694 COMMAND_HANDLER(handle_wait_halt_command)
2695 {
2696 if (CMD_ARGC > 1)
2697 return ERROR_COMMAND_SYNTAX_ERROR;
2698
2699 unsigned ms = DEFAULT_HALT_TIMEOUT;
2700 if (1 == CMD_ARGC) {
2701 int retval = parse_uint(CMD_ARGV[0], &ms);
2702 if (ERROR_OK != retval)
2703 return ERROR_COMMAND_SYNTAX_ERROR;
2704 }
2705
2706 struct target *target = get_current_target(CMD_CTX);
2707 return target_wait_state(target, TARGET_HALTED, ms);
2708 }
2709
2710 /* wait for target state to change. The trick here is to have a low
2711 * latency for short waits and not to suck up all the CPU time
2712 * on longer waits.
2713 *
2714 * After 500ms, keep_alive() is invoked
2715 */
2716 int target_wait_state(struct target *target, enum target_state state, int ms)
2717 {
2718 int retval;
2719 long long then = 0, cur;
2720 int once = 1;
2721
2722 for (;;) {
2723 retval = target_poll(target);
2724 if (retval != ERROR_OK)
2725 return retval;
2726 if (target->state == state)
2727 break;
2728 cur = timeval_ms();
2729 if (once) {
2730 once = 0;
2731 then = timeval_ms();
2732 LOG_DEBUG("waiting for target %s...",
2733 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2734 }
2735
2736 if (cur-then > 500)
2737 keep_alive();
2738
2739 if ((cur-then) > ms) {
2740 LOG_ERROR("timed out while waiting for target %s",
2741 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2742 return ERROR_FAIL;
2743 }
2744 }
2745
2746 return ERROR_OK;
2747 }
2748
2749 COMMAND_HANDLER(handle_halt_command)
2750 {
2751 LOG_DEBUG("-");
2752
2753 struct target *target = get_current_target(CMD_CTX);
2754 int retval = target_halt(target);
2755 if (ERROR_OK != retval)
2756 return retval;
2757
2758 if (CMD_ARGC == 1) {
2759 unsigned wait_local;
2760 retval = parse_uint(CMD_ARGV[0], &wait_local);
2761 if (ERROR_OK != retval)
2762 return ERROR_COMMAND_SYNTAX_ERROR;
2763 if (!wait_local)
2764 return ERROR_OK;
2765 }
2766
2767 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2768 }
2769
2770 COMMAND_HANDLER(handle_soft_reset_halt_command)
2771 {
2772 struct target *target = get_current_target(CMD_CTX);
2773
2774 LOG_USER("requesting target halt and executing a soft reset");
2775
2776 target_soft_reset_halt(target);
2777
2778 return ERROR_OK;
2779 }
2780
2781 COMMAND_HANDLER(handle_reset_command)
2782 {
2783 if (CMD_ARGC > 1)
2784 return ERROR_COMMAND_SYNTAX_ERROR;
2785
2786 enum target_reset_mode reset_mode = RESET_RUN;
2787 if (CMD_ARGC == 1) {
2788 const Jim_Nvp *n;
2789 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2790 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2791 return ERROR_COMMAND_SYNTAX_ERROR;
2792 reset_mode = n->value;
2793 }
2794
2795 /* reset *all* targets */
2796 return target_process_reset(CMD_CTX, reset_mode);
2797 }
2798
2799
2800 COMMAND_HANDLER(handle_resume_command)
2801 {
2802 int current = 1;
2803 if (CMD_ARGC > 1)
2804 return ERROR_COMMAND_SYNTAX_ERROR;
2805
2806 struct target *target = get_current_target(CMD_CTX);
2807
2808 /* with no CMD_ARGV, resume from current pc, addr = 0,
2809 * with one arguments, addr = CMD_ARGV[0],
2810 * handle breakpoints, not debugging */
2811 uint32_t addr = 0;
2812 if (CMD_ARGC == 1) {
2813 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2814 current = 0;
2815 }
2816
2817 return target_resume(target, current, addr, 1, 0);
2818 }
2819
2820 COMMAND_HANDLER(handle_step_command)
2821 {
2822 if (CMD_ARGC > 1)
2823 return ERROR_COMMAND_SYNTAX_ERROR;
2824
2825 LOG_DEBUG("-");
2826
2827 /* with no CMD_ARGV, step from current pc, addr = 0,
2828 * with one argument addr = CMD_ARGV[0],
2829 * handle breakpoints, debugging */
2830 uint32_t addr = 0;
2831 int current_pc = 1;
2832 if (CMD_ARGC == 1) {
2833 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2834 current_pc = 0;
2835 }
2836
2837 struct target *target = get_current_target(CMD_CTX);
2838
2839 return target->type->step(target, current_pc, addr, 1);
2840 }
2841
2842 static void handle_md_output(struct command_context *cmd_ctx,
2843 struct target *target, uint32_t address, unsigned size,
2844 unsigned count, const uint8_t *buffer)
2845 {
2846 const unsigned line_bytecnt = 32;
2847 unsigned line_modulo = line_bytecnt / size;
2848
2849 char output[line_bytecnt * 4 + 1];
2850 unsigned output_len = 0;
2851
2852 const char *value_fmt;
2853 switch (size) {
2854 case 4:
2855 value_fmt = "%8.8x ";
2856 break;
2857 case 2:
2858 value_fmt = "%4.4x ";
2859 break;
2860 case 1:
2861 value_fmt = "%2.2x ";
2862 break;
2863 default:
2864 /* "can't happen", caller checked */
2865 LOG_ERROR("invalid memory read size: %u", size);
2866 return;
2867 }
2868
2869 for (unsigned i = 0; i < count; i++) {
2870 if (i % line_modulo == 0) {
2871 output_len += snprintf(output + output_len,
2872 sizeof(output) - output_len,
2873 "0x%8.8x: ",
2874 (unsigned)(address + (i*size)));
2875 }
2876
2877 uint32_t value = 0;
2878 const uint8_t *value_ptr = buffer + i * size;
2879 switch (size) {
2880 case 4:
2881 value = target_buffer_get_u32(target, value_ptr);
2882 break;
2883 case 2:
2884 value = target_buffer_get_u16(target, value_ptr);
2885 break;
2886 case 1:
2887 value = *value_ptr;
2888 }
2889 output_len += snprintf(output + output_len,
2890 sizeof(output) - output_len,
2891 value_fmt, value);
2892
2893 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2894 command_print(cmd_ctx, "%s", output);
2895 output_len = 0;
2896 }
2897 }
2898 }
2899
2900 COMMAND_HANDLER(handle_md_command)
2901 {
2902 if (CMD_ARGC < 1)
2903 return ERROR_COMMAND_SYNTAX_ERROR;
2904
2905 unsigned size = 0;
2906 switch (CMD_NAME[2]) {
2907 case 'w':
2908 size = 4;
2909 break;
2910 case 'h':
2911 size = 2;
2912 break;
2913 case 'b':
2914 size = 1;
2915 break;
2916 default:
2917 return ERROR_COMMAND_SYNTAX_ERROR;
2918 }
2919
2920 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2921 int (*fn)(struct target *target,
2922 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2923 if (physical) {
2924 CMD_ARGC--;
2925 CMD_ARGV++;
2926 fn = target_read_phys_memory;
2927 } else
2928 fn = target_read_memory;
2929 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2930 return ERROR_COMMAND_SYNTAX_ERROR;
2931
2932 uint32_t address;
2933 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2934
2935 unsigned count = 1;
2936 if (CMD_ARGC == 2)
2937 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2938
2939 uint8_t *buffer = calloc(count, size);
2940
2941 struct target *target = get_current_target(CMD_CTX);
2942 int retval = fn(target, address, size, count, buffer);
2943 if (ERROR_OK == retval)
2944 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2945
2946 free(buffer);
2947
2948 return retval;
2949 }
2950
2951 typedef int (*target_write_fn)(struct target *target,
2952 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2953
2954 static int target_fill_mem(struct target *target,
2955 uint32_t address,
2956 target_write_fn fn,
2957 unsigned data_size,
2958 /* value */
2959 uint32_t b,
2960 /* count */
2961 unsigned c)
2962 {
2963 /* We have to write in reasonably large chunks to be able
2964 * to fill large memory areas with any sane speed */
2965 const unsigned chunk_size = 16384;
2966 uint8_t *target_buf = malloc(chunk_size * data_size);
2967 if (target_buf == NULL) {
2968 LOG_ERROR("Out of memory");
2969 return ERROR_FAIL;
2970 }
2971
2972 for (unsigned i = 0; i < chunk_size; i++) {
2973 switch (data_size) {
2974 case 4:
2975 target_buffer_set_u32(target, target_buf + i * data_size, b);
2976 break;
2977 case 2:
2978 target_buffer_set_u16(target, target_buf + i * data_size, b);
2979 break;
2980 case 1:
2981 target_buffer_set_u8(target, target_buf + i * data_size, b);
2982 break;
2983 default:
2984 exit(-1);
2985 }
2986 }
2987
2988 int retval = ERROR_OK;
2989
2990 for (unsigned x = 0; x < c; x += chunk_size) {
2991 unsigned current;
2992 current = c - x;
2993 if (current > chunk_size)
2994 current = chunk_size;
2995 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2996 if (retval != ERROR_OK)
2997 break;
2998 /* avoid GDB timeouts */
2999 keep_alive();
3000 }
3001 free(target_buf);
3002
3003 return retval;
3004 }
3005
3006
3007 COMMAND_HANDLER(handle_mw_command)
3008 {
3009 if (CMD_ARGC < 2)
3010 return ERROR_COMMAND_SYNTAX_ERROR;
3011 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3012 target_write_fn fn;
3013 if (physical) {
3014 CMD_ARGC--;
3015 CMD_ARGV++;
3016 fn = target_write_phys_memory;
3017 } else
3018 fn = target_write_memory;
3019 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3020 return ERROR_COMMAND_SYNTAX_ERROR;
3021
3022 uint32_t address;
3023 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3024
3025 uint32_t value;
3026 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3027
3028 unsigned count = 1;
3029 if (CMD_ARGC == 3)
3030 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3031
3032 struct target *target = get_current_target(CMD_CTX);
3033 unsigned wordsize;
3034 switch (CMD_NAME[2]) {
3035 case 'w':
3036 wordsize = 4;
3037 break;
3038 case 'h':
3039 wordsize = 2;
3040 break;
3041 case 'b':
3042 wordsize = 1;
3043 break;
3044 default:
3045 return ERROR_COMMAND_SYNTAX_ERROR;
3046 }
3047
3048 return target_fill_mem(target, address, fn, wordsize, value, count);
3049 }
3050
3051 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3052 uint32_t *min_address, uint32_t *max_address)
3053 {
3054 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3055 return ERROR_COMMAND_SYNTAX_ERROR;
3056
3057 /* a base address isn't always necessary,
3058 * default to 0x0 (i.e. don't relocate) */
3059 if (CMD_ARGC >= 2) {
3060 uint32_t addr;
3061 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3062 image->base_address = addr;
3063 image->base_address_set = 1;
3064 } else
3065 image->base_address_set = 0;
3066
3067 image->start_address_set = 0;
3068
3069 if (CMD_ARGC >= 4)
3070 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3071 if (CMD_ARGC == 5) {
3072 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3073 /* use size (given) to find max (required) */
3074 *max_address += *min_address;
3075 }
3076
3077 if (*min_address > *max_address)
3078 return ERROR_COMMAND_SYNTAX_ERROR;
3079
3080 return ERROR_OK;
3081 }
3082
3083 COMMAND_HANDLER(handle_load_image_command)
3084 {
3085 uint8_t *buffer;
3086 size_t buf_cnt;
3087 uint32_t image_size;
3088 uint32_t min_address = 0;
3089 uint32_t max_address = 0xffffffff;
3090 int i;
3091 struct image image;
3092
3093 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3094 &image, &min_address, &max_address);
3095 if (ERROR_OK != retval)
3096 return retval;
3097
3098 struct target *target = get_current_target(CMD_CTX);
3099
3100 struct duration bench;
3101 duration_start(&bench);
3102
3103 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3104 return ERROR_OK;
3105
3106 image_size = 0x0;
3107 retval = ERROR_OK;
3108 for (i = 0; i < image.num_sections; i++) {
3109 buffer = malloc(image.sections[i].size);
3110 if (buffer == NULL) {
3111 command_print(CMD_CTX,
3112 "error allocating buffer for section (%d bytes)",
3113 (int)(image.sections[i].size));
3114 break;
3115 }
3116
3117 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3118 if (retval != ERROR_OK) {
3119 free(buffer);
3120 break;
3121 }
3122
3123 uint32_t offset = 0;
3124 uint32_t length = buf_cnt;
3125
3126 /* DANGER!!! beware of unsigned comparision here!!! */
3127
3128 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3129 (image.sections[i].base_address < max_address)) {
3130
3131 if (image.sections[i].base_address < min_address) {
3132 /* clip addresses below */
3133 offset += min_address-image.sections[i].base_address;
3134 length -= offset;
3135 }
3136
3137 if (image.sections[i].base_address + buf_cnt > max_address)
3138 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3139
3140 retval = target_write_buffer(target,
3141 image.sections[i].base_address + offset, length, buffer + offset);
3142 if (retval != ERROR_OK) {
3143 free(buffer);
3144 break;
3145 }
3146 image_size += length;
3147 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3148 (unsigned int)length,
3149 image.sections[i].base_address + offset);
3150 }
3151
3152 free(buffer);
3153 }
3154
3155 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3156 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3157 "in %fs (%0.3f KiB/s)", image_size,
3158 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3159 }
3160
3161 image_close(&image);
3162
3163 return retval;
3164
3165 }
3166
3167 COMMAND_HANDLER(handle_dump_image_command)
3168 {
3169 struct fileio fileio;
3170 uint8_t *buffer;
3171 int retval, retvaltemp;
3172 uint32_t address, size;
3173 struct duration bench;
3174 struct target *target = get_current_target(CMD_CTX);
3175
3176 if (CMD_ARGC != 3)
3177