1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
63 static int target_read_buffer_default(struct target
*target
, uint32_t address
,
64 uint32_t count
, uint8_t *buffer
);
65 static int target_write_buffer_default(struct target
*target
, uint32_t address
,
66 uint32_t count
, const uint8_t *buffer
);
67 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
68 int argc
, Jim_Obj
* const *argv
);
69 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
70 int argc
, Jim_Obj
* const *argv
);
71 static int target_register_user_commands(struct command_context
*cmd_ctx
);
72 static int target_get_gdb_fileio_info_default(struct target
*target
,
73 struct gdb_fileio_info
*fileio_info
);
74 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
75 int fileio_errno
, bool ctrl_c
);
76 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
77 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
);
80 extern struct target_type arm7tdmi_target
;
81 extern struct target_type arm720t_target
;
82 extern struct target_type arm9tdmi_target
;
83 extern struct target_type arm920t_target
;
84 extern struct target_type arm966e_target
;
85 extern struct target_type arm946e_target
;
86 extern struct target_type arm926ejs_target
;
87 extern struct target_type fa526_target
;
88 extern struct target_type feroceon_target
;
89 extern struct target_type dragonite_target
;
90 extern struct target_type xscale_target
;
91 extern struct target_type cortexm_target
;
92 extern struct target_type cortexa_target
;
93 extern struct target_type cortexr4_target
;
94 extern struct target_type arm11_target
;
95 extern struct target_type mips_m4k_target
;
96 extern struct target_type avr_target
;
97 extern struct target_type dsp563xx_target
;
98 extern struct target_type dsp5680xx_target
;
99 extern struct target_type testee_target
;
100 extern struct target_type avr32_ap7k_target
;
101 extern struct target_type hla_target
;
102 extern struct target_type nds32_v2_target
;
103 extern struct target_type nds32_v3_target
;
104 extern struct target_type nds32_v3m_target
;
105 extern struct target_type or1k_target
;
106 extern struct target_type quark_x10xx_target
;
108 static struct target_type
*target_types
[] = {
139 struct target
*all_targets
;
140 static struct target_event_callback
*target_event_callbacks
;
141 static struct target_timer_callback
*target_timer_callbacks
;
142 static const int polling_interval
= 100;
144 static const Jim_Nvp nvp_assert
[] = {
145 { .name
= "assert", NVP_ASSERT
},
146 { .name
= "deassert", NVP_DEASSERT
},
147 { .name
= "T", NVP_ASSERT
},
148 { .name
= "F", NVP_DEASSERT
},
149 { .name
= "t", NVP_ASSERT
},
150 { .name
= "f", NVP_DEASSERT
},
151 { .name
= NULL
, .value
= -1 }
154 static const Jim_Nvp nvp_error_target
[] = {
155 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
156 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
157 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
158 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
159 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
160 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
161 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
162 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
163 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
164 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
165 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
166 { .value
= -1, .name
= NULL
}
169 static const char *target_strerror_safe(int err
)
173 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
180 static const Jim_Nvp nvp_target_event
[] = {
182 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
183 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
184 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
185 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
186 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
188 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
189 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
191 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
192 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
193 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
194 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
195 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
196 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
197 { .value
= TARGET_EVENT_RESET_HALT_PRE
, .name
= "reset-halt-pre" },
198 { .value
= TARGET_EVENT_RESET_HALT_POST
, .name
= "reset-halt-post" },
199 { .value
= TARGET_EVENT_RESET_WAIT_PRE
, .name
= "reset-wait-pre" },
200 { .value
= TARGET_EVENT_RESET_WAIT_POST
, .name
= "reset-wait-post" },
201 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
202 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
204 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
205 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
207 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
208 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
210 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
211 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
213 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
214 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
216 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
217 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
219 { .name
= NULL
, .value
= -1 }
222 static const Jim_Nvp nvp_target_state
[] = {
223 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
224 { .name
= "running", .value
= TARGET_RUNNING
},
225 { .name
= "halted", .value
= TARGET_HALTED
},
226 { .name
= "reset", .value
= TARGET_RESET
},
227 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
228 { .name
= NULL
, .value
= -1 },
231 static const Jim_Nvp nvp_target_debug_reason
[] = {
232 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
233 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
234 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
235 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
236 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
237 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
238 { .name
= "program-exit" , .value
= DBG_REASON_EXIT
},
239 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
240 { .name
= NULL
, .value
= -1 },
243 static const Jim_Nvp nvp_target_endian
[] = {
244 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
245 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
246 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
247 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
248 { .name
= NULL
, .value
= -1 },
251 static const Jim_Nvp nvp_reset_modes
[] = {
252 { .name
= "unknown", .value
= RESET_UNKNOWN
},
253 { .name
= "run" , .value
= RESET_RUN
},
254 { .name
= "halt" , .value
= RESET_HALT
},
255 { .name
= "init" , .value
= RESET_INIT
},
256 { .name
= NULL
, .value
= -1 },
259 const char *debug_reason_name(struct target
*t
)
263 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
264 t
->debug_reason
)->name
;
266 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
267 cp
= "(*BUG*unknown*BUG*)";
272 const char *target_state_name(struct target
*t
)
275 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
277 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
278 cp
= "(*BUG*unknown*BUG*)";
283 /* determine the number of the new target */
284 static int new_target_number(void)
289 /* number is 0 based */
293 if (x
< t
->target_number
)
294 x
= t
->target_number
;
300 /* read a uint64_t from a buffer in target memory endianness */
301 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
303 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
304 return le_to_h_u64(buffer
);
306 return be_to_h_u64(buffer
);
309 /* read a uint32_t from a buffer in target memory endianness */
310 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
312 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
313 return le_to_h_u32(buffer
);
315 return be_to_h_u32(buffer
);
318 /* read a uint24_t from a buffer in target memory endianness */
319 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
321 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
322 return le_to_h_u24(buffer
);
324 return be_to_h_u24(buffer
);
327 /* read a uint16_t from a buffer in target memory endianness */
328 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
330 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
331 return le_to_h_u16(buffer
);
333 return be_to_h_u16(buffer
);
336 /* read a uint8_t from a buffer in target memory endianness */
337 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
339 return *buffer
& 0x0ff;
342 /* write a uint64_t to a buffer in target memory endianness */
343 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
345 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
346 h_u64_to_le(buffer
, value
);
348 h_u64_to_be(buffer
, value
);
351 /* write a uint32_t to a buffer in target memory endianness */
352 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
354 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
355 h_u32_to_le(buffer
, value
);
357 h_u32_to_be(buffer
, value
);
360 /* write a uint24_t to a buffer in target memory endianness */
361 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
363 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
364 h_u24_to_le(buffer
, value
);
366 h_u24_to_be(buffer
, value
);
369 /* write a uint16_t to a buffer in target memory endianness */
370 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
372 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
373 h_u16_to_le(buffer
, value
);
375 h_u16_to_be(buffer
, value
);
378 /* write a uint8_t to a buffer in target memory endianness */
379 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
384 /* write a uint64_t array to a buffer in target memory endianness */
385 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
388 for (i
= 0; i
< count
; i
++)
389 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
392 /* write a uint32_t array to a buffer in target memory endianness */
393 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
396 for (i
= 0; i
< count
; i
++)
397 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
400 /* write a uint16_t array to a buffer in target memory endianness */
401 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
404 for (i
= 0; i
< count
; i
++)
405 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
408 /* write a uint64_t array to a buffer in target memory endianness */
409 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
412 for (i
= 0; i
< count
; i
++)
413 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
416 /* write a uint32_t array to a buffer in target memory endianness */
417 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
420 for (i
= 0; i
< count
; i
++)
421 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
424 /* write a uint16_t array to a buffer in target memory endianness */
425 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
428 for (i
= 0; i
< count
; i
++)
429 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
432 /* return a pointer to a configured target; id is name or number */
433 struct target
*get_target(const char *id
)
435 struct target
*target
;
437 /* try as tcltarget name */
438 for (target
= all_targets
; target
; target
= target
->next
) {
439 if (target_name(target
) == NULL
)
441 if (strcmp(id
, target_name(target
)) == 0)
445 /* It's OK to remove this fallback sometime after August 2010 or so */
447 /* no match, try as number */
449 if (parse_uint(id
, &num
) != ERROR_OK
)
452 for (target
= all_targets
; target
; target
= target
->next
) {
453 if (target
->target_number
== (int)num
) {
454 LOG_WARNING("use '%s' as target identifier, not '%u'",
455 target_name(target
), num
);
463 /* returns a pointer to the n-th configured target */
464 static struct target
*get_target_by_num(int num
)
466 struct target
*target
= all_targets
;
469 if (target
->target_number
== num
)
471 target
= target
->next
;
477 struct target
*get_current_target(struct command_context
*cmd_ctx
)
479 struct target
*target
= get_target_by_num(cmd_ctx
->current_target
);
481 if (target
== NULL
) {
482 LOG_ERROR("BUG: current_target out of bounds");
489 int target_poll(struct target
*target
)
493 /* We can't poll until after examine */
494 if (!target_was_examined(target
)) {
495 /* Fail silently lest we pollute the log */
499 retval
= target
->type
->poll(target
);
500 if (retval
!= ERROR_OK
)
503 if (target
->halt_issued
) {
504 if (target
->state
== TARGET_HALTED
)
505 target
->halt_issued
= false;
507 long long t
= timeval_ms() - target
->halt_issued_time
;
508 if (t
> DEFAULT_HALT_TIMEOUT
) {
509 target
->halt_issued
= false;
510 LOG_INFO("Halt timed out, wake up GDB.");
511 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
519 int target_halt(struct target
*target
)
522 /* We can't poll until after examine */
523 if (!target_was_examined(target
)) {
524 LOG_ERROR("Target not examined yet");
528 retval
= target
->type
->halt(target
);
529 if (retval
!= ERROR_OK
)
532 target
->halt_issued
= true;
533 target
->halt_issued_time
= timeval_ms();
539 * Make the target (re)start executing using its saved execution
540 * context (possibly with some modifications).
542 * @param target Which target should start executing.
543 * @param current True to use the target's saved program counter instead
544 * of the address parameter
545 * @param address Optionally used as the program counter.
546 * @param handle_breakpoints True iff breakpoints at the resumption PC
547 * should be skipped. (For example, maybe execution was stopped by
548 * such a breakpoint, in which case it would be counterprodutive to
550 * @param debug_execution False if all working areas allocated by OpenOCD
551 * should be released and/or restored to their original contents.
552 * (This would for example be true to run some downloaded "helper"
553 * algorithm code, which resides in one such working buffer and uses
554 * another for data storage.)
556 * @todo Resolve the ambiguity about what the "debug_execution" flag
557 * signifies. For example, Target implementations don't agree on how
558 * it relates to invalidation of the register cache, or to whether
559 * breakpoints and watchpoints should be enabled. (It would seem wrong
560 * to enable breakpoints when running downloaded "helper" algorithms
561 * (debug_execution true), since the breakpoints would be set to match
562 * target firmware being debugged, not the helper algorithm.... and
563 * enabling them could cause such helpers to malfunction (for example,
564 * by overwriting data with a breakpoint instruction. On the other
565 * hand the infrastructure for running such helpers might use this
566 * procedure but rely on hardware breakpoint to detect termination.)
568 int target_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
572 /* We can't poll until after examine */
573 if (!target_was_examined(target
)) {
574 LOG_ERROR("Target not examined yet");
578 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
580 /* note that resume *must* be asynchronous. The CPU can halt before
581 * we poll. The CPU can even halt at the current PC as a result of
582 * a software breakpoint being inserted by (a bug?) the application.
584 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
585 if (retval
!= ERROR_OK
)
588 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
593 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
598 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
599 if (n
->name
== NULL
) {
600 LOG_ERROR("invalid reset mode");
604 /* disable polling during reset to make reset event scripts
605 * more predictable, i.e. dr/irscan & pathmove in events will
606 * not have JTAG operations injected into the middle of a sequence.
608 bool save_poll
= jtag_poll_get_enabled();
610 jtag_poll_set_enabled(false);
612 sprintf(buf
, "ocd_process_reset %s", n
->name
);
613 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
615 jtag_poll_set_enabled(save_poll
);
617 if (retval
!= JIM_OK
) {
618 Jim_MakeErrorMessage(cmd_ctx
->interp
);
619 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
623 /* We want any events to be processed before the prompt */
624 retval
= target_call_timer_callbacks_now();
626 struct target
*target
;
627 for (target
= all_targets
; target
; target
= target
->next
) {
628 target
->type
->check_reset(target
);
629 target
->running_alg
= false;
635 static int identity_virt2phys(struct target
*target
,
636 uint32_t virtual, uint32_t *physical
)
642 static int no_mmu(struct target
*target
, int *enabled
)
648 static int default_examine(struct target
*target
)
650 target_set_examined(target
);
654 /* no check by default */
655 static int default_check_reset(struct target
*target
)
660 int target_examine_one(struct target
*target
)
662 return target
->type
->examine(target
);
665 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
667 struct target
*target
= priv
;
669 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
672 jtag_unregister_event_callback(jtag_enable_callback
, target
);
674 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
676 int retval
= target_examine_one(target
);
677 if (retval
!= ERROR_OK
)
680 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
685 /* Targets that correctly implement init + examine, i.e.
686 * no communication with target during init:
690 int target_examine(void)
692 int retval
= ERROR_OK
;
693 struct target
*target
;
695 for (target
= all_targets
; target
; target
= target
->next
) {
696 /* defer examination, but don't skip it */
697 if (!target
->tap
->enabled
) {
698 jtag_register_event_callback(jtag_enable_callback
,
703 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
705 retval
= target_examine_one(target
);
706 if (retval
!= ERROR_OK
)
709 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
714 const char *target_type_name(struct target
*target
)
716 return target
->type
->name
;
719 static int target_soft_reset_halt(struct target
*target
)
721 if (!target_was_examined(target
)) {
722 LOG_ERROR("Target not examined yet");
725 if (!target
->type
->soft_reset_halt
) {
726 LOG_ERROR("Target %s does not support soft_reset_halt",
727 target_name(target
));
730 return target
->type
->soft_reset_halt(target
);
734 * Downloads a target-specific native code algorithm to the target,
735 * and executes it. * Note that some targets may need to set up, enable,
736 * and tear down a breakpoint (hard or * soft) to detect algorithm
737 * termination, while others may support lower overhead schemes where
738 * soft breakpoints embedded in the algorithm automatically terminate the
741 * @param target used to run the algorithm
742 * @param arch_info target-specific description of the algorithm.
744 int target_run_algorithm(struct target
*target
,
745 int num_mem_params
, struct mem_param
*mem_params
,
746 int num_reg_params
, struct reg_param
*reg_param
,
747 uint32_t entry_point
, uint32_t exit_point
,
748 int timeout_ms
, void *arch_info
)
750 int retval
= ERROR_FAIL
;
752 if (!target_was_examined(target
)) {
753 LOG_ERROR("Target not examined yet");
756 if (!target
->type
->run_algorithm
) {
757 LOG_ERROR("Target type '%s' does not support %s",
758 target_type_name(target
), __func__
);
762 target
->running_alg
= true;
763 retval
= target
->type
->run_algorithm(target
,
764 num_mem_params
, mem_params
,
765 num_reg_params
, reg_param
,
766 entry_point
, exit_point
, timeout_ms
, arch_info
);
767 target
->running_alg
= false;
774 * Downloads a target-specific native code algorithm to the target,
775 * executes and leaves it running.
777 * @param target used to run the algorithm
778 * @param arch_info target-specific description of the algorithm.
780 int target_start_algorithm(struct target
*target
,
781 int num_mem_params
, struct mem_param
*mem_params
,
782 int num_reg_params
, struct reg_param
*reg_params
,
783 uint32_t entry_point
, uint32_t exit_point
,
786 int retval
= ERROR_FAIL
;
788 if (!target_was_examined(target
)) {
789 LOG_ERROR("Target not examined yet");
792 if (!target
->type
->start_algorithm
) {
793 LOG_ERROR("Target type '%s' does not support %s",
794 target_type_name(target
), __func__
);
797 if (target
->running_alg
) {
798 LOG_ERROR("Target is already running an algorithm");
802 target
->running_alg
= true;
803 retval
= target
->type
->start_algorithm(target
,
804 num_mem_params
, mem_params
,
805 num_reg_params
, reg_params
,
806 entry_point
, exit_point
, arch_info
);
813 * Waits for an algorithm started with target_start_algorithm() to complete.
815 * @param target used to run the algorithm
816 * @param arch_info target-specific description of the algorithm.
818 int target_wait_algorithm(struct target
*target
,
819 int num_mem_params
, struct mem_param
*mem_params
,
820 int num_reg_params
, struct reg_param
*reg_params
,
821 uint32_t exit_point
, int timeout_ms
,
824 int retval
= ERROR_FAIL
;
826 if (!target
->type
->wait_algorithm
) {
827 LOG_ERROR("Target type '%s' does not support %s",
828 target_type_name(target
), __func__
);
831 if (!target
->running_alg
) {
832 LOG_ERROR("Target is not running an algorithm");
836 retval
= target
->type
->wait_algorithm(target
,
837 num_mem_params
, mem_params
,
838 num_reg_params
, reg_params
,
839 exit_point
, timeout_ms
, arch_info
);
840 if (retval
!= ERROR_TARGET_TIMEOUT
)
841 target
->running_alg
= false;
848 * Executes a target-specific native code algorithm in the target.
849 * It differs from target_run_algorithm in that the algorithm is asynchronous.
850 * Because of this it requires an compliant algorithm:
851 * see contrib/loaders/flash/stm32f1x.S for example.
853 * @param target used to run the algorithm
856 int target_run_flash_async_algorithm(struct target
*target
,
857 const uint8_t *buffer
, uint32_t count
, int block_size
,
858 int num_mem_params
, struct mem_param
*mem_params
,
859 int num_reg_params
, struct reg_param
*reg_params
,
860 uint32_t buffer_start
, uint32_t buffer_size
,
861 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
866 const uint8_t *buffer_orig
= buffer
;
868 /* Set up working area. First word is write pointer, second word is read pointer,
869 * rest is fifo data area. */
870 uint32_t wp_addr
= buffer_start
;
871 uint32_t rp_addr
= buffer_start
+ 4;
872 uint32_t fifo_start_addr
= buffer_start
+ 8;
873 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
875 uint32_t wp
= fifo_start_addr
;
876 uint32_t rp
= fifo_start_addr
;
878 /* validate block_size is 2^n */
879 assert(!block_size
|| !(block_size
& (block_size
- 1)));
881 retval
= target_write_u32(target
, wp_addr
, wp
);
882 if (retval
!= ERROR_OK
)
884 retval
= target_write_u32(target
, rp_addr
, rp
);
885 if (retval
!= ERROR_OK
)
888 /* Start up algorithm on target and let it idle while writing the first chunk */
889 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
890 num_reg_params
, reg_params
,
895 if (retval
!= ERROR_OK
) {
896 LOG_ERROR("error starting target flash write algorithm");
902 retval
= target_read_u32(target
, rp_addr
, &rp
);
903 if (retval
!= ERROR_OK
) {
904 LOG_ERROR("failed to get read pointer");
908 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
909 (size_t) (buffer
- buffer_orig
), count
, wp
, rp
);
912 LOG_ERROR("flash write algorithm aborted by target");
913 retval
= ERROR_FLASH_OPERATION_FAILED
;
917 if ((rp
& (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
918 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
922 /* Count the number of bytes available in the fifo without
923 * crossing the wrap around. Make sure to not fill it completely,
924 * because that would make wp == rp and that's the empty condition. */
925 uint32_t thisrun_bytes
;
927 thisrun_bytes
= rp
- wp
- block_size
;
928 else if (rp
> fifo_start_addr
)
929 thisrun_bytes
= fifo_end_addr
- wp
;
931 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
933 if (thisrun_bytes
== 0) {
934 /* Throttle polling a bit if transfer is (much) faster than flash
935 * programming. The exact delay shouldn't matter as long as it's
936 * less than buffer size / flash speed. This is very unlikely to
937 * run when using high latency connections such as USB. */
940 /* to stop an infinite loop on some targets check and increment a timeout
941 * this issue was observed on a stellaris using the new ICDI interface */
942 if (timeout
++ >= 500) {
943 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
944 return ERROR_FLASH_OPERATION_FAILED
;
949 /* reset our timeout */
952 /* Limit to the amount of data we actually want to write */
953 if (thisrun_bytes
> count
* block_size
)
954 thisrun_bytes
= count
* block_size
;
956 /* Write data to fifo */
957 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
958 if (retval
!= ERROR_OK
)
961 /* Update counters and wrap write pointer */
962 buffer
+= thisrun_bytes
;
963 count
-= thisrun_bytes
/ block_size
;
965 if (wp
>= fifo_end_addr
)
966 wp
= fifo_start_addr
;
968 /* Store updated write pointer to target */
969 retval
= target_write_u32(target
, wp_addr
, wp
);
970 if (retval
!= ERROR_OK
)
974 if (retval
!= ERROR_OK
) {
975 /* abort flash write algorithm on target */
976 target_write_u32(target
, wp_addr
, 0);
979 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
980 num_reg_params
, reg_params
,
985 if (retval2
!= ERROR_OK
) {
986 LOG_ERROR("error waiting for target flash write algorithm");
993 int target_read_memory(struct target
*target
,
994 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
996 if (!target_was_examined(target
)) {
997 LOG_ERROR("Target not examined yet");
1000 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
1003 int target_read_phys_memory(struct target
*target
,
1004 uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1006 if (!target_was_examined(target
)) {
1007 LOG_ERROR("Target not examined yet");
1010 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1013 int target_write_memory(struct target
*target
,
1014 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1016 if (!target_was_examined(target
)) {
1017 LOG_ERROR("Target not examined yet");
1020 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1023 int target_write_phys_memory(struct target
*target
,
1024 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1026 if (!target_was_examined(target
)) {
1027 LOG_ERROR("Target not examined yet");
1030 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1033 int target_add_breakpoint(struct target
*target
,
1034 struct breakpoint
*breakpoint
)
1036 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1037 LOG_WARNING("target %s is not halted", target_name(target
));
1038 return ERROR_TARGET_NOT_HALTED
;
1040 return target
->type
->add_breakpoint(target
, breakpoint
);
1043 int target_add_context_breakpoint(struct target
*target
,
1044 struct breakpoint
*breakpoint
)
1046 if (target
->state
!= TARGET_HALTED
) {
1047 LOG_WARNING("target %s is not halted", target_name(target
));
1048 return ERROR_TARGET_NOT_HALTED
;
1050 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1053 int target_add_hybrid_breakpoint(struct target
*target
,
1054 struct breakpoint
*breakpoint
)
1056 if (target
->state
!= TARGET_HALTED
) {
1057 LOG_WARNING("target %s is not halted", target_name(target
));
1058 return ERROR_TARGET_NOT_HALTED
;
1060 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1063 int target_remove_breakpoint(struct target
*target
,
1064 struct breakpoint
*breakpoint
)
1066 return target
->type
->remove_breakpoint(target
, breakpoint
);
1069 int target_add_watchpoint(struct target
*target
,
1070 struct watchpoint
*watchpoint
)
1072 if (target
->state
!= TARGET_HALTED
) {
1073 LOG_WARNING("target %s is not halted", target_name(target
));
1074 return ERROR_TARGET_NOT_HALTED
;
1076 return target
->type
->add_watchpoint(target
, watchpoint
);
1078 int target_remove_watchpoint(struct target
*target
,
1079 struct watchpoint
*watchpoint
)
1081 return target
->type
->remove_watchpoint(target
, watchpoint
);
1083 int target_hit_watchpoint(struct target
*target
,
1084 struct watchpoint
**hit_watchpoint
)
1086 if (target
->state
!= TARGET_HALTED
) {
1087 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1088 return ERROR_TARGET_NOT_HALTED
;
1091 if (target
->type
->hit_watchpoint
== NULL
) {
1092 /* For backward compatible, if hit_watchpoint is not implemented,
1093 * return ERROR_FAIL such that gdb_server will not take the nonsense
1098 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1101 int target_get_gdb_reg_list(struct target
*target
,
1102 struct reg
**reg_list
[], int *reg_list_size
,
1103 enum target_register_class reg_class
)
1105 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1107 int target_step(struct target
*target
,
1108 int current
, uint32_t address
, int handle_breakpoints
)
1110 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1113 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1115 if (target
->state
!= TARGET_HALTED
) {
1116 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1117 return ERROR_TARGET_NOT_HALTED
;
1119 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1122 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1124 if (target
->state
!= TARGET_HALTED
) {
1125 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1126 return ERROR_TARGET_NOT_HALTED
;
1128 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1131 int target_profiling(struct target
*target
, uint32_t *samples
,
1132 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1134 if (target
->state
!= TARGET_HALTED
) {
1135 LOG_WARNING("target %s is not halted", target
->cmd_name
);
1136 return ERROR_TARGET_NOT_HALTED
;
1138 return target
->type
->profiling(target
, samples
, max_num_samples
,
1139 num_samples
, seconds
);
1143 * Reset the @c examined flag for the given target.
1144 * Pure paranoia -- targets are zeroed on allocation.
1146 static void target_reset_examined(struct target
*target
)
1148 target
->examined
= false;
1151 static int err_read_phys_memory(struct target
*target
, uint32_t address
,
1152 uint32_t size
, uint32_t count
, uint8_t *buffer
)
1154 LOG_ERROR("Not implemented: %s", __func__
);
1158 static int err_write_phys_memory(struct target
*target
, uint32_t address
,
1159 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1161 LOG_ERROR("Not implemented: %s", __func__
);
1165 static int handle_target(void *priv
);
1167 static int target_init_one(struct command_context
*cmd_ctx
,
1168 struct target
*target
)
1170 target_reset_examined(target
);
1172 struct target_type
*type
= target
->type
;
1173 if (type
->examine
== NULL
)
1174 type
->examine
= default_examine
;
1176 if (type
->check_reset
== NULL
)
1177 type
->check_reset
= default_check_reset
;
1179 assert(type
->init_target
!= NULL
);
1181 int retval
= type
->init_target(cmd_ctx
, target
);
1182 if (ERROR_OK
!= retval
) {
1183 LOG_ERROR("target '%s' init failed", target_name(target
));
1187 /* Sanity-check MMU support ... stub in what we must, to help
1188 * implement it in stages, but warn if we need to do so.
1191 if (type
->write_phys_memory
== NULL
) {
1192 LOG_ERROR("type '%s' is missing write_phys_memory",
1194 type
->write_phys_memory
= err_write_phys_memory
;
1196 if (type
->read_phys_memory
== NULL
) {
1197 LOG_ERROR("type '%s' is missing read_phys_memory",
1199 type
->read_phys_memory
= err_read_phys_memory
;
1201 if (type
->virt2phys
== NULL
) {
1202 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1203 type
->virt2phys
= identity_virt2phys
;
1206 /* Make sure no-MMU targets all behave the same: make no
1207 * distinction between physical and virtual addresses, and
1208 * ensure that virt2phys() is always an identity mapping.
1210 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1211 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1214 type
->write_phys_memory
= type
->write_memory
;
1215 type
->read_phys_memory
= type
->read_memory
;
1216 type
->virt2phys
= identity_virt2phys
;
1219 if (target
->type
->read_buffer
== NULL
)
1220 target
->type
->read_buffer
= target_read_buffer_default
;
1222 if (target
->type
->write_buffer
== NULL
)
1223 target
->type
->write_buffer
= target_write_buffer_default
;
1225 if (target
->type
->get_gdb_fileio_info
== NULL
)
1226 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1228 if (target
->type
->gdb_fileio_end
== NULL
)
1229 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1231 if (target
->type
->profiling
== NULL
)
1232 target
->type
->profiling
= target_profiling_default
;
1237 static int target_init(struct command_context
*cmd_ctx
)
1239 struct target
*target
;
1242 for (target
= all_targets
; target
; target
= target
->next
) {
1243 retval
= target_init_one(cmd_ctx
, target
);
1244 if (ERROR_OK
!= retval
)
1251 retval
= target_register_user_commands(cmd_ctx
);
1252 if (ERROR_OK
!= retval
)
1255 retval
= target_register_timer_callback(&handle_target
,
1256 polling_interval
, 1, cmd_ctx
->interp
);
1257 if (ERROR_OK
!= retval
)
1263 COMMAND_HANDLER(handle_target_init_command
)
1268 return ERROR_COMMAND_SYNTAX_ERROR
;
1270 static bool target_initialized
;
1271 if (target_initialized
) {
1272 LOG_INFO("'target init' has already been called");
1275 target_initialized
= true;
1277 retval
= command_run_line(CMD_CTX
, "init_targets");
1278 if (ERROR_OK
!= retval
)
1281 retval
= command_run_line(CMD_CTX
, "init_target_events");
1282 if (ERROR_OK
!= retval
)
1285 retval
= command_run_line(CMD_CTX
, "init_board");
1286 if (ERROR_OK
!= retval
)
1289 LOG_DEBUG("Initializing targets...");
1290 return target_init(CMD_CTX
);
1293 int target_register_event_callback(int (*callback
)(struct target
*target
,
1294 enum target_event event
, void *priv
), void *priv
)
1296 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1298 if (callback
== NULL
)
1299 return ERROR_COMMAND_SYNTAX_ERROR
;
1302 while ((*callbacks_p
)->next
)
1303 callbacks_p
= &((*callbacks_p
)->next
);
1304 callbacks_p
= &((*callbacks_p
)->next
);
1307 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1308 (*callbacks_p
)->callback
= callback
;
1309 (*callbacks_p
)->priv
= priv
;
1310 (*callbacks_p
)->next
= NULL
;
1315 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1317 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1320 if (callback
== NULL
)
1321 return ERROR_COMMAND_SYNTAX_ERROR
;
1324 while ((*callbacks_p
)->next
)
1325 callbacks_p
= &((*callbacks_p
)->next
);
1326 callbacks_p
= &((*callbacks_p
)->next
);
1329 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1330 (*callbacks_p
)->callback
= callback
;
1331 (*callbacks_p
)->periodic
= periodic
;
1332 (*callbacks_p
)->time_ms
= time_ms
;
1334 gettimeofday(&now
, NULL
);
1335 (*callbacks_p
)->when
.tv_usec
= now
.tv_usec
+ (time_ms
% 1000) * 1000;
1336 time_ms
-= (time_ms
% 1000);
1337 (*callbacks_p
)->when
.tv_sec
= now
.tv_sec
+ (time_ms
/ 1000);
1338 if ((*callbacks_p
)->when
.tv_usec
> 1000000) {
1339 (*callbacks_p
)->when
.tv_usec
= (*callbacks_p
)->when
.tv_usec
- 1000000;
1340 (*callbacks_p
)->when
.tv_sec
+= 1;
1343 (*callbacks_p
)->priv
= priv
;
1344 (*callbacks_p
)->next
= NULL
;
1349 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1350 enum target_event event
, void *priv
), void *priv
)
1352 struct target_event_callback
**p
= &target_event_callbacks
;
1353 struct target_event_callback
*c
= target_event_callbacks
;
1355 if (callback
== NULL
)
1356 return ERROR_COMMAND_SYNTAX_ERROR
;
1359 struct target_event_callback
*next
= c
->next
;
1360 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1372 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1374 struct target_timer_callback
**p
= &target_timer_callbacks
;
1375 struct target_timer_callback
*c
= target_timer_callbacks
;
1377 if (callback
== NULL
)
1378 return ERROR_COMMAND_SYNTAX_ERROR
;
1381 struct target_timer_callback
*next
= c
->next
;
1382 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1394 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1396 struct target_event_callback
*callback
= target_event_callbacks
;
1397 struct target_event_callback
*next_callback
;
1399 if (event
== TARGET_EVENT_HALTED
) {
1400 /* execute early halted first */
1401 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1404 LOG_DEBUG("target event %i (%s)", event
,
1405 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1407 target_handle_event(target
, event
);
1410 next_callback
= callback
->next
;
1411 callback
->callback(target
, event
, callback
->priv
);
1412 callback
= next_callback
;
1418 static int target_timer_callback_periodic_restart(
1419 struct target_timer_callback
*cb
, struct timeval
*now
)
1421 int time_ms
= cb
->time_ms
;
1422 cb
->when
.tv_usec
= now
->tv_usec
+ (time_ms
% 1000) * 1000;
1423 time_ms
-= (time_ms
% 1000);
1424 cb
->when
.tv_sec
= now
->tv_sec
+ time_ms
/ 1000;
1425 if (cb
->when
.tv_usec
> 1000000) {
1426 cb
->when
.tv_usec
= cb
->when
.tv_usec
- 1000000;
1427 cb
->when
.tv_sec
+= 1;
1432 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1433 struct timeval
*now
)
1435 cb
->callback(cb
->priv
);
1438 return target_timer_callback_periodic_restart(cb
, now
);
1440 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1443 static int target_call_timer_callbacks_check_time(int checktime
)
1448 gettimeofday(&now
, NULL
);
1450 struct target_timer_callback
*callback
= target_timer_callbacks
;
1452 /* cleaning up may unregister and free this callback */
1453 struct target_timer_callback
*next_callback
= callback
->next
;
1455 bool call_it
= callback
->callback
&&
1456 ((!checktime
&& callback
->periodic
) ||
1457 now
.tv_sec
> callback
->when
.tv_sec
||
1458 (now
.tv_sec
== callback
->when
.tv_sec
&&
1459 now
.tv_usec
>= callback
->when
.tv_usec
));
1462 int retval
= target_call_timer_callback(callback
, &now
);
1463 if (retval
!= ERROR_OK
)
1467 callback
= next_callback
;
1473 int target_call_timer_callbacks(void)
1475 return target_call_timer_callbacks_check_time(1);
1478 /* invoke periodic callbacks immediately */
1479 int target_call_timer_callbacks_now(void)
1481 return target_call_timer_callbacks_check_time(0);
1484 /* Prints the working area layout for debug purposes */
1485 static void print_wa_layout(struct target
*target
)
1487 struct working_area
*c
= target
->working_areas
;
1490 LOG_DEBUG("%c%c 0x%08"PRIx32
"-0x%08"PRIx32
" (%"PRIu32
" bytes)",
1491 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1492 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1497 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1498 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1500 assert(area
->free
); /* Shouldn't split an allocated area */
1501 assert(size
<= area
->size
); /* Caller should guarantee this */
1503 /* Split only if not already the right size */
1504 if (size
< area
->size
) {
1505 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1510 new_wa
->next
= area
->next
;
1511 new_wa
->size
= area
->size
- size
;
1512 new_wa
->address
= area
->address
+ size
;
1513 new_wa
->backup
= NULL
;
1514 new_wa
->user
= NULL
;
1515 new_wa
->free
= true;
1517 area
->next
= new_wa
;
1520 /* If backup memory was allocated to this area, it has the wrong size
1521 * now so free it and it will be reallocated if/when needed */
1524 area
->backup
= NULL
;
1529 /* Merge all adjacent free areas into one */
1530 static void target_merge_working_areas(struct target
*target
)
1532 struct working_area
*c
= target
->working_areas
;
1534 while (c
&& c
->next
) {
1535 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1537 /* Find two adjacent free areas */
1538 if (c
->free
&& c
->next
->free
) {
1539 /* Merge the last into the first */
1540 c
->size
+= c
->next
->size
;
1542 /* Remove the last */
1543 struct working_area
*to_be_freed
= c
->next
;
1544 c
->next
= c
->next
->next
;
1545 if (to_be_freed
->backup
)
1546 free(to_be_freed
->backup
);
1549 /* If backup memory was allocated to the remaining area, it's has
1550 * the wrong size now */
1561 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1563 /* Reevaluate working area address based on MMU state*/
1564 if (target
->working_areas
== NULL
) {
1568 retval
= target
->type
->mmu(target
, &enabled
);
1569 if (retval
!= ERROR_OK
)
1573 if (target
->working_area_phys_spec
) {
1574 LOG_DEBUG("MMU disabled, using physical "
1575 "address for working memory 0x%08"PRIx32
,
1576 target
->working_area_phys
);
1577 target
->working_area
= target
->working_area_phys
;
1579 LOG_ERROR("No working memory available. "
1580 "Specify -work-area-phys to target.");
1581 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1584 if (target
->working_area_virt_spec
) {
1585 LOG_DEBUG("MMU enabled, using virtual "
1586 "address for working memory 0x%08"PRIx32
,
1587 target
->working_area_virt
);
1588 target
->working_area
= target
->working_area_virt
;
1590 LOG_ERROR("No working memory available. "
1591 "Specify -work-area-virt to target.");
1592 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1596 /* Set up initial working area on first call */
1597 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1599 new_wa
->next
= NULL
;
1600 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1601 new_wa
->address
= target
->working_area
;
1602 new_wa
->backup
= NULL
;
1603 new_wa
->user
= NULL
;
1604 new_wa
->free
= true;
1607 target
->working_areas
= new_wa
;
1610 /* only allocate multiples of 4 byte */
1612 size
= (size
+ 3) & (~3UL);
1614 struct working_area
*c
= target
->working_areas
;
1616 /* Find the first large enough working area */
1618 if (c
->free
&& c
->size
>= size
)
1624 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1626 /* Split the working area into the requested size */
1627 target_split_working_area(c
, size
);
1629 LOG_DEBUG("allocated new working area of %"PRIu32
" bytes at address 0x%08"PRIx32
, size
, c
->address
);
1631 if (target
->backup_working_area
) {
1632 if (c
->backup
== NULL
) {
1633 c
->backup
= malloc(c
->size
);
1634 if (c
->backup
== NULL
)
1638 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1639 if (retval
!= ERROR_OK
)
1643 /* mark as used, and return the new (reused) area */
1650 print_wa_layout(target
);
1655 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1659 retval
= target_alloc_working_area_try(target
, size
, area
);
1660 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1661 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1666 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1668 int retval
= ERROR_OK
;
1670 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1671 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1672 if (retval
!= ERROR_OK
)
1673 LOG_ERROR("failed to restore %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1674 area
->size
, area
->address
);
1680 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1681 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1683 int retval
= ERROR_OK
;
1689 retval
= target_restore_working_area(target
, area
);
1690 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1691 if (retval
!= ERROR_OK
)
1697 LOG_DEBUG("freed %"PRIu32
" bytes of working area at address 0x%08"PRIx32
,
1698 area
->size
, area
->address
);
1700 /* mark user pointer invalid */
1701 /* TODO: Is this really safe? It points to some previous caller's memory.
1702 * How could we know that the area pointer is still in that place and not
1703 * some other vital data? What's the purpose of this, anyway? */
1707 target_merge_working_areas(target
);
1709 print_wa_layout(target
);
1714 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1716 return target_free_working_area_restore(target
, area
, 1);
1719 /* free resources and restore memory, if restoring memory fails,
1720 * free up resources anyway
1722 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1724 struct working_area
*c
= target
->working_areas
;
1726 LOG_DEBUG("freeing all working areas");
1728 /* Loop through all areas, restoring the allocated ones and marking them as free */
1732 target_restore_working_area(target
, c
);
1734 *c
->user
= NULL
; /* Same as above */
1740 /* Run a merge pass to combine all areas into one */
1741 target_merge_working_areas(target
);
1743 print_wa_layout(target
);
1746 void target_free_all_working_areas(struct target
*target
)
1748 target_free_all_working_areas_restore(target
, 1);
1751 /* Find the largest number of bytes that can be allocated */
1752 uint32_t target_get_working_area_avail(struct target
*target
)
1754 struct working_area
*c
= target
->working_areas
;
1755 uint32_t max_size
= 0;
1758 return target
->working_area_size
;
1761 if (c
->free
&& max_size
< c
->size
)
1770 int target_arch_state(struct target
*target
)
1773 if (target
== NULL
) {
1774 LOG_USER("No target has been configured");
1778 LOG_USER("target state: %s", target_state_name(target
));
1780 if (target
->state
!= TARGET_HALTED
)
1783 retval
= target
->type
->arch_state(target
);
1787 static int target_get_gdb_fileio_info_default(struct target
*target
,
1788 struct gdb_fileio_info
*fileio_info
)
1790 /* If target does not support semi-hosting function, target
1791 has no need to provide .get_gdb_fileio_info callback.
1792 It just return ERROR_FAIL and gdb_server will return "Txx"
1793 as target halted every time. */
1797 static int target_gdb_fileio_end_default(struct target
*target
,
1798 int retcode
, int fileio_errno
, bool ctrl_c
)
1803 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
1804 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1806 struct timeval timeout
, now
;
1808 gettimeofday(&timeout
, NULL
);
1809 timeval_add_time(&timeout
, seconds
, 0);
1811 LOG_INFO("Starting profiling. Halting and resuming the"
1812 " target as often as we can...");
1814 uint32_t sample_count
= 0;
1815 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1816 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
1818 int retval
= ERROR_OK
;
1820 target_poll(target
);
1821 if (target
->state
== TARGET_HALTED
) {
1822 uint32_t t
= buf_get_u32(reg
->value
, 0, 32);
1823 samples
[sample_count
++] = t
;
1824 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1825 retval
= target_resume(target
, 1, 0, 0, 0);
1826 target_poll(target
);
1827 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1828 } else if (target
->state
== TARGET_RUNNING
) {
1829 /* We want to quickly sample the PC. */
1830 retval
= target_halt(target
);
1832 LOG_INFO("Target not halted or running");
1837 if (retval
!= ERROR_OK
)
1840 gettimeofday(&now
, NULL
);
1841 if ((sample_count
>= max_num_samples
) ||
1842 ((now
.tv_sec
>= timeout
.tv_sec
) && (now
.tv_usec
>= timeout
.tv_usec
))) {
1843 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
1848 *num_samples
= sample_count
;
1852 /* Single aligned words are guaranteed to use 16 or 32 bit access
1853 * mode respectively, otherwise data is handled as quickly as
1856 int target_write_buffer(struct target
*target
, uint32_t address
, uint32_t size
, const uint8_t *buffer
)
1858 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1859 (int)size
, (unsigned)address
);
1861 if (!target_was_examined(target
)) {
1862 LOG_ERROR("Target not examined yet");
1869 if ((address
+ size
- 1) < address
) {
1870 /* GDB can request this when e.g. PC is 0xfffffffc*/
1871 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1877 return target
->type
->write_buffer(target
, address
, size
, buffer
);
1880 static int target_write_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, const uint8_t *buffer
)
1884 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1885 * will have something to do with the size we leave to it. */
1886 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
1887 if (address
& size
) {
1888 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
1889 if (retval
!= ERROR_OK
)
1897 /* Write the data with as large access size as possible. */
1898 for (; size
> 0; size
/= 2) {
1899 uint32_t aligned
= count
- count
% size
;
1901 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
1902 if (retval
!= ERROR_OK
)
1913 /* Single aligned words are guaranteed to use 16 or 32 bit access
1914 * mode respectively, otherwise data is handled as quickly as
1917 int target_read_buffer(struct target
*target
, uint32_t address
, uint32_t size
, uint8_t *buffer
)
1919 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1920 (int)size
, (unsigned)address
);
1922 if (!target_was_examined(target
)) {
1923 LOG_ERROR("Target not examined yet");
1930 if ((address
+ size
- 1) < address
) {
1931 /* GDB can request this when e.g. PC is 0xfffffffc*/
1932 LOG_ERROR("address + size wrapped(0x%08" PRIx32
", 0x%08" PRIx32
")",
1938 return target
->type
->read_buffer(target
, address
, size
, buffer
);
1941 static int target_read_buffer_default(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
1945 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1946 * will have something to do with the size we leave to it. */
1947 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
1948 if (address
& size
) {
1949 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
1950 if (retval
!= ERROR_OK
)
1958 /* Read the data with as large access size as possible. */
1959 for (; size
> 0; size
/= 2) {
1960 uint32_t aligned
= count
- count
% size
;
1962 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
1963 if (retval
!= ERROR_OK
)
1974 int target_checksum_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* crc
)
1979 uint32_t checksum
= 0;
1980 if (!target_was_examined(target
)) {
1981 LOG_ERROR("Target not examined yet");
1985 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
1986 if (retval
!= ERROR_OK
) {
1987 buffer
= malloc(size
);
1988 if (buffer
== NULL
) {
1989 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size
);
1990 return ERROR_COMMAND_SYNTAX_ERROR
;
1992 retval
= target_read_buffer(target
, address
, size
, buffer
);
1993 if (retval
!= ERROR_OK
) {
1998 /* convert to target endianness */
1999 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
2000 uint32_t target_data
;
2001 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
2002 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2005 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2014 int target_blank_check_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t* blank
)
2017 if (!target_was_examined(target
)) {
2018 LOG_ERROR("Target not examined yet");
2022 if (target
->type
->blank_check_memory
== 0)
2023 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2025 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
);
2030 int target_read_u64(struct target
*target
, uint64_t address
, uint64_t *value
)
2032 uint8_t value_buf
[8];
2033 if (!target_was_examined(target
)) {
2034 LOG_ERROR("Target not examined yet");
2038 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2040 if (retval
== ERROR_OK
) {
2041 *value
= target_buffer_get_u64(target
, value_buf
);
2042 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2047 LOG_DEBUG("address: 0x%" PRIx64
" failed",
2054 int target_read_u32(struct target
*target
, uint32_t address
, uint32_t *value
)
2056 uint8_t value_buf
[4];
2057 if (!target_was_examined(target
)) {
2058 LOG_ERROR("Target not examined yet");
2062 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2064 if (retval
== ERROR_OK
) {
2065 *value
= target_buffer_get_u32(target
, value_buf
);
2066 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2071 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2078 int target_read_u16(struct target
*target
, uint32_t address
, uint16_t *value
)
2080 uint8_t value_buf
[2];
2081 if (!target_was_examined(target
)) {
2082 LOG_ERROR("Target not examined yet");
2086 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2088 if (retval
== ERROR_OK
) {
2089 *value
= target_buffer_get_u16(target
, value_buf
);
2090 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%4.4x",
2095 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2102 int target_read_u8(struct target
*target
, uint32_t address
, uint8_t *value
)
2104 if (!target_was_examined(target
)) {
2105 LOG_ERROR("Target not examined yet");
2109 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2111 if (retval
== ERROR_OK
) {
2112 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2117 LOG_DEBUG("address: 0x%8.8" PRIx32
" failed",
2124 int target_write_u64(struct target
*target
, uint64_t address
, uint64_t value
)
2127 uint8_t value_buf
[8];
2128 if (!target_was_examined(target
)) {
2129 LOG_ERROR("Target not examined yet");
2133 LOG_DEBUG("address: 0x%" PRIx64
", value: 0x%16.16" PRIx64
"",
2137 target_buffer_set_u64(target
, value_buf
, value
);
2138 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2139 if (retval
!= ERROR_OK
)
2140 LOG_DEBUG("failed: %i", retval
);
2145 int target_write_u32(struct target
*target
, uint32_t address
, uint32_t value
)
2148 uint8_t value_buf
[4];
2149 if (!target_was_examined(target
)) {
2150 LOG_ERROR("Target not examined yet");
2154 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8" PRIx32
"",
2158 target_buffer_set_u32(target
, value_buf
, value
);
2159 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2160 if (retval
!= ERROR_OK
)
2161 LOG_DEBUG("failed: %i", retval
);
2166 int target_write_u16(struct target
*target
, uint32_t address
, uint16_t value
)
2169 uint8_t value_buf
[2];
2170 if (!target_was_examined(target
)) {
2171 LOG_ERROR("Target not examined yet");
2175 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%8.8x",
2179 target_buffer_set_u16(target
, value_buf
, value
);
2180 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2181 if (retval
!= ERROR_OK
)
2182 LOG_DEBUG("failed: %i", retval
);
2187 int target_write_u8(struct target
*target
, uint32_t address
, uint8_t value
)
2190 if (!target_was_examined(target
)) {
2191 LOG_ERROR("Target not examined yet");
2195 LOG_DEBUG("address: 0x%8.8" PRIx32
", value: 0x%2.2x",
2198 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2199 if (retval
!= ERROR_OK
)
2200 LOG_DEBUG("failed: %i", retval
);
2205 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2207 struct target
*target
= get_target(name
);
2208 if (target
== NULL
) {
2209 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2212 if (!target
->tap
->enabled
) {
2213 LOG_USER("Target: TAP %s is disabled, "
2214 "can't be the current target\n",
2215 target
->tap
->dotted_name
);
2219 cmd_ctx
->current_target
= target
->target_number
;
2224 COMMAND_HANDLER(handle_targets_command
)
2226 int retval
= ERROR_OK
;
2227 if (CMD_ARGC
== 1) {
2228 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2229 if (retval
== ERROR_OK
) {
2235 struct target
*target
= all_targets
;
2236 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2237 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2242 if (target
->tap
->enabled
)
2243 state
= target_state_name(target
);
2245 state
= "tap-disabled";
2247 if (CMD_CTX
->current_target
== target
->target_number
)
2250 /* keep columns lined up to match the headers above */
2251 command_print(CMD_CTX
,
2252 "%2d%c %-18s %-10s %-6s %-18s %s",
2253 target
->target_number
,
2255 target_name(target
),
2256 target_type_name(target
),
2257 Jim_Nvp_value2name_simple(nvp_target_endian
,
2258 target
->endianness
)->name
,
2259 target
->tap
->dotted_name
,
2261 target
= target
->next
;
2267 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2269 static int powerDropout
;
2270 static int srstAsserted
;
2272 static int runPowerRestore
;
2273 static int runPowerDropout
;
2274 static int runSrstAsserted
;
2275 static int runSrstDeasserted
;
2277 static int sense_handler(void)
2279 static int prevSrstAsserted
;
2280 static int prevPowerdropout
;
2282 int retval
= jtag_power_dropout(&powerDropout
);
2283 if (retval
!= ERROR_OK
)
2287 powerRestored
= prevPowerdropout
&& !powerDropout
;
2289 runPowerRestore
= 1;
2291 long long current
= timeval_ms();
2292 static long long lastPower
;
2293 int waitMore
= lastPower
+ 2000 > current
;
2294 if (powerDropout
&& !waitMore
) {
2295 runPowerDropout
= 1;
2296 lastPower
= current
;
2299 retval
= jtag_srst_asserted(&srstAsserted
);
2300 if (retval
!= ERROR_OK
)
2304 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2306 static long long lastSrst
;
2307 waitMore
= lastSrst
+ 2000 > current
;
2308 if (srstDeasserted
&& !waitMore
) {
2309 runSrstDeasserted
= 1;
2313 if (!prevSrstAsserted
&& srstAsserted
)
2314 runSrstAsserted
= 1;
2316 prevSrstAsserted
= srstAsserted
;
2317 prevPowerdropout
= powerDropout
;
2319 if (srstDeasserted
|| powerRestored
) {
2320 /* Other than logging the event we can't do anything here.
2321 * Issuing a reset is a particularly bad idea as we might
2322 * be inside a reset already.
2329 /* process target state changes */
2330 static int handle_target(void *priv
)
2332 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2333 int retval
= ERROR_OK
;
2335 if (!is_jtag_poll_safe()) {
2336 /* polling is disabled currently */
2340 /* we do not want to recurse here... */
2341 static int recursive
;
2345 /* danger! running these procedures can trigger srst assertions and power dropouts.
2346 * We need to avoid an infinite loop/recursion here and we do that by
2347 * clearing the flags after running these events.
2349 int did_something
= 0;
2350 if (runSrstAsserted
) {
2351 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2352 Jim_Eval(interp
, "srst_asserted");
2355 if (runSrstDeasserted
) {
2356 Jim_Eval(interp
, "srst_deasserted");
2359 if (runPowerDropout
) {
2360 LOG_INFO("Power dropout detected, running power_dropout proc.");
2361 Jim_Eval(interp
, "power_dropout");
2364 if (runPowerRestore
) {
2365 Jim_Eval(interp
, "power_restore");
2369 if (did_something
) {
2370 /* clear detect flags */
2374 /* clear action flags */
2376 runSrstAsserted
= 0;
2377 runSrstDeasserted
= 0;
2378 runPowerRestore
= 0;
2379 runPowerDropout
= 0;
2384 /* Poll targets for state changes unless that's globally disabled.
2385 * Skip targets that are currently disabled.
2387 for (struct target
*target
= all_targets
;
2388 is_jtag_poll_safe() && target
;
2389 target
= target
->next
) {
2391 if (!target_was_examined(target
))
2394 if (!target
->tap
->enabled
)
2397 if (target
->backoff
.times
> target
->backoff
.count
) {
2398 /* do not poll this time as we failed previously */
2399 target
->backoff
.count
++;
2402 target
->backoff
.count
= 0;
2404 /* only poll target if we've got power and srst isn't asserted */
2405 if (!powerDropout
&& !srstAsserted
) {
2406 /* polling may fail silently until the target has been examined */
2407 retval
= target_poll(target
);
2408 if (retval
!= ERROR_OK
) {
2409 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2410 if (target
->backoff
.times
* polling_interval
< 5000) {
2411 target
->backoff
.times
*= 2;
2412 target
->backoff
.times
++;
2414 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2415 target_name(target
),
2416 target
->backoff
.times
* polling_interval
);
2418 /* Tell GDB to halt the debugger. This allows the user to
2419 * run monitor commands to handle the situation.
2421 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2424 /* Since we succeeded, we reset backoff count */
2425 if (target
->backoff
.times
> 0) {
2426 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target
));
2427 target_reset_examined(target
);
2428 retval
= target_examine_one(target
);
2429 /* Target examination could have failed due to unstable connection,
2430 * but we set the examined flag anyway to repoll it later */
2431 if (retval
!= ERROR_OK
) {
2432 target
->examined
= true;
2437 target
->backoff
.times
= 0;
2444 COMMAND_HANDLER(handle_reg_command
)
2446 struct target
*target
;
2447 struct reg
*reg
= NULL
;
2453 target
= get_current_target(CMD_CTX
);
2455 /* list all available registers for the current target */
2456 if (CMD_ARGC
== 0) {
2457 struct reg_cache
*cache
= target
->reg_cache
;
2463 command_print(CMD_CTX
, "===== %s", cache
->name
);
2465 for (i
= 0, reg
= cache
->reg_list
;
2466 i
< cache
->num_regs
;
2467 i
++, reg
++, count
++) {
2468 /* only print cached values if they are valid */
2470 value
= buf_to_str(reg
->value
,
2472 command_print(CMD_CTX
,
2473 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2481 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2486 cache
= cache
->next
;
2492 /* access a single register by its ordinal number */
2493 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2495 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2497 struct reg_cache
*cache
= target
->reg_cache
;
2501 for (i
= 0; i
< cache
->num_regs
; i
++) {
2502 if (count
++ == num
) {
2503 reg
= &cache
->reg_list
[i
];
2509 cache
= cache
->next
;
2513 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2514 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2518 /* access a single register by its name */
2519 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2522 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2527 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2529 /* display a register */
2530 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2531 && (CMD_ARGV
[1][0] <= '9')))) {
2532 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2535 if (reg
->valid
== 0)
2536 reg
->type
->get(reg
);
2537 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2538 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2543 /* set register value */
2544 if (CMD_ARGC
== 2) {
2545 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2548 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2550 reg
->type
->set(reg
, buf
);
2552 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2553 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2561 return ERROR_COMMAND_SYNTAX_ERROR
;
2564 COMMAND_HANDLER(handle_poll_command
)
2566 int retval
= ERROR_OK
;
2567 struct target
*target
= get_current_target(CMD_CTX
);
2569 if (CMD_ARGC
== 0) {
2570 command_print(CMD_CTX
, "background polling: %s",
2571 jtag_poll_get_enabled() ? "on" : "off");
2572 command_print(CMD_CTX
, "TAP: %s (%s)",
2573 target
->tap
->dotted_name
,
2574 target
->tap
->enabled
? "enabled" : "disabled");
2575 if (!target
->tap
->enabled
)
2577 retval
= target_poll(target
);
2578 if (retval
!= ERROR_OK
)
2580 retval
= target_arch_state(target
);
2581 if (retval
!= ERROR_OK
)
2583 } else if (CMD_ARGC
== 1) {
2585 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2586 jtag_poll_set_enabled(enable
);
2588 return ERROR_COMMAND_SYNTAX_ERROR
;
2593 COMMAND_HANDLER(handle_wait_halt_command
)
2596 return ERROR_COMMAND_SYNTAX_ERROR
;
2598 unsigned ms
= DEFAULT_HALT_TIMEOUT
;
2599 if (1 == CMD_ARGC
) {
2600 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2601 if (ERROR_OK
!= retval
)
2602 return ERROR_COMMAND_SYNTAX_ERROR
;
2605 struct target
*target
= get_current_target(CMD_CTX
);
2606 return target_wait_state(target
, TARGET_HALTED
, ms
);
2609 /* wait for target state to change. The trick here is to have a low
2610 * latency for short waits and not to suck up all the CPU time
2613 * After 500ms, keep_alive() is invoked
2615 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2618 long long then
= 0, cur
;
2622 retval
= target_poll(target
);
2623 if (retval
!= ERROR_OK
)
2625 if (target
->state
== state
)
2630 then
= timeval_ms();
2631 LOG_DEBUG("waiting for target %s...",
2632 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2638 if ((cur
-then
) > ms
) {
2639 LOG_ERROR("timed out while waiting for target %s",
2640 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2648 COMMAND_HANDLER(handle_halt_command
)
2652 struct target
*target
= get_current_target(CMD_CTX
);
2653 int retval
= target_halt(target
);
2654 if (ERROR_OK
!= retval
)
2657 if (CMD_ARGC
== 1) {
2658 unsigned wait_local
;
2659 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2660 if (ERROR_OK
!= retval
)
2661 return ERROR_COMMAND_SYNTAX_ERROR
;
2666 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2669 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2671 struct target
*target
= get_current_target(CMD_CTX
);
2673 LOG_USER("requesting target halt and executing a soft reset");
2675 target_soft_reset_halt(target
);
2680 COMMAND_HANDLER(handle_reset_command
)
2683 return ERROR_COMMAND_SYNTAX_ERROR
;
2685 enum target_reset_mode reset_mode
= RESET_RUN
;
2686 if (CMD_ARGC
== 1) {
2688 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
2689 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
2690 return ERROR_COMMAND_SYNTAX_ERROR
;
2691 reset_mode
= n
->value
;
2694 /* reset *all* targets */
2695 return target_process_reset(CMD_CTX
, reset_mode
);
2699 COMMAND_HANDLER(handle_resume_command
)
2703 return ERROR_COMMAND_SYNTAX_ERROR
;
2705 struct target
*target
= get_current_target(CMD_CTX
);
2707 /* with no CMD_ARGV, resume from current pc, addr = 0,
2708 * with one arguments, addr = CMD_ARGV[0],
2709 * handle breakpoints, not debugging */
2711 if (CMD_ARGC
== 1) {
2712 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2716 return target_resume(target
, current
, addr
, 1, 0);
2719 COMMAND_HANDLER(handle_step_command
)
2722 return ERROR_COMMAND_SYNTAX_ERROR
;
2726 /* with no CMD_ARGV, step from current pc, addr = 0,
2727 * with one argument addr = CMD_ARGV[0],
2728 * handle breakpoints, debugging */
2731 if (CMD_ARGC
== 1) {
2732 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
2736 struct target
*target
= get_current_target(CMD_CTX
);
2738 return target
->type
->step(target
, current_pc
, addr
, 1);
2741 static void handle_md_output(struct command_context
*cmd_ctx
,
2742 struct target
*target
, uint32_t address
, unsigned size
,
2743 unsigned count
, const uint8_t *buffer
)
2745 const unsigned line_bytecnt
= 32;
2746 unsigned line_modulo
= line_bytecnt
/ size
;
2748 char output
[line_bytecnt
* 4 + 1];
2749 unsigned output_len
= 0;
2751 const char *value_fmt
;
2754 value_fmt
= "%8.8x ";
2757 value_fmt
= "%4.4x ";
2760 value_fmt
= "%2.2x ";
2763 /* "can't happen", caller checked */
2764 LOG_ERROR("invalid memory read size: %u", size
);
2768 for (unsigned i
= 0; i
< count
; i
++) {
2769 if (i
% line_modulo
== 0) {
2770 output_len
+= snprintf(output
+ output_len
,
2771 sizeof(output
) - output_len
,
2773 (unsigned)(address
+ (i
*size
)));
2777 const uint8_t *value_ptr
= buffer
+ i
* size
;
2780 value
= target_buffer_get_u32(target
, value_ptr
);
2783 value
= target_buffer_get_u16(target
, value_ptr
);
2788 output_len
+= snprintf(output
+ output_len
,
2789 sizeof(output
) - output_len
,
2792 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
2793 command_print(cmd_ctx
, "%s", output
);
2799 COMMAND_HANDLER(handle_md_command
)
2802 return ERROR_COMMAND_SYNTAX_ERROR
;
2805 switch (CMD_NAME
[2]) {
2816 return ERROR_COMMAND_SYNTAX_ERROR
;
2819 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2820 int (*fn
)(struct target
*target
,
2821 uint32_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
2825 fn
= target_read_phys_memory
;
2827 fn
= target_read_memory
;
2828 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
2829 return ERROR_COMMAND_SYNTAX_ERROR
;
2832 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2836 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
2838 uint8_t *buffer
= calloc(count
, size
);
2840 struct target
*target
= get_current_target(CMD_CTX
);
2841 int retval
= fn(target
, address
, size
, count
, buffer
);
2842 if (ERROR_OK
== retval
)
2843 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
2850 typedef int (*target_write_fn
)(struct target
*target
,
2851 uint32_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
2853 static int target_fill_mem(struct target
*target
,
2862 /* We have to write in reasonably large chunks to be able
2863 * to fill large memory areas with any sane speed */
2864 const unsigned chunk_size
= 16384;
2865 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
2866 if (target_buf
== NULL
) {
2867 LOG_ERROR("Out of memory");
2871 for (unsigned i
= 0; i
< chunk_size
; i
++) {
2872 switch (data_size
) {
2874 target_buffer_set_u32(target
, target_buf
+ i
* data_size
, b
);
2877 target_buffer_set_u16(target
, target_buf
+ i
* data_size
, b
);
2880 target_buffer_set_u8(target
, target_buf
+ i
* data_size
, b
);
2887 int retval
= ERROR_OK
;
2889 for (unsigned x
= 0; x
< c
; x
+= chunk_size
) {
2892 if (current
> chunk_size
)
2893 current
= chunk_size
;
2894 retval
= fn(target
, address
+ x
* data_size
, data_size
, current
, target_buf
);
2895 if (retval
!= ERROR_OK
)
2897 /* avoid GDB timeouts */
2906 COMMAND_HANDLER(handle_mw_command
)
2909 return ERROR_COMMAND_SYNTAX_ERROR
;
2910 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
2915 fn
= target_write_phys_memory
;
2917 fn
= target_write_memory
;
2918 if ((CMD_ARGC
< 2) || (CMD_ARGC
> 3))
2919 return ERROR_COMMAND_SYNTAX_ERROR
;
2922 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], address
);
2925 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
2929 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[2], count
);
2931 struct target
*target
= get_current_target(CMD_CTX
);
2933 switch (CMD_NAME
[2]) {
2944 return ERROR_COMMAND_SYNTAX_ERROR
;
2947 return target_fill_mem(target
, address
, fn
, wordsize
, value
, count
);
2950 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV
, struct image
*image
,
2951 uint32_t *min_address
, uint32_t *max_address
)
2953 if (CMD_ARGC
< 1 || CMD_ARGC
> 5)
2954 return ERROR_COMMAND_SYNTAX_ERROR
;
2956 /* a base address isn't always necessary,
2957 * default to 0x0 (i.e. don't relocate) */
2958 if (CMD_ARGC
>= 2) {
2960 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
2961 image
->base_address
= addr
;
2962 image
->base_address_set
= 1;
2964 image
->base_address_set
= 0;
2966 image
->start_address_set
= 0;
2969 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], *min_address
);
2970 if (CMD_ARGC
== 5) {
2971 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], *max_address
);
2972 /* use size (given) to find max (required) */
2973 *max_address
+= *min_address
;
2976 if (*min_address
> *max_address
)
2977 return ERROR_COMMAND_SYNTAX_ERROR
;
2982 COMMAND_HANDLER(handle_load_image_command
)
2986 uint32_t image_size
;
2987 uint32_t min_address
= 0;
2988 uint32_t max_address
= 0xffffffff;
2992 int retval
= CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV
,
2993 &image
, &min_address
, &max_address
);
2994 if (ERROR_OK
!= retval
)
2997 struct target
*target
= get_current_target(CMD_CTX
);
2999 struct duration bench
;
3000 duration_start(&bench
);
3002 if (image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
>= 3) ? CMD_ARGV
[2] : NULL
) != ERROR_OK
)
3007 for (i
= 0; i
< image
.num_sections
; i
++) {
3008 buffer
= malloc(image
.sections
[i
].size
);
3009 if (buffer
== NULL
) {
3010 command_print(CMD_CTX
,
3011 "error allocating buffer for section (%d bytes)",
3012 (int)(image
.sections
[i
].size
));
3016 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3017 if (retval
!= ERROR_OK
) {
3022 uint32_t offset
= 0;
3023 uint32_t length
= buf_cnt
;
3025 /* DANGER!!! beware of unsigned comparision here!!! */
3027 if ((image
.sections
[i
].base_address
+ buf_cnt
>= min_address
) &&
3028 (image
.sections
[i
].base_address
< max_address
)) {
3030 if (image
.sections
[i
].base_address
< min_address
) {
3031 /* clip addresses below */
3032 offset
+= min_address
-image
.sections
[i
].base_address
;
3036 if (image
.sections
[i
].base_address
+ buf_cnt
> max_address
)
3037 length
-= (image
.sections
[i
].base_address
+ buf_cnt
)-max_address
;
3039 retval
= target_write_buffer(target
,
3040 image
.sections
[i
].base_address
+ offset
, length
, buffer
+ offset
);
3041 if (retval
!= ERROR_OK
) {
3045 image_size
+= length
;
3046 command_print(CMD_CTX
, "%u bytes written at address 0x%8.8" PRIx32
"",
3047 (unsigned int)length
,
3048 image
.sections
[i
].base_address
+ offset
);
3054 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3055 command_print(CMD_CTX
, "downloaded %" PRIu32
" bytes "
3056 "in %fs (%0.3f KiB/s)", image_size
,
3057 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3060 image_close(&image
);
3066 COMMAND_HANDLER(handle_dump_image_command
)
3068 struct fileio fileio
;
3070 int retval
, retvaltemp
;
3071 uint32_t address
, size
;
3072 struct duration bench
;
3073 struct target
*target
= get_current_target(CMD_CTX
);
3076 return ERROR_COMMAND_SYNTAX_ERROR
;
3078 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], address
);
3079 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], size
);
3081 uint32_t buf_size
= (size
> 4096) ? 4096 : size
;
3082 buffer
= malloc(buf_size
);
3086 retval
= fileio_open(&fileio
, CMD_ARGV
[0], FILEIO_WRITE
, FILEIO_BINARY
);
3087 if (retval
!= ERROR_OK
) {
3092 duration_start(&bench
);
3095 size_t size_written
;
3096 uint32_t this_run_size
= (size
> buf_size
) ? buf_size
: size
;
3097 retval
= target_read_buffer(target
, address
, this_run_size
, buffer
);
3098 if (retval
!= ERROR_OK
)
3101 retval
= fileio_write(&fileio
, this_run_size
, buffer
, &size_written
);
3102 if (retval
!= ERROR_OK
)
3105 size
-= this_run_size
;
3106 address
+= this_run_size
;
3111 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3113 retval
= fileio_size(&fileio
, &filesize
);
3114 if (retval
!= ERROR_OK
)
3116 command_print(CMD_CTX
,
3117 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize
,
3118 duration_elapsed(&bench
), duration_kbps(&bench
, filesize
));
3121 retvaltemp
= fileio_close(&fileio
);
3122 if (retvaltemp
!= ERROR_OK
)
3128 static COMMAND_HELPER(handle_verify_image_command_internal
, int verify
)
3132 uint32_t image_size
;
3135 uint32_t checksum
= 0;
3136 uint32_t mem_checksum
= 0;
3140 struct target
*target
= get_current_target(CMD_CTX
);
3143 return ERROR_COMMAND_SYNTAX_ERROR
;
3146 LOG_ERROR("no target selected");
3150 struct duration bench
;
3151 duration_start(&bench
);
3153 if (CMD_ARGC
>= 2) {
3155 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], addr
);
3156 image
.base_address
= addr
;
3157 image
.base_address_set
= 1;
3159 image
.base_address_set
= 0;
3160 image
.base_address
= 0x0;
3163 image
.start_address_set
= 0;
3165 retval
= image_open(&image
, CMD_ARGV
[0], (CMD_ARGC
== 3) ? CMD_ARGV
[2] : NULL
);
3166 if (retval
!= ERROR_OK
)
3172 for (i
= 0; i
< image
.num_sections
; i
++) {
3173 buffer
= malloc(image
.sections
[i
].size
);
3174 if (buffer
== NULL
) {
3175 command_print(CMD_CTX
,
3176 "error allocating buffer for section (%d bytes)",
3177 (int)(image
.sections
[i
].size
));
3180 retval
= image_read_section(&image
, i
, 0x0, image
.sections
[i
].size
, buffer
, &buf_cnt
);
3181 if (retval
!= ERROR_OK
) {
3187 /* calculate checksum of image */
3188 retval
= image_calculate_checksum(buffer
, buf_cnt
, &checksum
);
3189 if (retval
!= ERROR_OK
) {
3194 retval
= target_checksum_memory(target
, image
.sections
[i
].base_address
, buf_cnt
, &mem_checksum
);
3195 if (retval
!= ERROR_OK
) {
3200 if (checksum
!= mem_checksum
) {
3201 /* failed crc checksum, fall back to a binary compare */
3205 LOG_ERROR("checksum mismatch - attempting binary compare");
3207 data
= malloc(buf_cnt
);
3209 /* Can we use 32bit word accesses? */
3211 int count
= buf_cnt
;
3212 if ((count
% 4) == 0) {
3216 retval
= target_read_memory(target
, image
.sections
[i
].base_address
, size
, count
, data
);
3217 if (retval
== ERROR_OK
) {
3219 for (t
= 0; t
< buf_cnt
; t
++) {
3220 if (data
[t
] != buffer
[t
]) {
3221 command_print(CMD_CTX
,
3222 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3224 (unsigned)(t
+ image
.sections
[i
].base_address
),
3227 if (diffs
++ >= 127) {
3228 command_print(CMD_CTX
, "More than 128 errors, the rest are not printed.");
3240 command_print(CMD_CTX
, "address 0x%08" PRIx32
" length 0x%08zx",
3241 image
.sections
[i
].base_address
,
3246 image_size
+= buf_cnt
;
3249 command_print(CMD_CTX
, "No more differences found.");
3252 retval
= ERROR_FAIL
;
3253 if ((ERROR_OK
== retval
) && (duration_measure(&bench
) == ERROR_OK
)) {
3254 command_print(CMD_CTX
, "verified %" PRIu32
" bytes "
3255 "in %fs (%0.3f KiB/s)", image_size
,
3256 duration_elapsed(&bench
), duration_kbps(&bench
, image_size
));
3259 image_close(&image
);
3264 COMMAND_HANDLER(handle_verify_image_command
)
3266 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 1);
3269 COMMAND_HANDLER(handle_test_image_command
)
3271 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal
, 0);
3274 static int handle_bp_command_list(struct command_context
*cmd_ctx
)
3276 struct target
*target
= get_current_target(cmd_ctx
);
3277 struct breakpoint
*breakpoint
= target
->breakpoints
;
3278 while (breakpoint
) {
3279 if (breakpoint
->type
== BKPT_SOFT
) {
3280 char *buf
= buf_to_str(breakpoint
->orig_instr
,
3281 breakpoint
->length
, 16);
3282 command_print(cmd_ctx
, "IVA breakpoint: 0x%8.8" PRIx32
", 0x%x, %i, 0x%s",
3283 breakpoint
->address
,
3285 breakpoint
->set
, buf
);
3288 if ((breakpoint
->address
== 0) && (breakpoint
->asid
!= 0))
3289 command_print(cmd_ctx
, "Context breakpoint: 0x%8.8" PRIx32
", 0x%x, %i",
3291 breakpoint
->length
, breakpoint
->set
);
3292 else if ((breakpoint
->address
!= 0) && (breakpoint
->asid
!= 0)) {
3293 command_print(cmd_ctx
, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3294 breakpoint
->address
,
3295 breakpoint
->length
, breakpoint
->set
);
3296 command_print(cmd_ctx
, "\t|--->linked with ContextID: 0x%8.8" PRIx32
,
3299 command_print(cmd_ctx
, "Breakpoint(IVA): 0x%8.8" PRIx32
", 0x%x, %i",
3300 breakpoint
->address
,
3301 breakpoint
->length
, breakpoint
->set
);
3304 breakpoint
= breakpoint
->next
;
3309 static int handle_bp_command_set(struct command_context
*cmd_ctx
,
3310 uint32_t addr
, uint32_t asid
, uint32_t length
, int hw
)
3312 struct target
*target
= get_current_target(cmd_ctx
);
3316 retval
= breakpoint_add(target
, addr
, length
, hw
);
3317 if (ERROR_OK
== retval
)
3318 command_print(cmd_ctx
, "breakpoint set at 0x%8.8" PRIx32
"", addr
);
3320 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3323 } else if (addr
== 0) {
3324 if (target
->type
->add_context_breakpoint
== NULL
) {
3325 LOG_WARNING("Context breakpoint not available");
3328 retval
= context_breakpoint_add(target
, asid
, length
, hw
);
3329 if (ERROR_OK
== retval
)
3330 command_print(cmd_ctx
, "Context breakpoint set at 0x%8.8" PRIx32
"", asid
);
3332 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3336 if (target
->type
->add_hybrid_breakpoint
== NULL
) {
3337 LOG_WARNING("Hybrid breakpoint not available");
3340 retval
= hybrid_breakpoint_add(target
, addr
, asid
, length
, hw
);
3341 if (ERROR_OK
== retval
)
3342 command_print(cmd_ctx
, "Hybrid breakpoint set at 0x%8.8" PRIx32
"", asid
);
3344 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3351 COMMAND_HANDLER(handle_bp_command
)
3360 return handle_bp_command_list(CMD_CTX
);
3364 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3365 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3366 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3369 if (strcmp(CMD_ARGV
[2], "hw") == 0) {
3371 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3373 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3376 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3377 } else if (strcmp(CMD_ARGV
[2], "hw_ctx") == 0) {
3379 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], asid
);
3380 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3382 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3387 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3388 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], asid
);
3389 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], length
);
3390 return handle_bp_command_set(CMD_CTX
, addr
, asid
, length
, hw
);
3393 return ERROR_COMMAND_SYNTAX_ERROR
;
3397 COMMAND_HANDLER(handle_rbp_command
)
3400 return ERROR_COMMAND_SYNTAX_ERROR
;
3403 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3405 struct target
*target
= get_current_target(CMD_CTX
);
3406 breakpoint_remove(target
, addr
);
3411 COMMAND_HANDLER(handle_wp_command
)
3413 struct target
*target
= get_current_target(CMD_CTX
);
3415 if (CMD_ARGC
== 0) {
3416 struct watchpoint
*watchpoint
= target
->watchpoints
;
3418 while (watchpoint
) {
3419 command_print(CMD_CTX
, "address: 0x%8.8" PRIx32
3420 ", len: 0x%8.8" PRIx32
3421 ", r/w/a: %i, value: 0x%8.8" PRIx32
3422 ", mask: 0x%8.8" PRIx32
,
3423 watchpoint
->address
,
3425 (int)watchpoint
->rw
,
3428 watchpoint
= watchpoint
->next
;
3433 enum watchpoint_rw type
= WPT_ACCESS
;
3435 uint32_t length
= 0;
3436 uint32_t data_value
= 0x0;
3437 uint32_t data_mask
= 0xffffffff;
3441 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[4], data_mask
);
3444 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[3], data_value
);
3447 switch (CMD_ARGV
[2][0]) {
3458 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV
[2][0]);
3459 return ERROR_COMMAND_SYNTAX_ERROR
;
3463 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], length
);
3464 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3468 return ERROR_COMMAND_SYNTAX_ERROR
;
3471 int retval
= watchpoint_add(target
, addr
, length
, type
,
3472 data_value
, data_mask
);
3473 if (ERROR_OK
!= retval
)
3474 LOG_ERROR("Failure setting watchpoints");
3479 COMMAND_HANDLER(handle_rwp_command
)
3482 return ERROR_COMMAND_SYNTAX_ERROR
;
3485 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], addr
);
3487 struct target
*target
= get_current_target(CMD_CTX
);
3488 watchpoint_remove(target
, addr
);
3494 * Translate a virtual address to a physical address.
3496 * The low-level target implementation must have logged a detailed error
3497 * which is forwarded to telnet/GDB session.
3499 COMMAND_HANDLER(handle_virt2phys_command
)
3502 return ERROR_COMMAND_SYNTAX_ERROR
;
3505 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], va
);
3508 struct target
*target
= get_current_target(CMD_CTX
);
3509 int retval
= target
->type
->virt2phys(target
, va
, &pa
);
3510 if (retval
== ERROR_OK
)
3511 command_print(CMD_CTX
, "Physical address 0x%08" PRIx32
"", pa
);
3516 static void writeData(FILE *f
, const void *data
, size_t len
)
3518 size_t written
= fwrite(data
, 1, len
, f
);
3520 LOG_ERROR("failed to write %zu bytes: %s", len
, strerror(errno
));
3523 static void writeLong(FILE *f
, int l
, struct target
*target
)
3527 target_buffer_set_u32(target
, val
, l
);
3528 writeData(f
, val
, 4);
3531 static void writeString(FILE *f
, char *s
)
3533 writeData(f
, s
, strlen(s
));
3536 typedef unsigned char UNIT
[2]; /* unit of profiling */
3538 /* Dump a gmon.out histogram file. */
3539 static void write_gmon(uint32_t *samples
, uint32_t sampleNum
, const char *filename
, bool with_range
,
3540 uint32_t start_address
, uint32_t end_address
, struct target
*target
)
3543 FILE *f
= fopen(filename
, "w");
3546 writeString(f
, "gmon");
3547 writeLong(f
, 0x00000001, target
); /* Version */
3548 writeLong(f
, 0, target
); /* padding */
3549 writeLong(f
, 0, target
); /* padding */
3550 writeLong(f
, 0, target
); /* padding */
3552 uint8_t zero
= 0; /* GMON_TAG_TIME_HIST */
3553 writeData(f
, &zero
, 1);
3555 /* figure out bucket size */
3559 min
= start_address
;
3564 for (i
= 0; i
< sampleNum
; i
++) {
3565 if (min
> samples
[i
])
3567 if (max
< samples
[i
])
3571 /* max should be (largest sample + 1)
3572 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3576 int addressSpace
= max
- min
;
3577 assert(addressSpace
>= 2);
3579 /* FIXME: What is the reasonable number of buckets?
3580 * The profiling result will be more accurate if there are enough buckets. */
3581 static const uint32_t maxBuckets
= 128 * 1024; /* maximum buckets. */
3582 uint32_t numBuckets
= addressSpace
/ sizeof(UNIT
);
3583 if (numBuckets
> maxBuckets
)
3584 numBuckets
= maxBuckets
;
3585 int *buckets
= malloc(sizeof(int) * numBuckets
);
3586 if (buckets
== NULL
) {
3590 memset(buckets
, 0, sizeof(int) * numBuckets
);
3591 for (i
= 0; i
< sampleNum
; i
++) {
3592 uint32_t address
= samples
[i
];
3594 if ((address
< min
) || (max
<= address
))
3597 long long a
= address
- min
;
3598 long long b
= numBuckets
;
3599 long long c
= addressSpace
;
3600 int index_t
= (a
* b
) / c
; /* danger!!!! int32 overflows */
3604 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3605 writeLong(f
, min
, target
); /* low_pc */
3606 writeLong(f
, max
, target
); /* high_pc */
3607 writeLong(f
, numBuckets
, target
); /* # of buckets */
3608 writeLong(f
, 100, target
); /* KLUDGE! We lie, ca. 100Hz best case. */
3609 writeString(f
, "seconds");
3610 for (i
= 0; i
< (15-strlen("seconds")); i
++)
3611 writeData(f
, &zero
, 1);
3612 writeString(f
, "s");
3614 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3616 char *data
= malloc(2 * numBuckets
);
3618 for (i
= 0; i
< numBuckets
; i
++) {
3623 data
[i
* 2] = val
&0xff;
3624 data
[i
* 2 + 1] = (val
>> 8) & 0xff;
3627 writeData(f
, data
, numBuckets
* 2);
3635 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3636 * which will be used as a random sampling of PC */
3637 COMMAND_HANDLER(handle_profile_command
)
3639 struct target
*target
= get_current_target(CMD_CTX
);
3641 if ((CMD_ARGC
!= 2) && (CMD_ARGC
!= 4))
3642 return ERROR_COMMAND_SYNTAX_ERROR
;
3644 const uint32_t MAX_PROFILE_SAMPLE_NUM
= 10000;