1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
57 #include "rtos/rtos.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target
*target
, uint32_t address
,
63 uint32_t count
, uint8_t *buffer
);
64 static int target_write_buffer_default(struct target
*target
, uint32_t address
,
65 uint32_t count
, const uint8_t *buffer
);
66 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
67 int argc
, Jim_Obj
* const *argv
);
68 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
69 int argc
, Jim_Obj
* const *argv
);
70 static int target_register_user_commands(struct command_context
*cmd_ctx
);
71 static int target_get_gdb_fileio_info_default(struct target
*target
,
72 struct gdb_fileio_info
*fileio_info
);
73 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
74 int fileio_errno
, bool ctrl_c
);
75 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
76 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
);
79 extern struct target_type arm7tdmi_target
;
80 extern struct target_type arm720t_target
;
81 extern struct target_type arm9tdmi_target
;
82 extern struct target_type arm920t_target
;
83 extern struct target_type arm966e_target
;
84 extern struct target_type arm946e_target
;
85 extern struct target_type arm926ejs_target
;
86 extern struct target_type fa526_target
;
87 extern struct target_type feroceon_target
;
88 extern struct target_type dragonite_target
;
89 extern struct target_type xscale_target
;
90 extern struct target_type cortexm_target
;
91 extern struct target_type cortexa8_target
;
92 extern struct target_type cortexr4_target
;
93 extern struct target_type arm11_target
;
94 extern struct target_type mips_m4k_target
;
95 extern struct target_type avr_target
;
96 extern struct target_type dsp563xx_target
;
97 extern struct target_type dsp5680xx_target
;
98 extern struct target_type testee_target
;
99 extern struct target_type avr32_ap7k_target
;
100 extern struct target_type hla_target
;
101 extern struct target_type nds32_v2_target
;
102 extern struct target_type nds32_v3_target
;
103 extern struct target_type nds32_v3m_target
;
104 extern struct target_type or1k_target
;
105 extern struct target_type quark_x10xx_target
;
107 static struct target_type
*target_types
[] = {
138 struct target
*all_targets
;
139 static struct target_event_callback
*target_event_callbacks
;
140 static struct target_timer_callback
*target_timer_callbacks
;
141 static const int polling_interval
= 100;
143 static const Jim_Nvp nvp_assert
[] = {
144 { .name
= "assert", NVP_ASSERT
},
145 { .name
= "deassert", NVP_DEASSERT
},
146 { .name
= "T", NVP_ASSERT
},
147 { .name
= "F", NVP_DEASSERT
},
148 { .name
= "t", NVP_ASSERT
},
149 { .name
= "f", NVP_DEASSERT
},
150 { .name
= NULL
, .value
= -1 }
153 static const Jim_Nvp nvp_error_target
[] = {
154 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
155 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
156 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
157 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
158 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
159 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
160 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
161 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
162 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
163 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
164 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
165 { .value
= -1, .name
= NULL
}
168 static const char *target_strerror_safe(int err
)
172 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
179 static const Jim_Nvp nvp_target_event
[] = {
181 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
182 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
183 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
184 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
185 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
187 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
188 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
190 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
191 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
192 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
193 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
194 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
195 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
196 { .value
= TARGET_EVENT_RESET_HALT_PRE
, .name
= "reset-halt-pre" },
197 { .value
= TARGET_EVENT_RESET_HALT_POST
, .name
= "reset-halt-post" },
198 { .value
= TARGET_EVENT_RESET_WAIT_PRE
, .name
= "reset-wait-pre" },
199 { .value
= TARGET_EVENT_RESET_WAIT_POST
, .name
= "reset-wait-post" },
200 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
201 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
203 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
204 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
206 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
207 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
209 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
210 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
212 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
213 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
215 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
216 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
218 { .name
= NULL
, .value
= -1 }
221 static const Jim_Nvp nvp_target_state
[] = {
222 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
223 { .name
= "running", .value
= TARGET_RUNNING
},
224 { .name
= "halted", .value
= TARGET_HALTED
},
225 { .name
= "reset", .value
= TARGET_RESET
},
226 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
227 { .name
= NULL
, .value
= -1 },
230 static const Jim_Nvp nvp_target_debug_reason
[] = {
231 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
232 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
233 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
234 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
235 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
236 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
237 { .name
= "program-exit" , .value
= DBG_REASON_EXIT
},
238 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
239 { .name
= NULL
, .value
= -1 },
242 static const Jim_Nvp nvp_target_endian
[] = {
243 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
244 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
245 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
246 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
247 { .name
= NULL
, .value
= -1 },
250 static const Jim_Nvp nvp_reset_modes
[] = {
251 { .name
= "unknown", .value
= RESET_UNKNOWN
},
252 { .name
= "run" , .value
= RESET_RUN
},
253 { .name
= "halt" , .value
= RESET_HALT
},
254 { .name
= "init" , .value
= RESET_INIT
},
255 { .name
= NULL
, .value
= -1 },
258 const char *debug_reason_name(struct target
*t
)
262 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
263 t
->debug_reason
)->name
;
265 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
266 cp
= "(*BUG*unknown*BUG*)";
271 const char *target_state_name(struct target
*t
)
274 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
276 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
277 cp
= "(*BUG*unknown*BUG*)";
282 /* determine the number of the new target */
283 static int new_target_number(void)
288 /* number is 0 based */
292 if (x
< t
->target_number
)
293 x
= t
->target_number
;
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
302 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
303 return le_to_h_u64(buffer
);
305 return be_to_h_u64(buffer
);
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
311 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
312 return le_to_h_u32(buffer
);
314 return be_to_h_u32(buffer
);
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
320 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
321 return le_to_h_u24(buffer
);
323 return be_to_h_u24(buffer
);
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
329 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
330 return le_to_h_u16(buffer
);
332 return be_to_h_u16(buffer
);
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
338 return *buffer
& 0x0ff;
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
344 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
345 h_u64_to_le(buffer
, value
);
347 h_u64_to_be(buffer
, value
);
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
353 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
354 h_u32_to_le(buffer
, value
);
356 h_u32_to_be(buffer
, value
);
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
362 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
363 h_u24_to_le(buffer
, value
);
365 h_u24_to_be(buffer
, value
);
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
371 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
372 h_u16_to_le(buffer
, value
);
374 h_u16_to_be(buffer
, value
);
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
387 for (i
= 0; i
< count
; i
++)
388 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
395 for (i
= 0; i
< count
; i
++)
396 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
403 for (i
= 0; i
< count
; i
++)
404 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
411 for (i
= 0; i
< count
; i
++)
412 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
419 for (i
= 0; i
< count
; i
++)
420 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
427 for (i
= 0; i
< count
; i
++)
428 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
431 /* return a pointer to a configured target; id is name or number */
432 struct target
*get_target(const char *id
)
434 struct target
*target
;
436 /* try as tcltarget name */
437 for (target
= all_targets
; target
; target
= target
->next
) {
438 if (target_name(target
) == NULL
)
440 if (strcmp(id
, target_name(target
)) == 0)
444 /* It's OK to remove this fallback sometime after August 2010 or so */
446 /* no match, try as number */
448 if (parse_uint(id
, &num
) != ERROR_OK
)
451 for (target
= all_targets
; target
; target
= target
->next
) {
452 if (target
->target_number
== (int)num
) {
453 LOG_WARNING("use '%s' as target identifier, not '%u'",
454 target_name(target
), num
);
462 /* returns a pointer to the n-th configured target */
463 static struct target
*get_target_by_num(int num
)
465 struct target
*target
= all_targets
;
468 if (target
->target_number
== num
)
470 target
= target
->next
;
476 struct target
*get_current_target(struct command_context
*cmd_ctx
)
478 struct target
*target
= get_target_by_num(cmd_ctx
->current_target
);
480 if (target
== NULL
) {
481 LOG_ERROR("BUG: current_target out of bounds");
488 int target_poll(struct target
*target
)
492 /* We can't poll until after examine */
493 if (!target_was_examined(target
)) {
494 /* Fail silently lest we pollute the log */
498 retval
= target
->type
->poll(target
);
499 if (retval
!= ERROR_OK
)
502 if (target
->halt_issued
) {
503 if (target
->state
== TARGET_HALTED
)
504 target
->halt_issued
= false;
506 long long t
= timeval_ms() - target
->halt_issued_time
;
507 if (t
> DEFAULT_HALT_TIMEOUT
) {
508 target
->halt_issued
= false;
509 LOG_INFO("Halt timed out, wake up GDB.");
510 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
518 int target_halt(struct target
*target
)
521 /* We can't poll until after examine */
522 if (!target_was_examined(target
)) {
523 LOG_ERROR("Target not examined yet");
527 retval
= target
->type
->halt(target
);
528 if (retval
!= ERROR_OK
)
531 target
->halt_issued
= true;
532 target
->halt_issued_time
= timeval_ms();
538 * Make the target (re)start executing using its saved execution
539 * context (possibly with some modifications).
541 * @param target Which target should start executing.
542 * @param current True to use the target's saved program counter instead
543 * of the address parameter
544 * @param address Optionally used as the program counter.
545 * @param handle_breakpoints True iff breakpoints at the resumption PC
546 * should be skipped. (For example, maybe execution was stopped by
547 * such a breakpoint, in which case it would be counterprodutive to
549 * @param debug_execution False if all working areas allocated by OpenOCD
550 * should be released and/or restored to their original contents.
551 * (This would for example be true to run some downloaded "helper"
552 * algorithm code, which resides in one such working buffer and uses
553 * another for data storage.)
555 * @todo Resolve the ambiguity about what the "debug_execution" flag
556 * signifies. For example, Target implementations don't agree on how
557 * it relates to invalidation of the register cache, or to whether
558 * breakpoints and watchpoints should be enabled. (It would seem wrong
559 * to enable breakpoints when running downloaded "helper" algorithms
560 * (debug_execution true), since the breakpoints would be set to match
561 * target firmware being debugged, not the helper algorithm.... and
562 * enabling them could cause such helpers to malfunction (for example,
563 * by overwriting data with a breakpoint instruction. On the other
564 * hand the infrastructure for running such helpers might use this
565 * procedure but rely on hardware breakpoint to detect termination.)
567 int target_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
571 /* We can't poll until after examine */
572 if (!target_was_examined(target
)) {
573 LOG_ERROR("Target not examined yet");
577 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
579 /* note that resume *must* be asynchronous. The CPU can halt before
580 * we poll. The CPU can even halt at the current PC as a result of
581 * a software breakpoint being inserted by (a bug?) the application.
583 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
584 if (retval
!= ERROR_OK
)
587 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
592 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
597 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
598 if (n
->name
== NULL
) {
599 LOG_ERROR("invalid reset mode");
603 /* disable polling during reset to make reset event scripts
604 * more predictable, i.e. dr/irscan & pathmove in events will
605 * not have JTAG operations injected into the middle of a sequence.
607 bool save_poll
= jtag_poll_get_enabled();
609 jtag_poll_set_enabled(false);
611 sprintf(buf
, "ocd_process_reset %s", n
->name
);
612 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
614 jtag_poll_set_enabled(save_poll
);
616 if (retval
!= JIM_OK
) {
617 Jim_MakeErrorMessage(cmd_ctx
->interp
);
618 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
622 /* We want any events to be processed before the prompt */
623 retval
= target_call_timer_callbacks_now();
625 struct target
*target
;
626 for (target
= all_targets
; target
; target
= target
->next
) {
627 target
->type
->check_reset(target
);
628 target
->running_alg
= false;
634 static int identity_virt2phys(struct target
*target
,
635 uint32_t virtual, uint32_t *physical
)
641 static int no_mmu(struct target
*target
, int *enabled
)
647 static int default_examine(struct target
*target
)
649 target_set_examined(target
);
653 /* no check by default */
654 static int default_check_reset(struct target
*target
)
659 int target_examine_one(struct target
*target
)
661 return target
->type
->examine(target
);
664 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
666 struct target
*target
= priv
;
668 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
671 jtag_unregister_event_callback(jtag_enable_callback
, target
);
673 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
675 int retval
= target_examine_one(target
);
676 if (retval
!= ERROR_OK
)
679 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
684 /* Targets that correctly implement init + examine, i.e.
685 * no communication with target during init:
689 int target_examine(void)
691 int retval
= ERROR_OK
;
692 struct target
*target
;
694 for (target
= all_targets
; target
; target
= target
->next
) {
695 /* defer examination, but don't skip it */
696 if (!target
->tap
->enabled
) {
697 jtag_register_event_callback(jtag_enable_callback
,
702 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
704 retval
= target_examine_one(target
);
705 if (retval
!= ERROR_OK
)
708 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
713 const char *target_type_name(struct target
*target
)
715 return target
->type
->name
;
718 static int target_soft_reset_halt(struct target
*target
)
720 if (!target_was_examined(target
)) {
721 LOG_ERROR("Target not examined yet");
724 if (!target
->type
->soft_reset_halt
) {
725 LOG_ERROR("Target %s does not support soft_reset_halt",
726 target_name(target
));
729 return target
->type
->soft_reset_halt(target
);
733 * Downloads a target-specific native code algorithm to the target,
734 * and executes it. * Note that some targets may need to set up, enable,
735 * and tear down a breakpoint (hard or * soft) to detect algorithm
736 * termination, while others may support lower overhead schemes where
737 * soft breakpoints embedded in the algorithm automatically terminate the
740 * @param target used to run the algorithm
741 * @param arch_info target-specific description of the algorithm.
743 int target_run_algorithm(struct target
*target
,
744 int num_mem_params
, struct mem_param
*mem_params
,
745 int num_reg_params
, struct reg_param
*reg_param
,
746 uint32_t entry_point
, uint32_t exit_point
,
747 int timeout_ms
, void *arch_info
)
749 int retval
= ERROR_FAIL
;
751 if (!target_was_examined(target
)) {
752 LOG_ERROR("Target not examined yet");
755 if (!target
->type
->run_algorithm
) {
756 LOG_ERROR("Target type '%s' does not support %s",
757 target_type_name(target
), __func__
);
761 target
->running_alg
= true;
762 retval
= target
->type
->run_algorithm(target
,
763 num_mem_params
, mem_params
,
764 num_reg_params
, reg_param
,
765 entry_point
, exit_point
, timeout_ms
, arch_info
);
766 target
->running_alg
= false;
773 * Downloads a target-specific native code algorithm to the target,
774 * executes and leaves it running.
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
779 int target_start_algorithm(struct target
*target
,
780 int num_mem_params
, struct mem_param
*mem_params
,
781 int num_reg_params
, struct reg_param
*reg_params
,
782 uint32_t entry_point
, uint32_t exit_point
,
785 int retval
= ERROR_FAIL
;
787 if (!target_was_examined(target
)) {
788 LOG_ERROR("Target not examined yet");
791 if (!target
->type
->start_algorithm
) {
792 LOG_ERROR("Target type '%s' does not support %s",
793 target_type_name(target
), __func__
);
796 if (target
->running_alg
) {
797 LOG_ERROR("Target is already running an algorithm");
801 target
->running_alg
= true;
802 retval
= target
->type
->start_algorithm(target
,
803 num_mem_params
, mem_params
,
804 num_reg_params
, reg_params
,
805 entry_point
, exit_point
, arch_info
);
812 * Waits for an algorithm started with target_start_algorithm() to complete.
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
817 int target_wait_algorithm(struct target
*target
,
818 int num_mem_params
, struct mem_param
*mem_params
,
819 int num_reg_params
, struct reg_param
*reg_params
,
820 uint32_t exit_point
, int timeout_ms
,
823 int retval
= ERROR_FAIL
;
825 if (!target
->type
->wait_algorithm
) {
826 LOG_ERROR("Target type '%s' does not support %s",
827 target_type_name(target
), __func__
);
830 if (!target
->running_alg
) {
831 LOG_ERROR("Target is not running an algorithm");
835 retval
= target
->type
->wait_algorithm(target
,
836 num_mem_params
, mem_params
,
837 num_reg_params
, reg_params
,
838 exit_point
, timeout_ms
, arch_info
);
839 if (retval
!= ERROR_TARGET_TIMEOUT
)
840 target
->running_alg
= false;
847 * Executes a target-specific native code algorithm in the target.
848 * It differs from target_run_algorithm in that the algorithm is asynchronous.
849 * Because of this it requires an compliant algorithm:
850 * see contrib/loaders/flash/stm32f1x.S for example.
852 * @param target used to run the algorithm
855 int target_run_flash_async_algorithm(struct target
*target
,
856 const uint8_t *buffer
, uint32_t count
, int block_size
,
857 int num_mem_params
, struct mem_param
*mem_params
,
858 int num_reg_params
, struct reg_param
*reg_params
,
859 uint32_t buffer_start
, uint32_t buffer_size
,
860 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
865 /* Set up working area. First word is write pointer, second word is read pointer,
866 * rest is fifo data area. */
867 uint32_t wp_addr
= buffer_start
;
868 uint32_t rp_addr
= buffer_start
+ 4;
869 uint32_t fifo_start_addr
= buffer_start
+ 8;
870 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
872 uint32_t wp
= fifo_start_addr
;
873 uint32_t rp
= fifo_start_addr
;
875 /* validate block_size is 2^n */
876 assert(!block_size
|| !(block_size
& (block_size
- 1)));
878 retval
= target_write_u32(target
, wp_addr
, wp
);
879 if (retval
!= ERROR_OK
)
881 retval
= target_write_u32(target
, rp_addr
, rp
);
882 if (retval
!= ERROR_OK
)
885 /* Start up algorithm on target and let it idle while writing the first chunk */
886 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
887 num_reg_params
, reg_params
,
892 if (retval
!= ERROR_OK
) {
893 LOG_ERROR("error starting target flash write algorithm");
899 retval
= target_read_u32(target
, rp_addr
, &rp
);
900 if (retval
!= ERROR_OK
) {
901 LOG_ERROR("failed to get read pointer");
905 LOG_DEBUG("count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
, count
, wp
, rp
);
908 LOG_ERROR("flash write algorithm aborted by target");
909 retval
= ERROR_FLASH_OPERATION_FAILED
;
913 if ((rp
& (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
914 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
918 /* Count the number of bytes available in the fifo without
919 * crossing the wrap around. Make sure to not fill it completely,
920 * because that would make wp == rp and that's the empty condition. */
921 uint32_t thisrun_bytes
;
923 thisrun_bytes
= rp
- wp
- block_size
;
924 else if (rp
> fifo_start_addr
)
925 thisrun_bytes
= fifo_end_addr
- wp
;
927 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
929 if (thisrun_bytes
== 0) {
930 /* Throttle polling a bit if transfer is (much) faster than flash
931 * programming. The exact delay shouldn't matter as long as it's
932 * less than buffer size / flash speed. This is very unlikely to
933 * run when using high latency connections such as USB. */
936 /* to stop an infinite loop on some targets check and increment a timeout
937 * this issue was observed on a stellaris using the new ICDI interface */
938 if (timeout
++ >= 500) {
939 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940 return ERROR_FLASH_OPERATION_FAILED
;
945 /* reset our timeout */
948 /* Limit to the amount of data we actually want to write */
949 if (thisrun_bytes
> count
* block_size
)
950 thisrun_bytes
= count
* block_size
;
952 /* Write data to fifo */
953 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
954 if (retval
!= ERROR_OK
)
957 /* Update counters and wrap write pointer */
958 buffer
+= thisrun_bytes
;
959 count
-= thisrun_bytes
/ block_size
;
961 if (wp
>= fifo_end_addr
)
962 wp
= fifo_start_addr
;
964 /* Store updated write pointer to target */
965 retval
= target_write_u32(target
, wp_addr
, wp
);
966 if (retval
!= ERROR_OK
)
970 if (retval
!= ERROR_OK
) {
971 /* abort flash write algorithm on target */
972 target_write_u32(target
, wp_addr
, 0);
975 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
976 num_reg_params
, reg_params
,
981 if (retval2
!= ERROR_OK
) {
982 LOG_ERROR("error waiting for target flash write algorithm");
989 int target_read_memory(struct target
*target
,
990 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
992 if (!target_was_examined(target
)) {
993 LOG_ERROR("Target not examined yet");
996 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
999 int target_read_phys_memory(struct target
*target
,
1000 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1002 if (!target_was_examined(target
)) {
1003 LOG_ERROR("Target not examined yet");
1006 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1009 int target_write_memory(struct target
*target
,
1010 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1012 if (!target_was_examined(target
)) {
1013 LOG_ERROR("Target not examined yet");
1016 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1019 int target_write_phys_memory(struct target
*target
,
1020 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1022 if (!target_was_examined(target
)) {
1023 LOG_ERROR("Target not examined yet");
1026 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1029 int target_add_breakpoint(struct target
*target
,
1030 struct breakpoint
*breakpoint
)
1032 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1033 LOG_WARNING("target %s is not halted", target_name(target
));
1034 return ERROR_TARGET_NOT_HALTED
;
1036 return target
->type
->add_breakpoint(target
, breakpoint
);
1039 int target_add_context_breakpoint(struct target
*target
,
1040 struct breakpoint
*breakpoint
)
1042 if (target
->state
!= TARGET_HALTED
) {
1043 LOG_WARNING("target %s is not halted", target_name(target
));
1044 return ERROR_TARGET_NOT_HALTED
;
1046 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1049 int target_add_hybrid_breakpoint(struct target
*target
,
1050 struct breakpoint
*breakpoint
)
1052 if (target
->state
!= TARGET_HALTED
) {
1053 LOG_WARNING("target %s is not halted", target_name(target
));
1054 return ERROR_TARGET_NOT_HALTED
;
1056 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1059 int target_remove_breakpoint(struct target
*target
,
1060 struct breakpoint
*breakpoint
)
1062 return target
->type
->remove_breakpoint(target
, breakpoint
);
1065 int target_add_watchpoint(struct target
*target
,
1066 struct watchpoint
*watchpoint
)
1068 if (target
->state
!= TARGET_HALTED
) {
1069 LOG_WARNING("target %s is not halted", target_name(target
));
1070 return ERROR_TARGET_NOT_HALTED
;
1072 return target
->type
->add_watchpoint(target
, watchpoint
);
1074 int target_remove_watchpoint(struct target
*target
,
1075 struct watchpoint
*watchpoint
)
1077 return target
->type
->remove_watchpoint(target
, watchpoint
);
1079 int target_hit_watchpoint(struct target
*target
,
1080 struct watchpoint
**hit_watchpoint
)
1082 if (target
->state
!= TARGET_HALTED
) {
1083 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1084 return ERROR_TARGET_NOT_HALTED
;
1087 if (target
->type
->hit_watchpoint
== NULL
) {
1088 /* For backward compatible, if hit_watchpoint is not implemented,
1089 * return ERROR_FAIL such that gdb_server will not take the nonsense
1094 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1097 int target_get_gdb_reg_list(struct target
*target
,
1098 struct reg
**reg_list
[], int *reg_list_size
,
1099 enum target_register_class reg_class
)
1101 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1103 int target_step(struct target
*target
,
1104 int current
, uint32_t address
, int handle_breakpoints
)
1106 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1109 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1111 if (target
->state
!= TARGET_HALTED
) {
1112 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1113 return ERROR_TARGET_NOT_HALTED
;
1115 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1118 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1120 if (target
->state
!= TARGET_HALTED
) {
1121 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1122 return ERROR_TARGET_NOT_HALTED
;
1124 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1127 int target_profiling(struct target
*target
, uint32_t *samples
,
1128 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1130 if (target
->state
!= TARGET_HALTED
) {
1131 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1132 return ERROR_TARGET_NOT_HALTED
;
1134 return target
->type
->profiling(target
, samples
, max_num_samples
,
1135 num_samples
, seconds
);
1139 * Reset the @c examined flag for the given target.
1140 * Pure paranoia -- targets are zeroed on allocation.
1142 static void target_reset_examined(struct target
*target
)
1144 target
->examined
= false;
1147 static int err_read_phys_memory(struct target
*target
, uint32_t address
,
1148 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1150 LOG_ERROR("Not implemented: %s", __func__
);
1154 static int err_write_phys_memory(struct target
*target
, uint32_t address
,
1155 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1157 LOG_ERROR("Not implemented: %s", __func__
);
1161 static int handle_target(void *priv
);
1163 static int target_init_one(struct command_context
*cmd_ctx
,
1164 struct target
*target
)
1166 target_reset_examined(target
);
1168 struct target_type
*type
= target
->type
;
1169 if (type
->examine
== NULL
)
1170 type
->examine
= default_examine
;
1172 if (type
->check_reset
== NULL
)
1173 type
->check_reset
= default_check_reset
;
1175 assert(type
->init_target
!= NULL
);
1177 int retval
= type
->init_target(cmd_ctx
, target
);
1178 if (ERROR_OK
!= retval
) {
1179 LOG_ERROR("target '%s' init failed", target_name(target
));
1183 /* Sanity-check MMU support ... stub in what we must, to help
1184 * implement it in stages, but warn if we need to do so.
1187 if (type
->write_phys_memory
== NULL
) {
1188 LOG_ERROR("type '%s' is missing write_phys_memory",
1190 type
->write_phys_memory
= err_write_phys_memory
;
1192 if (type
->read_phys_memory
== NULL
) {
1193 LOG_ERROR("type '%s' is missing read_phys_memory",
1195 type
->read_phys_memory
= err_read_phys_memory
;
1197 if (type
->virt2phys
== NULL
) {
1198 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1199 type
->virt2phys
= identity_virt2phys
;
1202 /* Make sure no-MMU targets all behave the same: make no
1203 * distinction between physical and virtual addresses, and
1204 * ensure that virt2phys() is always an identity mapping.
1206 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1207 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1210 type
->write_phys_memory
= type
->write_memory
;
1211 type
->read_phys_memory
= type
->read_memory
;
1212 type
->virt2phys
= identity_virt2phys
;
1215 if (target
->type
->read_buffer
== NULL
)
1216 target
->type
->read_buffer
= target_read_buffer_default
;
1218 if (target
->type
->write_buffer
== NULL
)
1219 target
->type
->write_buffer
= target_write_buffer_default
;
1221 if (target
->type
->get_gdb_fileio_info
== NULL
)
1222 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1224 if (target
->type
->gdb_fileio_end
== NULL
)
1225 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1227 if (target
->type
->profiling
== NULL
)
1228 target
->type
->profiling
= target_profiling_default
;
1233 static int target_init(struct command_context
*cmd_ctx
)
1235 struct target
*target
;
1238 for (target
= all_targets
; target
; target
= target
->next
) {
1239 retval
= target_init_one(cmd_ctx
, target
);
1240 if (ERROR_OK
!= retval
)
1247 retval
= target_register_user_commands(cmd_ctx
);
1248 if (ERROR_OK
!= retval
)
1251 retval
= target_register_timer_callback(&handle_target
,
1252 polling_interval
, 1, cmd_ctx
->interp
);
1253 if (ERROR_OK
!= retval
)
1259 COMMAND_HANDLER(handle_target_init_command
)
1264 return ERROR_COMMAND_SYNTAX_ERROR
;
1266 static bool target_initialized
;
1267 if (target_initialized
) {
1268 LOG_INFO("'target init' has already been called");
1271 target_initialized
= true;
1273 retval
= command_run_line(CMD_CTX
, "init_targets");
1274 if (ERROR_OK
!= retval
)
1277 retval
= command_run_line(CMD_CTX
, "init_target_events");
1278 if (ERROR_OK
!= retval
)
1281 retval
= command_run_line(CMD_CTX
, "init_board");
1282 if (ERROR_OK
!= retval
)
1285 LOG_DEBUG("Initializing targets...");
1286 return target_init(CMD_CTX
);
1289 int target_register_event_callback(int (*callback
)(struct target
*target
,
1290 enum target_event event
, void *priv
), void *priv
)
1292 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1294 if (callback
== NULL
)
1295 return ERROR_COMMAND_SYNTAX_ERROR
;
1298 while ((*callbacks_p
)->next
)
1299 callbacks_p
= &((*callbacks_p
)->next
);
1300 callbacks_p
= &((*callbacks_p
)->next
);
1303 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1304 (*callbacks_p
)->callback
= callback
;
1305 (*callbacks_p
)->priv
= priv
;
1306 (*callbacks_p
)->next
= NULL
;
1311 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1313 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1316 if (callback
== NULL
)
1317 return ERROR_COMMAND_SYNTAX_ERROR
;
1320 while ((*callbacks_p
)->next
)
1321 callbacks_p
= &((*callbacks_p
)->next
);
1322 callbacks_p
= &((*callbacks_p
)->next
);
1325 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1326 (*callbacks_p
)->callback
= callback
;
1327 (*callbacks_p
)->periodic
= periodic
;
1328 (*callbacks_p
)->time_ms
= time_ms
;
1330 gettimeofday(&now
, NULL
);
1331 (*callbacks_p
)->when
.tv_usec
= now
.tv_usec
+ (time_ms
% 1000) * 1000;
1332 time_ms
-= (time_ms
% 1000);
1333 (*callbacks_p
)->when
.tv_sec
= now
.tv_sec
+ (time_ms
/ 1000);
1334 if ((*callbacks_p
)->when
.tv_usec
> 1000000) {
1335 (*callbacks_p
)->when
.tv_usec
= (*callbacks_p
)->when
.tv_usec
- 1000000;
1336 (*callbacks_p
)->when
.tv_sec
+= 1;
1339 (*callbacks_p
)->priv
= priv
;
1340 (*callbacks_p
)->next
= NULL
;
1345 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1346 enum target_event event
, void *priv
), void *priv
)
1348 struct target_event_callback
**p
= &target_event_callbacks
;
1349 struct target_event_callback
*c
= target_event_callbacks
;
1351 if (callback
== NULL
)
1352 return ERROR_COMMAND_SYNTAX_ERROR
;
1355 struct target_event_callback
*next
= c
->next
;
1356 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1368 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1370 struct target_timer_callback
**p
= &target_timer_callbacks
;
1371 struct target_timer_callback
*c
= target_timer_callbacks
;
1373 if (callback
== NULL
)
1374 return ERROR_COMMAND_SYNTAX_ERROR
;
1377 struct target_timer_callback
*next
= c
->next
;
1378 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1390 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1392 struct target_event_callback
*callback
= target_event_callbacks
;
1393 struct target_event_callback
*next_callback
;
1395 if (event
== TARGET_EVENT_HALTED
) {
1396 /* execute early halted first */
1397 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1400 LOG_DEBUG("target event %i (%s)", event
,
1401 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1403 target_handle_event(target
, event
);
1406 next_callback
= callback
->next
;
1407 callback
->callback(target
, event
, callback
->priv
);
1408 callback
= next_callback
;
1414 static int target_timer_callback_periodic_restart(
1415 struct target_timer_callback
*cb
, struct timeval
*now
)
1417 int time_ms
= cb
->time_ms
;
1418 cb
->when
.tv_usec
= now
->tv_usec
+ (time_ms
% 1000) * 1000;
1419 time_ms
-= (time_ms
% 1000);
1420 cb
->when
.tv_sec
= now
->tv_sec
+ time_ms
/ 1000;
1421 if (cb
->when
.tv_usec
> 1000000) {
1422 cb
->when
.tv_usec
= cb
->when
.tv_usec
- 1000000;
1423 cb
->when
.tv_sec
+= 1;
1428 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1429 struct timeval
*now
)
1431 cb
->callback(cb
->priv
);
1434 return target_timer_callback_periodic_restart(cb
, now
);
1436 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1439 static int target_call_timer_callbacks_check_time(int checktime
)
1444 gettimeofday(&now
, NULL
);
1446 struct target_timer_callback
*callback
= target_timer_callbacks
;
1448 /* cleaning up may unregister and free this callback */
1449 struct target_timer_callback
*next_callback
= callback
->next
;
1451 bool call_it
= callback
->callback
&&
1452 ((!checktime
&& callback
->periodic
) ||
1453 now
.tv_sec
> callback
->when
.tv_sec
||
1454 (now
.tv_sec
== callback
->when
.tv_sec
&&
1455 now
.tv_usec
>= callback
->when
.tv_usec
));
1458 int retval
= target_call_timer_callback(callback
, &now
);
1459 if (retval
!= ERROR_OK
)
1463 callback
= next_callback
;
1469 int target_call_timer_callbacks(void)
1471 return target_call_timer_callbacks_check_time(1);
1474 /* invoke periodic callbacks immediately */
1475 int target_call_timer_callbacks_now(void)
1477 return target_call_timer_callbacks_check_time(0);
1480 /* Prints the working area layout for debug purposes */
1481 static void print_wa_layout(struct target
*target
)
1483 struct working_area
*c
= target
->working_areas
;
1486 LOG_DEBUG("%c%c 0x%08"PRIx32
"-0x%08"PRIx32
" (%"PRIu32
" bytes)",
1487 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1488 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1493 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1494 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1496 assert(area
->free
); /* Shouldn't split an allocated area */
1497 assert(size
<= area
->size
); /* Caller should guarantee this */
1499 /* Split only if not already the right size */
1500 if (size
< area
->size
) {
1501 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1506 new_wa
->next
= area
->next
;
1507 new_wa
->size
= area
->size
- size
;
1508 new_wa
->address
= area
->address
+ size
;
1509 new_wa
->backup
= NULL
;
1510 new_wa
->user
= NULL
;
1511 new_wa
->free
= true;
1513 area
->next
= new_wa
;
1516 /* If backup memory was allocated to this area, it has the wrong size
1517 * now so free it and it will be reallocated if/when needed */
1520 area
->backup
= NULL
;
1525 /* Merge all adjacent free areas into one */
1526 static void target_merge_working_areas(struct target
*target
)
1528 struct working_area
*c
= target
->working_areas
;
1530 while (c
&& c
->next
) {
1531 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1533 /* Find two adjacent free areas */
1534 if (c
->free
&& c
->next
->free
) {
1535 /* Merge the last into the first */
1536 c
->size
+= c
->next
->size
;
1538 /* Remove the last */
1539 struct working_area
*to_be_freed
= c
->next
;
1540 c
->next
= c
->next
->next
;
1541 if (to_be_freed
->backup
)
1542 free(to_be_freed
->backup
);
1545 /* If backup memory was allocated to the remaining area, it's has
1546 * the wrong size now */
1557 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1559 /* Reevaluate working area address based on MMU state*/
1560 if (target
->working_areas
== NULL
) {
1564 retval
= target
->type
->mmu(target
, &enabled
);
1565 if (retval
!= ERROR_OK
)
1569 if (target
->working_area_phys_spec
) {
1570 LOG_DEBUG("MMU disabled, using physical "
1571 "address for working memory 0x%08"PRIx32
,
1572 target
->working_area_phys
);
1573 target
->working_area
= target
->working_area_phys
;
1575 LOG_ERROR("No working memory available. "
1576 "Specify -work-area-phys to target.");
1577 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1580 if (target
->working_area_virt_spec
) {
1581 LOG_DEBUG("MMU enabled, using virtual "
1582 "address for working memory 0x%08"PRIx32
,
1583 target
->working_area_virt
);
1584 target
->working_area
= target
->working_area_virt
;
1586 LOG_ERROR("No working memory available. "
1587 "Specify -work-area-virt to target.");
1588 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1592 /* Set up initial working area on first call */
1593 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1595 new_wa
->next
= NULL
;
1596 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1597 new_wa
->address
= target
->working_area
;
1598 new_wa
->backup
= NULL
;
1599 new_wa
->user
= NULL
;
1600 new_wa
->free
= true;
1603 target
->working_areas
= new_wa
;
1606 /* only allocate multiples of 4 byte */
1608 size
= (size
+ 3) & (~3UL);
1610 struct working_area
*c
= target
->working_areas
;
1612 /* Find the first large enough working area */
1614 if (c
->free
&& c
->size
>= size
)
1620 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1622 /* Split the working area into the requested size */
1623 target_split_working_area(c
, size
);
1625 LOG_DEBUG("allocated new working area of %"PRIu32
" bytes at address 0x%08"PRIx32
, size
, c
->address
);
1627 if (target
->backup_working_area
) {
1628 if (c
->backup
== NULL
) {
1629 c
->backup
= malloc(c
->size
);
1630 if (c
->backup
== NULL
)
1634 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1635 if (retval
!= ERROR_OK
)
1639 /* mark as used, and return the new (reused) area */
1646 print_wa_layout(target
);
1651 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1655 retval
= target_alloc_working_area_try(target
, size
, area
);
1656 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1657 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1662 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1664 int retval
= ERROR_OK
;
1666 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1667 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1668 if (retval
!= ERROR_OK
)
1669 LOG_ERROR("failed to restore %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1670 area
->size
, area
->address
);
1676 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1677 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1679 int retval
= ERROR_OK
;
1685 retval
= target_restore_working_area(target
, area
);
1686 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1687 if (retval
!= ERROR_OK
)
1693 LOG_DEBUG("freed %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1694 area
->size
, area
->address
);
1696 /* mark user pointer invalid */
1697 /* TODO: Is this really safe? It points to some previous caller's memory.
1698 * How could we know that the area pointer is still in that place and not
1699 * some other vital data? What's the purpose of this, anyway? */
1703 target_merge_working_areas(target
);
1705 print_wa_layout(target
);
1710 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1712 return target_free_working_area_restore(target
, area
, 1);
1715 /* free resources and restore memory, if restoring memory fails,
1716 * free up resources anyway
1718 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1720 struct working_area
*c
= target
->working_areas
;
1722 LOG_DEBUG("freeing all working areas");
1724 /* Loop through all areas, restoring the allocated ones and marking them as free */
1728 target_restore_working_area(target
, c
);
1730 *c
->user
= NULL
; /* Same as above */
1736 /* Run a merge pass to combine all areas into one */
1737 target_merge_working_areas(target
);
1739 print_wa_layout(target
);
1742 void target_free_all_working_areas(struct target
*target
)
1744 target_free_all_working_areas_restore(target
, 1);
1747 /* Find the largest number of bytes that can be allocated */
1748 uint32_t target_get_working_area_avail(struct target
*target
)
1750 struct working_area
*c
= target
->working_areas
;
1751 uint32_t max_size
= 0;
1754 return target
->working_area_size
;
1757 if (c
->free
&& max_size
< c
->size
)
1766 int target_arch_state(struct target
*target
)
1769 if (target
== NULL
) {
1770 LOG_USER("No target has been configured");
1774 LOG_USER("target state: %s", target_state_name(target
));
1776 if (target
->state
!= TARGET_HALTED
)
1779 retval
= target
->type
->arch_state(target
);
1783 static int target_get_gdb_fileio_info_default(struct target
*target
,
1784 struct gdb_fileio_info
*fileio_info
)
1786 /* If target does not support semi-hosting function, target
1787 has no need to provide .get_gdb_fileio_info callback.
1788 It just return ERROR_FAIL and gdb_server will return "Txx"
1789 as target halted every time. */
1793 static int target_gdb_fileio_end_default(struct target
*target
,
1794 int retcode
, int fileio_errno
, bool ctrl_c
)
1799 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
1800 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1802 struct timeval timeout
, now
;
1804 gettimeofday(&timeout
, NULL
);
1805 timeval_add_time(&timeout
, seconds
, 0);
1807 LOG_INFO("Starting profiling. Halting and resuming the"
1808 " target as often as we can...");
1810 uint32_t sample_count
= 0;
1811 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1812 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
1814 int retval
= ERROR_OK
;
1816 target_poll(target
);
1817 if (target
->state
== TARGET_HALTED
) {
1818 uint32_t t
= *((uint32_t *)reg
->value
);
1819 samples
[sample_count
++] = t
;
1820 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1821 retval
= target_resume(target
, 1, 0, 0, 0);
1822 target_poll(target
);
1823 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1824 } else if (target
->state
== TARGET_RUNNING
) {
1825 /* We want to quickly sample the PC. */
1826 retval
= target_halt(target
);
1828 LOG_INFO("Target not halted or running");
1833 if (retval
!= ERROR_OK
)
1836 gettimeofday(&now
, NULL
);
1837 if ((sample_count
>= max_num_samples
) ||
1838 ((now
.tv_sec
>= timeout
.tv_sec
) && (now
.tv_usec
>= timeout
.tv_usec
))) {
1839 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
1844 *num_samples
= sample_count
;
1848 /* Single aligned words are guaranteed to use 16 or 32 bit access
1849 * mode respectively, otherwise data is handled as quickly as
1852 int target_write_buffer(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
1854 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1855 (int)size
, (unsigned)address
);
1857 if (!target_was_examined(target
)) {
1858 LOG_ERROR("Target not examined yet");
1865 if ((address
+ size
- 1) < address
) {
1866 /* GDB can request this when e.g. PC is 0xfffffffc*/
1867 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1873 return target
->type
->write_buffer(target
, address
, size
, buffer
);
1876 static int target_write_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, const uint8_t *buffer
)
1880 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1881 * will have something to do with the size we leave to it. */
1882 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
1883 if (address
& size
) {
1884 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
1885 if (retval
!= ERROR_OK
)
1893 /* Write the data with as large access size as possible. */
1894 for (; size
> 0; size
/= 2) {
1895 uint32_t aligned
= count
- count
% size
;
1897 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
1898 if (retval
!= ERROR_OK
)
1909 /* Single aligned words are guaranteed to use 16 or 32 bit access
1910 * mode respectively, otherwise data is handled as quickly as
1913 int target_read_buffer(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1915 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1916 (int)size
, (unsigned)address
);
1918 if (!target_was_examined(target
)) {
1919 LOG_ERROR("Target not examined yet");
1926 if ((address
+ size
- 1) < address
) {
1927 /* GDB can request this when e.g. PC is 0xfffffffc*/
1928 LOG_ERROR("address + size wrapped(0x%08" PRIx32
", 0x%08" PRIx32
")",
1934 return target
->type
->read_buffer(target
, address
, size
, buffer
);
1937 static int target_read_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
1941 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1942 * will have something to do with the size we leave to it. */
1943 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
1944 if (address
& size
) {
1945 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
1946 if (retval
!= ERROR_OK
)
1954 /* Read the data with as large access size as possible. */
1955 for (; size
> 0; size
/= 2) {
1956 uint32_t aligned
= count
- count
% size
;
1958 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
1959 if (retval
!= ERROR_OK
)
1970 int target_checksum_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* crc
)
1975 uint32_t checksum
= 0;
1976 if (!target_was_examined(target
)) {
1977 LOG_ERROR("Target not examined yet");
1981 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
1982 if (retval
!= ERROR_OK
) {
1983 buffer
= malloc(size
);
1984 if (buffer
== NULL
) {
1985 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size
);
1986 return ERROR_COMMAND_SYNTAX_ERROR
;
1988 retval
= target_read_buffer(target
, address
, size
, buffer
);
1989 if (retval
!= ERROR_OK
) {
1994 /* convert to target endianness */
1995 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
1996 uint32_t target_data
;
1997 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
1998 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2001 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2010 int target_blank_check_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* blank
)
2013 if (!target_was_examined(target
)) {
2014 LOG_ERROR("Target not examined yet");
2018 if (target
->type
->blank_check_memory
== 0)
2019 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2021 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
);
2026 int target_read_u64(struct target
*target
, uint64_t address
, uint64_t *value
)
2028 uint8_t value_buf
[8];
2029 if (!target_was_examined(target
)) {
2030 LOG_ERROR("Target not examined yet");
2034 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2036 if (retval
== ERROR_OK
) {
2037 *value
= target_buffer_get_u64(target
, value_buf
);
2038 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2043 LOG_DEBUG("address: 0x%" PRIx64
" failed",
2050 int target_read_u32(struct target
*target
, uint32_t address
, uint32_t *value
)
2052 uint8_t value_buf
[4];
2053 if (!target_was_examined(target
)) {
2054 LOG_ERROR("Target not examined yet");
2058 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2060 if (retval
== ERROR_OK
) {
2061 *value
= target_buffer_get_u32(target
, value_buf
);
2062 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2067 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2074 int target_read_u16(struct target
*target
, uint32_t address
, uint16_t *value
)
2076 uint8_t value_buf
[2];
2077 if (!target_was_examined(target
)) {
2078 LOG_ERROR("Target not examined yet");
2082 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2084 if (retval
== ERROR_OK
) {
2085 *value
= target_buffer_get_u16(target
, value_buf
);
2086 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%4.4x",
2091 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2098 int target_read_u8(struct target
*target
, uint32_t address
, uint8_t *value
)
2100 if (!target_was_examined(target
)) {
2101 LOG_ERROR("Target not examined yet");
2105 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2107 if (retval
== ERROR_OK
) {
2108 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2113 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2120 int target_write_u64(struct target
*target
, uint64_t address
, uint64_t value
)
2123 uint8_t value_buf
[8];
2124 if (!target_was_examined(target
)) {
2125 LOG_ERROR("Target not examined yet");
2129 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2133 target_buffer_set_u64(target
, value_buf
, value
);
2134 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2135 if (retval
!= ERROR_OK
)
2136 LOG_DEBUG("failed: %i", retval
);
2141 int target_write_u32(struct target
*target
, uint32_t address
, uint32_t value
)
2144 uint8_t value_buf
[4];
2145 if (!target_was_examined(target
)) {
2146 LOG_ERROR("Target not examined yet");
2150 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2154 target_buffer_set_u32(target
, value_buf
, value
);
2155 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2156 if (retval
!= ERROR_OK
)
2157 LOG_DEBUG("failed: %i", retval
);
2162 int target_write_u16(struct target
*target
, uint32_t address
, uint16_t value
)
2165 uint8_t value_buf
[2];
2166 if (!target_was_examined(target
)) {
2167 LOG_ERROR("Target not examined yet");
2171 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8x",
2175 target_buffer_set_u16(target
, value_buf
, value
);
2176 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2177 if (retval
!= ERROR_OK
)
2178 LOG_DEBUG("failed: %i", retval
);
2183 int target_write_u8(struct target
*target
, uint32_t address
, uint8_t value
)
2186 if (!target_was_examined(target
)) {
2187 LOG_ERROR("Target not examined yet");
2191 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2194 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2195 if (retval
!= ERROR_OK
)
2196 LOG_DEBUG("failed: %i", retval
);
2201 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2203 struct target
*target
= get_target(name
);
2204 if (target
== NULL
) {
2205 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2208 if (!target
->tap
->enabled
) {
2209 LOG_USER("Target: TAP %s is disabled, "
2210 "can't be the current target\n",
2211 target
->tap
->dotted_name
);
2215 cmd_ctx
->current_target
= target
->target_number
;
2220 COMMAND_HANDLER(handle_targets_command
)
2222 int retval
= ERROR_OK
;
2223 if (CMD_ARGC
== 1) {
2224 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2225 if (retval
== ERROR_OK
) {
2231 struct target
*target
= all_targets
;
2232 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2233 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2238 if (target
->tap
->enabled
)
2239 state
= target_state_name(target
);
2241 state
= "tap-disabled";
2243 if (CMD_CTX
->current_target
== target
->target_number
)
2246 /* keep columns lined up to match the headers above */
2247 command_print(CMD_CTX
,
2248 "%2d%c %-18s %-10s %-6s %-18s %s",
2249 target
->target_number
,
2251 target_name(target
),
2252 target_type_name(target
),
2253 Jim_Nvp_value2name_simple(nvp_target_endian
,
2254 target
->endianness
)->name
,
2255 target
->tap
->dotted_name
,
2257 target
= target
->next
;
2263 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2265 static int powerDropout
;
2266 static int srstAsserted
;
2268 static int runPowerRestore
;
2269 static int runPowerDropout
;
2270 static int runSrstAsserted
;
2271 static int runSrstDeasserted
;
2273 static int sense_handler(void)
2275 static int prevSrstAsserted
;
2276 static int prevPowerdropout
;
2278 int retval
= jtag_power_dropout(&powerDropout
);
2279 if (retval
!= ERROR_OK
)
2283 powerRestored
= prevPowerdropout
&& !powerDropout
;
2285 runPowerRestore
= 1;
2287 long long current
= timeval_ms();
2288 static long long lastPower
;
2289 int waitMore
= lastPower
+ 2000 > current
;
2290 if (powerDropout
&& !waitMore
) {
2291 runPowerDropout
= 1;
2292 lastPower
= current
;
2295 retval
= jtag_srst_asserted(&srstAsserted
);
2296 if (retval
!= ERROR_OK
)
2300 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2302 static long long lastSrst
;
2303 waitMore
= lastSrst
+ 2000 > current
;
2304 if (srstDeasserted
&& !waitMore
) {
2305 runSrstDeasserted
= 1;
2309 if (!prevSrstAsserted
&& srstAsserted
)
2310 runSrstAsserted
= 1;
2312 prevSrstAsserted
= srstAsserted
;
2313 prevPowerdropout
= powerDropout
;
2315 if (srstDeasserted
|| powerRestored
) {
2316 /* Other than logging the event we can't do anything here.
2317 * Issuing a reset is a particularly bad idea as we might
2318 * be inside a reset already.
2325 /* process target state changes */
2326 static int handle_target(void *priv
)
2328 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2329 int retval
= ERROR_OK
;
2331 if (!is_jtag_poll_safe()) {
2332 /* polling is disabled currently */
2336 /* we do not want to recurse here... */
2337 static int recursive
;
2341 /* danger! running these procedures can trigger srst assertions and power dropouts.
2342 * We need to avoid an infinite loop/recursion here and we do that by
2343 * clearing the flags after running these events.
2345 int did_something
= 0;
2346 if (runSrstAsserted
) {
2347 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2348 Jim_Eval(interp
, "srst_asserted");
2351 if (runSrstDeasserted
) {
2352 Jim_Eval(interp
, "srst_deasserted");
2355 if (runPowerDropout
) {
2356 LOG_INFO("Power dropout detected, running power_dropout proc.");
2357 Jim_Eval(interp
, "power_dropout");
2360 if (runPowerRestore
) {
2361 Jim_Eval(interp
, "power_restore");
2365 if (did_something
) {
2366 /* clear detect flags */
2370 /* clear action flags */
2372 runSrstAsserted
= 0;
2373 runSrstDeasserted
= 0;
2374 runPowerRestore
= 0;
2375 runPowerDropout
= 0;
2380 /* Poll targets for state changes unless that's globally disabled.
2381 * Skip targets that are currently disabled.
2383 for (struct target
*target
= all_targets
;
2384 is_jtag_poll_safe() && target
;
2385 target
= target
->next
) {
2387 if (!target_was_examined(target
))
2390 if (!target
->tap
->enabled
)
2393 if (target
->backoff
.times
> target
->backoff
.count
) {
2394 /* do not poll this time as we failed previously */
2395 target
->backoff
.count
++;
2398 target
->backoff
.count
= 0;
2400 /* only poll target if we've got power and srst isn't asserted */
2401 if (!powerDropout
&& !srstAsserted
) {
2402 /* polling may fail silently until the target has been examined */
2403 retval
= target_poll(target
);
2404 if (retval
!= ERROR_OK
) {
2405 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2406 if (target
->backoff
.times
* polling_interval
< 5000) {
2407 target
->backoff
.times
*= 2;
2408 target
->backoff
.times
++;
2410 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2411 target_name(target
),
2412 target
->backoff
.times
* polling_interval
);
2414 /* Tell GDB to halt the debugger. This allows the user to
2415 * run monitor commands to handle the situation.
2417 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2420 /* Since we succeeded, we reset backoff count */
2421 if (target
->backoff
.times
> 0)
2422 LOG_USER("Polling target %s succeeded again", target_name(target
));
2423 target
->backoff
.times
= 0;
2430 COMMAND_HANDLER(handle_reg_command
)
2432 struct target
*target
;
2433 struct reg
*reg
= NULL
;
2439 target
= get_current_target(CMD_CTX
);
2441 /* list all available registers for the current target */
2442 if (CMD_ARGC
== 0) {
2443 struct reg_cache
*cache
= target
->reg_cache
;
2449 command_print(CMD_CTX
, "===== %s", cache
->name
);
2451 for (i
= 0, reg
= cache
->reg_list
;
2452 i
< cache
->num_regs
;
2453 i
++, reg
++, count
++) {
2454 /* only print cached values if they are valid */
2456 value
= buf_to_str(reg
->value
,
2458 command_print(CMD_CTX
,
2459 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2467 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2472 cache
= cache
->next
;
2478 /* access a single register by its ordinal number */
2479 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2481 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2483 struct reg_cache
*cache
= target
->reg_cache
;
2487 for (i
= 0; i
< cache
->num_regs
; i
++) {
2488 if (count
++ == num
) {
2489 reg
= &cache
->reg_list
[i
];
2495 cache
= cache
->next
;
2499 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2500 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2504 /* access a single register by its name */
2505 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2508 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2513 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2515 /* display a register */
2516 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2517 && (CMD_ARGV
[1][0] <= '9')))) {
2518 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2521 if (reg
->valid
== 0)
2522 reg
->type
->get(reg
);
2523 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2524 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2529 /* set register value */
2530 if (CMD_ARGC
== 2) {
2531 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2534 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2536 reg
->type
->set(reg
, buf
);
2538 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2539 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2547 return ERROR_COMMAND_SYNTAX_ERROR
;
2550 COMMAND_HANDLER(handle_poll_command
)
2552 int retval
= ERROR_OK
;
2553 struct target
*target
= get_current_target(CMD_CTX
);
2555 if (CMD_ARGC
== 0) {
2556 command_print(CMD_CTX
, "background polling: %s",
2557 jtag_poll_get_enabled() ? "on" : "off");
2558 command_print(CMD_CTX
, "TAP: %s (%s)",
2559 target
->tap
->dotted_name
,
2560 target
->tap
->enabled
? "enabled" : "disabled");
2561 if (!target
->tap
->enabled
)
2563 retval
= target_poll(target
);
2564 if (retval
!= ERROR_OK
)
2566 retval
= target_arch_state(target
);
2567 if (retval
!= ERROR_OK
)
2569 } else if (CMD_ARGC
== 1) {
2571 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2572 jtag_poll_set_enabled(enable
);
2574 return ERROR_COMMAND_SYNTAX_ERROR
;
2579 COMMAND_HANDLER(handle_wait_halt_command
)
2582 return ERROR_COMMAND_SYNTAX_ERROR
;
2584 unsigned ms
= DEFAULT_HALT_TIMEOUT
;
2585 if (1 == CMD_ARGC
) {
2586 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2587 if (ERROR_OK
!= retval
)
2588 return ERROR_COMMAND_SYNTAX_ERROR
;
2591 struct target
*target
= get_current_target(CMD_CTX
);
2592 return target_wait_state(target
, TARGET_HALTED
, ms
);
2595 /* wait for target state to change. The trick here is to have a low
2596 * latency for short waits and not to suck up all the CPU time
2599 * After 500ms, keep_alive() is invoked
2601 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2604 long long then
= 0, cur
;
2608 retval
= target_poll(target
);
2609 if (retval
!= ERROR_OK
)
2611 if (target
->state
== state
)
2616 then
= timeval_ms();
2617 LOG_DEBUG("waiting for target %s...",
2618 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2624 if ((cur
-then
) > ms
) {
2625 LOG_ERROR("timed out while waiting for target %s",
2626 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2634 COMMAND_HANDLER(handle_halt_command
)
2638 struct target
*target
= get_current_target(CMD_CTX
);
2639 int retval
= target_halt(target
);
2640 if (ERROR_OK
!= retval
)
2643 if (CMD_ARGC
== 1) {
2644 unsigned wait_local
;
2645 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2646 if (ERROR_OK
!= retval
)
2647 return ERROR_COMMAND_SYNTAX_ERROR
;
2652 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2655 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2657 struct target
*target
= get_current_target(CMD_CTX
);
2659 LOG_USER("requesting target halt and executing a soft reset");
2661 target_soft_reset_halt(target
);
2666 COMMAND_HANDLER(handle_reset_command
)
2669 return ERROR_COMMAND_SYNTAX_ERROR
;
2671 enum target_reset_mode reset_mode
= RESET_RUN
;
2672 if (CMD_ARGC
== 1) {
2674 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
2675 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
2676 return ERROR_COMMAND_SYNTAX_ERROR
;
2677 reset_mode
= n
->value
;
2680 /* reset *all* targets */
2681 return target_process_reset(CMD_CTX
, reset_mode
);
2685 COMMAND_HANDLER(handle_resume_command
)
2689 return ERROR_COMMAND_SYNTAX_ERROR
;
2691 struct target
*target
= get_current_target(CMD_CTX
);
2693 /* with no CMD_ARGV, resume from current pc, addr = 0,
2694 * with one arguments, addr = CMD_ARGV[0],
2695 * handle breakpoints, not debugging */
2697 if (CMD_ARGC
== 1) {
2698 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2702 return target_resume(target
, current
, addr
, 1, 0);
2705 COMMAND_HANDLER(handle_step_command
)
2708 return ERROR_COMMAND_SYNTAX_ERROR
;
2712 /* with no CMD_ARGV, step from current pc, addr = 0,
2713 * with one argument addr = CMD_ARGV[0],
2714 * handle breakpoints, debugging */
2717 if (CMD_ARGC
== 1) {
2718 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2722 struct target
*target
= get_current_target(CMD_CTX
);
2724 return target
->type
->step(target
, current_pc
, addr
, 1);
2727 static void handle_md_output(struct command_context
*cmd_ctx
,
2728 struct target
*target
, uint32_t address
, unsigned size
,
2729 unsigned count
, const uint8_t *buffer
)
2731 const unsigned line_bytecnt
= 32;
2732 unsigned line_modulo
= line_bytecnt
/ size
;
2734 char output
[line_bytecnt
* 4 + 1];
2735 unsigned output_len
= 0;
2737 const char *value_fmt
;
2740 value_fmt
= "%8.8x ";
2743 value_fmt
= "%4.4x ";
2746 value_fmt
= "%2.2x ";
2749 /* "can't happen", caller checked */
2750 LOG_ERROR("invalid memory read size: %u", size
);
2754 for (unsigned i
= 0; i
< count
; i
++) {
2755 if (i
% line_modulo
== 0) {
2756 output_len
+= snprintf(output
+ output_len
,
2757 sizeof(output
) - output_len
,
2759 (unsigned)(address
+ (i
*size
)));
2763 const uint8_t *value_ptr
= buffer
+ i
* size
;
2766 value
= target_buffer_get_u32(target
, value_ptr
);
2769 value
= target_buffer_get_u16(target
, value_ptr
);
2774 output_len
+= snprintf(output
+ output_len
,
2775 sizeof(output
) - output_len
,
2778 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
2779 command_print(cmd_ctx
, "%s", output
);
2785 COMMAND_HANDLER(handle_md_command
)
2788 return ERROR_COMMAND_SYNTAX_ERROR
;
2791 switch (CMD_NAME
[2]) {
2802 return ERROR_COMMAND_SYNTAX_ERROR
;
2805 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2806 int (*fn
)(struct target
*target
,
2807 uint32_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
2811 fn
= target_read_phys_memory
;
2813 fn
= target_read_memory
;
2814 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
2815 return ERROR_COMMAND_SYNTAX_ERROR
;
2818 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2822 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
2824 uint8_t *buffer
= calloc(count
, size
);
2826 struct target
*target
= get_current_target(CMD_CTX
);
2827 int retval
= fn(target
, address
, size
, count
, buffer
);
2828 if (ERROR_OK
== retval
)
2829 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
2836 typedef int (*target_write_fn
)(struct target
*target
,
2837 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
2839 static int target_fill_mem(struct target
*target
,
2848 /* We have to write in reasonably large chunks to be able
2849 * to fill large memory areas with any sane speed */
2850 const unsigned chunk_size
= 16384;
2851 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
2852 if (target_buf
== NULL
) {
2853 LOG_ERROR("Out of memory");
2857 for (unsigned i
= 0; i
< chunk_size
; i
++) {
2858 switch (data_size
) {
2860 target_buffer_set_u32(target
, target_buf
+ i
* data_size
, b
);
2863 target_buffer_set_u16(target
, target_buf
+ i
* data_size
, b
);
2866 target_buffer_set_u8(target
, target_buf
+ i
* data_size
, b
);
2873 int retval
= ERROR_OK
;
2875 for (unsigned x
= 0; x
< c
; x
+= chunk_size
) {
2878 if (current
> chunk_size
)
2879 current
= chunk_size
;
2880 retval
= fn(target
, address
+ x
* data_size
, data_size
, current
, target_buf
);
2881 if (retval
!= ERROR_OK
)
2883 /* avoid GDB timeouts */
2892 COMMAND_HANDLER(handle_mw_command
)
2895 return ERROR_COMMAND_SYNTAX_ERROR
;
2896 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2901 fn
= target_write_phys_memory
;
2903 fn
= target_write_memory
;
2904 if ((CMD_ARGC
< 2) || (CMD_ARGC
> 3))
2905 return ERROR_COMMAND_SYNTAX_ERROR
;
2908 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2911 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
2915 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[2], count
);
2917 struct target
*target
= get_current_target(CMD_CTX
);
2919 switch (CMD_NAME
[2]) {
2930 return ERROR_COMMAND_SYNTAX_ERROR
;
2933 return target_fill_mem(target
, address
, fn
, wordsize
, value
, count
);
2936 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV
, struct image
*image
,
2937 uint32_t *min_address
, uint32_t *max_address
)
2939 if (CMD_ARGC
< 1 || CMD_ARGC
> 5)
2940 return ERROR_COMMAND_SYNTAX_ERROR
;
2942 /* a base address isn't always necessary,
2943 * default to 0x0 (i.e. don't relocate) */
2944 if (CMD_ARGC
>= 2) {
2946 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
2947 image
->base_address
= addr
;
2948 image
->base_address_set
= 1;
2950 image
->base_address_set
= 0;
2952 image
->start_address_set
= 0;
2955 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], *min_address
);
2956 if (CMD_ARGC
== 5) {
2957 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], *max_address
);
2958 /* use size (given) to find max (required) */
2959 *max_address
+= *min_address
;
2962 if (*min_address
> *max_address
)
2963 return ERROR_COMMAND_SYNTAX_ERROR
;
2968 COMMAND_HANDLER(handle_load_image_command
)
2972 uint32_t image_size
;
2973 uint32_t min_address
= 0;
2974 uint32_t max_address
= 0xffffffff;
2978 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
2979 &image
, &min_address
, &max_address
);
2980 if (ERROR_OK
!= retval
)
2983 struct target
*target
= get_current_target(CMD_CTX
);
2985 struct duration bench
;
2986 duration_start(&bench
);
2988 if (image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
) != ERROR_OK
)
2993 for (i
= 0; i
< image
.num_sections
; i
++) {
2994 buffer
= malloc(image
.sections
[i
].size
);
2995 if (buffer
== NULL
) {
2996 command_print(CMD_CTX
,
2997 "error allocating buffer for section (%d bytes)",
2998 (int)(image
.sections
[i
].size
));
3002 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3003 if (retval
!= ERROR_OK
) {
3008 uint32_t offset
= 0;
3009 uint32_t length
= buf_cnt
;
3011 /* DANGER!!! beware of unsigned comparision here!!! */
3013 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
3014 (image
.sections
[i
].base_address
< max_address
)) {
3016 if (image
.sections
[i
].base_address
< min_address
) {
3017 /* clip addresses below */
3018 offset
+= min_address
-image
.sections
[i
].base_address
;
3022 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
3023 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
3025 retval
= target_write_buffer(target
,
3026 image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
);
3027 if (retval
!= ERROR_OK
) {
3031 image_size
+= length
;
3032 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8" PRIx32
"",
3033 (unsigned int)length
,
3034 image
.sections
[i
].base_address
+ offset
);
3040 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3041 command_print(CMD_CTX
, "downloaded %" PRIu32
" bytes "
3042 "in %fs (%0.3f KiB/s)", image_size
,
3043 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3046 image_close(&image
);
3052 COMMAND_HANDLER(handle_dump_image_command
)
3054 struct fileio fileio
;
3056 int retval
, retvaltemp
;
3057 uint32_t address
, size
;
3058 struct duration bench
;
3059 struct target
*target
= get_current_target(CMD_CTX
);
3062 return ERROR_COMMAND_SYNTAX_ERROR
;
3064 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], address
);
3065 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], size
);
3067 uint32_t buf_size
= (size
> 4096) ? 4096 : size
;
3068 buffer
= malloc(buf_size
);
3072 retval
= fileio_open(&fileio
, CMD_ARGV
[0], FILEIO_WRITE
, FILEIO_BINARY
);
3073 if (retval
!= ERROR_OK
) {
3078 duration_start(&bench
);
3081 size_t size_written
;
3082 uint32_t this_run_size
= (size
> buf_size
) ? buf_size
: size
;
3083 retval
= target_read_buffer(target
, address
, this_run_size
, buffer
);
3084 if (retval
!= ERROR_OK
)
3087 retval
= fileio_write(&fileio
, this_run_size
, buffer
, &size_written
);
3088 if (retval
!= ERROR_OK
)
3091 size
-= this_run_size
;
3092 address
+= this_run_size
;
3097 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3099 retval
= fileio_size(&fileio
, &filesize
);
3100 if (retval
!= ERROR_OK
)
3102 command_print(CMD_CTX
,
3103 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize
,
3104 duration_elapsed(&bench
), duration_kbps(&bench
, filesize
));
3107 retvaltemp
= fileio_close(&fileio
);
3108 if (retvaltemp
!= ERROR_OK
)
3114 static COMMAND_HELPER(handle_verify_image_command_internal
, int verify
)
3118 uint32_t image_size
;
3121 uint32_t checksum
= 0;
3122 uint32_t mem_checksum
= 0;
3126 struct target
*target
= get_current_target(CMD_CTX
);
3129 return ERROR_COMMAND_SYNTAX_ERROR
;
3132 LOG_ERROR("no target selected");
3136 struct duration bench
;
3137 duration_start(&bench
);
3139 if (CMD_ARGC
>= 2) {
3141 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
3142 image
.base_address
= addr
;
3143 image
.base_address_set
= 1;
3145 image
.base_address_set
= 0;
3146 image
.base_address
= 0x0;
3149 image
.start_address_set
= 0;
3151 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
== 3) ? CMD_ARGV
[2] : NULL
);
3152 if (retval
!= ERROR_OK
)
3158 for (i
= 0; i
< image
.num_sections
; i
++) {
3159 buffer
= malloc(image
.sections
[i
].size
);
3160 if (buffer
== NULL
) {
3161 command_print(CMD_CTX
,
3162 "error allocating buffer for section (%d bytes)",
3163 (int)(image
.sections
[i
].size
));
3166 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3167 if (retval
!= ERROR_OK
) {
3173 /* calculate checksum of image */
3174 retval
= image_calculate_checksum(buffer
, buf_cnt
, &checksum
);
3175 if (retval
!= ERROR_OK
) {
3180 retval
= target_checksum_memory(target
, image
.sections
[i
].base_address
, buf_cnt
, &mem_checksum
);
3181 if (retval
!= ERROR_OK
) {
3186 if (checksum
!= mem_checksum
) {
3187 /* failed crc checksum, fall back to a binary compare */
3191 LOG_ERROR("checksum mismatch - attempting binary compare");
3193 data
= malloc(buf_cnt
);
3195 /* Can we use 32bit word accesses? */
3197 int count
= buf_cnt
;
3198 if ((count
% 4) == 0) {
3202 retval
= target_read_memory(target
, image
.sections
[i
].base_address
, size
, count
, data
);
3203 if (retval
== ERROR_OK
) {
3205 for (t
= 0; t
< buf_cnt
; t
++) {
3206 if (data
[t
] != buffer
[t
]) {
3207 command_print(CMD_CTX
,
3208 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3210 (unsigned)(t
+ image
.sections
[i
].base_address
),
3213 if (diffs
++ >= 127) {
3214 command_print(CMD_CTX
, "More than 128 errors, the rest are not printed.");
3226 command_print(CMD_CTX
, "address 0x%08" PRIx32
" length 0x%08zx",
3227 image
.sections
[i
].base_address
,
3232 image_size
+= buf_cnt
;
3235 command_print(CMD_CTX
, "No more differences found.");
3238 retval
= ERROR_FAIL
;
3239 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3240 command_print(CMD_CTX
, "verified %" PRIu32
" bytes "
3241 "in %fs (%0.3f KiB/s)", image_size
,
3242 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3245 image_close(&image
);
3250 COMMAND_HANDLER(handle_verify_image_command
)
3252 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 1);
3255 COMMAND_HANDLER(handle_test_image_command
)
3257 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 0);
3260 static int handle_bp_command_list(struct command_context
*cmd_ctx
)
3262 struct target
*target
= get_current_target(cmd_ctx
);
3263 struct breakpoint
*breakpoint
= target
->breakpoints
;
3264 while (breakpoint
) {
3265 if (breakpoint
->type
== BKPT_SOFT
) {
3266 char *buf
= buf_to_str(breakpoint
->orig_instr
,
3267 breakpoint
->length
, 16);
3268 command_print(cmd_ctx
, "IVA breakpoint: 0x%8.8" PRIx32
", 0x%x, %i, 0x%s",
3269 breakpoint
->address
,
3271 breakpoint
->set
, buf
);
3274 if ((breakpoint
->address
== 0) && (breakpoint
->asid
!= 0))
3275 command_print(cmd_ctx
, "Context breakpoint: 0x%8.8" PRIx32
", 0x%x, %i",
3277 breakpoint
->length
, breakpoint
->set
);
3278 else if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
3279 command_print(cmd_ctx
, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3280 breakpoint
->address
,
3281 breakpoint
->length
, breakpoint
->set
);
3282 command_print(cmd_ctx
, "\t|--->linked with ContextID: 0x%8.8" PRIx32
,
3285 command_print(cmd_ctx
, "Breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3286 breakpoint
->address
,
3287 breakpoint
->length
, breakpoint
->set
);
3290 breakpoint
= breakpoint
->next
;
3295 static int handle_bp_command_set(struct command_context
*cmd_ctx
,
3296 uint32_t addr
, uint32_t asid
, uint32_t length
, int hw
)
3298 struct target
*target
= get_current_target(cmd_ctx
);
3301 int retval
= breakpoint_add(target
, addr
, length
, hw
);
3302 if (ERROR_OK
== retval
)
3303 command_print(cmd_ctx
, "breakpoint set at 0x%8.8" PRIx32
"", addr
);
3305 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3308 } else if (addr
== 0) {
3309 int retval
= context_breakpoint_add(target
, asid
, length
, hw
);
3310 if (ERROR_OK
== retval
)
3311 command_print(cmd_ctx
, "Context breakpoint set at 0x%8.8" PRIx32
"", asid
);
3313 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3317 int retval
= hybrid_breakpoint_add(target
, addr
, asid
, length
, hw
);
3318 if (ERROR_OK
== retval
)
3319 command_print(cmd_ctx
, "Hybrid breakpoint set at 0x%8.8" PRIx32
"", asid
);
3321 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3328 COMMAND_HANDLER(handle_bp_command
)
3337 return handle_bp_command_list(CMD_CTX
);
3341 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3342 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3343 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3346 if (strcmp(CMD_ARGV
[2], "hw") == 0) {
3348 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3350 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3353 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3354 } else if (strcmp(CMD_ARGV
[2], "hw_ctx") == 0) {
3356 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], asid
);
3357 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3359 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3364 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3365 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], asid
);
3366 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], length
);
3367 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3370 return ERROR_COMMAND_SYNTAX_ERROR
;
3374 COMMAND_HANDLER(handle_rbp_command
)
3377 return ERROR_COMMAND_SYNTAX_ERROR
;
3380 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3382 struct target
*target
= get_current_target(CMD_CTX
);
3383 breakpoint_remove(target
, addr
);
3388 COMMAND_HANDLER(handle_wp_command
)
3390 struct target
*target
= get_current_target(CMD_CTX
);
3392 if (CMD_ARGC
== 0) {
3393 struct watchpoint
*watchpoint
= target
->watchpoints
;
3395 while (watchpoint
) {
3396 command_print(CMD_CTX
, "address: 0x%8.8" PRIx32
3397 ", len: 0x%8.8" PRIx32
3398 ", r/w/a: %i, value: 0x%8.8" PRIx32
3399 ", mask: 0x%8.8" PRIx32
,
3400 watchpoint
->address
,
3402 (int)watchpoint
->rw
,
3405 watchpoint
= watchpoint
->next
;
3410 enum watchpoint_rw type
= WPT_ACCESS
;
3412 uint32_t length
= 0;
3413 uint32_t data_value
= 0x0;
3414 uint32_t data_mask
= 0xffffffff;
3418 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], data_mask
);
3421 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], data_value
);
3424 switch (CMD_ARGV
[2][0]) {
3435 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV
[2][0]);
3436 return ERROR_COMMAND_SYNTAX_ERROR
;
3440 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3441 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3445 return ERROR_COMMAND_SYNTAX_ERROR
;
3448 int retval
= watchpoint_add(target
, addr
, length
, type
,
3449 data_value
, data_mask
);
3450 if (ERROR_OK
!= retval
)
3451 LOG_ERROR("Failure setting watchpoints");
3456 COMMAND_HANDLER(handle_rwp_command
)
3459 return ERROR_COMMAND_SYNTAX_ERROR
;
3462 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3464 struct target
*target
= get_current_target(CMD_CTX
);
3465 watchpoint_remove(target
, addr
);
3471 * Translate a virtual address to a physical address.
3473 * The low-level target implementation must have logged a detailed error
3474 * which is forwarded to telnet/GDB session.
3476 COMMAND_HANDLER(handle_virt2phys_command
)
3479 return ERROR_COMMAND_SYNTAX_ERROR
;
3482 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], va
);
3485 struct target
*target
= get_current_target(CMD_CTX
);
3486 int retval
= target
->type
->virt2phys(target
, va
, &pa
);
3487 if (retval
== ERROR_OK
)
3488 command_print(CMD_CTX
, "Physical address 0x%08" PRIx32
"", pa
);
3493 static void writeData(FILE *f
, const void *data
, size_t len
)
3495 size_t written
= fwrite(data
, 1, len
, f
);
3497 LOG_ERROR("failed to write %zu bytes: %s", len
, strerror(errno
));
3500 static void writeLong(FILE *f
, int l
)
3503 for (i
= 0; i
< 4; i
++) {
3504 char c
= (l
>> (i
*8))&0xff;
3505 writeData(f
, &c
, 1);
3510 static void writeString(FILE *f
, char *s
)
3512 writeData(f
, s
, strlen(s
));
3515 typedef unsigned char UNIT
[2]; /* unit of profiling */
3517 /* Dump a gmon.out histogram file. */
3518 static void write_gmon(uint32_t *samples
, uint32_t sampleNum
, const char *filename
,
3519 bool with_range
, uint32_t start_address
, uint32_t end_address
)
3522 FILE *f
= fopen(filename
, "w");
3525 writeString(f
, "gmon");
3526 writeLong(f
, 0x00000001); /* Version */
3527 writeLong(f
, 0); /* padding */
3528 writeLong(f
, 0); /* padding */
3529 writeLong(f
, 0); /* padding */
3531 uint8_t zero
= 0; /* GMON_TAG_TIME_HIST */
3532 writeData(f
, &zero
, 1);
3534 /* figure out bucket size */
3538 min
= start_address
;
3543 for (i
= 0; i
< sampleNum
; i
++) {
3544 if (min
> samples
[i
])
3546 if (max
< samples
[i
])
3550 /* max should be (largest sample + 1)
3551 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3555 int addressSpace
= max
- min
;
3556 assert(addressSpace
>= 2);
3558 /* FIXME: What is the reasonable number of buckets?
3559 * The profiling result will be more accurate if there are enough buckets. */
3560 static const uint32_t maxBuckets
= 128 * 1024; /* maximum buckets. */
3561 uint32_t numBuckets
= addressSpace
/ sizeof(UNIT
);
3562 if (numBuckets
> maxBuckets
)
3563 numBuckets
= maxBuckets
;
3564 int *buckets
= malloc(sizeof(int) * numBuckets
);
3565 if (buckets
== NULL
) {
3569 memset(buckets
, 0, sizeof(int) * numBuckets
);
3570 for (i
= 0; i
< sampleNum
; i
++) {
3571 uint32_t address
= samples
[i
];
3573 if ((address
< min
) || (max
<= address
))
3576 long long a
= address
- min
;
3577 long long b
= numBuckets
;
3578 long long c
= addressSpace
;
3579 int index_t
= (a
* b
) / c
; /* danger!!!! int32 overflows */
3583 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3584 writeLong(f
, min
); /* low_pc */
3585 writeLong(f
, max
); /* high_pc */
3586 writeLong(f
, numBuckets
); /* # of buckets */
3587 writeLong(f
, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3588 writeString(f
, "seconds");
3589 for (i
= 0; i
< (15-strlen("seconds")); i
++)
3590 writeData(f
, &zero
, 1);
3591 writeString(f
, "s");
3593 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3595 char *data
= malloc(2 * numBuckets
);
3597 for (i
= 0; i
< numBuckets
; i
++) {
3602 data
[i
* 2] = val
&0xff;
3603 data
[i
* 2 + 1] = (val
>> 8) & 0xff;
3606 writeData(f
, data
, numBuckets
* 2);
3614 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3615 * which will be used as a random sampling of PC */
3616 COMMAND_HANDLER(handle_profile_command
)
3618 struct target
*target
= get_current_target(CMD_CTX
);
3620 if ((CMD_ARGC
!= 2) && (CMD_ARGC
!= 4))
3621 return ERROR_COMMAND_SYNTAX_ERROR
;
3623 const uint32_t MAX_PROFILE_SAMPLE_NUM
= 10000;
3625 uint32_t num_of_samples
;
3626 int retval
= ERROR_OK
;
3628 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], offset
);
3630 uint32_t *samples
= malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM
);
3631 if (samples
== NULL
) {
3632 LOG_ERROR("No memory to store samples.");
3637 * Some cores let us sample the PC without the
3638 * annoying halt/resume step; for example, ARMv7 PCSR.
3639 * Provide a way to use that more efficient mechanism.
3641 retval
= target_profiling(target
, samples
, MAX_PROFILE_SAMPLE_NUM
,
3642 &num_of_samples
, offset
);
3643 if (retval
!= ERROR_OK
) {