1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
44 #include <helper/align.h>
45 #include <helper/time_support.h>
46 #include <jtag/jtag.h>
47 #include <flash/nor/core.h>
50 #include "target_type.h"
51 #include "target_request.h"
52 #include "breakpoints.h"
56 #include "rtos/rtos.h"
57 #include "transport/transport.h"
61 /* default halt wait timeout (ms) */
62 #define DEFAULT_HALT_TIMEOUT 5000
64 static int target_read_buffer_default(struct target
*target
, target_addr_t address
,
65 uint32_t count
, uint8_t *buffer
);
66 static int target_write_buffer_default(struct target
*target
, target_addr_t address
,
67 uint32_t count
, const uint8_t *buffer
);
68 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
69 int argc
, Jim_Obj
* const *argv
);
70 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
71 int argc
, Jim_Obj
* const *argv
);
72 static int target_register_user_commands(struct command_context
*cmd_ctx
);
73 static int target_get_gdb_fileio_info_default(struct target
*target
,
74 struct gdb_fileio_info
*fileio_info
);
75 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
76 int fileio_errno
, bool ctrl_c
);
79 extern struct target_type arm7tdmi_target
;
80 extern struct target_type arm720t_target
;
81 extern struct target_type arm9tdmi_target
;
82 extern struct target_type arm920t_target
;
83 extern struct target_type arm966e_target
;
84 extern struct target_type arm946e_target
;
85 extern struct target_type arm926ejs_target
;
86 extern struct target_type fa526_target
;
87 extern struct target_type feroceon_target
;
88 extern struct target_type dragonite_target
;
89 extern struct target_type xscale_target
;
90 extern struct target_type cortexm_target
;
91 extern struct target_type cortexa_target
;
92 extern struct target_type aarch64_target
;
93 extern struct target_type cortexr4_target
;
94 extern struct target_type arm11_target
;
95 extern struct target_type ls1_sap_target
;
96 extern struct target_type mips_m4k_target
;
97 extern struct target_type mips_mips64_target
;
98 extern struct target_type avr_target
;
99 extern struct target_type dsp563xx_target
;
100 extern struct target_type dsp5680xx_target
;
101 extern struct target_type testee_target
;
102 extern struct target_type avr32_ap7k_target
;
103 extern struct target_type hla_target
;
104 extern struct target_type nds32_v2_target
;
105 extern struct target_type nds32_v3_target
;
106 extern struct target_type nds32_v3m_target
;
107 extern struct target_type or1k_target
;
108 extern struct target_type quark_x10xx_target
;
109 extern struct target_type quark_d20xx_target
;
110 extern struct target_type stm8_target
;
111 extern struct target_type riscv_target
;
112 extern struct target_type mem_ap_target
;
113 extern struct target_type esirisc_target
;
114 extern struct target_type arcv2_target
;
116 static struct target_type
*target_types
[] = {
156 struct target
*all_targets
;
157 static struct target_event_callback
*target_event_callbacks
;
158 static struct target_timer_callback
*target_timer_callbacks
;
159 static int64_t target_timer_next_event_value
;
160 static LIST_HEAD(target_reset_callback_list
);
161 static LIST_HEAD(target_trace_callback_list
);
162 static const int polling_interval
= TARGET_DEFAULT_POLLING_INTERVAL
;
163 static LIST_HEAD(empty_smp_targets
);
165 static const struct jim_nvp nvp_assert
[] = {
166 { .name
= "assert", NVP_ASSERT
},
167 { .name
= "deassert", NVP_DEASSERT
},
168 { .name
= "T", NVP_ASSERT
},
169 { .name
= "F", NVP_DEASSERT
},
170 { .name
= "t", NVP_ASSERT
},
171 { .name
= "f", NVP_DEASSERT
},
172 { .name
= NULL
, .value
= -1 }
175 static const struct jim_nvp nvp_error_target
[] = {
176 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
177 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
178 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
179 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
180 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
181 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
182 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
183 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
184 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
185 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
186 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
187 { .value
= -1, .name
= NULL
}
190 static const char *target_strerror_safe(int err
)
192 const struct jim_nvp
*n
;
194 n
= jim_nvp_value2name_simple(nvp_error_target
, err
);
201 static const struct jim_nvp nvp_target_event
[] = {
203 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
204 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
205 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
206 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
207 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
208 { .value
= TARGET_EVENT_STEP_START
, .name
= "step-start" },
209 { .value
= TARGET_EVENT_STEP_END
, .name
= "step-end" },
211 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
212 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
214 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
215 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
216 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
217 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
218 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
219 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
220 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
221 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
223 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
224 { .value
= TARGET_EVENT_EXAMINE_FAIL
, .name
= "examine-fail" },
225 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
227 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
228 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
230 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
231 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
233 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
234 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
236 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
237 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
239 { .value
= TARGET_EVENT_TRACE_CONFIG
, .name
= "trace-config" },
241 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x100
, .name
= "semihosting-user-cmd-0x100" },
242 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x101
, .name
= "semihosting-user-cmd-0x101" },
243 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x102
, .name
= "semihosting-user-cmd-0x102" },
244 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x103
, .name
= "semihosting-user-cmd-0x103" },
245 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x104
, .name
= "semihosting-user-cmd-0x104" },
246 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x105
, .name
= "semihosting-user-cmd-0x105" },
247 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x106
, .name
= "semihosting-user-cmd-0x106" },
248 { .value
= TARGET_EVENT_SEMIHOSTING_USER_CMD_0x107
, .name
= "semihosting-user-cmd-0x107" },
250 { .name
= NULL
, .value
= -1 }
253 static const struct jim_nvp nvp_target_state
[] = {
254 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
255 { .name
= "running", .value
= TARGET_RUNNING
},
256 { .name
= "halted", .value
= TARGET_HALTED
},
257 { .name
= "reset", .value
= TARGET_RESET
},
258 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
259 { .name
= NULL
, .value
= -1 },
262 static const struct jim_nvp nvp_target_debug_reason
[] = {
263 { .name
= "debug-request", .value
= DBG_REASON_DBGRQ
},
264 { .name
= "breakpoint", .value
= DBG_REASON_BREAKPOINT
},
265 { .name
= "watchpoint", .value
= DBG_REASON_WATCHPOINT
},
266 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
267 { .name
= "single-step", .value
= DBG_REASON_SINGLESTEP
},
268 { .name
= "target-not-halted", .value
= DBG_REASON_NOTHALTED
},
269 { .name
= "program-exit", .value
= DBG_REASON_EXIT
},
270 { .name
= "exception-catch", .value
= DBG_REASON_EXC_CATCH
},
271 { .name
= "undefined", .value
= DBG_REASON_UNDEFINED
},
272 { .name
= NULL
, .value
= -1 },
275 static const struct jim_nvp nvp_target_endian
[] = {
276 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
277 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
278 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
279 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
280 { .name
= NULL
, .value
= -1 },
283 static const struct jim_nvp nvp_reset_modes
[] = {
284 { .name
= "unknown", .value
= RESET_UNKNOWN
},
285 { .name
= "run", .value
= RESET_RUN
},
286 { .name
= "halt", .value
= RESET_HALT
},
287 { .name
= "init", .value
= RESET_INIT
},
288 { .name
= NULL
, .value
= -1 },
291 const char *debug_reason_name(struct target
*t
)
295 cp
= jim_nvp_value2name_simple(nvp_target_debug_reason
,
296 t
->debug_reason
)->name
;
298 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
299 cp
= "(*BUG*unknown*BUG*)";
304 const char *target_state_name(struct target
*t
)
307 cp
= jim_nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
309 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
310 cp
= "(*BUG*unknown*BUG*)";
313 if (!target_was_examined(t
) && t
->defer_examine
)
314 cp
= "examine deferred";
319 const char *target_event_name(enum target_event event
)
322 cp
= jim_nvp_value2name_simple(nvp_target_event
, event
)->name
;
324 LOG_ERROR("Invalid target event: %d", (int)(event
));
325 cp
= "(*BUG*unknown*BUG*)";
330 const char *target_reset_mode_name(enum target_reset_mode reset_mode
)
333 cp
= jim_nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
;
335 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode
));
336 cp
= "(*BUG*unknown*BUG*)";
341 /* determine the number of the new target */
342 static int new_target_number(void)
347 /* number is 0 based */
351 if (x
< t
->target_number
)
352 x
= t
->target_number
;
358 static void append_to_list_all_targets(struct target
*target
)
360 struct target
**t
= &all_targets
;
367 /* read a uint64_t from a buffer in target memory endianness */
368 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
370 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
371 return le_to_h_u64(buffer
);
373 return be_to_h_u64(buffer
);
376 /* read a uint32_t from a buffer in target memory endianness */
377 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
379 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
380 return le_to_h_u32(buffer
);
382 return be_to_h_u32(buffer
);
385 /* read a uint24_t from a buffer in target memory endianness */
386 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
388 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
389 return le_to_h_u24(buffer
);
391 return be_to_h_u24(buffer
);
394 /* read a uint16_t from a buffer in target memory endianness */
395 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
397 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
398 return le_to_h_u16(buffer
);
400 return be_to_h_u16(buffer
);
403 /* write a uint64_t to a buffer in target memory endianness */
404 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
406 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
407 h_u64_to_le(buffer
, value
);
409 h_u64_to_be(buffer
, value
);
412 /* write a uint32_t to a buffer in target memory endianness */
413 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
415 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
416 h_u32_to_le(buffer
, value
);
418 h_u32_to_be(buffer
, value
);
421 /* write a uint24_t to a buffer in target memory endianness */
422 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
424 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
425 h_u24_to_le(buffer
, value
);
427 h_u24_to_be(buffer
, value
);
430 /* write a uint16_t to a buffer in target memory endianness */
431 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
433 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
434 h_u16_to_le(buffer
, value
);
436 h_u16_to_be(buffer
, value
);
439 /* write a uint8_t to a buffer in target memory endianness */
440 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
445 /* write a uint64_t array to a buffer in target memory endianness */
446 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
449 for (i
= 0; i
< count
; i
++)
450 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
453 /* write a uint32_t array to a buffer in target memory endianness */
454 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
457 for (i
= 0; i
< count
; i
++)
458 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
461 /* write a uint16_t array to a buffer in target memory endianness */
462 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
465 for (i
= 0; i
< count
; i
++)
466 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
469 /* write a uint64_t array to a buffer in target memory endianness */
470 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
473 for (i
= 0; i
< count
; i
++)
474 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
477 /* write a uint32_t array to a buffer in target memory endianness */
478 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
481 for (i
= 0; i
< count
; i
++)
482 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
485 /* write a uint16_t array to a buffer in target memory endianness */
486 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
489 for (i
= 0; i
< count
; i
++)
490 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
493 /* return a pointer to a configured target; id is name or number */
494 struct target
*get_target(const char *id
)
496 struct target
*target
;
498 /* try as tcltarget name */
499 for (target
= all_targets
; target
; target
= target
->next
) {
500 if (!target_name(target
))
502 if (strcmp(id
, target_name(target
)) == 0)
506 /* It's OK to remove this fallback sometime after August 2010 or so */
508 /* no match, try as number */
510 if (parse_uint(id
, &num
) != ERROR_OK
)
513 for (target
= all_targets
; target
; target
= target
->next
) {
514 if (target
->target_number
== (int)num
) {
515 LOG_WARNING("use '%s' as target identifier, not '%u'",
516 target_name(target
), num
);
524 /* returns a pointer to the n-th configured target */
525 struct target
*get_target_by_num(int num
)
527 struct target
*target
= all_targets
;
530 if (target
->target_number
== num
)
532 target
= target
->next
;
538 struct target
*get_current_target(struct command_context
*cmd_ctx
)
540 struct target
*target
= get_current_target_or_null(cmd_ctx
);
543 LOG_ERROR("BUG: current_target out of bounds");
550 struct target
*get_current_target_or_null(struct command_context
*cmd_ctx
)
552 return cmd_ctx
->current_target_override
553 ? cmd_ctx
->current_target_override
554 : cmd_ctx
->current_target
;
557 int target_poll(struct target
*target
)
561 /* We can't poll until after examine */
562 if (!target_was_examined(target
)) {
563 /* Fail silently lest we pollute the log */
567 retval
= target
->type
->poll(target
);
568 if (retval
!= ERROR_OK
)
571 if (target
->halt_issued
) {
572 if (target
->state
== TARGET_HALTED
)
573 target
->halt_issued
= false;
575 int64_t t
= timeval_ms() - target
->halt_issued_time
;
576 if (t
> DEFAULT_HALT_TIMEOUT
) {
577 target
->halt_issued
= false;
578 LOG_INFO("Halt timed out, wake up GDB.");
579 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
587 int target_halt(struct target
*target
)
590 /* We can't poll until after examine */
591 if (!target_was_examined(target
)) {
592 LOG_ERROR("Target not examined yet");
596 retval
= target
->type
->halt(target
);
597 if (retval
!= ERROR_OK
)
600 target
->halt_issued
= true;
601 target
->halt_issued_time
= timeval_ms();
607 * Make the target (re)start executing using its saved execution
608 * context (possibly with some modifications).
610 * @param target Which target should start executing.
611 * @param current True to use the target's saved program counter instead
612 * of the address parameter
613 * @param address Optionally used as the program counter.
614 * @param handle_breakpoints True iff breakpoints at the resumption PC
615 * should be skipped. (For example, maybe execution was stopped by
616 * such a breakpoint, in which case it would be counterproductive to
618 * @param debug_execution False if all working areas allocated by OpenOCD
619 * should be released and/or restored to their original contents.
620 * (This would for example be true to run some downloaded "helper"
621 * algorithm code, which resides in one such working buffer and uses
622 * another for data storage.)
624 * @todo Resolve the ambiguity about what the "debug_execution" flag
625 * signifies. For example, Target implementations don't agree on how
626 * it relates to invalidation of the register cache, or to whether
627 * breakpoints and watchpoints should be enabled. (It would seem wrong
628 * to enable breakpoints when running downloaded "helper" algorithms
629 * (debug_execution true), since the breakpoints would be set to match
630 * target firmware being debugged, not the helper algorithm.... and
631 * enabling them could cause such helpers to malfunction (for example,
632 * by overwriting data with a breakpoint instruction. On the other
633 * hand the infrastructure for running such helpers might use this
634 * procedure but rely on hardware breakpoint to detect termination.)
636 int target_resume(struct target
*target
, int current
, target_addr_t address
,
637 int handle_breakpoints
, int debug_execution
)
641 /* We can't poll until after examine */
642 if (!target_was_examined(target
)) {
643 LOG_ERROR("Target not examined yet");
647 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
649 /* note that resume *must* be asynchronous. The CPU can halt before
650 * we poll. The CPU can even halt at the current PC as a result of
651 * a software breakpoint being inserted by (a bug?) the application.
654 * resume() triggers the event 'resumed'. The execution of TCL commands
655 * in the event handler causes the polling of targets. If the target has
656 * already halted for a breakpoint, polling will run the 'halted' event
657 * handler before the pending 'resumed' handler.
658 * Disable polling during resume() to guarantee the execution of handlers
659 * in the correct order.
661 bool save_poll
= jtag_poll_get_enabled();
662 jtag_poll_set_enabled(false);
663 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
664 jtag_poll_set_enabled(save_poll
);
665 if (retval
!= ERROR_OK
)
668 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
673 static int target_process_reset(struct command_invocation
*cmd
, enum target_reset_mode reset_mode
)
678 n
= jim_nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
680 LOG_ERROR("invalid reset mode");
684 struct target
*target
;
685 for (target
= all_targets
; target
; target
= target
->next
)
686 target_call_reset_callbacks(target
, reset_mode
);
688 /* disable polling during reset to make reset event scripts
689 * more predictable, i.e. dr/irscan & pathmove in events will
690 * not have JTAG operations injected into the middle of a sequence.
692 bool save_poll
= jtag_poll_get_enabled();
694 jtag_poll_set_enabled(false);
696 sprintf(buf
, "ocd_process_reset %s", n
->name
);
697 retval
= Jim_Eval(cmd
->ctx
->interp
, buf
);
699 jtag_poll_set_enabled(save_poll
);
701 if (retval
!= JIM_OK
) {
702 Jim_MakeErrorMessage(cmd
->ctx
->interp
);
703 command_print(cmd
, "%s", Jim_GetString(Jim_GetResult(cmd
->ctx
->interp
), NULL
));
707 /* We want any events to be processed before the prompt */
708 retval
= target_call_timer_callbacks_now();
710 for (target
= all_targets
; target
; target
= target
->next
) {
711 target
->type
->check_reset(target
);
712 target
->running_alg
= false;
718 static int identity_virt2phys(struct target
*target
,
719 target_addr_t
virtual, target_addr_t
*physical
)
725 static int no_mmu(struct target
*target
, int *enabled
)
732 * Reset the @c examined flag for the given target.
733 * Pure paranoia -- targets are zeroed on allocation.
735 static inline void target_reset_examined(struct target
*target
)
737 target
->examined
= false;
740 static int default_examine(struct target
*target
)
742 target_set_examined(target
);
746 /* no check by default */
747 static int default_check_reset(struct target
*target
)
752 /* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
754 int target_examine_one(struct target
*target
)
756 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
758 int retval
= target
->type
->examine(target
);
759 if (retval
!= ERROR_OK
) {
760 target_reset_examined(target
);
761 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_FAIL
);
765 target_set_examined(target
);
766 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
771 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
773 struct target
*target
= priv
;
775 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
778 jtag_unregister_event_callback(jtag_enable_callback
, target
);
780 return target_examine_one(target
);
783 /* Targets that correctly implement init + examine, i.e.
784 * no communication with target during init:
788 int target_examine(void)
790 int retval
= ERROR_OK
;
791 struct target
*target
;
793 for (target
= all_targets
; target
; target
= target
->next
) {
794 /* defer examination, but don't skip it */
795 if (!target
->tap
->enabled
) {
796 jtag_register_event_callback(jtag_enable_callback
,
801 if (target
->defer_examine
)
804 int retval2
= target_examine_one(target
);
805 if (retval2
!= ERROR_OK
) {
806 LOG_WARNING("target %s examination failed", target_name(target
));
813 const char *target_type_name(struct target
*target
)
815 return target
->type
->name
;
818 static int target_soft_reset_halt(struct target
*target
)
820 if (!target_was_examined(target
)) {
821 LOG_ERROR("Target not examined yet");
824 if (!target
->type
->soft_reset_halt
) {
825 LOG_ERROR("Target %s does not support soft_reset_halt",
826 target_name(target
));
829 return target
->type
->soft_reset_halt(target
);
833 * Downloads a target-specific native code algorithm to the target,
834 * and executes it. * Note that some targets may need to set up, enable,
835 * and tear down a breakpoint (hard or * soft) to detect algorithm
836 * termination, while others may support lower overhead schemes where
837 * soft breakpoints embedded in the algorithm automatically terminate the
840 * @param target used to run the algorithm
841 * @param num_mem_params
843 * @param num_reg_params
848 * @param arch_info target-specific description of the algorithm.
850 int target_run_algorithm(struct target
*target
,
851 int num_mem_params
, struct mem_param
*mem_params
,
852 int num_reg_params
, struct reg_param
*reg_param
,
853 target_addr_t entry_point
, target_addr_t exit_point
,
854 int timeout_ms
, void *arch_info
)
856 int retval
= ERROR_FAIL
;
858 if (!target_was_examined(target
)) {
859 LOG_ERROR("Target not examined yet");
862 if (!target
->type
->run_algorithm
) {
863 LOG_ERROR("Target type '%s' does not support %s",
864 target_type_name(target
), __func__
);
868 target
->running_alg
= true;
869 retval
= target
->type
->run_algorithm(target
,
870 num_mem_params
, mem_params
,
871 num_reg_params
, reg_param
,
872 entry_point
, exit_point
, timeout_ms
, arch_info
);
873 target
->running_alg
= false;
880 * Executes a target-specific native code algorithm and leaves it running.
882 * @param target used to run the algorithm
883 * @param num_mem_params
885 * @param num_reg_params
889 * @param arch_info target-specific description of the algorithm.
891 int target_start_algorithm(struct target
*target
,
892 int num_mem_params
, struct mem_param
*mem_params
,
893 int num_reg_params
, struct reg_param
*reg_params
,
894 target_addr_t entry_point
, target_addr_t exit_point
,
897 int retval
= ERROR_FAIL
;
899 if (!target_was_examined(target
)) {
900 LOG_ERROR("Target not examined yet");
903 if (!target
->type
->start_algorithm
) {
904 LOG_ERROR("Target type '%s' does not support %s",
905 target_type_name(target
), __func__
);
908 if (target
->running_alg
) {
909 LOG_ERROR("Target is already running an algorithm");
913 target
->running_alg
= true;
914 retval
= target
->type
->start_algorithm(target
,
915 num_mem_params
, mem_params
,
916 num_reg_params
, reg_params
,
917 entry_point
, exit_point
, arch_info
);
924 * Waits for an algorithm started with target_start_algorithm() to complete.
926 * @param target used to run the algorithm
927 * @param num_mem_params
929 * @param num_reg_params
933 * @param arch_info target-specific description of the algorithm.
935 int target_wait_algorithm(struct target
*target
,
936 int num_mem_params
, struct mem_param
*mem_params
,
937 int num_reg_params
, struct reg_param
*reg_params
,
938 target_addr_t exit_point
, int timeout_ms
,
941 int retval
= ERROR_FAIL
;
943 if (!target
->type
->wait_algorithm
) {
944 LOG_ERROR("Target type '%s' does not support %s",
945 target_type_name(target
), __func__
);
948 if (!target
->running_alg
) {
949 LOG_ERROR("Target is not running an algorithm");
953 retval
= target
->type
->wait_algorithm(target
,
954 num_mem_params
, mem_params
,
955 num_reg_params
, reg_params
,
956 exit_point
, timeout_ms
, arch_info
);
957 if (retval
!= ERROR_TARGET_TIMEOUT
)
958 target
->running_alg
= false;
965 * Streams data to a circular buffer on target intended for consumption by code
966 * running asynchronously on target.
968 * This is intended for applications where target-specific native code runs
969 * on the target, receives data from the circular buffer, does something with
970 * it (most likely writing it to a flash memory), and advances the circular
973 * This assumes that the helper algorithm has already been loaded to the target,
974 * but has not been started yet. Given memory and register parameters are passed
977 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
980 * [buffer_start + 0, buffer_start + 4):
981 * Write Pointer address (aka head). Written and updated by this
982 * routine when new data is written to the circular buffer.
983 * [buffer_start + 4, buffer_start + 8):
984 * Read Pointer address (aka tail). Updated by code running on the
985 * target after it consumes data.
986 * [buffer_start + 8, buffer_start + buffer_size):
987 * Circular buffer contents.
989 * See contrib/loaders/flash/stm32f1x.S for an example.
991 * @param target used to run the algorithm
992 * @param buffer address on the host where data to be sent is located
993 * @param count number of blocks to send
994 * @param block_size size in bytes of each block
995 * @param num_mem_params count of memory-based params to pass to algorithm
996 * @param mem_params memory-based params to pass to algorithm
997 * @param num_reg_params count of register-based params to pass to algorithm
998 * @param reg_params memory-based params to pass to algorithm
999 * @param buffer_start address on the target of the circular buffer structure
1000 * @param buffer_size size of the circular buffer structure
1001 * @param entry_point address on the target to execute to start the algorithm
1002 * @param exit_point address at which to set a breakpoint to catch the
1003 * end of the algorithm; can be 0 if target triggers a breakpoint itself
1007 int target_run_flash_async_algorithm(struct target
*target
,
1008 const uint8_t *buffer
, uint32_t count
, int block_size
,
1009 int num_mem_params
, struct mem_param
*mem_params
,
1010 int num_reg_params
, struct reg_param
*reg_params
,
1011 uint32_t buffer_start
, uint32_t buffer_size
,
1012 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
1017 const uint8_t *buffer_orig
= buffer
;
1019 /* Set up working area. First word is write pointer, second word is read pointer,
1020 * rest is fifo data area. */
1021 uint32_t wp_addr
= buffer_start
;
1022 uint32_t rp_addr
= buffer_start
+ 4;
1023 uint32_t fifo_start_addr
= buffer_start
+ 8;
1024 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
1026 uint32_t wp
= fifo_start_addr
;
1027 uint32_t rp
= fifo_start_addr
;
1029 /* validate block_size is 2^n */
1030 assert(IS_PWR_OF_2(block_size
));
1032 retval
= target_write_u32(target
, wp_addr
, wp
);
1033 if (retval
!= ERROR_OK
)
1035 retval
= target_write_u32(target
, rp_addr
, rp
);
1036 if (retval
!= ERROR_OK
)
1039 /* Start up algorithm on target and let it idle while writing the first chunk */
1040 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
1041 num_reg_params
, reg_params
,
1046 if (retval
!= ERROR_OK
) {
1047 LOG_ERROR("error starting target flash write algorithm");
1053 retval
= target_read_u32(target
, rp_addr
, &rp
);
1054 if (retval
!= ERROR_OK
) {
1055 LOG_ERROR("failed to get read pointer");
1059 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
1060 (size_t) (buffer
- buffer_orig
), count
, wp
, rp
);
1063 LOG_ERROR("flash write algorithm aborted by target");
1064 retval
= ERROR_FLASH_OPERATION_FAILED
;
1068 if (!IS_ALIGNED(rp
- fifo_start_addr
, block_size
) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
1069 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
1073 /* Count the number of bytes available in the fifo without
1074 * crossing the wrap around. Make sure to not fill it completely,
1075 * because that would make wp == rp and that's the empty condition. */
1076 uint32_t thisrun_bytes
;
1078 thisrun_bytes
= rp
- wp
- block_size
;
1079 else if (rp
> fifo_start_addr
)
1080 thisrun_bytes
= fifo_end_addr
- wp
;
1082 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
1084 if (thisrun_bytes
== 0) {
1085 /* Throttle polling a bit if transfer is (much) faster than flash
1086 * programming. The exact delay shouldn't matter as long as it's
1087 * less than buffer size / flash speed. This is very unlikely to
1088 * run when using high latency connections such as USB. */
1091 /* to stop an infinite loop on some targets check and increment a timeout
1092 * this issue was observed on a stellaris using the new ICDI interface */
1093 if (timeout
++ >= 2500) {
1094 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1095 return ERROR_FLASH_OPERATION_FAILED
;
1100 /* reset our timeout */
1103 /* Limit to the amount of data we actually want to write */
1104 if (thisrun_bytes
> count
* block_size
)
1105 thisrun_bytes
= count
* block_size
;
1107 /* Force end of large blocks to be word aligned */
1108 if (thisrun_bytes
>= 16)
1109 thisrun_bytes
-= (rp
+ thisrun_bytes
) & 0x03;
1111 /* Write data to fifo */
1112 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
1113 if (retval
!= ERROR_OK
)
1116 /* Update counters and wrap write pointer */
1117 buffer
+= thisrun_bytes
;
1118 count
-= thisrun_bytes
/ block_size
;
1119 wp
+= thisrun_bytes
;
1120 if (wp
>= fifo_end_addr
)
1121 wp
= fifo_start_addr
;
1123 /* Store updated write pointer to target */
1124 retval
= target_write_u32(target
, wp_addr
, wp
);
1125 if (retval
!= ERROR_OK
)
1128 /* Avoid GDB timeouts */
1132 if (retval
!= ERROR_OK
) {
1133 /* abort flash write algorithm on target */
1134 target_write_u32(target
, wp_addr
, 0);
1137 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
1138 num_reg_params
, reg_params
,
1143 if (retval2
!= ERROR_OK
) {
1144 LOG_ERROR("error waiting for target flash write algorithm");
1148 if (retval
== ERROR_OK
) {
1149 /* check if algorithm set rp = 0 after fifo writer loop finished */
1150 retval
= target_read_u32(target
, rp_addr
, &rp
);
1151 if (retval
== ERROR_OK
&& rp
== 0) {
1152 LOG_ERROR("flash write algorithm aborted by target");
1153 retval
= ERROR_FLASH_OPERATION_FAILED
;
1160 int target_run_read_async_algorithm(struct target
*target
,
1161 uint8_t *buffer
, uint32_t count
, int block_size
,
1162 int num_mem_params
, struct mem_param
*mem_params
,
1163 int num_reg_params
, struct reg_param
*reg_params
,
1164 uint32_t buffer_start
, uint32_t buffer_size
,
1165 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
1170 const uint8_t *buffer_orig
= buffer
;
1172 /* Set up working area. First word is write pointer, second word is read pointer,
1173 * rest is fifo data area. */
1174 uint32_t wp_addr
= buffer_start
;
1175 uint32_t rp_addr
= buffer_start
+ 4;
1176 uint32_t fifo_start_addr
= buffer_start
+ 8;
1177 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
1179 uint32_t wp
= fifo_start_addr
;
1180 uint32_t rp
= fifo_start_addr
;
1182 /* validate block_size is 2^n */
1183 assert(IS_PWR_OF_2(block_size
));
1185 retval
= target_write_u32(target
, wp_addr
, wp
);
1186 if (retval
!= ERROR_OK
)
1188 retval
= target_write_u32(target
, rp_addr
, rp
);
1189 if (retval
!= ERROR_OK
)
1192 /* Start up algorithm on target */
1193 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
1194 num_reg_params
, reg_params
,
1199 if (retval
!= ERROR_OK
) {
1200 LOG_ERROR("error starting target flash read algorithm");
1205 retval
= target_read_u32(target
, wp_addr
, &wp
);
1206 if (retval
!= ERROR_OK
) {
1207 LOG_ERROR("failed to get write pointer");
1211 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
1212 (size_t)(buffer
- buffer_orig
), count
, wp
, rp
);
1215 LOG_ERROR("flash read algorithm aborted by target");
1216 retval
= ERROR_FLASH_OPERATION_FAILED
;
1220 if (!IS_ALIGNED(wp
- fifo_start_addr
, block_size
) || wp
< fifo_start_addr
|| wp
>= fifo_end_addr
) {
1221 LOG_ERROR("corrupted fifo write pointer 0x%" PRIx32
, wp
);
1225 /* Count the number of bytes available in the fifo without
1226 * crossing the wrap around. */
1227 uint32_t thisrun_bytes
;
1229 thisrun_bytes
= wp
- rp
;
1231 thisrun_bytes
= fifo_end_addr
- rp
;
1233 if (thisrun_bytes
== 0) {
1234 /* Throttle polling a bit if transfer is (much) faster than flash
1235 * reading. The exact delay shouldn't matter as long as it's
1236 * less than buffer size / flash speed. This is very unlikely to
1237 * run when using high latency connections such as USB. */
1240 /* to stop an infinite loop on some targets check and increment a timeout
1241 * this issue was observed on a stellaris using the new ICDI interface */
1242 if (timeout
++ >= 2500) {
1243 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1244 return ERROR_FLASH_OPERATION_FAILED
;
1249 /* Reset our timeout */
1252 /* Limit to the amount of data we actually want to read */
1253 if (thisrun_bytes
> count
* block_size
)
1254 thisrun_bytes
= count
* block_size
;
1256 /* Force end of large blocks to be word aligned */
1257 if (thisrun_bytes
>= 16)
1258 thisrun_bytes
-= (rp
+ thisrun_bytes
) & 0x03;
1260 /* Read data from fifo */
1261 retval
= target_read_buffer(target
, rp
, thisrun_bytes
, buffer
);
1262 if (retval
!= ERROR_OK
)
1265 /* Update counters and wrap write pointer */
1266 buffer
+= thisrun_bytes
;
1267 count
-= thisrun_bytes
/ block_size
;
1268 rp
+= thisrun_bytes
;
1269 if (rp
>= fifo_end_addr
)
1270 rp
= fifo_start_addr
;
1272 /* Store updated write pointer to target */
1273 retval
= target_write_u32(target
, rp_addr
, rp
);
1274 if (retval
!= ERROR_OK
)
1277 /* Avoid GDB timeouts */
1282 if (retval
!= ERROR_OK
) {
1283 /* abort flash write algorithm on target */
1284 target_write_u32(target
, rp_addr
, 0);
1287 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
1288 num_reg_params
, reg_params
,
1293 if (retval2
!= ERROR_OK
) {
1294 LOG_ERROR("error waiting for target flash write algorithm");
1298 if (retval
== ERROR_OK
) {
1299 /* check if algorithm set wp = 0 after fifo writer loop finished */
1300 retval
= target_read_u32(target
, wp_addr
, &wp
);
1301 if (retval
== ERROR_OK
&& wp
== 0) {
1302 LOG_ERROR("flash read algorithm aborted by target");
1303 retval
= ERROR_FLASH_OPERATION_FAILED
;
1310 int target_read_memory(struct target
*target
,
1311 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1313 if (!target_was_examined(target
)) {
1314 LOG_ERROR("Target not examined yet");
1317 if (!target
->type
->read_memory
) {
1318 LOG_ERROR("Target %s doesn't support read_memory", target_name(target
));
1321 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
1324 int target_read_phys_memory(struct target
*target
,
1325 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1327 if (!target_was_examined(target
)) {
1328 LOG_ERROR("Target not examined yet");
1331 if (!target
->type
->read_phys_memory
) {
1332 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target
));
1335 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1338 int target_write_memory(struct target
*target
,
1339 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1341 if (!target_was_examined(target
)) {
1342 LOG_ERROR("Target not examined yet");
1345 if (!target
->type
->write_memory
) {
1346 LOG_ERROR("Target %s doesn't support write_memory", target_name(target
));
1349 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1352 int target_write_phys_memory(struct target
*target
,
1353 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1355 if (!target_was_examined(target
)) {
1356 LOG_ERROR("Target not examined yet");
1359 if (!target
->type
->write_phys_memory
) {
1360 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target
));
1363 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1366 int target_add_breakpoint(struct target
*target
,
1367 struct breakpoint
*breakpoint
)
1369 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1370 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target
));
1371 return ERROR_TARGET_NOT_HALTED
;
1373 return target
->type
->add_breakpoint(target
, breakpoint
);
1376 int target_add_context_breakpoint(struct target
*target
,
1377 struct breakpoint
*breakpoint
)
1379 if (target
->state
!= TARGET_HALTED
) {
1380 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target
));
1381 return ERROR_TARGET_NOT_HALTED
;
1383 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1386 int target_add_hybrid_breakpoint(struct target
*target
,
1387 struct breakpoint
*breakpoint
)
1389 if (target
->state
!= TARGET_HALTED
) {
1390 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target
));
1391 return ERROR_TARGET_NOT_HALTED
;
1393 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1396 int target_remove_breakpoint(struct target
*target
,
1397 struct breakpoint
*breakpoint
)
1399 return target
->type
->remove_breakpoint(target
, breakpoint
);
1402 int target_add_watchpoint(struct target
*target
,
1403 struct watchpoint
*watchpoint
)
1405 if (target
->state
!= TARGET_HALTED
) {
1406 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target
));
1407 return ERROR_TARGET_NOT_HALTED
;
1409 return target
->type
->add_watchpoint(target
, watchpoint
);
1411 int target_remove_watchpoint(struct target
*target
,
1412 struct watchpoint
*watchpoint
)
1414 return target
->type
->remove_watchpoint(target
, watchpoint
);
1416 int target_hit_watchpoint(struct target
*target
,
1417 struct watchpoint
**hit_watchpoint
)
1419 if (target
->state
!= TARGET_HALTED
) {
1420 LOG_WARNING("target %s is not halted (hit watchpoint)", target
->cmd_name
);
1421 return ERROR_TARGET_NOT_HALTED
;
1424 if (!target
->type
->hit_watchpoint
) {
1425 /* For backward compatible, if hit_watchpoint is not implemented,
1426 * return ERROR_FAIL such that gdb_server will not take the nonsense
1431 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1434 const char *target_get_gdb_arch(struct target
*target
)
1436 if (!target
->type
->get_gdb_arch
)
1438 return target
->type
->get_gdb_arch(target
);
1441 int target_get_gdb_reg_list(struct target
*target
,
1442 struct reg
**reg_list
[], int *reg_list_size
,
1443 enum target_register_class reg_class
)
1445 int result
= ERROR_FAIL
;
1447 if (!target_was_examined(target
)) {
1448 LOG_ERROR("Target not examined yet");
1452 result
= target
->type
->get_gdb_reg_list(target
, reg_list
,
1453 reg_list_size
, reg_class
);
1456 if (result
!= ERROR_OK
) {
1463 int target_get_gdb_reg_list_noread(struct target
*target
,
1464 struct reg
**reg_list
[], int *reg_list_size
,
1465 enum target_register_class reg_class
)
1467 if (target
->type
->get_gdb_reg_list_noread
&&
1468 target
->type
->get_gdb_reg_list_noread(target
, reg_list
,
1469 reg_list_size
, reg_class
) == ERROR_OK
)
1471 return target_get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1474 bool target_supports_gdb_connection(struct target
*target
)
1477 * exclude all the targets that don't provide get_gdb_reg_list
1478 * or that have explicit gdb_max_connection == 0
1480 return !!target
->type
->get_gdb_reg_list
&& !!target
->gdb_max_connections
;
1483 int target_step(struct target
*target
,
1484 int current
, target_addr_t address
, int handle_breakpoints
)
1488 target_call_event_callbacks(target
, TARGET_EVENT_STEP_START
);
1490 retval
= target
->type
->step(target
, current
, address
, handle_breakpoints
);
1491 if (retval
!= ERROR_OK
)
1494 target_call_event_callbacks(target
, TARGET_EVENT_STEP_END
);
1499 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1501 if (target
->state
!= TARGET_HALTED
) {
1502 LOG_WARNING("target %s is not halted (gdb fileio)", target
->cmd_name
);
1503 return ERROR_TARGET_NOT_HALTED
;
1505 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1508 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1510 if (target
->state
!= TARGET_HALTED
) {
1511 LOG_WARNING("target %s is not halted (gdb fileio end)", target
->cmd_name
);
1512 return ERROR_TARGET_NOT_HALTED
;
1514 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1517 target_addr_t
target_address_max(struct target
*target
)
1519 unsigned bits
= target_address_bits(target
);
1520 if (sizeof(target_addr_t
) * 8 == bits
)
1521 return (target_addr_t
) -1;
1523 return (((target_addr_t
) 1) << bits
) - 1;
1526 unsigned target_address_bits(struct target
*target
)
1528 if (target
->type
->address_bits
)
1529 return target
->type
->address_bits(target
);
1533 unsigned int target_data_bits(struct target
*target
)
1535 if (target
->type
->data_bits
)
1536 return target
->type
->data_bits(target
);
1540 static int target_profiling(struct target
*target
, uint32_t *samples
,
1541 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1543 return target
->type
->profiling(target
, samples
, max_num_samples
,
1544 num_samples
, seconds
);
1547 static int handle_target(void *priv
);
1549 static int target_init_one(struct command_context
*cmd_ctx
,
1550 struct target
*target
)
1552 target_reset_examined(target
);
1554 struct target_type
*type
= target
->type
;
1556 type
->examine
= default_examine
;
1558 if (!type
->check_reset
)
1559 type
->check_reset
= default_check_reset
;
1561 assert(type
->init_target
);
1563 int retval
= type
->init_target(cmd_ctx
, target
);
1564 if (retval
!= ERROR_OK
) {
1565 LOG_ERROR("target '%s' init failed", target_name(target
));
1569 /* Sanity-check MMU support ... stub in what we must, to help
1570 * implement it in stages, but warn if we need to do so.
1573 if (!type
->virt2phys
) {
1574 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1575 type
->virt2phys
= identity_virt2phys
;
1578 /* Make sure no-MMU targets all behave the same: make no
1579 * distinction between physical and virtual addresses, and
1580 * ensure that virt2phys() is always an identity mapping.
1582 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1583 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1586 type
->write_phys_memory
= type
->write_memory
;
1587 type
->read_phys_memory
= type
->read_memory
;
1588 type
->virt2phys
= identity_virt2phys
;
1591 if (!target
->type
->read_buffer
)
1592 target
->type
->read_buffer
= target_read_buffer_default
;
1594 if (!target
->type
->write_buffer
)
1595 target
->type
->write_buffer
= target_write_buffer_default
;
1597 if (!target
->type
->get_gdb_fileio_info
)
1598 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1600 if (!target
->type
->gdb_fileio_end
)
1601 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1603 if (!target
->type
->profiling
)
1604 target
->type
->profiling
= target_profiling_default
;
1609 static int target_init(struct command_context
*cmd_ctx
)
1611 struct target
*target
;
1614 for (target
= all_targets
; target
; target
= target
->next
) {
1615 retval
= target_init_one(cmd_ctx
, target
);
1616 if (retval
!= ERROR_OK
)
1623 retval
= target_register_user_commands(cmd_ctx
);
1624 if (retval
!= ERROR_OK
)
1627 retval
= target_register_timer_callback(&handle_target
,
1628 polling_interval
, TARGET_TIMER_TYPE_PERIODIC
, cmd_ctx
->interp
);
1629 if (retval
!= ERROR_OK
)
1635 COMMAND_HANDLER(handle_target_init_command
)
1640 return ERROR_COMMAND_SYNTAX_ERROR
;
1642 static bool target_initialized
;
1643 if (target_initialized
) {
1644 LOG_INFO("'target init' has already been called");
1647 target_initialized
= true;
1649 retval
= command_run_line(CMD_CTX
, "init_targets");
1650 if (retval
!= ERROR_OK
)
1653 retval
= command_run_line(CMD_CTX
, "init_target_events");
1654 if (retval
!= ERROR_OK
)
1657 retval
= command_run_line(CMD_CTX
, "init_board");
1658 if (retval
!= ERROR_OK
)
1661 LOG_DEBUG("Initializing targets...");
1662 return target_init(CMD_CTX
);
1665 int target_register_event_callback(int (*callback
)(struct target
*target
,
1666 enum target_event event
, void *priv
), void *priv
)
1668 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1671 return ERROR_COMMAND_SYNTAX_ERROR
;
1674 while ((*callbacks_p
)->next
)
1675 callbacks_p
= &((*callbacks_p
)->next
);
1676 callbacks_p
= &((*callbacks_p
)->next
);
1679 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1680 (*callbacks_p
)->callback
= callback
;
1681 (*callbacks_p
)->priv
= priv
;
1682 (*callbacks_p
)->next
= NULL
;
1687 int target_register_reset_callback(int (*callback
)(struct target
*target
,
1688 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1690 struct target_reset_callback
*entry
;
1693 return ERROR_COMMAND_SYNTAX_ERROR
;
1695 entry
= malloc(sizeof(struct target_reset_callback
));
1697 LOG_ERROR("error allocating buffer for reset callback entry");
1698 return ERROR_COMMAND_SYNTAX_ERROR
;
1701 entry
->callback
= callback
;
1703 list_add(&entry
->list
, &target_reset_callback_list
);
1709 int target_register_trace_callback(int (*callback
)(struct target
*target
,
1710 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1712 struct target_trace_callback
*entry
;
1715 return ERROR_COMMAND_SYNTAX_ERROR
;
1717 entry
= malloc(sizeof(struct target_trace_callback
));
1719 LOG_ERROR("error allocating buffer for trace callback entry");
1720 return ERROR_COMMAND_SYNTAX_ERROR
;
1723 entry
->callback
= callback
;
1725 list_add(&entry
->list
, &target_trace_callback_list
);
1731 int target_register_timer_callback(int (*callback
)(void *priv
),
1732 unsigned int time_ms
, enum target_timer_type type
, void *priv
)
1734 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1737 return ERROR_COMMAND_SYNTAX_ERROR
;
1740 while ((*callbacks_p
)->next
)
1741 callbacks_p
= &((*callbacks_p
)->next
);
1742 callbacks_p
= &((*callbacks_p
)->next
);
1745 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1746 (*callbacks_p
)->callback
= callback
;
1747 (*callbacks_p
)->type
= type
;
1748 (*callbacks_p
)->time_ms
= time_ms
;
1749 (*callbacks_p
)->removed
= false;
1751 (*callbacks_p
)->when
= timeval_ms() + time_ms
;
1752 target_timer_next_event_value
= MIN(target_timer_next_event_value
, (*callbacks_p
)->when
);
1754 (*callbacks_p
)->priv
= priv
;
1755 (*callbacks_p
)->next
= NULL
;
1760 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1761 enum target_event event
, void *priv
), void *priv
)
1763 struct target_event_callback
**p
= &target_event_callbacks
;
1764 struct target_event_callback
*c
= target_event_callbacks
;
1767 return ERROR_COMMAND_SYNTAX_ERROR
;
1770 struct target_event_callback
*next
= c
->next
;
1771 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1783 int target_unregister_reset_callback(int (*callback
)(struct target
*target
,
1784 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1786 struct target_reset_callback
*entry
;
1789 return ERROR_COMMAND_SYNTAX_ERROR
;
1791 list_for_each_entry(entry
, &target_reset_callback_list
, list
) {
1792 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1793 list_del(&entry
->list
);
1802 int target_unregister_trace_callback(int (*callback
)(struct target
*target
,
1803 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1805 struct target_trace_callback
*entry
;
1808 return ERROR_COMMAND_SYNTAX_ERROR
;
1810 list_for_each_entry(entry
, &target_trace_callback_list
, list
) {
1811 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1812 list_del(&entry
->list
);
1821 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1824 return ERROR_COMMAND_SYNTAX_ERROR
;
1826 for (struct target_timer_callback
*c
= target_timer_callbacks
;
1828 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1837 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1839 struct target_event_callback
*callback
= target_event_callbacks
;
1840 struct target_event_callback
*next_callback
;
1842 if (event
== TARGET_EVENT_HALTED
) {
1843 /* execute early halted first */
1844 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1847 LOG_DEBUG("target event %i (%s) for core %s", event
,
1848 target_event_name(event
),
1849 target_name(target
));
1851 target_handle_event(target
, event
);
1854 next_callback
= callback
->next
;
1855 callback
->callback(target
, event
, callback
->priv
);
1856 callback
= next_callback
;
1862 int target_call_reset_callbacks(struct target
*target
, enum target_reset_mode reset_mode
)
1864 struct target_reset_callback
*callback
;
1866 LOG_DEBUG("target reset %i (%s)", reset_mode
,
1867 jim_nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
);
1869 list_for_each_entry(callback
, &target_reset_callback_list
, list
)
1870 callback
->callback(target
, reset_mode
, callback
->priv
);
1875 int target_call_trace_callbacks(struct target
*target
, size_t len
, uint8_t *data
)
1877 struct target_trace_callback
*callback
;
1879 list_for_each_entry(callback
, &target_trace_callback_list
, list
)
1880 callback
->callback(target
, len
, data
, callback
->priv
);
1885 static int target_timer_callback_periodic_restart(
1886 struct target_timer_callback
*cb
, int64_t *now
)
1888 cb
->when
= *now
+ cb
->time_ms
;
1892 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1895 cb
->callback(cb
->priv
);
1897 if (cb
->type
== TARGET_TIMER_TYPE_PERIODIC
)
1898 return target_timer_callback_periodic_restart(cb
, now
);
1900 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1903 static int target_call_timer_callbacks_check_time(int checktime
)
1905 static bool callback_processing
;
1907 /* Do not allow nesting */
1908 if (callback_processing
)
1911 callback_processing
= true;
1915 int64_t now
= timeval_ms();
1917 /* Initialize to a default value that's a ways into the future.
1918 * The loop below will make it closer to now if there are
1919 * callbacks that want to be called sooner. */
1920 target_timer_next_event_value
= now
+ 1000;
1922 /* Store an address of the place containing a pointer to the
1923 * next item; initially, that's a standalone "root of the
1924 * list" variable. */
1925 struct target_timer_callback
**callback
= &target_timer_callbacks
;
1926 while (callback
&& *callback
) {
1927 if ((*callback
)->removed
) {
1928 struct target_timer_callback
*p
= *callback
;
1929 *callback
= (*callback
)->next
;
1934 bool call_it
= (*callback
)->callback
&&
1935 ((!checktime
&& (*callback
)->type
== TARGET_TIMER_TYPE_PERIODIC
) ||
1936 now
>= (*callback
)->when
);
1939 target_call_timer_callback(*callback
, &now
);
1941 if (!(*callback
)->removed
&& (*callback
)->when
< target_timer_next_event_value
)
1942 target_timer_next_event_value
= (*callback
)->when
;
1944 callback
= &(*callback
)->next
;
1947 callback_processing
= false;
1951 int target_call_timer_callbacks()
1953 return target_call_timer_callbacks_check_time(1);
1956 /* invoke periodic callbacks immediately */
1957 int target_call_timer_callbacks_now()
1959 return target_call_timer_callbacks_check_time(0);
1962 int64_t target_timer_next_event(void)
1964 return target_timer_next_event_value
;
1967 /* Prints the working area layout for debug purposes */
1968 static void print_wa_layout(struct target
*target
)
1970 struct working_area
*c
= target
->working_areas
;
1973 LOG_DEBUG("%c%c " TARGET_ADDR_FMT
"-" TARGET_ADDR_FMT
" (%" PRIu32
" bytes)",
1974 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1975 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1980 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1981 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1983 assert(area
->free
); /* Shouldn't split an allocated area */
1984 assert(size
<= area
->size
); /* Caller should guarantee this */
1986 /* Split only if not already the right size */
1987 if (size
< area
->size
) {
1988 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1993 new_wa
->next
= area
->next
;
1994 new_wa
->size
= area
->size
- size
;
1995 new_wa
->address
= area
->address
+ size
;
1996 new_wa
->backup
= NULL
;
1997 new_wa
->user
= NULL
;
1998 new_wa
->free
= true;
2000 area
->next
= new_wa
;
2003 /* If backup memory was allocated to this area, it has the wrong size
2004 * now so free it and it will be reallocated if/when needed */
2006 area
->backup
= NULL
;
2010 /* Merge all adjacent free areas into one */
2011 static void target_merge_working_areas(struct target
*target
)
2013 struct working_area
*c
= target
->working_areas
;
2015 while (c
&& c
->next
) {
2016 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
2018 /* Find two adjacent free areas */
2019 if (c
->free
&& c
->next
->free
) {
2020 /* Merge the last into the first */
2021 c
->size
+= c
->next
->size
;
2023 /* Remove the last */
2024 struct working_area
*to_be_freed
= c
->next
;
2025 c
->next
= c
->next
->next
;
2026 free(to_be_freed
->backup
);
2029 /* If backup memory was allocated to the remaining area, it's has
2030 * the wrong size now */
2039 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
2041 /* Reevaluate working area address based on MMU state*/
2042 if (!target
->working_areas
) {
2046 retval
= target
->type
->mmu(target
, &enabled
);
2047 if (retval
!= ERROR_OK
)
2051 if (target
->working_area_phys_spec
) {
2052 LOG_DEBUG("MMU disabled, using physical "
2053 "address for working memory " TARGET_ADDR_FMT
,
2054 target
->working_area_phys
);
2055 target
->working_area
= target
->working_area_phys
;
2057 LOG_ERROR("No working memory available. "
2058 "Specify -work-area-phys to target.");
2059 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2062 if (target
->working_area_virt_spec
) {
2063 LOG_DEBUG("MMU enabled, using virtual "
2064 "address for working memory " TARGET_ADDR_FMT
,
2065 target
->working_area_virt
);
2066 target
->working_area
= target
->working_area_virt
;
2068 LOG_ERROR("No working memory available. "
2069 "Specify -work-area-virt to target.");
2070 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2074 /* Set up initial working area on first call */
2075 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
2077 new_wa
->next
= NULL
;
2078 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
2079 new_wa
->address
= target
->working_area
;
2080 new_wa
->backup
= NULL
;
2081 new_wa
->user
= NULL
;
2082 new_wa
->free
= true;
2085 target
->working_areas
= new_wa
;
2088 /* only allocate multiples of 4 byte */
2090 size
= (size
+ 3) & (~3UL);
2092 struct working_area
*c
= target
->working_areas
;
2094 /* Find the first large enough working area */
2096 if (c
->free
&& c
->size
>= size
)
2102 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2104 /* Split the working area into the requested size */
2105 target_split_working_area(c
, size
);
2107 LOG_DEBUG("allocated new working area of %" PRIu32
" bytes at address " TARGET_ADDR_FMT
,
2110 if (target
->backup_working_area
) {
2112 c
->backup
= malloc(c
->size
);
2117 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
2118 if (retval
!= ERROR_OK
)
2122 /* mark as used, and return the new (reused) area */
2129 print_wa_layout(target
);
2134 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
2138 retval
= target_alloc_working_area_try(target
, size
, area
);
2139 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
2140 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
2145 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
2147 int retval
= ERROR_OK
;
2149 if (target
->backup_working_area
&& area
->backup
) {
2150 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
2151 if (retval
!= ERROR_OK
)
2152 LOG_ERROR("failed to restore %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
2153 area
->size
, area
->address
);
2159 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
2160 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
2162 if (!area
|| area
->free
)
2165 int retval
= ERROR_OK
;
2167 retval
= target_restore_working_area(target
, area
);
2168 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
2169 if (retval
!= ERROR_OK
)
2175 LOG_DEBUG("freed %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
2176 area
->size
, area
->address
);
2178 /* mark user pointer invalid */
2179 /* TODO: Is this really safe? It points to some previous caller's memory.
2180 * How could we know that the area pointer is still in that place and not
2181 * some other vital data? What's the purpose of this, anyway? */
2185 target_merge_working_areas(target
);
2187 print_wa_layout(target
);
2192 int target_free_working_area(struct target
*target
, struct working_area
*area
)
2194 return target_free_working_area_restore(target
, area
, 1);
2197 /* free resources and restore memory, if restoring memory fails,
2198 * free up resources anyway
2200 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
2202 struct working_area
*c
= target
->working_areas
;
2204 LOG_DEBUG("freeing all working areas");
2206 /* Loop through all areas, restoring the allocated ones and marking them as free */
2210 target_restore_working_area(target
, c
);
2212 *c
->user
= NULL
; /* Same as above */
2218 /* Run a merge pass to combine all areas into one */
2219 target_merge_working_areas(target
);
2221 print_wa_layout(target
);
2224 void target_free_all_working_areas(struct target
*target
)
2226 target_free_all_working_areas_restore(target
, 1);
2228 /* Now we have none or only one working area marked as free */
2229 if (target
->working_areas
) {
2230 /* Free the last one to allow on-the-fly moving and resizing */
2231 free(target
->working_areas
->backup
);
2232 free(target
->working_areas
);
2233 target
->working_areas
= NULL
;
2237 /* Find the largest number of bytes that can be allocated */
2238 uint32_t target_get_working_area_avail(struct target
*target
)
2240 struct working_area
*c
= target
->working_areas
;
2241 uint32_t max_size
= 0;
2244 return target
->working_area_size
;
2247 if (c
->free
&& max_size
< c
->size
)
2256 static void target_destroy(struct target
*target
)
2258 if (target
->type
->deinit_target
)
2259 target
->type
->deinit_target(target
);
2261 free(target
->semihosting
);
2263 jtag_unregister_event_callback(jtag_enable_callback
, target
);
2265 struct target_event_action
*teap
= target
->event_action
;
2267 struct target_event_action
*next
= teap
->next
;
2268 Jim_DecrRefCount(teap
->interp
, teap
->body
);
2273 target_free_all_working_areas(target
);
2275 /* release the targets SMP list */
2277 struct target_list
*head
, *tmp
;
2279 list_for_each_entry_safe(head
, tmp
, target
->smp_targets
, lh
) {
2280 list_del(&head
->lh
);
2281 head
->target
->smp
= 0;
2284 if (target
->smp_targets
!= &empty_smp_targets
)
2285 free(target
->smp_targets
);
2289 rtos_destroy(target
);
2291 free(target
->gdb_port_override
);
2293 free(target
->trace_info
);
2294 free(target
->fileio_info
);
2295 free(target
->cmd_name
);
2299 void target_quit(void)
2301 struct target_event_callback
*pe
= target_event_callbacks
;
2303 struct target_event_callback
*t
= pe
->next
;
2307 target_event_callbacks
= NULL
;
2309 struct target_timer_callback
*pt
= target_timer_callbacks
;
2311 struct target_timer_callback
*t
= pt
->next
;
2315 target_timer_callbacks
= NULL
;
2317 for (struct target
*target
= all_targets
; target
;) {
2321 target_destroy(target
);
2328 int target_arch_state(struct target
*target
)
2332 LOG_WARNING("No target has been configured");
2336 if (target
->state
!= TARGET_HALTED
)
2339 retval
= target
->type
->arch_state(target
);
2343 static int target_get_gdb_fileio_info_default(struct target
*target
,
2344 struct gdb_fileio_info
*fileio_info
)
2346 /* If target does not support semi-hosting function, target
2347 has no need to provide .get_gdb_fileio_info callback.
2348 It just return ERROR_FAIL and gdb_server will return "Txx"
2349 as target halted every time. */
2353 static int target_gdb_fileio_end_default(struct target
*target
,
2354 int retcode
, int fileio_errno
, bool ctrl_c
)
2359 int target_profiling_default(struct target
*target
, uint32_t *samples
,
2360 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
2362 struct timeval timeout
, now
;
2364 gettimeofday(&timeout
, NULL
);
2365 timeval_add_time(&timeout
, seconds
, 0);
2367 LOG_INFO("Starting profiling. Halting and resuming the"
2368 " target as often as we can...");
2370 uint32_t sample_count
= 0;
2371 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2372 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", true);
2374 int retval
= ERROR_OK
;
2376 target_poll(target
);
2377 if (target
->state
== TARGET_HALTED
) {
2378 uint32_t t
= buf_get_u32(reg
->value
, 0, 32);
2379 samples
[sample_count
++] = t
;
2380 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2381 retval
= target_resume(target
, 1, 0, 0, 0);
2382 target_poll(target
);
2383 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2384 } else if (target
->state
== TARGET_RUNNING
) {
2385 /* We want to quickly sample the PC. */
2386 retval
= target_halt(target
);
2388 LOG_INFO("Target not halted or running");
2393 if (retval
!= ERROR_OK
)
2396 gettimeofday(&now
, NULL
);
2397 if ((sample_count
>= max_num_samples
) || timeval_compare(&now
, &timeout
) >= 0) {
2398 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
2403 *num_samples
= sample_count
;
2407 /* Single aligned words are guaranteed to use 16 or 32 bit access
2408 * mode respectively, otherwise data is handled as quickly as
2411 int target_write_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, const uint8_t *buffer
)
2413 LOG_DEBUG("writing buffer of %" PRIu32
" byte at " TARGET_ADDR_FMT
,
2416 if (!target_was_examined(target
)) {
2417 LOG_ERROR("Target not examined yet");
2424 if ((address
+ size
- 1) < address
) {
2425 /* GDB can request this when e.g. PC is 0xfffffffc */
2426 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2432 return target
->type
->write_buffer(target
, address
, size
, buffer
);
2435 static int target_write_buffer_default(struct target
*target
,
2436 target_addr_t address
, uint32_t count
, const uint8_t *buffer
)
2439 unsigned int data_bytes
= target_data_bits(target
) / 8;
2441 /* Align up to maximum bytes. The loop condition makes sure the next pass
2442 * will have something to do with the size we leave to it. */
2444 size
< data_bytes
&& count
>= size
* 2 + (address
& size
);
2446 if (address
& size
) {
2447 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
2448 if (retval
!= ERROR_OK
)
2456 /* Write the data with as large access size as possible. */
2457 for (; size
> 0; size
/= 2) {
2458 uint32_t aligned
= count
- count
% size
;
2460 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
2461 if (retval
!= ERROR_OK
)
2472 /* Single aligned words are guaranteed to use 16 or 32 bit access
2473 * mode respectively, otherwise data is handled as quickly as
2476 int target_read_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, uint8_t *buffer
)
2478 LOG_DEBUG("reading buffer of %" PRIu32
" byte at " TARGET_ADDR_FMT
,
2481 if (!target_was_examined(target
)) {
2482 LOG_ERROR("Target not examined yet");
2489 if ((address
+ size
- 1) < address
) {
2490 /* GDB can request this when e.g. PC is 0xfffffffc */
2491 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2497 return target
->type
->read_buffer(target
, address
, size
, buffer
);
2500 static int target_read_buffer_default(struct target
*target
, target_addr_t address
, uint32_t count
, uint8_t *buffer
)
2503 unsigned int data_bytes
= target_data_bits(target
) / 8;
2505 /* Align up to maximum bytes. The loop condition makes sure the next pass
2506 * will have something to do with the size we leave to it. */
2508 size
< data_bytes
&& count
>= size
* 2 + (address
& size
);
2510 if (address
& size
) {
2511 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
2512 if (retval
!= ERROR_OK
)
2520 /* Read the data with as large access size as possible. */
2521 for (; size
> 0; size
/= 2) {
2522 uint32_t aligned
= count
- count
% size
;
2524 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
2525 if (retval
!= ERROR_OK
)
2536 int target_checksum_memory(struct target
*target
, target_addr_t address
, uint32_t size
, uint32_t *crc
)
2541 uint32_t checksum
= 0;
2542 if (!target_was_examined(target
)) {
2543 LOG_ERROR("Target not examined yet");
2546 if (!target
->type
->checksum_memory
) {
2547 LOG_ERROR("Target %s doesn't support checksum_memory", target_name(target
));
2551 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
2552 if (retval
!= ERROR_OK
) {
2553 buffer
= malloc(size
);
2555 LOG_ERROR("error allocating buffer for section (%" PRIu32
" bytes)", size
);
2556 return ERROR_COMMAND_SYNTAX_ERROR
;
2558 retval
= target_read_buffer(target
, address
, size
, buffer
);
2559 if (retval
!= ERROR_OK
) {
2564 /* convert to target endianness */
2565 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
2566 uint32_t target_data
;
2567 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
2568 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2571 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2580 int target_blank_check_memory(struct target
*target
,
2581 struct target_memory_check_block
*blocks
, int num_blocks
,
2582 uint8_t erased_value
)
2584 if (!target_was_examined(target
)) {
2585 LOG_ERROR("Target not examined yet");
2589 if (!target
->type
->blank_check_memory
)
2590 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2592 return target
->type
->blank_check_memory(target
, blocks
, num_blocks
, erased_value
);
2595 int target_read_u64(struct target
*target
, target_addr_t address
, uint64_t *value
)
2597 uint8_t value_buf
[8];
2598 if (!target_was_examined(target
)) {
2599 LOG_ERROR("Target not examined yet");
2603 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2605 if (retval
== ERROR_OK
) {
2606 *value
= target_buffer_get_u64(target
, value_buf
);
2607 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2612 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2619 int target_read_u32(struct target
*target
, target_addr_t address
, uint32_t *value
)
2621 uint8_t value_buf
[4];
2622 if (!target_was_examined(target
)) {
2623 LOG_ERROR("Target not examined yet");
2627 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2629 if (retval
== ERROR_OK
) {
2630 *value
= target_buffer_get_u32(target
, value_buf
);
2631 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2636 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2643 int target_read_u16(struct target
*target
, target_addr_t address
, uint16_t *value
)
2645 uint8_t value_buf
[2];
2646 if (!target_was_examined(target
)) {
2647 LOG_ERROR("Target not examined yet");
2651 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2653 if (retval
== ERROR_OK
) {
2654 *value
= target_buffer_get_u16(target
, value_buf
);
2655 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%4.4" PRIx16
,
2660 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2667 int target_read_u8(struct target
*target
, target_addr_t address
, uint8_t *value
)
2669 if (!target_was_examined(target
)) {
2670 LOG_ERROR("Target not examined yet");
2674 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2676 if (retval
== ERROR_OK
) {
2677 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2682 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2689 int target_write_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2692 uint8_t value_buf
[8];
2693 if (!target_was_examined(target
)) {
2694 LOG_ERROR("Target not examined yet");
2698 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2702 target_buffer_set_u64(target
, value_buf
, value
);
2703 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2704 if (retval
!= ERROR_OK
)
2705 LOG_DEBUG("failed: %i", retval
);
2710 int target_write_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2713 uint8_t value_buf
[4];
2714 if (!target_was_examined(target
)) {
2715 LOG_ERROR("Target not examined yet");
2719 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2723 target_buffer_set_u32(target
, value_buf
, value
);
2724 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2725 if (retval
!= ERROR_OK
)
2726 LOG_DEBUG("failed: %i", retval
);
2731 int target_write_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2734 uint8_t value_buf
[2];
2735 if (!target_was_examined(target
)) {
2736 LOG_ERROR("Target not examined yet");
2740 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2744 target_buffer_set_u16(target
, value_buf
, value
);
2745 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2746 if (retval
!= ERROR_OK
)
2747 LOG_DEBUG("failed: %i", retval
);
2752 int target_write_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2755 if (!target_was_examined(target
)) {
2756 LOG_ERROR("Target not examined yet");
2760 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2763 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2764 if (retval
!= ERROR_OK
)
2765 LOG_DEBUG("failed: %i", retval
);
2770 int target_write_phys_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2773 uint8_t value_buf
[8];
2774 if (!target_was_examined(target
)) {
2775 LOG_ERROR("Target not examined yet");
2779 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2783 target_buffer_set_u64(target
, value_buf
, value
);
2784 retval
= target_write_phys_memory(target
, address
, 8, 1, value_buf
);
2785 if (retval
!= ERROR_OK
)
2786 LOG_DEBUG("failed: %i", retval
);
2791 int target_write_phys_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2794 uint8_t value_buf
[4];
2795 if (!target_was_examined(target
)) {
2796 LOG_ERROR("Target not examined yet");
2800 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2804 target_buffer_set_u32(target
, value_buf
, value
);
2805 retval
= target_write_phys_memory(target
, address
, 4, 1, value_buf
);
2806 if (retval
!= ERROR_OK
)
2807 LOG_DEBUG("failed: %i", retval
);
2812 int target_write_phys_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2815 uint8_t value_buf
[2];
2816 if (!target_was_examined(target
)) {
2817 LOG_ERROR("Target not examined yet");
2821 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2825 target_buffer_set_u16(target
, value_buf
, value
);
2826 retval
= target_write_phys_memory(target
, address
, 2, 1, value_buf
);
2827 if (retval
!= ERROR_OK
)
2828 LOG_DEBUG("failed: %i", retval
);
2833 int target_write_phys_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2836 if (!target_was_examined(target
)) {
2837 LOG_ERROR("Target not examined yet");
2841 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2844 retval
= target_write_phys_memory(target
, address
, 1, 1, &value
);
2845 if (retval
!= ERROR_OK
)
2846 LOG_DEBUG("failed: %i", retval
);
2851 static int find_target(struct command_invocation
*cmd
, const char *name
)
2853 struct target
*target
= get_target(name
);
2855 command_print(cmd
, "Target: %s is unknown, try one of:\n", name
);
2858 if (!target
->tap
->enabled
) {
2859 command_print(cmd
, "Target: TAP %s is disabled, "
2860 "can't be the current target\n",
2861 target
->tap
->dotted_name
);
2865 cmd
->ctx
->current_target
= target
;
2866 if (cmd
->ctx
->current_target_override
)
2867 cmd
->ctx
->current_target_override
= target
;
2873 COMMAND_HANDLER(handle_targets_command
)
2875 int retval
= ERROR_OK
;
2876 if (CMD_ARGC
== 1) {
2877 retval
= find_target(CMD
, CMD_ARGV
[0]);
2878 if (retval
== ERROR_OK
) {
2884 struct target
*target
= all_targets
;
2885 command_print(CMD
, " TargetName Type Endian TapName State ");
2886 command_print(CMD
, "-- ------------------ ---------- ------ ------------------ ------------");
2891 if (target
->tap
->enabled
)
2892 state
= target_state_name(target
);
2894 state
= "tap-disabled";
2896 if (CMD_CTX
->current_target
== target
)
2899 /* keep columns lined up to match the headers above */
2901 "%2d%c %-18s %-10s %-6s %-18s %s",
2902 target
->target_number
,
2904 target_name(target
),
2905 target_type_name(target
),
2906 jim_nvp_value2name_simple(nvp_target_endian
,
2907 target
->endianness
)->name
,
2908 target
->tap
->dotted_name
,
2910 target
= target
->next
;
2916 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2918 static int power_dropout
;
2919 static int srst_asserted
;
2921 static int run_power_restore
;
2922 static int run_power_dropout
;
2923 static int run_srst_asserted
;
2924 static int run_srst_deasserted
;
2926 static int sense_handler(void)
2928 static int prev_srst_asserted
;
2929 static int prev_power_dropout
;
2931 int retval
= jtag_power_dropout(&power_dropout
);
2932 if (retval
!= ERROR_OK
)
2936 power_restored
= prev_power_dropout
&& !power_dropout
;
2938 run_power_restore
= 1;
2940 int64_t current
= timeval_ms();
2941 static int64_t last_power
;
2942 bool wait_more
= last_power
+ 2000 > current
;
2943 if (power_dropout
&& !wait_more
) {
2944 run_power_dropout
= 1;
2945 last_power
= current
;
2948 retval
= jtag_srst_asserted(&srst_asserted
);
2949 if (retval
!= ERROR_OK
)
2952 int srst_deasserted
;
2953 srst_deasserted
= prev_srst_asserted
&& !srst_asserted
;
2955 static int64_t last_srst
;
2956 wait_more
= last_srst
+ 2000 > current
;
2957 if (srst_deasserted
&& !wait_more
) {
2958 run_srst_deasserted
= 1;
2959 last_srst
= current
;
2962 if (!prev_srst_asserted
&& srst_asserted
)
2963 run_srst_asserted
= 1;
2965 prev_srst_asserted
= srst_asserted
;
2966 prev_power_dropout
= power_dropout
;
2968 if (srst_deasserted
|| power_restored
) {
2969 /* Other than logging the event we can't do anything here.
2970 * Issuing a reset is a particularly bad idea as we might
2971 * be inside a reset already.
2978 /* process target state changes */
2979 static int handle_target(void *priv
)
2981 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2982 int retval
= ERROR_OK
;
2984 if (!is_jtag_poll_safe()) {
2985 /* polling is disabled currently */
2989 /* we do not want to recurse here... */
2990 static int recursive
;
2994 /* danger! running these procedures can trigger srst assertions and power dropouts.
2995 * We need to avoid an infinite loop/recursion here and we do that by
2996 * clearing the flags after running these events.
2998 int did_something
= 0;
2999 if (run_srst_asserted
) {
3000 LOG_INFO("srst asserted detected, running srst_asserted proc.");
3001 Jim_Eval(interp
, "srst_asserted");
3004 if (run_srst_deasserted
) {
3005 Jim_Eval(interp
, "srst_deasserted");
3008 if (run_power_dropout
) {
3009 LOG_INFO("Power dropout detected, running power_dropout proc.");
3010 Jim_Eval(interp
, "power_dropout");
3013 if (run_power_restore
) {
3014 Jim_Eval(interp
, "power_restore");
3018 if (did_something
) {
3019 /* clear detect flags */
3023 /* clear action flags */
3025 run_srst_asserted
= 0;
3026 run_srst_deasserted
= 0;
3027 run_power_restore
= 0;
3028 run_power_dropout
= 0;
3033 /* Poll targets for state changes unless that's globally disabled.
3034 * Skip targets that are currently disabled.
3036 for (struct target
*target
= all_targets
;
3037 is_jtag_poll_safe() && target
;
3038 target
= target
->next
) {
3040 if (!target_was_examined(target
))
3043 if (!target
->tap
->enabled
)
3046 if (target
->backoff
.times
> target
->backoff
.count
) {
3047 /* do not poll this time as we failed previously */
3048 target
->backoff
.count
++;
3051 target
->backoff
.count
= 0;
3053 /* only poll target if we've got power and srst isn't asserted */
3054 if (!power_dropout
&& !srst_asserted
) {
3055 /* polling may fail silently until the target has been examined */
3056 retval
= target_poll(target
);
3057 if (retval
!= ERROR_OK
) {
3058 /* 100ms polling interval. Increase interval between polling up to 5000ms */
3059 if (target
->backoff
.times
* polling_interval
< 5000) {
3060 target
->backoff
.times
*= 2;
3061 target
->backoff
.times
++;
3064 /* Tell GDB to halt the debugger. This allows the user to
3065 * run monitor commands to handle the situation.
3067 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
3069 if (target
->backoff
.times
> 0) {
3070 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target
));
3071 target_reset_examined(target
);
3072 retval
= target_examine_one(target
);
3073 /* Target examination could have failed due to unstable connection,
3074 * but we set the examined flag anyway to repoll it later */
3075 if (retval
!= ERROR_OK
) {
3076 target_set_examined(target
);
3077 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
3078 target
->backoff
.times
* polling_interval
);
3083 /* Since we succeeded, we reset backoff count */
3084 target
->backoff
.times
= 0;
3091 COMMAND_HANDLER(handle_reg_command
)
3095 struct target
*target
= get_current_target(CMD_CTX
);
3096 struct reg
*reg
= NULL
;
3098 /* list all available registers for the current target */
3099 if (CMD_ARGC
== 0) {
3100 struct reg_cache
*cache
= target
->reg_cache
;
3102 unsigned int count
= 0;
3106 command_print(CMD
, "===== %s", cache
->name
);
3108 for (i
= 0, reg
= cache
->reg_list
;
3109 i
< cache
->num_regs
;
3110 i
++, reg
++, count
++) {
3111 if (reg
->exist
== false || reg
->hidden
)
3113 /* only print cached values if they are valid */
3115 char *value
= buf_to_hex_str(reg
->value
,
3118 "(%i) %s (/%" PRIu32
"): 0x%s%s",
3126 command_print(CMD
, "(%i) %s (/%" PRIu32
")",
3131 cache
= cache
->next
;
3137 /* access a single register by its ordinal number */
3138 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
3140 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
3142 struct reg_cache
*cache
= target
->reg_cache
;
3143 unsigned int count
= 0;
3146 for (i
= 0; i
< cache
->num_regs
; i
++) {
3147 if (count
++ == num
) {
3148 reg
= &cache
->reg_list
[i
];
3154 cache
= cache
->next
;
3158 command_print(CMD
, "%i is out of bounds, the current target "
3159 "has only %i registers (0 - %i)", num
, count
, count
- 1);
3163 /* access a single register by its name */
3164 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], true);
3170 assert(reg
); /* give clang a hint that we *know* reg is != NULL here */
3175 /* display a register */
3176 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
3177 && (CMD_ARGV
[1][0] <= '9')))) {
3178 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
3181 if (reg
->valid
== 0) {
3182 int retval
= reg
->type
->get(reg
);
3183 if (retval
!= ERROR_OK
) {
3184 LOG_ERROR("Could not read register '%s'", reg
->name
);
3188 char *value
= buf_to_hex_str(reg
->value
, reg
->size
);
3189 command_print(CMD
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
3194 /* set register value */
3195 if (CMD_ARGC
== 2) {
3196 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
3199 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
3201 int retval
= reg
->type
->set(reg
, buf
);
3202 if (retval
!= ERROR_OK
) {