9416b25ba6bcd9c8a05bc910b28cd2fd4b27231d
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106
107 static struct target_type *target_types[] = {
108 &arm7tdmi_target,
109 &arm9tdmi_target,
110 &arm920t_target,
111 &arm720t_target,
112 &arm966e_target,
113 &arm946e_target,
114 &arm926ejs_target,
115 &fa526_target,
116 &feroceon_target,
117 &dragonite_target,
118 &xscale_target,
119 &cortexm_target,
120 &cortexa8_target,
121 &cortexr4_target,
122 &arm11_target,
123 &mips_m4k_target,
124 &avr_target,
125 &dsp563xx_target,
126 &dsp5680xx_target,
127 &testee_target,
128 &avr32_ap7k_target,
129 &hla_target,
130 &nds32_v2_target,
131 &nds32_v3_target,
132 &nds32_v3m_target,
133 &or1k_target,
134 &quark_x10xx_target,
135 NULL,
136 };
137
138 struct target *all_targets;
139 static struct target_event_callback *target_event_callbacks;
140 static struct target_timer_callback *target_timer_callbacks;
141 static const int polling_interval = 100;
142
143 static const Jim_Nvp nvp_assert[] = {
144 { .name = "assert", NVP_ASSERT },
145 { .name = "deassert", NVP_DEASSERT },
146 { .name = "T", NVP_ASSERT },
147 { .name = "F", NVP_DEASSERT },
148 { .name = "t", NVP_ASSERT },
149 { .name = "f", NVP_DEASSERT },
150 { .name = NULL, .value = -1 }
151 };
152
153 static const Jim_Nvp nvp_error_target[] = {
154 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
155 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
156 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
157 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
158 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
159 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
160 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
161 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
162 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
163 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
164 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
165 { .value = -1, .name = NULL }
166 };
167
168 static const char *target_strerror_safe(int err)
169 {
170 const Jim_Nvp *n;
171
172 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
173 if (n->name == NULL)
174 return "unknown";
175 else
176 return n->name;
177 }
178
179 static const Jim_Nvp nvp_target_event[] = {
180
181 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
182 { .value = TARGET_EVENT_HALTED, .name = "halted" },
183 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
184 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
186
187 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
188 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
189
190 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
191 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
192 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
193 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
194 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
195 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
196 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
197 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
198 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
199 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
200 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
201 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
202
203 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
204 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
205
206 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
207 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
208
209 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
210 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
211
212 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
213 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
214
215 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
216 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
217
218 { .name = NULL, .value = -1 }
219 };
220
221 static const Jim_Nvp nvp_target_state[] = {
222 { .name = "unknown", .value = TARGET_UNKNOWN },
223 { .name = "running", .value = TARGET_RUNNING },
224 { .name = "halted", .value = TARGET_HALTED },
225 { .name = "reset", .value = TARGET_RESET },
226 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
227 { .name = NULL, .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_target_debug_reason[] = {
231 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
232 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
233 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
234 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
235 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
236 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
237 { .name = "program-exit" , .value = DBG_REASON_EXIT },
238 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
239 { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_endian[] = {
243 { .name = "big", .value = TARGET_BIG_ENDIAN },
244 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
245 { .name = "be", .value = TARGET_BIG_ENDIAN },
246 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
247 { .name = NULL, .value = -1 },
248 };
249
250 static const Jim_Nvp nvp_reset_modes[] = {
251 { .name = "unknown", .value = RESET_UNKNOWN },
252 { .name = "run" , .value = RESET_RUN },
253 { .name = "halt" , .value = RESET_HALT },
254 { .name = "init" , .value = RESET_INIT },
255 { .name = NULL , .value = -1 },
256 };
257
258 const char *debug_reason_name(struct target *t)
259 {
260 const char *cp;
261
262 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
263 t->debug_reason)->name;
264 if (!cp) {
265 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
266 cp = "(*BUG*unknown*BUG*)";
267 }
268 return cp;
269 }
270
271 const char *target_state_name(struct target *t)
272 {
273 const char *cp;
274 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
275 if (!cp) {
276 LOG_ERROR("Invalid target state: %d", (int)(t->state));
277 cp = "(*BUG*unknown*BUG*)";
278 }
279 return cp;
280 }
281
282 /* determine the number of the new target */
283 static int new_target_number(void)
284 {
285 struct target *t;
286 int x;
287
288 /* number is 0 based */
289 x = -1;
290 t = all_targets;
291 while (t) {
292 if (x < t->target_number)
293 x = t->target_number;
294 t = t->next;
295 }
296 return x + 1;
297 }
298
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
301 {
302 if (target->endianness == TARGET_LITTLE_ENDIAN)
303 return le_to_h_u64(buffer);
304 else
305 return be_to_h_u64(buffer);
306 }
307
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
310 {
311 if (target->endianness == TARGET_LITTLE_ENDIAN)
312 return le_to_h_u32(buffer);
313 else
314 return be_to_h_u32(buffer);
315 }
316
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
319 {
320 if (target->endianness == TARGET_LITTLE_ENDIAN)
321 return le_to_h_u24(buffer);
322 else
323 return be_to_h_u24(buffer);
324 }
325
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
328 {
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 return le_to_h_u16(buffer);
331 else
332 return be_to_h_u16(buffer);
333 }
334
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
337 {
338 return *buffer & 0x0ff;
339 }
340
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
343 {
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 h_u64_to_le(buffer, value);
346 else
347 h_u64_to_be(buffer, value);
348 }
349
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
352 {
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 h_u32_to_le(buffer, value);
355 else
356 h_u32_to_be(buffer, value);
357 }
358
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
361 {
362 if (target->endianness == TARGET_LITTLE_ENDIAN)
363 h_u24_to_le(buffer, value);
364 else
365 h_u24_to_be(buffer, value);
366 }
367
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
370 {
371 if (target->endianness == TARGET_LITTLE_ENDIAN)
372 h_u16_to_le(buffer, value);
373 else
374 h_u16_to_be(buffer, value);
375 }
376
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
379 {
380 *buffer = value;
381 }
382
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
385 {
386 uint32_t i;
387 for (i = 0; i < count; i++)
388 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
389 }
390
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
393 {
394 uint32_t i;
395 for (i = 0; i < count; i++)
396 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
397 }
398
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
401 {
402 uint32_t i;
403 for (i = 0; i < count; i++)
404 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
409 {
410 uint32_t i;
411 for (i = 0; i < count; i++)
412 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
417 {
418 uint32_t i;
419 for (i = 0; i < count; i++)
420 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
425 {
426 uint32_t i;
427 for (i = 0; i < count; i++)
428 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
429 }
430
431 /* return a pointer to a configured target; id is name or number */
432 struct target *get_target(const char *id)
433 {
434 struct target *target;
435
436 /* try as tcltarget name */
437 for (target = all_targets; target; target = target->next) {
438 if (target_name(target) == NULL)
439 continue;
440 if (strcmp(id, target_name(target)) == 0)
441 return target;
442 }
443
444 /* It's OK to remove this fallback sometime after August 2010 or so */
445
446 /* no match, try as number */
447 unsigned num;
448 if (parse_uint(id, &num) != ERROR_OK)
449 return NULL;
450
451 for (target = all_targets; target; target = target->next) {
452 if (target->target_number == (int)num) {
453 LOG_WARNING("use '%s' as target identifier, not '%u'",
454 target_name(target), num);
455 return target;
456 }
457 }
458
459 return NULL;
460 }
461
462 /* returns a pointer to the n-th configured target */
463 static struct target *get_target_by_num(int num)
464 {
465 struct target *target = all_targets;
466
467 while (target) {
468 if (target->target_number == num)
469 return target;
470 target = target->next;
471 }
472
473 return NULL;
474 }
475
476 struct target *get_current_target(struct command_context *cmd_ctx)
477 {
478 struct target *target = get_target_by_num(cmd_ctx->current_target);
479
480 if (target == NULL) {
481 LOG_ERROR("BUG: current_target out of bounds");
482 exit(-1);
483 }
484
485 return target;
486 }
487
488 int target_poll(struct target *target)
489 {
490 int retval;
491
492 /* We can't poll until after examine */
493 if (!target_was_examined(target)) {
494 /* Fail silently lest we pollute the log */
495 return ERROR_FAIL;
496 }
497
498 retval = target->type->poll(target);
499 if (retval != ERROR_OK)
500 return retval;
501
502 if (target->halt_issued) {
503 if (target->state == TARGET_HALTED)
504 target->halt_issued = false;
505 else {
506 long long t = timeval_ms() - target->halt_issued_time;
507 if (t > DEFAULT_HALT_TIMEOUT) {
508 target->halt_issued = false;
509 LOG_INFO("Halt timed out, wake up GDB.");
510 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
511 }
512 }
513 }
514
515 return ERROR_OK;
516 }
517
518 int target_halt(struct target *target)
519 {
520 int retval;
521 /* We can't poll until after examine */
522 if (!target_was_examined(target)) {
523 LOG_ERROR("Target not examined yet");
524 return ERROR_FAIL;
525 }
526
527 retval = target->type->halt(target);
528 if (retval != ERROR_OK)
529 return retval;
530
531 target->halt_issued = true;
532 target->halt_issued_time = timeval_ms();
533
534 return ERROR_OK;
535 }
536
537 /**
538 * Make the target (re)start executing using its saved execution
539 * context (possibly with some modifications).
540 *
541 * @param target Which target should start executing.
542 * @param current True to use the target's saved program counter instead
543 * of the address parameter
544 * @param address Optionally used as the program counter.
545 * @param handle_breakpoints True iff breakpoints at the resumption PC
546 * should be skipped. (For example, maybe execution was stopped by
547 * such a breakpoint, in which case it would be counterprodutive to
548 * let it re-trigger.
549 * @param debug_execution False if all working areas allocated by OpenOCD
550 * should be released and/or restored to their original contents.
551 * (This would for example be true to run some downloaded "helper"
552 * algorithm code, which resides in one such working buffer and uses
553 * another for data storage.)
554 *
555 * @todo Resolve the ambiguity about what the "debug_execution" flag
556 * signifies. For example, Target implementations don't agree on how
557 * it relates to invalidation of the register cache, or to whether
558 * breakpoints and watchpoints should be enabled. (It would seem wrong
559 * to enable breakpoints when running downloaded "helper" algorithms
560 * (debug_execution true), since the breakpoints would be set to match
561 * target firmware being debugged, not the helper algorithm.... and
562 * enabling them could cause such helpers to malfunction (for example,
563 * by overwriting data with a breakpoint instruction. On the other
564 * hand the infrastructure for running such helpers might use this
565 * procedure but rely on hardware breakpoint to detect termination.)
566 */
567 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
568 {
569 int retval;
570
571 /* We can't poll until after examine */
572 if (!target_was_examined(target)) {
573 LOG_ERROR("Target not examined yet");
574 return ERROR_FAIL;
575 }
576
577 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
578
579 /* note that resume *must* be asynchronous. The CPU can halt before
580 * we poll. The CPU can even halt at the current PC as a result of
581 * a software breakpoint being inserted by (a bug?) the application.
582 */
583 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
584 if (retval != ERROR_OK)
585 return retval;
586
587 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
588
589 return retval;
590 }
591
592 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
593 {
594 char buf[100];
595 int retval;
596 Jim_Nvp *n;
597 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
598 if (n->name == NULL) {
599 LOG_ERROR("invalid reset mode");
600 return ERROR_FAIL;
601 }
602
603 /* disable polling during reset to make reset event scripts
604 * more predictable, i.e. dr/irscan & pathmove in events will
605 * not have JTAG operations injected into the middle of a sequence.
606 */
607 bool save_poll = jtag_poll_get_enabled();
608
609 jtag_poll_set_enabled(false);
610
611 sprintf(buf, "ocd_process_reset %s", n->name);
612 retval = Jim_Eval(cmd_ctx->interp, buf);
613
614 jtag_poll_set_enabled(save_poll);
615
616 if (retval != JIM_OK) {
617 Jim_MakeErrorMessage(cmd_ctx->interp);
618 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
619 return ERROR_FAIL;
620 }
621
622 /* We want any events to be processed before the prompt */
623 retval = target_call_timer_callbacks_now();
624
625 struct target *target;
626 for (target = all_targets; target; target = target->next) {
627 target->type->check_reset(target);
628 target->running_alg = false;
629 }
630
631 return retval;
632 }
633
634 static int identity_virt2phys(struct target *target,
635 uint32_t virtual, uint32_t *physical)
636 {
637 *physical = virtual;
638 return ERROR_OK;
639 }
640
641 static int no_mmu(struct target *target, int *enabled)
642 {
643 *enabled = 0;
644 return ERROR_OK;
645 }
646
647 static int default_examine(struct target *target)
648 {
649 target_set_examined(target);
650 return ERROR_OK;
651 }
652
653 /* no check by default */
654 static int default_check_reset(struct target *target)
655 {
656 return ERROR_OK;
657 }
658
659 int target_examine_one(struct target *target)
660 {
661 return target->type->examine(target);
662 }
663
664 static int jtag_enable_callback(enum jtag_event event, void *priv)
665 {
666 struct target *target = priv;
667
668 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
669 return ERROR_OK;
670
671 jtag_unregister_event_callback(jtag_enable_callback, target);
672
673 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
674
675 int retval = target_examine_one(target);
676 if (retval != ERROR_OK)
677 return retval;
678
679 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
680
681 return retval;
682 }
683
684 /* Targets that correctly implement init + examine, i.e.
685 * no communication with target during init:
686 *
687 * XScale
688 */
689 int target_examine(void)
690 {
691 int retval = ERROR_OK;
692 struct target *target;
693
694 for (target = all_targets; target; target = target->next) {
695 /* defer examination, but don't skip it */
696 if (!target->tap->enabled) {
697 jtag_register_event_callback(jtag_enable_callback,
698 target);
699 continue;
700 }
701
702 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704 retval = target_examine_one(target);
705 if (retval != ERROR_OK)
706 return retval;
707
708 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709 }
710 return retval;
711 }
712
713 const char *target_type_name(struct target *target)
714 {
715 return target->type->name;
716 }
717
718 static int target_soft_reset_halt(struct target *target)
719 {
720 if (!target_was_examined(target)) {
721 LOG_ERROR("Target not examined yet");
722 return ERROR_FAIL;
723 }
724 if (!target->type->soft_reset_halt) {
725 LOG_ERROR("Target %s does not support soft_reset_halt",
726 target_name(target));
727 return ERROR_FAIL;
728 }
729 return target->type->soft_reset_halt(target);
730 }
731
732 /**
733 * Downloads a target-specific native code algorithm to the target,
734 * and executes it. * Note that some targets may need to set up, enable,
735 * and tear down a breakpoint (hard or * soft) to detect algorithm
736 * termination, while others may support lower overhead schemes where
737 * soft breakpoints embedded in the algorithm automatically terminate the
738 * algorithm.
739 *
740 * @param target used to run the algorithm
741 * @param arch_info target-specific description of the algorithm.
742 */
743 int target_run_algorithm(struct target *target,
744 int num_mem_params, struct mem_param *mem_params,
745 int num_reg_params, struct reg_param *reg_param,
746 uint32_t entry_point, uint32_t exit_point,
747 int timeout_ms, void *arch_info)
748 {
749 int retval = ERROR_FAIL;
750
751 if (!target_was_examined(target)) {
752 LOG_ERROR("Target not examined yet");
753 goto done;
754 }
755 if (!target->type->run_algorithm) {
756 LOG_ERROR("Target type '%s' does not support %s",
757 target_type_name(target), __func__);
758 goto done;
759 }
760
761 target->running_alg = true;
762 retval = target->type->run_algorithm(target,
763 num_mem_params, mem_params,
764 num_reg_params, reg_param,
765 entry_point, exit_point, timeout_ms, arch_info);
766 target->running_alg = false;
767
768 done:
769 return retval;
770 }
771
772 /**
773 * Downloads a target-specific native code algorithm to the target,
774 * executes and leaves it running.
775 *
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
778 */
779 int target_start_algorithm(struct target *target,
780 int num_mem_params, struct mem_param *mem_params,
781 int num_reg_params, struct reg_param *reg_params,
782 uint32_t entry_point, uint32_t exit_point,
783 void *arch_info)
784 {
785 int retval = ERROR_FAIL;
786
787 if (!target_was_examined(target)) {
788 LOG_ERROR("Target not examined yet");
789 goto done;
790 }
791 if (!target->type->start_algorithm) {
792 LOG_ERROR("Target type '%s' does not support %s",
793 target_type_name(target), __func__);
794 goto done;
795 }
796 if (target->running_alg) {
797 LOG_ERROR("Target is already running an algorithm");
798 goto done;
799 }
800
801 target->running_alg = true;
802 retval = target->type->start_algorithm(target,
803 num_mem_params, mem_params,
804 num_reg_params, reg_params,
805 entry_point, exit_point, arch_info);
806
807 done:
808 return retval;
809 }
810
811 /**
812 * Waits for an algorithm started with target_start_algorithm() to complete.
813 *
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
816 */
817 int target_wait_algorithm(struct target *target,
818 int num_mem_params, struct mem_param *mem_params,
819 int num_reg_params, struct reg_param *reg_params,
820 uint32_t exit_point, int timeout_ms,
821 void *arch_info)
822 {
823 int retval = ERROR_FAIL;
824
825 if (!target->type->wait_algorithm) {
826 LOG_ERROR("Target type '%s' does not support %s",
827 target_type_name(target), __func__);
828 goto done;
829 }
830 if (!target->running_alg) {
831 LOG_ERROR("Target is not running an algorithm");
832 goto done;
833 }
834
835 retval = target->type->wait_algorithm(target,
836 num_mem_params, mem_params,
837 num_reg_params, reg_params,
838 exit_point, timeout_ms, arch_info);
839 if (retval != ERROR_TARGET_TIMEOUT)
840 target->running_alg = false;
841
842 done:
843 return retval;
844 }
845
846 /**
847 * Executes a target-specific native code algorithm in the target.
848 * It differs from target_run_algorithm in that the algorithm is asynchronous.
849 * Because of this it requires an compliant algorithm:
850 * see contrib/loaders/flash/stm32f1x.S for example.
851 *
852 * @param target used to run the algorithm
853 */
854
855 int target_run_flash_async_algorithm(struct target *target,
856 const uint8_t *buffer, uint32_t count, int block_size,
857 int num_mem_params, struct mem_param *mem_params,
858 int num_reg_params, struct reg_param *reg_params,
859 uint32_t buffer_start, uint32_t buffer_size,
860 uint32_t entry_point, uint32_t exit_point, void *arch_info)
861 {
862 int retval;
863 int timeout = 0;
864
865 /* Set up working area. First word is write pointer, second word is read pointer,
866 * rest is fifo data area. */
867 uint32_t wp_addr = buffer_start;
868 uint32_t rp_addr = buffer_start + 4;
869 uint32_t fifo_start_addr = buffer_start + 8;
870 uint32_t fifo_end_addr = buffer_start + buffer_size;
871
872 uint32_t wp = fifo_start_addr;
873 uint32_t rp = fifo_start_addr;
874
875 /* validate block_size is 2^n */
876 assert(!block_size || !(block_size & (block_size - 1)));
877
878 retval = target_write_u32(target, wp_addr, wp);
879 if (retval != ERROR_OK)
880 return retval;
881 retval = target_write_u32(target, rp_addr, rp);
882 if (retval != ERROR_OK)
883 return retval;
884
885 /* Start up algorithm on target and let it idle while writing the first chunk */
886 retval = target_start_algorithm(target, num_mem_params, mem_params,
887 num_reg_params, reg_params,
888 entry_point,
889 exit_point,
890 arch_info);
891
892 if (retval != ERROR_OK) {
893 LOG_ERROR("error starting target flash write algorithm");
894 return retval;
895 }
896
897 while (count > 0) {
898
899 retval = target_read_u32(target, rp_addr, &rp);
900 if (retval != ERROR_OK) {
901 LOG_ERROR("failed to get read pointer");
902 break;
903 }
904
905 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
906
907 if (rp == 0) {
908 LOG_ERROR("flash write algorithm aborted by target");
909 retval = ERROR_FLASH_OPERATION_FAILED;
910 break;
911 }
912
913 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
914 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
915 break;
916 }
917
918 /* Count the number of bytes available in the fifo without
919 * crossing the wrap around. Make sure to not fill it completely,
920 * because that would make wp == rp and that's the empty condition. */
921 uint32_t thisrun_bytes;
922 if (rp > wp)
923 thisrun_bytes = rp - wp - block_size;
924 else if (rp > fifo_start_addr)
925 thisrun_bytes = fifo_end_addr - wp;
926 else
927 thisrun_bytes = fifo_end_addr - wp - block_size;
928
929 if (thisrun_bytes == 0) {
930 /* Throttle polling a bit if transfer is (much) faster than flash
931 * programming. The exact delay shouldn't matter as long as it's
932 * less than buffer size / flash speed. This is very unlikely to
933 * run when using high latency connections such as USB. */
934 alive_sleep(10);
935
936 /* to stop an infinite loop on some targets check and increment a timeout
937 * this issue was observed on a stellaris using the new ICDI interface */
938 if (timeout++ >= 500) {
939 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940 return ERROR_FLASH_OPERATION_FAILED;
941 }
942 continue;
943 }
944
945 /* reset our timeout */
946 timeout = 0;
947
948 /* Limit to the amount of data we actually want to write */
949 if (thisrun_bytes > count * block_size)
950 thisrun_bytes = count * block_size;
951
952 /* Write data to fifo */
953 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
954 if (retval != ERROR_OK)
955 break;
956
957 /* Update counters and wrap write pointer */
958 buffer += thisrun_bytes;
959 count -= thisrun_bytes / block_size;
960 wp += thisrun_bytes;
961 if (wp >= fifo_end_addr)
962 wp = fifo_start_addr;
963
964 /* Store updated write pointer to target */
965 retval = target_write_u32(target, wp_addr, wp);
966 if (retval != ERROR_OK)
967 break;
968 }
969
970 if (retval != ERROR_OK) {
971 /* abort flash write algorithm on target */
972 target_write_u32(target, wp_addr, 0);
973 }
974
975 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
976 num_reg_params, reg_params,
977 exit_point,
978 10000,
979 arch_info);
980
981 if (retval2 != ERROR_OK) {
982 LOG_ERROR("error waiting for target flash write algorithm");
983 retval = retval2;
984 }
985
986 return retval;
987 }
988
989 int target_read_memory(struct target *target,
990 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
991 {
992 if (!target_was_examined(target)) {
993 LOG_ERROR("Target not examined yet");
994 return ERROR_FAIL;
995 }
996 return target->type->read_memory(target, address, size, count, buffer);
997 }
998
999 int target_read_phys_memory(struct target *target,
1000 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1001 {
1002 if (!target_was_examined(target)) {
1003 LOG_ERROR("Target not examined yet");
1004 return ERROR_FAIL;
1005 }
1006 return target->type->read_phys_memory(target, address, size, count, buffer);
1007 }
1008
1009 int target_write_memory(struct target *target,
1010 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1011 {
1012 if (!target_was_examined(target)) {
1013 LOG_ERROR("Target not examined yet");
1014 return ERROR_FAIL;
1015 }
1016 return target->type->write_memory(target, address, size, count, buffer);
1017 }
1018
1019 int target_write_phys_memory(struct target *target,
1020 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1021 {
1022 if (!target_was_examined(target)) {
1023 LOG_ERROR("Target not examined yet");
1024 return ERROR_FAIL;
1025 }
1026 return target->type->write_phys_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_add_breakpoint(struct target *target,
1030 struct breakpoint *breakpoint)
1031 {
1032 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1033 LOG_WARNING("target %s is not halted", target_name(target));
1034 return ERROR_TARGET_NOT_HALTED;
1035 }
1036 return target->type->add_breakpoint(target, breakpoint);
1037 }
1038
1039 int target_add_context_breakpoint(struct target *target,
1040 struct breakpoint *breakpoint)
1041 {
1042 if (target->state != TARGET_HALTED) {
1043 LOG_WARNING("target %s is not halted", target_name(target));
1044 return ERROR_TARGET_NOT_HALTED;
1045 }
1046 return target->type->add_context_breakpoint(target, breakpoint);
1047 }
1048
1049 int target_add_hybrid_breakpoint(struct target *target,
1050 struct breakpoint *breakpoint)
1051 {
1052 if (target->state != TARGET_HALTED) {
1053 LOG_WARNING("target %s is not halted", target_name(target));
1054 return ERROR_TARGET_NOT_HALTED;
1055 }
1056 return target->type->add_hybrid_breakpoint(target, breakpoint);
1057 }
1058
1059 int target_remove_breakpoint(struct target *target,
1060 struct breakpoint *breakpoint)
1061 {
1062 return target->type->remove_breakpoint(target, breakpoint);
1063 }
1064
1065 int target_add_watchpoint(struct target *target,
1066 struct watchpoint *watchpoint)
1067 {
1068 if (target->state != TARGET_HALTED) {
1069 LOG_WARNING("target %s is not halted", target_name(target));
1070 return ERROR_TARGET_NOT_HALTED;
1071 }
1072 return target->type->add_watchpoint(target, watchpoint);
1073 }
1074 int target_remove_watchpoint(struct target *target,
1075 struct watchpoint *watchpoint)
1076 {
1077 return target->type->remove_watchpoint(target, watchpoint);
1078 }
1079 int target_hit_watchpoint(struct target *target,
1080 struct watchpoint **hit_watchpoint)
1081 {
1082 if (target->state != TARGET_HALTED) {
1083 LOG_WARNING("target %s is not halted", target->cmd_name);
1084 return ERROR_TARGET_NOT_HALTED;
1085 }
1086
1087 if (target->type->hit_watchpoint == NULL) {
1088 /* For backward compatible, if hit_watchpoint is not implemented,
1089 * return ERROR_FAIL such that gdb_server will not take the nonsense
1090 * information. */
1091 return ERROR_FAIL;
1092 }
1093
1094 return target->type->hit_watchpoint(target, hit_watchpoint);
1095 }
1096
1097 int target_get_gdb_reg_list(struct target *target,
1098 struct reg **reg_list[], int *reg_list_size,
1099 enum target_register_class reg_class)
1100 {
1101 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1102 }
1103 int target_step(struct target *target,
1104 int current, uint32_t address, int handle_breakpoints)
1105 {
1106 return target->type->step(target, current, address, handle_breakpoints);
1107 }
1108
1109 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1110 {
1111 if (target->state != TARGET_HALTED) {
1112 LOG_WARNING("target %s is not halted", target->cmd_name);
1113 return ERROR_TARGET_NOT_HALTED;
1114 }
1115 return target->type->get_gdb_fileio_info(target, fileio_info);
1116 }
1117
1118 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1119 {
1120 if (target->state != TARGET_HALTED) {
1121 LOG_WARNING("target %s is not halted", target->cmd_name);
1122 return ERROR_TARGET_NOT_HALTED;
1123 }
1124 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1125 }
1126
1127 int target_profiling(struct target *target, uint32_t *samples,
1128 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1129 {
1130 if (target->state != TARGET_HALTED) {
1131 LOG_WARNING("target %s is not halted", target->cmd_name);
1132 return ERROR_TARGET_NOT_HALTED;
1133 }
1134 return target->type->profiling(target, samples, max_num_samples,
1135 num_samples, seconds);
1136 }
1137
1138 /**
1139 * Reset the @c examined flag for the given target.
1140 * Pure paranoia -- targets are zeroed on allocation.
1141 */
1142 static void target_reset_examined(struct target *target)
1143 {
1144 target->examined = false;
1145 }
1146
1147 static int err_read_phys_memory(struct target *target, uint32_t address,
1148 uint32_t size, uint32_t count, uint8_t *buffer)
1149 {
1150 LOG_ERROR("Not implemented: %s", __func__);
1151 return ERROR_FAIL;
1152 }
1153
1154 static int err_write_phys_memory(struct target *target, uint32_t address,
1155 uint32_t size, uint32_t count, const uint8_t *buffer)
1156 {
1157 LOG_ERROR("Not implemented: %s", __func__);
1158 return ERROR_FAIL;
1159 }
1160
1161 static int handle_target(void *priv);
1162
1163 static int target_init_one(struct command_context *cmd_ctx,
1164 struct target *target)
1165 {
1166 target_reset_examined(target);
1167
1168 struct target_type *type = target->type;
1169 if (type->examine == NULL)
1170 type->examine = default_examine;
1171
1172 if (type->check_reset == NULL)
1173 type->check_reset = default_check_reset;
1174
1175 assert(type->init_target != NULL);
1176
1177 int retval = type->init_target(cmd_ctx, target);
1178 if (ERROR_OK != retval) {
1179 LOG_ERROR("target '%s' init failed", target_name(target));
1180 return retval;
1181 }
1182
1183 /* Sanity-check MMU support ... stub in what we must, to help
1184 * implement it in stages, but warn if we need to do so.
1185 */
1186 if (type->mmu) {
1187 if (type->write_phys_memory == NULL) {
1188 LOG_ERROR("type '%s' is missing write_phys_memory",
1189 type->name);
1190 type->write_phys_memory = err_write_phys_memory;
1191 }
1192 if (type->read_phys_memory == NULL) {
1193 LOG_ERROR("type '%s' is missing read_phys_memory",
1194 type->name);
1195 type->read_phys_memory = err_read_phys_memory;
1196 }
1197 if (type->virt2phys == NULL) {
1198 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1199 type->virt2phys = identity_virt2phys;
1200 }
1201 } else {
1202 /* Make sure no-MMU targets all behave the same: make no
1203 * distinction between physical and virtual addresses, and
1204 * ensure that virt2phys() is always an identity mapping.
1205 */
1206 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1207 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1208
1209 type->mmu = no_mmu;
1210 type->write_phys_memory = type->write_memory;
1211 type->read_phys_memory = type->read_memory;
1212 type->virt2phys = identity_virt2phys;
1213 }
1214
1215 if (target->type->read_buffer == NULL)
1216 target->type->read_buffer = target_read_buffer_default;
1217
1218 if (target->type->write_buffer == NULL)
1219 target->type->write_buffer = target_write_buffer_default;
1220
1221 if (target->type->get_gdb_fileio_info == NULL)
1222 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1223
1224 if (target->type->gdb_fileio_end == NULL)
1225 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1226
1227 if (target->type->profiling == NULL)
1228 target->type->profiling = target_profiling_default;
1229
1230 return ERROR_OK;
1231 }
1232
1233 static int target_init(struct command_context *cmd_ctx)
1234 {
1235 struct target *target;
1236 int retval;
1237
1238 for (target = all_targets; target; target = target->next) {
1239 retval = target_init_one(cmd_ctx, target);
1240 if (ERROR_OK != retval)
1241 return retval;
1242 }
1243
1244 if (!all_targets)
1245 return ERROR_OK;
1246
1247 retval = target_register_user_commands(cmd_ctx);
1248 if (ERROR_OK != retval)
1249 return retval;
1250
1251 retval = target_register_timer_callback(&handle_target,
1252 polling_interval, 1, cmd_ctx->interp);
1253 if (ERROR_OK != retval)
1254 return retval;
1255
1256 return ERROR_OK;
1257 }
1258
1259 COMMAND_HANDLER(handle_target_init_command)
1260 {
1261 int retval;
1262
1263 if (CMD_ARGC != 0)
1264 return ERROR_COMMAND_SYNTAX_ERROR;
1265
1266 static bool target_initialized;
1267 if (target_initialized) {
1268 LOG_INFO("'target init' has already been called");
1269 return ERROR_OK;
1270 }
1271 target_initialized = true;
1272
1273 retval = command_run_line(CMD_CTX, "init_targets");
1274 if (ERROR_OK != retval)
1275 return retval;
1276
1277 retval = command_run_line(CMD_CTX, "init_target_events");
1278 if (ERROR_OK != retval)
1279 return retval;
1280
1281 retval = command_run_line(CMD_CTX, "init_board");
1282 if (ERROR_OK != retval)
1283 return retval;
1284
1285 LOG_DEBUG("Initializing targets...");
1286 return target_init(CMD_CTX);
1287 }
1288
1289 int target_register_event_callback(int (*callback)(struct target *target,
1290 enum target_event event, void *priv), void *priv)
1291 {
1292 struct target_event_callback **callbacks_p = &target_event_callbacks;
1293
1294 if (callback == NULL)
1295 return ERROR_COMMAND_SYNTAX_ERROR;
1296
1297 if (*callbacks_p) {
1298 while ((*callbacks_p)->next)
1299 callbacks_p = &((*callbacks_p)->next);
1300 callbacks_p = &((*callbacks_p)->next);
1301 }
1302
1303 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1304 (*callbacks_p)->callback = callback;
1305 (*callbacks_p)->priv = priv;
1306 (*callbacks_p)->next = NULL;
1307
1308 return ERROR_OK;
1309 }
1310
1311 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1312 {
1313 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1314 struct timeval now;
1315
1316 if (callback == NULL)
1317 return ERROR_COMMAND_SYNTAX_ERROR;
1318
1319 if (*callbacks_p) {
1320 while ((*callbacks_p)->next)
1321 callbacks_p = &((*callbacks_p)->next);
1322 callbacks_p = &((*callbacks_p)->next);
1323 }
1324
1325 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1326 (*callbacks_p)->callback = callback;
1327 (*callbacks_p)->periodic = periodic;
1328 (*callbacks_p)->time_ms = time_ms;
1329
1330 gettimeofday(&now, NULL);
1331 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1332 time_ms -= (time_ms % 1000);
1333 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1334 if ((*callbacks_p)->when.tv_usec > 1000000) {
1335 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1336 (*callbacks_p)->when.tv_sec += 1;
1337 }
1338
1339 (*callbacks_p)->priv = priv;
1340 (*callbacks_p)->next = NULL;
1341
1342 return ERROR_OK;
1343 }
1344
1345 int target_unregister_event_callback(int (*callback)(struct target *target,
1346 enum target_event event, void *priv), void *priv)
1347 {
1348 struct target_event_callback **p = &target_event_callbacks;
1349 struct target_event_callback *c = target_event_callbacks;
1350
1351 if (callback == NULL)
1352 return ERROR_COMMAND_SYNTAX_ERROR;
1353
1354 while (c) {
1355 struct target_event_callback *next = c->next;
1356 if ((c->callback == callback) && (c->priv == priv)) {
1357 *p = next;
1358 free(c);
1359 return ERROR_OK;
1360 } else
1361 p = &(c->next);
1362 c = next;
1363 }
1364
1365 return ERROR_OK;
1366 }
1367
1368 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1369 {
1370 struct target_timer_callback **p = &target_timer_callbacks;
1371 struct target_timer_callback *c = target_timer_callbacks;
1372
1373 if (callback == NULL)
1374 return ERROR_COMMAND_SYNTAX_ERROR;
1375
1376 while (c) {
1377 struct target_timer_callback *next = c->next;
1378 if ((c->callback == callback) && (c->priv == priv)) {
1379 *p = next;
1380 free(c);
1381 return ERROR_OK;
1382 } else
1383 p = &(c->next);
1384 c = next;
1385 }
1386
1387 return ERROR_OK;
1388 }
1389
1390 int target_call_event_callbacks(struct target *target, enum target_event event)
1391 {
1392 struct target_event_callback *callback = target_event_callbacks;
1393 struct target_event_callback *next_callback;
1394
1395 if (event == TARGET_EVENT_HALTED) {
1396 /* execute early halted first */
1397 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1398 }
1399
1400 LOG_DEBUG("target event %i (%s)", event,
1401 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1402
1403 target_handle_event(target, event);
1404
1405 while (callback) {
1406 next_callback = callback->next;
1407 callback->callback(target, event, callback->priv);
1408 callback = next_callback;
1409 }
1410
1411 return ERROR_OK;
1412 }
1413
1414 static int target_timer_callback_periodic_restart(
1415 struct target_timer_callback *cb, struct timeval *now)
1416 {
1417 int time_ms = cb->time_ms;
1418 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1419 time_ms -= (time_ms % 1000);
1420 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1421 if (cb->when.tv_usec > 1000000) {
1422 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1423 cb->when.tv_sec += 1;
1424 }
1425 return ERROR_OK;
1426 }
1427
1428 static int target_call_timer_callback(struct target_timer_callback *cb,
1429 struct timeval *now)
1430 {
1431 cb->callback(cb->priv);
1432
1433 if (cb->periodic)
1434 return target_timer_callback_periodic_restart(cb, now);
1435
1436 return target_unregister_timer_callback(cb->callback, cb->priv);
1437 }
1438
1439 static int target_call_timer_callbacks_check_time(int checktime)
1440 {
1441 keep_alive();
1442
1443 struct timeval now;
1444 gettimeofday(&now, NULL);
1445
1446 struct target_timer_callback *callback = target_timer_callbacks;
1447 while (callback) {
1448 /* cleaning up may unregister and free this callback */
1449 struct target_timer_callback *next_callback = callback->next;
1450
1451 bool call_it = callback->callback &&
1452 ((!checktime && callback->periodic) ||
1453 now.tv_sec > callback->when.tv_sec ||
1454 (now.tv_sec == callback->when.tv_sec &&
1455 now.tv_usec >= callback->when.tv_usec));
1456
1457 if (call_it) {
1458 int retval = target_call_timer_callback(callback, &now);
1459 if (retval != ERROR_OK)
1460 return retval;
1461 }
1462
1463 callback = next_callback;
1464 }
1465
1466 return ERROR_OK;
1467 }
1468
1469 int target_call_timer_callbacks(void)
1470 {
1471 return target_call_timer_callbacks_check_time(1);
1472 }
1473
1474 /* invoke periodic callbacks immediately */
1475 int target_call_timer_callbacks_now(void)
1476 {
1477 return target_call_timer_callbacks_check_time(0);
1478 }
1479
1480 /* Prints the working area layout for debug purposes */
1481 static void print_wa_layout(struct target *target)
1482 {
1483 struct working_area *c = target->working_areas;
1484
1485 while (c) {
1486 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1487 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1488 c->address, c->address + c->size - 1, c->size);
1489 c = c->next;
1490 }
1491 }
1492
1493 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1494 static void target_split_working_area(struct working_area *area, uint32_t size)
1495 {
1496 assert(area->free); /* Shouldn't split an allocated area */
1497 assert(size <= area->size); /* Caller should guarantee this */
1498
1499 /* Split only if not already the right size */
1500 if (size < area->size) {
1501 struct working_area *new_wa = malloc(sizeof(*new_wa));
1502
1503 if (new_wa == NULL)
1504 return;
1505
1506 new_wa->next = area->next;
1507 new_wa->size = area->size - size;
1508 new_wa->address = area->address + size;
1509 new_wa->backup = NULL;
1510 new_wa->user = NULL;
1511 new_wa->free = true;
1512
1513 area->next = new_wa;
1514 area->size = size;
1515
1516 /* If backup memory was allocated to this area, it has the wrong size
1517 * now so free it and it will be reallocated if/when needed */
1518 if (area->backup) {
1519 free(area->backup);
1520 area->backup = NULL;
1521 }
1522 }
1523 }
1524
1525 /* Merge all adjacent free areas into one */
1526 static void target_merge_working_areas(struct target *target)
1527 {
1528 struct working_area *c = target->working_areas;
1529
1530 while (c && c->next) {
1531 assert(c->next->address == c->address + c->size); /* This is an invariant */
1532
1533 /* Find two adjacent free areas */
1534 if (c->free && c->next->free) {
1535 /* Merge the last into the first */
1536 c->size += c->next->size;
1537
1538 /* Remove the last */
1539 struct working_area *to_be_freed = c->next;
1540 c->next = c->next->next;
1541 if (to_be_freed->backup)
1542 free(to_be_freed->backup);
1543 free(to_be_freed);
1544
1545 /* If backup memory was allocated to the remaining area, it's has
1546 * the wrong size now */
1547 if (c->backup) {
1548 free(c->backup);
1549 c->backup = NULL;
1550 }
1551 } else {
1552 c = c->next;
1553 }
1554 }
1555 }
1556
1557 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1558 {
1559 /* Reevaluate working area address based on MMU state*/
1560 if (target->working_areas == NULL) {
1561 int retval;
1562 int enabled;
1563
1564 retval = target->type->mmu(target, &enabled);
1565 if (retval != ERROR_OK)
1566 return retval;
1567
1568 if (!enabled) {
1569 if (target->working_area_phys_spec) {
1570 LOG_DEBUG("MMU disabled, using physical "
1571 "address for working memory 0x%08"PRIx32,
1572 target->working_area_phys);
1573 target->working_area = target->working_area_phys;
1574 } else {
1575 LOG_ERROR("No working memory available. "
1576 "Specify -work-area-phys to target.");
1577 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1578 }
1579 } else {
1580 if (target->working_area_virt_spec) {
1581 LOG_DEBUG("MMU enabled, using virtual "
1582 "address for working memory 0x%08"PRIx32,
1583 target->working_area_virt);
1584 target->working_area = target->working_area_virt;
1585 } else {
1586 LOG_ERROR("No working memory available. "
1587 "Specify -work-area-virt to target.");
1588 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1589 }
1590 }
1591
1592 /* Set up initial working area on first call */
1593 struct working_area *new_wa = malloc(sizeof(*new_wa));
1594 if (new_wa) {
1595 new_wa->next = NULL;
1596 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1597 new_wa->address = target->working_area;
1598 new_wa->backup = NULL;
1599 new_wa->user = NULL;
1600 new_wa->free = true;
1601 }
1602
1603 target->working_areas = new_wa;
1604 }
1605
1606 /* only allocate multiples of 4 byte */
1607 if (size % 4)
1608 size = (size + 3) & (~3UL);
1609
1610 struct working_area *c = target->working_areas;
1611
1612 /* Find the first large enough working area */
1613 while (c) {
1614 if (c->free && c->size >= size)
1615 break;
1616 c = c->next;
1617 }
1618
1619 if (c == NULL)
1620 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1621
1622 /* Split the working area into the requested size */
1623 target_split_working_area(c, size);
1624
1625 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1626
1627 if (target->backup_working_area) {
1628 if (c->backup == NULL) {
1629 c->backup = malloc(c->size);
1630 if (c->backup == NULL)
1631 return ERROR_FAIL;
1632 }
1633
1634 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1635 if (retval != ERROR_OK)
1636 return retval;
1637 }
1638
1639 /* mark as used, and return the new (reused) area */
1640 c->free = false;
1641 *area = c;
1642
1643 /* user pointer */
1644 c->user = area;
1645
1646 print_wa_layout(target);
1647
1648 return ERROR_OK;
1649 }
1650
1651 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1652 {
1653 int retval;
1654
1655 retval = target_alloc_working_area_try(target, size, area);
1656 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1657 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1658 return retval;
1659
1660 }
1661
1662 static int target_restore_working_area(struct target *target, struct working_area *area)
1663 {
1664 int retval = ERROR_OK;
1665
1666 if (target->backup_working_area && area->backup != NULL) {
1667 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1668 if (retval != ERROR_OK)
1669 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1670 area->size, area->address);
1671 }
1672
1673 return retval;
1674 }
1675
1676 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1677 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1678 {
1679 int retval = ERROR_OK;
1680
1681 if (area->free)
1682 return retval;
1683
1684 if (restore) {
1685 retval = target_restore_working_area(target, area);
1686 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1687 if (retval != ERROR_OK)
1688 return retval;
1689 }
1690
1691 area->free = true;
1692
1693 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1694 area->size, area->address);
1695
1696 /* mark user pointer invalid */
1697 /* TODO: Is this really safe? It points to some previous caller's memory.
1698 * How could we know that the area pointer is still in that place and not
1699 * some other vital data? What's the purpose of this, anyway? */
1700 *area->user = NULL;
1701 area->user = NULL;
1702
1703 target_merge_working_areas(target);
1704
1705 print_wa_layout(target);
1706
1707 return retval;
1708 }
1709
1710 int target_free_working_area(struct target *target, struct working_area *area)
1711 {
1712 return target_free_working_area_restore(target, area, 1);
1713 }
1714
1715 /* free resources and restore memory, if restoring memory fails,
1716 * free up resources anyway
1717 */
1718 static void target_free_all_working_areas_restore(struct target *target, int restore)
1719 {
1720 struct working_area *c = target->working_areas;
1721
1722 LOG_DEBUG("freeing all working areas");
1723
1724 /* Loop through all areas, restoring the allocated ones and marking them as free */
1725 while (c) {
1726 if (!c->free) {
1727 if (restore)
1728 target_restore_working_area(target, c);
1729 c->free = true;
1730 *c->user = NULL; /* Same as above */
1731 c->user = NULL;
1732 }
1733 c = c->next;
1734 }
1735
1736 /* Run a merge pass to combine all areas into one */
1737 target_merge_working_areas(target);
1738
1739 print_wa_layout(target);
1740 }
1741
1742 void target_free_all_working_areas(struct target *target)
1743 {
1744 target_free_all_working_areas_restore(target, 1);
1745 }
1746
1747 /* Find the largest number of bytes that can be allocated */
1748 uint32_t target_get_working_area_avail(struct target *target)
1749 {
1750 struct working_area *c = target->working_areas;
1751 uint32_t max_size = 0;
1752
1753 if (c == NULL)
1754 return target->working_area_size;
1755
1756 while (c) {
1757 if (c->free && max_size < c->size)
1758 max_size = c->size;
1759
1760 c = c->next;
1761 }
1762
1763 return max_size;
1764 }
1765
1766 int target_arch_state(struct target *target)
1767 {
1768 int retval;
1769 if (target == NULL) {
1770 LOG_USER("No target has been configured");
1771 return ERROR_OK;
1772 }
1773
1774 LOG_USER("target state: %s", target_state_name(target));
1775
1776 if (target->state != TARGET_HALTED)
1777 return ERROR_OK;
1778
1779 retval = target->type->arch_state(target);
1780 return retval;
1781 }
1782
1783 static int target_get_gdb_fileio_info_default(struct target *target,
1784 struct gdb_fileio_info *fileio_info)
1785 {
1786 /* If target does not support semi-hosting function, target
1787 has no need to provide .get_gdb_fileio_info callback.
1788 It just return ERROR_FAIL and gdb_server will return "Txx"
1789 as target halted every time. */
1790 return ERROR_FAIL;
1791 }
1792
1793 static int target_gdb_fileio_end_default(struct target *target,
1794 int retcode, int fileio_errno, bool ctrl_c)
1795 {
1796 return ERROR_OK;
1797 }
1798
1799 static int target_profiling_default(struct target *target, uint32_t *samples,
1800 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1801 {
1802 struct timeval timeout, now;
1803
1804 gettimeofday(&timeout, NULL);
1805 timeval_add_time(&timeout, seconds, 0);
1806
1807 LOG_INFO("Starting profiling. Halting and resuming the"
1808 " target as often as we can...");
1809
1810 uint32_t sample_count = 0;
1811 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1812 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1813
1814 int retval = ERROR_OK;
1815 for (;;) {
1816 target_poll(target);
1817 if (target->state == TARGET_HALTED) {
1818 uint32_t t = *((uint32_t *)reg->value);
1819 samples[sample_count++] = t;
1820 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1821 retval = target_resume(target, 1, 0, 0, 0);
1822 target_poll(target);
1823 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1824 } else if (target->state == TARGET_RUNNING) {
1825 /* We want to quickly sample the PC. */
1826 retval = target_halt(target);
1827 } else {
1828 LOG_INFO("Target not halted or running");
1829 retval = ERROR_OK;
1830 break;
1831 }
1832
1833 if (retval != ERROR_OK)
1834 break;
1835
1836 gettimeofday(&now, NULL);
1837 if ((sample_count >= max_num_samples) ||
1838 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1839 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1840 break;
1841 }
1842 }
1843
1844 *num_samples = sample_count;
1845 return retval;
1846 }
1847
1848 /* Single aligned words are guaranteed to use 16 or 32 bit access
1849 * mode respectively, otherwise data is handled as quickly as
1850 * possible
1851 */
1852 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1853 {
1854 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1855 (int)size, (unsigned)address);
1856
1857 if (!target_was_examined(target)) {
1858 LOG_ERROR("Target not examined yet");
1859 return ERROR_FAIL;
1860 }
1861
1862 if (size == 0)
1863 return ERROR_OK;
1864
1865 if ((address + size - 1) < address) {
1866 /* GDB can request this when e.g. PC is 0xfffffffc*/
1867 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1868 (unsigned)address,
1869 (unsigned)size);
1870 return ERROR_FAIL;
1871 }
1872
1873 return target->type->write_buffer(target, address, size, buffer);
1874 }
1875
1876 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1877 {
1878 uint32_t size;
1879
1880 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1881 * will have something to do with the size we leave to it. */
1882 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1883 if (address & size) {
1884 int retval = target_write_memory(target, address, size, 1, buffer);
1885 if (retval != ERROR_OK)
1886 return retval;
1887 address += size;
1888 count -= size;
1889 buffer += size;
1890 }
1891 }
1892
1893 /* Write the data with as large access size as possible. */
1894 for (; size > 0; size /= 2) {
1895 uint32_t aligned = count - count % size;
1896 if (aligned > 0) {
1897 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1898 if (retval != ERROR_OK)
1899 return retval;
1900 address += aligned;
1901 count -= aligned;
1902 buffer += aligned;
1903 }
1904 }
1905
1906 return ERROR_OK;
1907 }
1908
1909 /* Single aligned words are guaranteed to use 16 or 32 bit access
1910 * mode respectively, otherwise data is handled as quickly as
1911 * possible
1912 */
1913 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1914 {
1915 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1916 (int)size, (unsigned)address);
1917
1918 if (!target_was_examined(target)) {
1919 LOG_ERROR("Target not examined yet");
1920 return ERROR_FAIL;
1921 }
1922
1923 if (size == 0)
1924 return ERROR_OK;
1925
1926 if ((address + size - 1) < address) {
1927 /* GDB can request this when e.g. PC is 0xfffffffc*/
1928 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1929 address,
1930 size);
1931 return ERROR_FAIL;
1932 }
1933
1934 return target->type->read_buffer(target, address, size, buffer);
1935 }
1936
1937 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1938 {
1939 uint32_t size;
1940
1941 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1942 * will have something to do with the size we leave to it. */
1943 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1944 if (address & size) {
1945 int retval = target_read_memory(target, address, size, 1, buffer);
1946 if (retval != ERROR_OK)
1947 return retval;
1948 address += size;
1949 count -= size;
1950 buffer += size;
1951 }
1952 }
1953
1954 /* Read the data with as large access size as possible. */
1955 for (; size > 0; size /= 2) {
1956 uint32_t aligned = count - count % size;
1957 if (aligned > 0) {
1958 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1959 if (retval != ERROR_OK)
1960 return retval;
1961 address += aligned;
1962 count -= aligned;
1963 buffer += aligned;
1964 }
1965 }
1966
1967 return ERROR_OK;
1968 }
1969
1970 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1971 {
1972 uint8_t *buffer;
1973 int retval;
1974 uint32_t i;
1975 uint32_t checksum = 0;
1976 if (!target_was_examined(target)) {
1977 LOG_ERROR("Target not examined yet");
1978 return ERROR_FAIL;
1979 }
1980
1981 retval = target->type->checksum_memory(target, address, size, &checksum);
1982 if (retval != ERROR_OK) {
1983 buffer = malloc(size);
1984 if (buffer == NULL) {
1985 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1986 return ERROR_COMMAND_SYNTAX_ERROR;
1987 }
1988 retval = target_read_buffer(target, address, size, buffer);
1989 if (retval != ERROR_OK) {
1990 free(buffer);
1991 return retval;
1992 }
1993
1994 /* convert to target endianness */
1995 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1996 uint32_t target_data;
1997 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1998 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1999 }
2000
2001 retval = image_calculate_checksum(buffer, size, &checksum);
2002 free(buffer);
2003 }
2004
2005 *crc = checksum;
2006
2007 return retval;
2008 }
2009
2010 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2011 {
2012 int retval;
2013 if (!target_was_examined(target)) {
2014 LOG_ERROR("Target not examined yet");
2015 return ERROR_FAIL;
2016 }
2017
2018 if (target->type->blank_check_memory == 0)
2019 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2020
2021 retval = target->type->blank_check_memory(target, address, size, blank);
2022
2023 return retval;
2024 }
2025
2026 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2027 {
2028 uint8_t value_buf[8];
2029 if (!target_was_examined(target)) {
2030 LOG_ERROR("Target not examined yet");
2031 return ERROR_FAIL;
2032 }
2033
2034 int retval = target_read_memory(target, address, 8, 1, value_buf);
2035
2036 if (retval == ERROR_OK) {
2037 *value = target_buffer_get_u64(target, value_buf);
2038 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2039 address,
2040 *value);
2041 } else {
2042 *value = 0x0;
2043 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2044 address);
2045 }
2046
2047 return retval;
2048 }
2049
2050 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2051 {
2052 uint8_t value_buf[4];
2053 if (!target_was_examined(target)) {
2054 LOG_ERROR("Target not examined yet");
2055 return ERROR_FAIL;
2056 }
2057
2058 int retval = target_read_memory(target, address, 4, 1, value_buf);
2059
2060 if (retval == ERROR_OK) {
2061 *value = target_buffer_get_u32(target, value_buf);
2062 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2063 address,
2064 *value);
2065 } else {
2066 *value = 0x0;
2067 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2068 address);
2069 }
2070
2071 return retval;
2072 }
2073
2074 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2075 {
2076 uint8_t value_buf[2];
2077 if (!target_was_examined(target)) {
2078 LOG_ERROR("Target not examined yet");
2079 return ERROR_FAIL;
2080 }
2081
2082 int retval = target_read_memory(target, address, 2, 1, value_buf);
2083
2084 if (retval == ERROR_OK) {
2085 *value = target_buffer_get_u16(target, value_buf);
2086 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2087 address,
2088 *value);
2089 } else {
2090 *value = 0x0;
2091 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2092 address);
2093 }
2094
2095 return retval;
2096 }
2097
2098 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2099 {
2100 if (!target_was_examined(target)) {
2101 LOG_ERROR("Target not examined yet");
2102 return ERROR_FAIL;
2103 }
2104
2105 int retval = target_read_memory(target, address, 1, 1, value);
2106
2107 if (retval == ERROR_OK) {
2108 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2109 address,
2110 *value);
2111 } else {
2112 *value = 0x0;
2113 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2114 address);
2115 }
2116
2117 return retval;
2118 }
2119
2120 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2121 {
2122 int retval;
2123 uint8_t value_buf[8];
2124 if (!target_was_examined(target)) {
2125 LOG_ERROR("Target not examined yet");
2126 return ERROR_FAIL;
2127 }
2128
2129 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2130 address,
2131 value);
2132
2133 target_buffer_set_u64(target, value_buf, value);
2134 retval = target_write_memory(target, address, 8, 1, value_buf);
2135 if (retval != ERROR_OK)
2136 LOG_DEBUG("failed: %i", retval);
2137
2138 return retval;
2139 }
2140
2141 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2142 {
2143 int retval;
2144 uint8_t value_buf[4];
2145 if (!target_was_examined(target)) {
2146 LOG_ERROR("Target not examined yet");
2147 return ERROR_FAIL;
2148 }
2149
2150 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2151 address,
2152 value);
2153
2154 target_buffer_set_u32(target, value_buf, value);
2155 retval = target_write_memory(target, address, 4, 1, value_buf);
2156 if (retval != ERROR_OK)
2157 LOG_DEBUG("failed: %i", retval);
2158
2159 return retval;
2160 }
2161
2162 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2163 {
2164 int retval;
2165 uint8_t value_buf[2];
2166 if (!target_was_examined(target)) {
2167 LOG_ERROR("Target not examined yet");
2168 return ERROR_FAIL;
2169 }
2170
2171 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2172 address,
2173 value);
2174
2175 target_buffer_set_u16(target, value_buf, value);
2176 retval = target_write_memory(target, address, 2, 1, value_buf);
2177 if (retval != ERROR_OK)
2178 LOG_DEBUG("failed: %i", retval);
2179
2180 return retval;
2181 }
2182
2183 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2184 {
2185 int retval;
2186 if (!target_was_examined(target)) {
2187 LOG_ERROR("Target not examined yet");
2188 return ERROR_FAIL;
2189 }
2190
2191 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2192 address, value);
2193
2194 retval = target_write_memory(target, address, 1, 1, &value);
2195 if (retval != ERROR_OK)
2196 LOG_DEBUG("failed: %i", retval);
2197
2198 return retval;
2199 }
2200
2201 static int find_target(struct command_context *cmd_ctx, const char *name)
2202 {
2203 struct target *target = get_target(name);
2204 if (target == NULL) {
2205 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2206 return ERROR_FAIL;
2207 }
2208 if (!target->tap->enabled) {
2209 LOG_USER("Target: TAP %s is disabled, "
2210 "can't be the current target\n",
2211 target->tap->dotted_name);
2212 return ERROR_FAIL;
2213 }
2214
2215 cmd_ctx->current_target = target->target_number;
2216 return ERROR_OK;
2217 }
2218
2219
2220 COMMAND_HANDLER(handle_targets_command)
2221 {
2222 int retval = ERROR_OK;
2223 if (CMD_ARGC == 1) {
2224 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2225 if (retval == ERROR_OK) {
2226 /* we're done! */
2227 return retval;
2228 }
2229 }
2230
2231 struct target *target = all_targets;
2232 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2233 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2234 while (target) {
2235 const char *state;
2236 char marker = ' ';
2237
2238 if (target->tap->enabled)
2239 state = target_state_name(target);
2240 else
2241 state = "tap-disabled";
2242
2243 if (CMD_CTX->current_target == target->target_number)
2244 marker = '*';
2245
2246 /* keep columns lined up to match the headers above */
2247 command_print(CMD_CTX,
2248 "%2d%c %-18s %-10s %-6s %-18s %s",
2249 target->target_number,
2250 marker,
2251 target_name(target),
2252 target_type_name(target),
2253 Jim_Nvp_value2name_simple(nvp_target_endian,
2254 target->endianness)->name,
2255 target->tap->dotted_name,
2256 state);
2257 target = target->next;
2258 }
2259
2260 return retval;
2261 }
2262
2263 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2264
2265 static int powerDropout;
2266 static int srstAsserted;
2267
2268 static int runPowerRestore;
2269 static int runPowerDropout;
2270 static int runSrstAsserted;
2271 static int runSrstDeasserted;
2272
2273 static int sense_handler(void)
2274 {
2275 static int prevSrstAsserted;
2276 static int prevPowerdropout;
2277
2278 int retval = jtag_power_dropout(&powerDropout);
2279 if (retval != ERROR_OK)
2280 return retval;
2281
2282 int powerRestored;
2283 powerRestored = prevPowerdropout && !powerDropout;
2284 if (powerRestored)
2285 runPowerRestore = 1;
2286
2287 long long current = timeval_ms();
2288 static long long lastPower;
2289 int waitMore = lastPower + 2000 > current;
2290 if (powerDropout && !waitMore) {
2291 runPowerDropout = 1;
2292 lastPower = current;
2293 }
2294
2295 retval = jtag_srst_asserted(&srstAsserted);
2296 if (retval != ERROR_OK)
2297 return retval;
2298
2299 int srstDeasserted;
2300 srstDeasserted = prevSrstAsserted && !srstAsserted;
2301
2302 static long long lastSrst;
2303 waitMore = lastSrst + 2000 > current;
2304 if (srstDeasserted && !waitMore) {
2305 runSrstDeasserted = 1;
2306 lastSrst = current;
2307 }
2308
2309 if (!prevSrstAsserted && srstAsserted)
2310 runSrstAsserted = 1;
2311
2312 prevSrstAsserted = srstAsserted;
2313 prevPowerdropout = powerDropout;
2314
2315 if (srstDeasserted || powerRestored) {
2316 /* Other than logging the event we can't do anything here.
2317 * Issuing a reset is a particularly bad idea as we might
2318 * be inside a reset already.
2319 */
2320 }
2321
2322 return ERROR_OK;
2323 }
2324
2325 /* process target state changes */
2326 static int handle_target(void *priv)
2327 {
2328 Jim_Interp *interp = (Jim_Interp *)priv;
2329 int retval = ERROR_OK;
2330
2331 if (!is_jtag_poll_safe()) {
2332 /* polling is disabled currently */
2333 return ERROR_OK;
2334 }
2335
2336 /* we do not want to recurse here... */
2337 static int recursive;
2338 if (!recursive) {
2339 recursive = 1;
2340 sense_handler();
2341 /* danger! running these procedures can trigger srst assertions and power dropouts.
2342 * We need to avoid an infinite loop/recursion here and we do that by
2343 * clearing the flags after running these events.
2344 */
2345 int did_something = 0;
2346 if (runSrstAsserted) {
2347 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2348 Jim_Eval(interp, "srst_asserted");
2349 did_something = 1;
2350 }
2351 if (runSrstDeasserted) {
2352 Jim_Eval(interp, "srst_deasserted");
2353 did_something = 1;
2354 }
2355 if (runPowerDropout) {
2356 LOG_INFO("Power dropout detected, running power_dropout proc.");
2357 Jim_Eval(interp, "power_dropout");
2358 did_something = 1;
2359 }
2360 if (runPowerRestore) {
2361 Jim_Eval(interp, "power_restore");
2362 did_something = 1;
2363 }
2364
2365 if (did_something) {
2366 /* clear detect flags */
2367 sense_handler();
2368 }
2369
2370 /* clear action flags */
2371
2372 runSrstAsserted = 0;
2373 runSrstDeasserted = 0;
2374 runPowerRestore = 0;
2375 runPowerDropout = 0;
2376
2377 recursive = 0;
2378 }
2379
2380 /* Poll targets for state changes unless that's globally disabled.
2381 * Skip targets that are currently disabled.
2382 */
2383 for (struct target *target = all_targets;
2384 is_jtag_poll_safe() && target;
2385 target = target->next) {
2386
2387 if (!target_was_examined(target))
2388 continue;
2389
2390 if (!target->tap->enabled)
2391 continue;
2392
2393 if (target->backoff.times > target->backoff.count) {
2394 /* do not poll this time as we failed previously */
2395 target->backoff.count++;
2396 continue;
2397 }
2398 target->backoff.count = 0;
2399
2400 /* only poll target if we've got power and srst isn't asserted */
2401 if (!powerDropout && !srstAsserted) {
2402 /* polling may fail silently until the target has been examined */
2403 retval = target_poll(target);
2404 if (retval != ERROR_OK) {
2405 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2406 if (target->backoff.times * polling_interval < 5000) {
2407 target->backoff.times *= 2;
2408 target->backoff.times++;
2409 }
2410 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2411 target_name(target),
2412 target->backoff.times * polling_interval);
2413
2414 /* Tell GDB to halt the debugger. This allows the user to
2415 * run monitor commands to handle the situation.
2416 */
2417 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2418 return retval;
2419 }
2420 /* Since we succeeded, we reset backoff count */
2421 if (target->backoff.times > 0)
2422 LOG_USER("Polling target %s succeeded again", target_name(target));
2423 target->backoff.times = 0;
2424 }
2425 }
2426
2427 return retval;
2428 }
2429
2430 COMMAND_HANDLER(handle_reg_command)
2431 {
2432 struct target *target;
2433 struct reg *reg = NULL;
2434 unsigned count = 0;
2435 char *value;
2436
2437 LOG_DEBUG("-");
2438
2439 target = get_current_target(CMD_CTX);
2440
2441 /* list all available registers for the current target */
2442 if (CMD_ARGC == 0) {
2443 struct reg_cache *cache = target->reg_cache;
2444
2445 count = 0;
2446 while (cache) {
2447 unsigned i;
2448
2449 command_print(CMD_CTX, "===== %s", cache->name);
2450
2451 for (i = 0, reg = cache->reg_list;
2452 i < cache->num_regs;
2453 i++, reg++, count++) {
2454 /* only print cached values if they are valid */
2455 if (reg->valid) {
2456 value = buf_to_str(reg->value,
2457 reg->size, 16);
2458 command_print(CMD_CTX,
2459 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2460 count, reg->name,
2461 reg->size, value,
2462 reg->dirty
2463 ? " (dirty)"
2464 : "");
2465 free(value);
2466 } else {
2467 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2468 count, reg->name,
2469 reg->size) ;
2470 }
2471 }
2472 cache = cache->next;
2473 }
2474
2475 return ERROR_OK;
2476 }
2477
2478 /* access a single register by its ordinal number */
2479 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2480 unsigned num;
2481 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2482
2483 struct reg_cache *cache = target->reg_cache;
2484 count = 0;
2485 while (cache) {
2486 unsigned i;
2487 for (i = 0; i < cache->num_regs; i++) {
2488 if (count++ == num) {
2489 reg = &cache->reg_list[i];
2490 break;
2491 }
2492 }
2493 if (reg)
2494 break;
2495 cache = cache->next;
2496 }
2497
2498 if (!reg) {
2499 command_print(CMD_CTX, "%i is out of bounds, the current target "
2500 "has only %i registers (0 - %i)", num, count, count - 1);
2501 return ERROR_OK;
2502 }
2503 } else {
2504 /* access a single register by its name */
2505 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2506
2507 if (!reg) {
2508 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2509 return ERROR_OK;
2510 }
2511 }
2512
2513 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2514
2515 /* display a register */
2516 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2517 && (CMD_ARGV[1][0] <= '9')))) {
2518 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2519 reg->valid = 0;
2520
2521 if (reg->valid == 0)
2522 reg->type->get(reg);
2523 value = buf_to_str(reg->value, reg->size, 16);
2524 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2525 free(value);
2526 return ERROR_OK;
2527 }
2528
2529 /* set register value */
2530 if (CMD_ARGC == 2) {
2531 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2532 if (buf == NULL)
2533 return ERROR_FAIL;
2534 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2535
2536 reg->type->set(reg, buf);
2537
2538 value = buf_to_str(reg->value, reg->size, 16);
2539 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2540 free(value);
2541
2542 free(buf);
2543
2544 return ERROR_OK;
2545 }
2546
2547 return ERROR_COMMAND_SYNTAX_ERROR;
2548 }
2549
2550 COMMAND_HANDLER(handle_poll_command)
2551 {
2552 int retval = ERROR_OK;
2553 struct target *target = get_current_target(CMD_CTX);
2554
2555 if (CMD_ARGC == 0) {
2556 command_print(CMD_CTX, "background polling: %s",
2557 jtag_poll_get_enabled() ? "on" : "off");
2558 command_print(CMD_CTX, "TAP: %s (%s)",
2559 target->tap->dotted_name,
2560 target->tap->enabled ? "enabled" : "disabled");
2561 if (!target->tap->enabled)
2562 return ERROR_OK;
2563 retval = target_poll(target);
2564 if (retval != ERROR_OK)
2565 return retval;
2566 retval = target_arch_state(target);
2567 if (retval != ERROR_OK)
2568 return retval;
2569 } else if (CMD_ARGC == 1) {
2570 bool enable;
2571 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2572 jtag_poll_set_enabled(enable);
2573 } else
2574 return ERROR_COMMAND_SYNTAX_ERROR;
2575
2576 return retval;
2577 }
2578
2579 COMMAND_HANDLER(handle_wait_halt_command)
2580 {
2581 if (CMD_ARGC > 1)
2582 return ERROR_COMMAND_SYNTAX_ERROR;
2583
2584 unsigned ms = DEFAULT_HALT_TIMEOUT;
2585 if (1 == CMD_ARGC) {
2586 int retval = parse_uint(CMD_ARGV[0], &ms);
2587 if (ERROR_OK != retval)
2588 return ERROR_COMMAND_SYNTAX_ERROR;
2589 }
2590
2591 struct target *target = get_current_target(CMD_CTX);
2592 return target_wait_state(target, TARGET_HALTED, ms);
2593 }
2594
2595 /* wait for target state to change. The trick here is to have a low
2596 * latency for short waits and not to suck up all the CPU time
2597 * on longer waits.
2598 *
2599 * After 500ms, keep_alive() is invoked
2600 */
2601 int target_wait_state(struct target *target, enum target_state state, int ms)
2602 {
2603 int retval;
2604 long long then = 0, cur;
2605 int once = 1;
2606
2607 for (;;) {
2608 retval = target_poll(target);
2609 if (retval != ERROR_OK)
2610 return retval;
2611 if (target->state == state)
2612 break;
2613 cur = timeval_ms();
2614 if (once) {
2615 once = 0;
2616 then = timeval_ms();
2617 LOG_DEBUG("waiting for target %s...",
2618 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2619 }
2620
2621 if (cur-then > 500)
2622 keep_alive();
2623
2624 if ((cur-then) > ms) {
2625 LOG_ERROR("timed out while waiting for target %s",
2626 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2627 return ERROR_FAIL;
2628 }
2629 }
2630
2631 return ERROR_OK;
2632 }
2633
2634 COMMAND_HANDLER(handle_halt_command)
2635 {
2636 LOG_DEBUG("-");
2637
2638 struct target *target = get_current_target(CMD_CTX);
2639 int retval = target_halt(target);
2640 if (ERROR_OK != retval)
2641 return retval;
2642
2643 if (CMD_ARGC == 1) {
2644 unsigned wait_local;
2645 retval = parse_uint(CMD_ARGV[0], &wait_local);
2646 if (ERROR_OK != retval)
2647 return ERROR_COMMAND_SYNTAX_ERROR;
2648 if (!wait_local)
2649 return ERROR_OK;
2650 }
2651
2652 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2653 }
2654
2655 COMMAND_HANDLER(handle_soft_reset_halt_command)
2656 {
2657 struct target *target = get_current_target(CMD_CTX);
2658
2659 LOG_USER("requesting target halt and executing a soft reset");
2660
2661 target_soft_reset_halt(target);
2662
2663 return ERROR_OK;
2664 }
2665
2666 COMMAND_HANDLER(handle_reset_command)
2667 {
2668 if (CMD_ARGC > 1)
2669 return ERROR_COMMAND_SYNTAX_ERROR;
2670
2671 enum target_reset_mode reset_mode = RESET_RUN;
2672 if (CMD_ARGC == 1) {
2673 const Jim_Nvp *n;
2674 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2675 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2676 return ERROR_COMMAND_SYNTAX_ERROR;
2677 reset_mode = n->value;
2678 }
2679
2680 /* reset *all* targets */
2681 return target_process_reset(CMD_CTX, reset_mode);
2682 }
2683
2684
2685 COMMAND_HANDLER(handle_resume_command)
2686 {
2687 int current = 1;
2688 if (CMD_ARGC > 1)
2689 return ERROR_COMMAND_SYNTAX_ERROR;
2690
2691 struct target *target = get_current_target(CMD_CTX);
2692
2693 /* with no CMD_ARGV, resume from current pc, addr = 0,
2694 * with one arguments, addr = CMD_ARGV[0],
2695 * handle breakpoints, not debugging */
2696 uint32_t addr = 0;
2697 if (CMD_ARGC == 1) {
2698 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2699 current = 0;
2700 }
2701
2702 return target_resume(target, current, addr, 1, 0);
2703 }
2704
2705 COMMAND_HANDLER(handle_step_command)
2706 {
2707 if (CMD_ARGC > 1)
2708 return ERROR_COMMAND_SYNTAX_ERROR;
2709
2710 LOG_DEBUG("-");
2711
2712 /* with no CMD_ARGV, step from current pc, addr = 0,
2713 * with one argument addr = CMD_ARGV[0],
2714 * handle breakpoints, debugging */
2715 uint32_t addr = 0;
2716 int current_pc = 1;
2717 if (CMD_ARGC == 1) {
2718 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2719 current_pc = 0;
2720 }
2721
2722 struct target *target = get_current_target(CMD_CTX);
2723
2724 return target->type->step(target, current_pc, addr, 1);
2725 }
2726
2727 static void handle_md_output(struct command_context *cmd_ctx,
2728 struct target *target, uint32_t address, unsigned size,
2729 unsigned count, const uint8_t *buffer)
2730 {
2731 const unsigned line_bytecnt = 32;
2732 unsigned line_modulo = line_bytecnt / size;
2733
2734 char output[line_bytecnt * 4 + 1];
2735 unsigned output_len = 0;
2736
2737 const char *value_fmt;
2738 switch (size) {
2739 case 4:
2740 value_fmt = "%8.8x ";
2741 break;
2742 case 2:
2743 value_fmt = "%4.4x ";
2744 break;
2745 case 1:
2746 value_fmt = "%2.2x ";
2747 break;
2748 default:
2749 /* "can't happen", caller checked */
2750 LOG_ERROR("invalid memory read size: %u", size);
2751 return;
2752 }
2753
2754 for (unsigned i = 0; i < count; i++) {
2755 if (i % line_modulo == 0) {
2756 output_len += snprintf(output + output_len,
2757 sizeof(output) - output_len,
2758 "0x%8.8x: ",
2759 (unsigned)(address + (i*size)));
2760 }
2761
2762 uint32_t value = 0;
2763 const uint8_t *value_ptr = buffer + i * size;
2764 switch (size) {
2765 case 4:
2766 value = target_buffer_get_u32(target, value_ptr);
2767 break;
2768 case 2:
2769 value = target_buffer_get_u16(target, value_ptr);
2770 break;
2771 case 1:
2772 value = *value_ptr;
2773 }
2774 output_len += snprintf(output + output_len,
2775 sizeof(output) - output_len,
2776 value_fmt, value);
2777
2778 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2779 command_print(cmd_ctx, "%s", output);
2780 output_len = 0;
2781 }
2782 }
2783 }
2784
2785 COMMAND_HANDLER(handle_md_command)
2786 {
2787 if (CMD_ARGC < 1)
2788 return ERROR_COMMAND_SYNTAX_ERROR;
2789
2790 unsigned size = 0;
2791 switch (CMD_NAME[2]) {
2792 case 'w':
2793 size = 4;
2794 break;
2795 case 'h':
2796 size = 2;
2797 break;
2798 case 'b':
2799 size = 1;
2800 break;
2801 default:
2802 return ERROR_COMMAND_SYNTAX_ERROR;
2803 }
2804
2805 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2806 int (*fn)(struct target *target,
2807 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2808 if (physical) {
2809 CMD_ARGC--;
2810 CMD_ARGV++;
2811 fn = target_read_phys_memory;
2812 } else
2813 fn = target_read_memory;
2814 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2815 return ERROR_COMMAND_SYNTAX_ERROR;
2816
2817 uint32_t address;
2818 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2819
2820 unsigned count = 1;
2821 if (CMD_ARGC == 2)
2822 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2823
2824 uint8_t *buffer = calloc(count, size);
2825
2826 struct target *target = get_current_target(CMD_CTX);
2827 int retval = fn(target, address, size, count, buffer);
2828 if (ERROR_OK == retval)
2829 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2830
2831 free(buffer);
2832
2833 return retval;
2834 }
2835
2836 typedef int (*target_write_fn)(struct target *target,
2837 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2838
2839 static int target_fill_mem(struct target *target,
2840 uint32_t address,
2841 target_write_fn fn,
2842 unsigned data_size,
2843 /* value */
2844 uint32_t b,
2845 /* count */
2846 unsigned c)
2847 {
2848 /* We have to write in reasonably large chunks to be able
2849 * to fill large memory areas with any sane speed */
2850 const unsigned chunk_size = 16384;
2851 uint8_t *target_buf = malloc(chunk_size * data_size);
2852 if (target_buf == NULL) {
2853 LOG_ERROR("Out of memory");
2854 return ERROR_FAIL;
2855 }
2856
2857 for (unsigned i = 0; i < chunk_size; i++) {
2858 switch (data_size) {
2859 case 4:
2860 target_buffer_set_u32(target, target_buf + i * data_size, b);
2861 break;
2862 case 2:
2863 target_buffer_set_u16(target, target_buf + i * data_size, b);
2864 break;
2865 case 1:
2866 target_buffer_set_u8(target, target_buf + i * data_size, b);
2867 break;
2868 default:
2869 exit(-1);
2870 }
2871 }
2872
2873 int retval = ERROR_OK;
2874
2875 for (unsigned x = 0; x < c; x += chunk_size) {
2876 unsigned current;
2877 current = c - x;
2878 if (current > chunk_size)
2879 current = chunk_size;
2880 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2881 if (retval != ERROR_OK)
2882 break;
2883 /* avoid GDB timeouts */
2884 keep_alive();
2885 }
2886 free(target_buf);
2887
2888 return retval;
2889 }
2890
2891
2892 COMMAND_HANDLER(handle_mw_command)
2893 {
2894 if (CMD_ARGC < 2)
2895 return ERROR_COMMAND_SYNTAX_ERROR;
2896 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2897 target_write_fn fn;
2898 if (physical) {
2899 CMD_ARGC--;
2900 CMD_ARGV++;
2901 fn = target_write_phys_memory;
2902 } else
2903 fn = target_write_memory;
2904 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2905 return ERROR_COMMAND_SYNTAX_ERROR;
2906
2907 uint32_t address;
2908 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2909
2910 uint32_t value;
2911 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2912
2913 unsigned count = 1;
2914 if (CMD_ARGC == 3)
2915 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2916
2917 struct target *target = get_current_target(CMD_CTX);
2918 unsigned wordsize;
2919 switch (CMD_NAME[2]) {
2920 case 'w':
2921 wordsize = 4;
2922 break;
2923 case 'h':
2924 wordsize = 2;
2925 break;
2926 case 'b':
2927 wordsize = 1;
2928 break;
2929 default:
2930 return ERROR_COMMAND_SYNTAX_ERROR;
2931 }
2932
2933 return target_fill_mem(target, address, fn, wordsize, value, count);
2934 }
2935
2936 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2937 uint32_t *min_address, uint32_t *max_address)
2938 {
2939 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2940 return ERROR_COMMAND_SYNTAX_ERROR;
2941
2942 /* a base address isn't always necessary,
2943 * default to 0x0 (i.e. don't relocate) */
2944 if (CMD_ARGC >= 2) {
2945 uint32_t addr;
2946 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2947 image->base_address = addr;
2948 image->base_address_set = 1;
2949 } else
2950 image->base_address_set = 0;
2951
2952 image->start_address_set = 0;
2953
2954 if (CMD_ARGC >= 4)
2955 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2956 if (CMD_ARGC == 5) {
2957 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2958 /* use size (given) to find max (required) */
2959 *max_address += *min_address;
2960 }
2961
2962 if (*min_address > *max_address)
2963 return ERROR_COMMAND_SYNTAX_ERROR;
2964
2965 return ERROR_OK;
2966 }
2967
2968 COMMAND_HANDLER(handle_load_image_command)
2969 {
2970 uint8_t *buffer;
2971 size_t buf_cnt;
2972 uint32_t image_size;
2973 uint32_t min_address = 0;
2974 uint32_t max_address = 0xffffffff;
2975 int i;
2976 struct image image;
2977
2978 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2979 &image, &min_address, &max_address);
2980 if (ERROR_OK != retval)
2981 return retval;
2982
2983 struct target *target = get_current_target(CMD_CTX);
2984
2985 struct duration bench;
2986 duration_start(&bench);
2987
2988 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2989 return ERROR_OK;
2990
2991 image_size = 0x0;
2992 retval = ERROR_OK;
2993 for (i = 0; i < image.num_sections; i++) {
2994 buffer = malloc(image.sections[i].size);
2995 if (buffer == NULL) {
2996 command_print(CMD_CTX,
2997 "error allocating buffer for section (%d bytes)",
2998 (int)(image.sections[i].size));
2999 break;
3000 }
3001
3002 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3003 if (retval != ERROR_OK) {
3004 free(buffer);
3005 break;
3006 }
3007
3008 uint32_t offset = 0;
3009 uint32_t length = buf_cnt;
3010
3011 /* DANGER!!! beware of unsigned comparision here!!! */
3012
3013 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3014 (image.sections[i].base_address < max_address)) {
3015
3016 if (image.sections[i].base_address < min_address) {
3017 /* clip addresses below */
3018 offset += min_address-image.sections[i].base_address;
3019 length -= offset;
3020 }
3021
3022 if (image.sections[i].base_address + buf_cnt > max_address)
3023 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3024
3025 retval = target_write_buffer(target,
3026 image.sections[i].base_address + offset, length, buffer + offset);
3027 if (retval != ERROR_OK) {
3028 free(buffer);
3029 break;
3030 }
3031 image_size += length;
3032 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3033 (unsigned int)length,
3034 image.sections[i].base_address + offset);
3035 }
3036
3037 free(buffer);
3038 }
3039
3040 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3041 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3042 "in %fs (%0.3f KiB/s)", image_size,
3043 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3044 }
3045
3046 image_close(&image);
3047
3048 return retval;
3049
3050 }
3051
3052 COMMAND_HANDLER(handle_dump_image_command)
3053 {
3054 struct fileio fileio;
3055 uint8_t *buffer;
3056 int retval, retvaltemp;
3057 uint32_t address, size;
3058 struct duration bench;
3059 struct target *target = get_current_target(CMD_CTX);
3060
3061 if (CMD_ARGC != 3)
3062 return ERROR_COMMAND_SYNTAX_ERROR;
3063
3064 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3065 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3066
3067 uint32_t buf_size = (size > 4096) ? 4096 : size;
3068 buffer = malloc(buf_size);
3069 if (!buffer)
3070 return ERROR_FAIL;
3071
3072 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3073 if (retval != ERROR_OK) {
3074 free(buffer);
3075 return retval;
3076 }
3077
3078 duration_start(&bench);
3079
3080 while (size > 0) {
3081 size_t size_written;
3082 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3083 retval = target_read_buffer(target, address, this_run_size, buffer);
3084 if (retval != ERROR_OK)
3085 break;
3086
3087 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3088 if (retval != ERROR_OK)
3089 break;
3090
3091 size -= this_run_size;
3092 address += this_run_size;
3093 }
3094
3095 free(buffer);
3096
3097 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3098 int filesize;
3099 retval = fileio_size(&fileio, &filesize);
3100 if (retval != ERROR_OK)
3101 return retval;
3102 command_print(CMD_CTX,
3103 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3104 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3105 }
3106
3107 retvaltemp = fileio_close(&fileio);
3108 if (retvaltemp != ERROR_OK)
3109 return retvaltemp;
3110
3111 return retval;
3112 }
3113
3114 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3115 {
3116 uint8_t *buffer;
3117 size_t buf_cnt;
3118 uint32_t image_size;
3119 int i;
3120 int retval;
3121 uint32_t checksum = 0;
3122 uint32_t mem_checksum = 0;
3123
3124 struct image image;
3125
3126 struct target *target = get_current_target(CMD_CTX);
3127
3128 if (CMD_ARGC < 1)
3129 return ERROR_COMMAND_SYNTAX_ERROR;
3130
3131 if (!target) {
3132 LOG_ERROR("no target selected");
3133 return ERROR_FAIL;
3134 }
3135
3136 struct duration bench;
3137 duration_start(&bench);
3138
3139 if (CMD_ARGC >= 2) {
3140 uint32_t addr;
3141 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3142 image.base_address = addr;
3143 image.base_address_set = 1;
3144 } else {
3145 image.base_address_set = 0;
3146 image.base_address = 0x0;
3147 }
3148
3149 image.start_address_set = 0;
3150
3151 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3152 if (retval != ERROR_OK)
3153 return retval;
3154
3155 image_size = 0x0;
3156 int diffs = 0;
3157 retval = ERROR_OK;
3158 for (i = 0; i < image.num_sections; i++) {
3159 buffer = malloc(image.sections[i].size);
3160 if (buffer == NULL) {
3161 command_print(CMD_CTX,
3162 "error allocating buffer for section (%d bytes)",
3163 (int)(image.sections[i].size));
3164 break;
3165 }
3166 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3167 if (retval != ERROR_OK) {
3168 free(buffer);
3169 break;
3170 }
3171
3172 if (verify) {
3173 /* calculate checksum of image */
3174 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3175 if (retval != ERROR_OK) {
3176 free(buffer);
3177 break;
3178 }
3179
3180 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3181 if (retval != ERROR_OK) {
3182 free(buffer);
3183 break;
3184 }
3185
3186 if (checksum != mem_checksum) {
3187 /* failed crc checksum, fall back to a binary compare */
3188 uint8_t *data;
3189
3190 if (diffs == 0)
3191 LOG_ERROR("checksum mismatch - attempting binary compare");
3192
3193 data = malloc(buf_cnt);
3194
3195 /* Can we use 32bit word accesses? */
3196 int size = 1;
3197 int count = buf_cnt;
3198 if ((count % 4) == 0) {
3199 size *= 4;
3200 count /= 4;
3201 }
3202 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3203 if (retval == ERROR_OK) {
3204 uint32_t t;
3205 for (t = 0; t < buf_cnt; t++) {
3206 if (data[t] != buffer[t]) {
3207 command_print(CMD_CTX,
3208 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3209 diffs,
3210 (unsigned)(t + image.sections[i].base_address),
3211 data[t],
3212 buffer[t]);
3213 if (diffs++ >= 127) {
3214 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3215 free(data);
3216 free(buffer);
3217 goto done;
3218 }
3219 }
3220 keep_alive();
3221 }
3222 }
3223 free(data);
3224 }
3225 } else {
3226 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3227 image.sections[i].base_address,
3228 buf_cnt);
3229 }
3230
3231 free(buffer);
3232 image_size += buf_cnt;
3233 }
3234 if (diffs > 0)
3235 command_print(CMD_CTX, "No more differences found.");
3236 done:
3237 if (diffs > 0)
3238 retval = ERROR_FAIL;
3239 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3240 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3241 "in %fs (%0.3f KiB/s)", image_size,
3242 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3243 }
3244
3245 image_close(&image);
3246
3247 return retval;
3248 }
3249
3250 COMMAND_HANDLER(handle_verify_image_command)
3251 {
3252 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3253 }
3254
3255 COMMAND_HANDLER(handle_test_image_command)
3256 {
3257 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3258 }
3259
3260 static int handle_bp_command_list(struct command_context *cmd_ctx)
3261 {
3262 struct target *target = get_current_target(cmd_ctx);
3263 struct breakpoint *breakpoint = target->breakpoints;
3264 while (breakpoint) {
3265 if (breakpoint->type == BKPT_SOFT) {
3266 char *buf = buf_to_str(breakpoint->orig_instr,
3267 breakpoint->length, 16);
3268 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3269 breakpoint->address,
3270 breakpoint->length,
3271 breakpoint->set, buf);
3272 free(buf);
3273 } else {
3274 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3275 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3276 breakpoint->asid,
3277 breakpoint->length, breakpoint->set);
3278 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3279 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3280 breakpoint->address,
3281 breakpoint->length, breakpoint->set);
3282 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3283 breakpoint->asid);
3284 } else
3285 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3286 breakpoint->address,
3287 breakpoint->length, breakpoint->set);
3288 }
3289
3290 breakpoint = breakpoint->next;
3291 }
3292 return ERROR_OK;
3293 }
3294
3295 static int handle_bp_command_set(struct command_context *cmd_ctx,
3296 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3297 {
3298 struct target *target = get_current_target(cmd_ctx);
3299
3300 if (asid == 0) {
3301 int retval = breakpoint_add(target, addr, length, hw);
3302 if (ERROR_OK == retval)
3303 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3304 else {
3305 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3306 return retval;
3307 }
3308 } else if (addr == 0) {
3309 int retval = context_breakpoint_add(target, asid, length, hw);
3310 if (ERROR_OK == retval)
3311 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3312 else {
3313 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3314 return retval;
3315 }
3316 } else {
3317 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3318 if (ERROR_OK == retval)
3319 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3320 else {
3321 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3322 return retval;
3323 }
3324 }
3325 return ERROR_OK;
3326 }
3327
3328 COMMAND_HANDLER(handle_bp_command)
3329 {
3330 uint32_t addr;
3331 uint32_t asid;
3332 uint32_t length;
3333 int hw = BKPT_SOFT;
3334
3335 switch (CMD_ARGC) {
3336 case 0:
3337 return handle_bp_command_list(CMD_CTX);
3338
3339 case 2:
3340 asid = 0;
3341 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3342 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3343 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3344
3345 case 3:
3346 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3347 hw = BKPT_HARD;
3348 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3349
3350 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3351
3352 asid = 0;
3353 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3354 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3355 hw = BKPT_HARD;
3356 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3357 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3358 addr = 0;
3359 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3360 }
3361
3362 case 4:
3363 hw = BKPT_HARD;
3364 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3365 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3366 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3367 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3368
3369 default:
3370 return ERROR_COMMAND_SYNTAX_ERROR;
3371 }
3372 }
3373
3374 COMMAND_HANDLER(handle_rbp_command)
3375 {
3376 if (CMD_ARGC != 1)
3377 return ERROR_COMMAND_SYNTAX_ERROR;
3378
3379 uint32_t addr;
3380 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3381
3382 struct target *target = get_current_target(CMD_CTX);
3383 breakpoint_remove(target, addr);
3384
3385 return ERROR_OK;
3386 }
3387
3388 COMMAND_HANDLER(handle_wp_command)
3389 {
3390 struct target *target = get_current_target(CMD_CTX);
3391
3392 if (CMD_ARGC == 0) {
3393 struct watchpoint *watchpoint = target->watchpoints;
3394
3395 while (watchpoint) {
3396 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3397 ", len: 0x%8.8" PRIx32
3398 ", r/w/a: %i, value: 0x%8.8" PRIx32
3399 ", mask: 0x%8.8" PRIx32,
3400 watchpoint->address,
3401 watchpoint->length,
3402 (int)watchpoint->rw,
3403 watchpoint->value,
3404 watchpoint->mask);
3405 watchpoint = watchpoint->next;
3406 }
3407 return ERROR_OK;
3408 }
3409
3410 enum watchpoint_rw type = WPT_ACCESS;
3411 uint32_t addr = 0;
3412 uint32_t length = 0;
3413 uint32_t data_value = 0x0;
3414 uint32_t data_mask = 0xffffffff;
3415
3416 switch (CMD_ARGC) {
3417 case 5:
3418 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3419 /* fall through */
3420 case 4:
3421 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3422 /* fall through */
3423 case 3:
3424 switch (CMD_ARGV[2][0]) {
3425 case 'r':
3426 type = WPT_READ;
3427 break;
3428 case 'w':
3429 type = WPT_WRITE;
3430 break;
3431 case 'a':
3432 type = WPT_ACCESS;
3433 break;
3434 default:
3435 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3436 return ERROR_COMMAND_SYNTAX_ERROR;
3437 }
3438 /* fall through */
3439 case 2:
3440 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3441 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3442 break;
3443
3444 default:
3445 return ERROR_COMMAND_SYNTAX_ERROR;
3446 }
3447
3448 int retval = watchpoint_add(target, addr, length, type,
3449 data_value, data_mask);
3450 if (ERROR_OK != retval)
3451 LOG_ERROR("Failure setting watchpoints");
3452
3453 return retval;
3454 }
3455
3456 COMMAND_HANDLER(handle_rwp_command)
3457 {
3458 if (CMD_ARGC != 1)
3459 return ERROR_COMMAND_SYNTAX_ERROR;
3460
3461 uint32_t addr;
3462 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3463
3464 struct target *target = get_current_target(CMD_CTX);
3465 watchpoint_remove(target, addr);
3466
3467 return ERROR_OK;
3468 }
3469
3470 /**
3471 * Translate a virtual address to a physical address.
3472 *
3473 * The low-level target implementation must have logged a detailed error
3474 * which is forwarded to telnet/GDB session.
3475 */
3476 COMMAND_HANDLER(handle_virt2phys_command)
3477 {
3478 if (CMD_ARGC != 1)
3479 return ERROR_COMMAND_SYNTAX_ERROR;
3480
3481 uint32_t va;
3482 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3483 uint32_t pa;
3484
3485 struct target *target = get_current_target(CMD_CTX);
3486 int retval = target->type->virt2phys(target, va, &pa);
3487 if (retval == ERROR_OK)
3488 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3489
3490 return retval;
3491 }
3492
3493 static void writeData(FILE *f, const void *data, size_t len)
3494 {
3495 size_t written = fwrite(data, 1, len, f);
3496 if (written != len)
3497 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3498 }
3499
3500 static void writeLong(FILE *f, int l)
3501 {
3502 int i;
3503 for (i = 0; i < 4; i++) {
3504 char c = (l >> (i*8))&0xff;
3505 writeData(f, &c, 1);
3506 }
3507
3508 }
3509
3510 static void writeString(FILE *f, char *s)
3511 {
3512 writeData(f, s, strlen(s));
3513 }
3514
3515 typedef unsigned char UNIT[2]; /* unit of profiling */
3516
3517 /* Dump a gmon.out histogram file. */
3518 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3519 bool with_range, uint32_t start_address, uint32_t end_address)
3520 {
3521 uint32_t i;
3522 FILE *f = fopen(filename, "w");
3523 if (f == NULL)
3524 return;
3525 writeString(f, "gmon");
3526 writeLong(f, 0x00000001); /* Version */
3527 writeLong(f, 0); /* padding */
3528 writeLong(f, 0); /* padding */
3529 writeLong(f, 0); /* padding */
3530
3531 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3532 writeData(f, &zero, 1);
3533
3534 /* figure out bucket size */
3535 uint32_t min;
3536 uint32_t max;
3537 if (with_range) {
3538 min = start_address;
3539 max = end_address;
3540 } else {
3541 min = samples[0];
3542 max = samples[0];
3543 for (i = 0; i < sampleNum; i++) {
3544 if (min > samples[i])
3545 min = samples[i];
3546 if (max < samples[i])
3547 max = samples[i];
3548 }
3549
3550 /* max should be (largest sample + 1)
3551 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3552 max++;
3553 }
3554
3555 int addressSpace = max - min;
3556 assert(addressSpace >= 2);
3557
3558 /* FIXME: What is the reasonable number of buckets?
3559 * The profiling result will be more accurate if there are enough buckets. */
3560 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3561 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3562 if (numBuckets > maxBuckets)
3563 numBuckets = maxBuckets;
3564 int *buckets = malloc(sizeof(int) * numBuckets);
3565 if (buckets == NULL) {
3566 fclose(f);
3567 return;
3568 }
3569 memset(buckets, 0, sizeof(int) * numBuckets);
3570 for (i = 0; i < sampleNum; i++) {
3571 uint32_t address = samples[i];
3572
3573 if ((address < min) || (max <= address))
3574 continue;
3575
3576 long long a = address - min;
3577 long long b = numBuckets;
3578 long long c = addressSpace;
3579 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3580 buckets[index_t]++;
3581 }
3582
3583 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3584 writeLong(f, min); /* low_pc */
3585 writeLong(f, max); /* high_pc */
3586 writeLong(f, numBuckets); /* # of buckets */
3587 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3588 writeString(f, "seconds");
3589 for (i = 0; i < (15-strlen("seconds")); i++)
3590 writeData(f, &zero, 1);
3591 writeString(f, "s");
3592
3593 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3594
3595 char *data = malloc(2 * numBuckets);
3596 if (data != NULL) {
3597 for (i = 0; i < numBuckets; i++) {
3598 int val;
3599 val = buckets[i];
3600 if (val > 65535)
3601 val = 65535;
3602 data[i * 2] = val&0xff;
3603 data[i * 2 + 1] = (val >> 8) & 0xff;
3604 }
3605 free(buckets);
3606 writeData(f, data, numBuckets * 2);
3607 free(data);
3608 } else
3609 free(buckets);
3610
3611 fclose(f);
3612 }
3613
3614 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3615 * which will be used as a random sampling of PC */
3616 COMMAND_HANDLER(handle_profile_command)
3617 {
3618 struct target *target = get_current_target(CMD_CTX);
3619
3620 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3621 return ERROR_COMMAND_SYNTAX_ERROR;
3622
3623 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3624 uint32_t offset;
3625 uint32_t num_of_samples;
3626 int retval = ERROR_OK;
3627
3628 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3629
3630 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3631 if (samples == NULL) {
3632 LOG_ERROR("No memory to store samples.");
3633 return ERROR_FAIL;
3634 }
3635
3636 /**
3637 * Some cores let us sample the PC without the
3638 * annoying halt/resume step; for example, ARMv7 PCSR.
3639 * Provide a way to use that more efficient mechanism.
3640 */
3641 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3642 &num_of_samples, offset);
3643 if (retval != ERROR_OK) {
3644 free(samples);
3645 return retval;
3646 }
3647
36