9f12704a5c2c767c2b8afe179458cc2eba289e5a
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &mips_m4k_target,
125 &avr_target,
126 &dsp563xx_target,
127 &dsp5680xx_target,
128 &testee_target,
129 &avr32_ap7k_target,
130 &hla_target,
131 &nds32_v2_target,
132 &nds32_v3_target,
133 &nds32_v3m_target,
134 &or1k_target,
135 &quark_x10xx_target,
136 NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 static const int polling_interval = 100;
143
144 static const Jim_Nvp nvp_assert[] = {
145 { .name = "assert", NVP_ASSERT },
146 { .name = "deassert", NVP_DEASSERT },
147 { .name = "T", NVP_ASSERT },
148 { .name = "F", NVP_DEASSERT },
149 { .name = "t", NVP_ASSERT },
150 { .name = "f", NVP_DEASSERT },
151 { .name = NULL, .value = -1 }
152 };
153
154 static const Jim_Nvp nvp_error_target[] = {
155 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
156 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
157 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
158 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
159 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
160 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
161 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
162 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
163 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
164 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
165 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
166 { .value = -1, .name = NULL }
167 };
168
169 static const char *target_strerror_safe(int err)
170 {
171 const Jim_Nvp *n;
172
173 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
174 if (n->name == NULL)
175 return "unknown";
176 else
177 return n->name;
178 }
179
180 static const Jim_Nvp nvp_target_event[] = {
181
182 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
183 { .value = TARGET_EVENT_HALTED, .name = "halted" },
184 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
185 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
186 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
187
188 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
189 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
190
191 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
192 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
193 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
194 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
195 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
196 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
197 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
198 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
199 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
200 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
201 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
202 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
203
204 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
205 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
206
207 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
208 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
209
210 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
211 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
212
213 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
214 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
215
216 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
217 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
218
219 { .name = NULL, .value = -1 }
220 };
221
222 static const Jim_Nvp nvp_target_state[] = {
223 { .name = "unknown", .value = TARGET_UNKNOWN },
224 { .name = "running", .value = TARGET_RUNNING },
225 { .name = "halted", .value = TARGET_HALTED },
226 { .name = "reset", .value = TARGET_RESET },
227 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
228 { .name = NULL, .value = -1 },
229 };
230
231 static const Jim_Nvp nvp_target_debug_reason[] = {
232 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
233 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
234 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
235 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
236 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
237 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
238 { .name = "program-exit" , .value = DBG_REASON_EXIT },
239 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
240 { .name = NULL, .value = -1 },
241 };
242
243 static const Jim_Nvp nvp_target_endian[] = {
244 { .name = "big", .value = TARGET_BIG_ENDIAN },
245 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
246 { .name = "be", .value = TARGET_BIG_ENDIAN },
247 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
248 { .name = NULL, .value = -1 },
249 };
250
251 static const Jim_Nvp nvp_reset_modes[] = {
252 { .name = "unknown", .value = RESET_UNKNOWN },
253 { .name = "run" , .value = RESET_RUN },
254 { .name = "halt" , .value = RESET_HALT },
255 { .name = "init" , .value = RESET_INIT },
256 { .name = NULL , .value = -1 },
257 };
258
259 const char *debug_reason_name(struct target *t)
260 {
261 const char *cp;
262
263 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
264 t->debug_reason)->name;
265 if (!cp) {
266 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
267 cp = "(*BUG*unknown*BUG*)";
268 }
269 return cp;
270 }
271
272 const char *target_state_name(struct target *t)
273 {
274 const char *cp;
275 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
276 if (!cp) {
277 LOG_ERROR("Invalid target state: %d", (int)(t->state));
278 cp = "(*BUG*unknown*BUG*)";
279 }
280 return cp;
281 }
282
283 /* determine the number of the new target */
284 static int new_target_number(void)
285 {
286 struct target *t;
287 int x;
288
289 /* number is 0 based */
290 x = -1;
291 t = all_targets;
292 while (t) {
293 if (x < t->target_number)
294 x = t->target_number;
295 t = t->next;
296 }
297 return x + 1;
298 }
299
300 /* read a uint64_t from a buffer in target memory endianness */
301 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
302 {
303 if (target->endianness == TARGET_LITTLE_ENDIAN)
304 return le_to_h_u64(buffer);
305 else
306 return be_to_h_u64(buffer);
307 }
308
309 /* read a uint32_t from a buffer in target memory endianness */
310 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
311 {
312 if (target->endianness == TARGET_LITTLE_ENDIAN)
313 return le_to_h_u32(buffer);
314 else
315 return be_to_h_u32(buffer);
316 }
317
318 /* read a uint24_t from a buffer in target memory endianness */
319 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
320 {
321 if (target->endianness == TARGET_LITTLE_ENDIAN)
322 return le_to_h_u24(buffer);
323 else
324 return be_to_h_u24(buffer);
325 }
326
327 /* read a uint16_t from a buffer in target memory endianness */
328 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
329 {
330 if (target->endianness == TARGET_LITTLE_ENDIAN)
331 return le_to_h_u16(buffer);
332 else
333 return be_to_h_u16(buffer);
334 }
335
336 /* read a uint8_t from a buffer in target memory endianness */
337 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
338 {
339 return *buffer & 0x0ff;
340 }
341
342 /* write a uint64_t to a buffer in target memory endianness */
343 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
344 {
345 if (target->endianness == TARGET_LITTLE_ENDIAN)
346 h_u64_to_le(buffer, value);
347 else
348 h_u64_to_be(buffer, value);
349 }
350
351 /* write a uint32_t to a buffer in target memory endianness */
352 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
353 {
354 if (target->endianness == TARGET_LITTLE_ENDIAN)
355 h_u32_to_le(buffer, value);
356 else
357 h_u32_to_be(buffer, value);
358 }
359
360 /* write a uint24_t to a buffer in target memory endianness */
361 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
362 {
363 if (target->endianness == TARGET_LITTLE_ENDIAN)
364 h_u24_to_le(buffer, value);
365 else
366 h_u24_to_be(buffer, value);
367 }
368
369 /* write a uint16_t to a buffer in target memory endianness */
370 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
371 {
372 if (target->endianness == TARGET_LITTLE_ENDIAN)
373 h_u16_to_le(buffer, value);
374 else
375 h_u16_to_be(buffer, value);
376 }
377
378 /* write a uint8_t to a buffer in target memory endianness */
379 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
380 {
381 *buffer = value;
382 }
383
384 /* write a uint64_t array to a buffer in target memory endianness */
385 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
386 {
387 uint32_t i;
388 for (i = 0; i < count; i++)
389 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
390 }
391
392 /* write a uint32_t array to a buffer in target memory endianness */
393 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
394 {
395 uint32_t i;
396 for (i = 0; i < count; i++)
397 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
398 }
399
400 /* write a uint16_t array to a buffer in target memory endianness */
401 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
402 {
403 uint32_t i;
404 for (i = 0; i < count; i++)
405 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
406 }
407
408 /* write a uint64_t array to a buffer in target memory endianness */
409 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
410 {
411 uint32_t i;
412 for (i = 0; i < count; i++)
413 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
414 }
415
416 /* write a uint32_t array to a buffer in target memory endianness */
417 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
418 {
419 uint32_t i;
420 for (i = 0; i < count; i++)
421 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
422 }
423
424 /* write a uint16_t array to a buffer in target memory endianness */
425 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
426 {
427 uint32_t i;
428 for (i = 0; i < count; i++)
429 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
430 }
431
432 /* return a pointer to a configured target; id is name or number */
433 struct target *get_target(const char *id)
434 {
435 struct target *target;
436
437 /* try as tcltarget name */
438 for (target = all_targets; target; target = target->next) {
439 if (target_name(target) == NULL)
440 continue;
441 if (strcmp(id, target_name(target)) == 0)
442 return target;
443 }
444
445 /* It's OK to remove this fallback sometime after August 2010 or so */
446
447 /* no match, try as number */
448 unsigned num;
449 if (parse_uint(id, &num) != ERROR_OK)
450 return NULL;
451
452 for (target = all_targets; target; target = target->next) {
453 if (target->target_number == (int)num) {
454 LOG_WARNING("use '%s' as target identifier, not '%u'",
455 target_name(target), num);
456 return target;
457 }
458 }
459
460 return NULL;
461 }
462
463 /* returns a pointer to the n-th configured target */
464 static struct target *get_target_by_num(int num)
465 {
466 struct target *target = all_targets;
467
468 while (target) {
469 if (target->target_number == num)
470 return target;
471 target = target->next;
472 }
473
474 return NULL;
475 }
476
477 struct target *get_current_target(struct command_context *cmd_ctx)
478 {
479 struct target *target = get_target_by_num(cmd_ctx->current_target);
480
481 if (target == NULL) {
482 LOG_ERROR("BUG: current_target out of bounds");
483 exit(-1);
484 }
485
486 return target;
487 }
488
489 int target_poll(struct target *target)
490 {
491 int retval;
492
493 /* We can't poll until after examine */
494 if (!target_was_examined(target)) {
495 /* Fail silently lest we pollute the log */
496 return ERROR_FAIL;
497 }
498
499 retval = target->type->poll(target);
500 if (retval != ERROR_OK)
501 return retval;
502
503 if (target->halt_issued) {
504 if (target->state == TARGET_HALTED)
505 target->halt_issued = false;
506 else {
507 long long t = timeval_ms() - target->halt_issued_time;
508 if (t > DEFAULT_HALT_TIMEOUT) {
509 target->halt_issued = false;
510 LOG_INFO("Halt timed out, wake up GDB.");
511 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
512 }
513 }
514 }
515
516 return ERROR_OK;
517 }
518
519 int target_halt(struct target *target)
520 {
521 int retval;
522 /* We can't poll until after examine */
523 if (!target_was_examined(target)) {
524 LOG_ERROR("Target not examined yet");
525 return ERROR_FAIL;
526 }
527
528 retval = target->type->halt(target);
529 if (retval != ERROR_OK)
530 return retval;
531
532 target->halt_issued = true;
533 target->halt_issued_time = timeval_ms();
534
535 return ERROR_OK;
536 }
537
538 /**
539 * Make the target (re)start executing using its saved execution
540 * context (possibly with some modifications).
541 *
542 * @param target Which target should start executing.
543 * @param current True to use the target's saved program counter instead
544 * of the address parameter
545 * @param address Optionally used as the program counter.
546 * @param handle_breakpoints True iff breakpoints at the resumption PC
547 * should be skipped. (For example, maybe execution was stopped by
548 * such a breakpoint, in which case it would be counterprodutive to
549 * let it re-trigger.
550 * @param debug_execution False if all working areas allocated by OpenOCD
551 * should be released and/or restored to their original contents.
552 * (This would for example be true to run some downloaded "helper"
553 * algorithm code, which resides in one such working buffer and uses
554 * another for data storage.)
555 *
556 * @todo Resolve the ambiguity about what the "debug_execution" flag
557 * signifies. For example, Target implementations don't agree on how
558 * it relates to invalidation of the register cache, or to whether
559 * breakpoints and watchpoints should be enabled. (It would seem wrong
560 * to enable breakpoints when running downloaded "helper" algorithms
561 * (debug_execution true), since the breakpoints would be set to match
562 * target firmware being debugged, not the helper algorithm.... and
563 * enabling them could cause such helpers to malfunction (for example,
564 * by overwriting data with a breakpoint instruction. On the other
565 * hand the infrastructure for running such helpers might use this
566 * procedure but rely on hardware breakpoint to detect termination.)
567 */
568 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
569 {
570 int retval;
571
572 /* We can't poll until after examine */
573 if (!target_was_examined(target)) {
574 LOG_ERROR("Target not examined yet");
575 return ERROR_FAIL;
576 }
577
578 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
579
580 /* note that resume *must* be asynchronous. The CPU can halt before
581 * we poll. The CPU can even halt at the current PC as a result of
582 * a software breakpoint being inserted by (a bug?) the application.
583 */
584 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
585 if (retval != ERROR_OK)
586 return retval;
587
588 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
589
590 return retval;
591 }
592
593 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
594 {
595 char buf[100];
596 int retval;
597 Jim_Nvp *n;
598 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
599 if (n->name == NULL) {
600 LOG_ERROR("invalid reset mode");
601 return ERROR_FAIL;
602 }
603
604 /* disable polling during reset to make reset event scripts
605 * more predictable, i.e. dr/irscan & pathmove in events will
606 * not have JTAG operations injected into the middle of a sequence.
607 */
608 bool save_poll = jtag_poll_get_enabled();
609
610 jtag_poll_set_enabled(false);
611
612 sprintf(buf, "ocd_process_reset %s", n->name);
613 retval = Jim_Eval(cmd_ctx->interp, buf);
614
615 jtag_poll_set_enabled(save_poll);
616
617 if (retval != JIM_OK) {
618 Jim_MakeErrorMessage(cmd_ctx->interp);
619 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
620 return ERROR_FAIL;
621 }
622
623 /* We want any events to be processed before the prompt */
624 retval = target_call_timer_callbacks_now();
625
626 struct target *target;
627 for (target = all_targets; target; target = target->next) {
628 target->type->check_reset(target);
629 target->running_alg = false;
630 }
631
632 return retval;
633 }
634
635 static int identity_virt2phys(struct target *target,
636 uint32_t virtual, uint32_t *physical)
637 {
638 *physical = virtual;
639 return ERROR_OK;
640 }
641
642 static int no_mmu(struct target *target, int *enabled)
643 {
644 *enabled = 0;
645 return ERROR_OK;
646 }
647
648 static int default_examine(struct target *target)
649 {
650 target_set_examined(target);
651 return ERROR_OK;
652 }
653
654 /* no check by default */
655 static int default_check_reset(struct target *target)
656 {
657 return ERROR_OK;
658 }
659
660 int target_examine_one(struct target *target)
661 {
662 return target->type->examine(target);
663 }
664
665 static int jtag_enable_callback(enum jtag_event event, void *priv)
666 {
667 struct target *target = priv;
668
669 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
670 return ERROR_OK;
671
672 jtag_unregister_event_callback(jtag_enable_callback, target);
673
674 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
675
676 int retval = target_examine_one(target);
677 if (retval != ERROR_OK)
678 return retval;
679
680 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
681
682 return retval;
683 }
684
685 /* Targets that correctly implement init + examine, i.e.
686 * no communication with target during init:
687 *
688 * XScale
689 */
690 int target_examine(void)
691 {
692 int retval = ERROR_OK;
693 struct target *target;
694
695 for (target = all_targets; target; target = target->next) {
696 /* defer examination, but don't skip it */
697 if (!target->tap->enabled) {
698 jtag_register_event_callback(jtag_enable_callback,
699 target);
700 continue;
701 }
702
703 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
704
705 retval = target_examine_one(target);
706 if (retval != ERROR_OK)
707 return retval;
708
709 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
710 }
711 return retval;
712 }
713
714 const char *target_type_name(struct target *target)
715 {
716 return target->type->name;
717 }
718
719 static int target_soft_reset_halt(struct target *target)
720 {
721 if (!target_was_examined(target)) {
722 LOG_ERROR("Target not examined yet");
723 return ERROR_FAIL;
724 }
725 if (!target->type->soft_reset_halt) {
726 LOG_ERROR("Target %s does not support soft_reset_halt",
727 target_name(target));
728 return ERROR_FAIL;
729 }
730 return target->type->soft_reset_halt(target);
731 }
732
733 /**
734 * Downloads a target-specific native code algorithm to the target,
735 * and executes it. * Note that some targets may need to set up, enable,
736 * and tear down a breakpoint (hard or * soft) to detect algorithm
737 * termination, while others may support lower overhead schemes where
738 * soft breakpoints embedded in the algorithm automatically terminate the
739 * algorithm.
740 *
741 * @param target used to run the algorithm
742 * @param arch_info target-specific description of the algorithm.
743 */
744 int target_run_algorithm(struct target *target,
745 int num_mem_params, struct mem_param *mem_params,
746 int num_reg_params, struct reg_param *reg_param,
747 uint32_t entry_point, uint32_t exit_point,
748 int timeout_ms, void *arch_info)
749 {
750 int retval = ERROR_FAIL;
751
752 if (!target_was_examined(target)) {
753 LOG_ERROR("Target not examined yet");
754 goto done;
755 }
756 if (!target->type->run_algorithm) {
757 LOG_ERROR("Target type '%s' does not support %s",
758 target_type_name(target), __func__);
759 goto done;
760 }
761
762 target->running_alg = true;
763 retval = target->type->run_algorithm(target,
764 num_mem_params, mem_params,
765 num_reg_params, reg_param,
766 entry_point, exit_point, timeout_ms, arch_info);
767 target->running_alg = false;
768
769 done:
770 return retval;
771 }
772
773 /**
774 * Downloads a target-specific native code algorithm to the target,
775 * executes and leaves it running.
776 *
777 * @param target used to run the algorithm
778 * @param arch_info target-specific description of the algorithm.
779 */
780 int target_start_algorithm(struct target *target,
781 int num_mem_params, struct mem_param *mem_params,
782 int num_reg_params, struct reg_param *reg_params,
783 uint32_t entry_point, uint32_t exit_point,
784 void *arch_info)
785 {
786 int retval = ERROR_FAIL;
787
788 if (!target_was_examined(target)) {
789 LOG_ERROR("Target not examined yet");
790 goto done;
791 }
792 if (!target->type->start_algorithm) {
793 LOG_ERROR("Target type '%s' does not support %s",
794 target_type_name(target), __func__);
795 goto done;
796 }
797 if (target->running_alg) {
798 LOG_ERROR("Target is already running an algorithm");
799 goto done;
800 }
801
802 target->running_alg = true;
803 retval = target->type->start_algorithm(target,
804 num_mem_params, mem_params,
805 num_reg_params, reg_params,
806 entry_point, exit_point, arch_info);
807
808 done:
809 return retval;
810 }
811
812 /**
813 * Waits for an algorithm started with target_start_algorithm() to complete.
814 *
815 * @param target used to run the algorithm
816 * @param arch_info target-specific description of the algorithm.
817 */
818 int target_wait_algorithm(struct target *target,
819 int num_mem_params, struct mem_param *mem_params,
820 int num_reg_params, struct reg_param *reg_params,
821 uint32_t exit_point, int timeout_ms,
822 void *arch_info)
823 {
824 int retval = ERROR_FAIL;
825
826 if (!target->type->wait_algorithm) {
827 LOG_ERROR("Target type '%s' does not support %s",
828 target_type_name(target), __func__);
829 goto done;
830 }
831 if (!target->running_alg) {
832 LOG_ERROR("Target is not running an algorithm");
833 goto done;
834 }
835
836 retval = target->type->wait_algorithm(target,
837 num_mem_params, mem_params,
838 num_reg_params, reg_params,
839 exit_point, timeout_ms, arch_info);
840 if (retval != ERROR_TARGET_TIMEOUT)
841 target->running_alg = false;
842
843 done:
844 return retval;
845 }
846
847 /**
848 * Executes a target-specific native code algorithm in the target.
849 * It differs from target_run_algorithm in that the algorithm is asynchronous.
850 * Because of this it requires an compliant algorithm:
851 * see contrib/loaders/flash/stm32f1x.S for example.
852 *
853 * @param target used to run the algorithm
854 */
855
856 int target_run_flash_async_algorithm(struct target *target,
857 const uint8_t *buffer, uint32_t count, int block_size,
858 int num_mem_params, struct mem_param *mem_params,
859 int num_reg_params, struct reg_param *reg_params,
860 uint32_t buffer_start, uint32_t buffer_size,
861 uint32_t entry_point, uint32_t exit_point, void *arch_info)
862 {
863 int retval;
864 int timeout = 0;
865
866 const uint8_t *buffer_orig = buffer;
867
868 /* Set up working area. First word is write pointer, second word is read pointer,
869 * rest is fifo data area. */
870 uint32_t wp_addr = buffer_start;
871 uint32_t rp_addr = buffer_start + 4;
872 uint32_t fifo_start_addr = buffer_start + 8;
873 uint32_t fifo_end_addr = buffer_start + buffer_size;
874
875 uint32_t wp = fifo_start_addr;
876 uint32_t rp = fifo_start_addr;
877
878 /* validate block_size is 2^n */
879 assert(!block_size || !(block_size & (block_size - 1)));
880
881 retval = target_write_u32(target, wp_addr, wp);
882 if (retval != ERROR_OK)
883 return retval;
884 retval = target_write_u32(target, rp_addr, rp);
885 if (retval != ERROR_OK)
886 return retval;
887
888 /* Start up algorithm on target and let it idle while writing the first chunk */
889 retval = target_start_algorithm(target, num_mem_params, mem_params,
890 num_reg_params, reg_params,
891 entry_point,
892 exit_point,
893 arch_info);
894
895 if (retval != ERROR_OK) {
896 LOG_ERROR("error starting target flash write algorithm");
897 return retval;
898 }
899
900 while (count > 0) {
901
902 retval = target_read_u32(target, rp_addr, &rp);
903 if (retval != ERROR_OK) {
904 LOG_ERROR("failed to get read pointer");
905 break;
906 }
907
908 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
909 (size_t) (buffer - buffer_orig), count, wp, rp);
910
911 if (rp == 0) {
912 LOG_ERROR("flash write algorithm aborted by target");
913 retval = ERROR_FLASH_OPERATION_FAILED;
914 break;
915 }
916
917 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
918 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
919 break;
920 }
921
922 /* Count the number of bytes available in the fifo without
923 * crossing the wrap around. Make sure to not fill it completely,
924 * because that would make wp == rp and that's the empty condition. */
925 uint32_t thisrun_bytes;
926 if (rp > wp)
927 thisrun_bytes = rp - wp - block_size;
928 else if (rp > fifo_start_addr)
929 thisrun_bytes = fifo_end_addr - wp;
930 else
931 thisrun_bytes = fifo_end_addr - wp - block_size;
932
933 if (thisrun_bytes == 0) {
934 /* Throttle polling a bit if transfer is (much) faster than flash
935 * programming. The exact delay shouldn't matter as long as it's
936 * less than buffer size / flash speed. This is very unlikely to
937 * run when using high latency connections such as USB. */
938 alive_sleep(10);
939
940 /* to stop an infinite loop on some targets check and increment a timeout
941 * this issue was observed on a stellaris using the new ICDI interface */
942 if (timeout++ >= 500) {
943 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
944 return ERROR_FLASH_OPERATION_FAILED;
945 }
946 continue;
947 }
948
949 /* reset our timeout */
950 timeout = 0;
951
952 /* Limit to the amount of data we actually want to write */
953 if (thisrun_bytes > count * block_size)
954 thisrun_bytes = count * block_size;
955
956 /* Write data to fifo */
957 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
958 if (retval != ERROR_OK)
959 break;
960
961 /* Update counters and wrap write pointer */
962 buffer += thisrun_bytes;
963 count -= thisrun_bytes / block_size;
964 wp += thisrun_bytes;
965 if (wp >= fifo_end_addr)
966 wp = fifo_start_addr;
967
968 /* Store updated write pointer to target */
969 retval = target_write_u32(target, wp_addr, wp);
970 if (retval != ERROR_OK)
971 break;
972 }
973
974 if (retval != ERROR_OK) {
975 /* abort flash write algorithm on target */
976 target_write_u32(target, wp_addr, 0);
977 }
978
979 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
980 num_reg_params, reg_params,
981 exit_point,
982 10000,
983 arch_info);
984
985 if (retval2 != ERROR_OK) {
986 LOG_ERROR("error waiting for target flash write algorithm");
987 retval = retval2;
988 }
989
990 return retval;
991 }
992
993 int target_read_memory(struct target *target,
994 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
995 {
996 if (!target_was_examined(target)) {
997 LOG_ERROR("Target not examined yet");
998 return ERROR_FAIL;
999 }
1000 return target->type->read_memory(target, address, size, count, buffer);
1001 }
1002
1003 int target_read_phys_memory(struct target *target,
1004 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1005 {
1006 if (!target_was_examined(target)) {
1007 LOG_ERROR("Target not examined yet");
1008 return ERROR_FAIL;
1009 }
1010 return target->type->read_phys_memory(target, address, size, count, buffer);
1011 }
1012
1013 int target_write_memory(struct target *target,
1014 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1015 {
1016 if (!target_was_examined(target)) {
1017 LOG_ERROR("Target not examined yet");
1018 return ERROR_FAIL;
1019 }
1020 return target->type->write_memory(target, address, size, count, buffer);
1021 }
1022
1023 int target_write_phys_memory(struct target *target,
1024 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1025 {
1026 if (!target_was_examined(target)) {
1027 LOG_ERROR("Target not examined yet");
1028 return ERROR_FAIL;
1029 }
1030 return target->type->write_phys_memory(target, address, size, count, buffer);
1031 }
1032
1033 int target_add_breakpoint(struct target *target,
1034 struct breakpoint *breakpoint)
1035 {
1036 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1037 LOG_WARNING("target %s is not halted", target_name(target));
1038 return ERROR_TARGET_NOT_HALTED;
1039 }
1040 return target->type->add_breakpoint(target, breakpoint);
1041 }
1042
1043 int target_add_context_breakpoint(struct target *target,
1044 struct breakpoint *breakpoint)
1045 {
1046 if (target->state != TARGET_HALTED) {
1047 LOG_WARNING("target %s is not halted", target_name(target));
1048 return ERROR_TARGET_NOT_HALTED;
1049 }
1050 return target->type->add_context_breakpoint(target, breakpoint);
1051 }
1052
1053 int target_add_hybrid_breakpoint(struct target *target,
1054 struct breakpoint *breakpoint)
1055 {
1056 if (target->state != TARGET_HALTED) {
1057 LOG_WARNING("target %s is not halted", target_name(target));
1058 return ERROR_TARGET_NOT_HALTED;
1059 }
1060 return target->type->add_hybrid_breakpoint(target, breakpoint);
1061 }
1062
1063 int target_remove_breakpoint(struct target *target,
1064 struct breakpoint *breakpoint)
1065 {
1066 return target->type->remove_breakpoint(target, breakpoint);
1067 }
1068
1069 int target_add_watchpoint(struct target *target,
1070 struct watchpoint *watchpoint)
1071 {
1072 if (target->state != TARGET_HALTED) {
1073 LOG_WARNING("target %s is not halted", target_name(target));
1074 return ERROR_TARGET_NOT_HALTED;
1075 }
1076 return target->type->add_watchpoint(target, watchpoint);
1077 }
1078 int target_remove_watchpoint(struct target *target,
1079 struct watchpoint *watchpoint)
1080 {
1081 return target->type->remove_watchpoint(target, watchpoint);
1082 }
1083 int target_hit_watchpoint(struct target *target,
1084 struct watchpoint **hit_watchpoint)
1085 {
1086 if (target->state != TARGET_HALTED) {
1087 LOG_WARNING("target %s is not halted", target->cmd_name);
1088 return ERROR_TARGET_NOT_HALTED;
1089 }
1090
1091 if (target->type->hit_watchpoint == NULL) {
1092 /* For backward compatible, if hit_watchpoint is not implemented,
1093 * return ERROR_FAIL such that gdb_server will not take the nonsense
1094 * information. */
1095 return ERROR_FAIL;
1096 }
1097
1098 return target->type->hit_watchpoint(target, hit_watchpoint);
1099 }
1100
1101 int target_get_gdb_reg_list(struct target *target,
1102 struct reg **reg_list[], int *reg_list_size,
1103 enum target_register_class reg_class)
1104 {
1105 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1106 }
1107 int target_step(struct target *target,
1108 int current, uint32_t address, int handle_breakpoints)
1109 {
1110 return target->type->step(target, current, address, handle_breakpoints);
1111 }
1112
1113 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1114 {
1115 if (target->state != TARGET_HALTED) {
1116 LOG_WARNING("target %s is not halted", target->cmd_name);
1117 return ERROR_TARGET_NOT_HALTED;
1118 }
1119 return target->type->get_gdb_fileio_info(target, fileio_info);
1120 }
1121
1122 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1123 {
1124 if (target->state != TARGET_HALTED) {
1125 LOG_WARNING("target %s is not halted", target->cmd_name);
1126 return ERROR_TARGET_NOT_HALTED;
1127 }
1128 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1129 }
1130
1131 int target_profiling(struct target *target, uint32_t *samples,
1132 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1133 {
1134 if (target->state != TARGET_HALTED) {
1135 LOG_WARNING("target %s is not halted", target->cmd_name);
1136 return ERROR_TARGET_NOT_HALTED;
1137 }
1138 return target->type->profiling(target, samples, max_num_samples,
1139 num_samples, seconds);
1140 }
1141
1142 /**
1143 * Reset the @c examined flag for the given target.
1144 * Pure paranoia -- targets are zeroed on allocation.
1145 */
1146 static void target_reset_examined(struct target *target)
1147 {
1148 target->examined = false;
1149 }
1150
1151 static int err_read_phys_memory(struct target *target, uint32_t address,
1152 uint32_t size, uint32_t count, uint8_t *buffer)
1153 {
1154 LOG_ERROR("Not implemented: %s", __func__);
1155 return ERROR_FAIL;
1156 }
1157
1158 static int err_write_phys_memory(struct target *target, uint32_t address,
1159 uint32_t size, uint32_t count, const uint8_t *buffer)
1160 {
1161 LOG_ERROR("Not implemented: %s", __func__);
1162 return ERROR_FAIL;
1163 }
1164
1165 static int handle_target(void *priv);
1166
1167 static int target_init_one(struct command_context *cmd_ctx,
1168 struct target *target)
1169 {
1170 target_reset_examined(target);
1171
1172 struct target_type *type = target->type;
1173 if (type->examine == NULL)
1174 type->examine = default_examine;
1175
1176 if (type->check_reset == NULL)
1177 type->check_reset = default_check_reset;
1178
1179 assert(type->init_target != NULL);
1180
1181 int retval = type->init_target(cmd_ctx, target);
1182 if (ERROR_OK != retval) {
1183 LOG_ERROR("target '%s' init failed", target_name(target));
1184 return retval;
1185 }
1186
1187 /* Sanity-check MMU support ... stub in what we must, to help
1188 * implement it in stages, but warn if we need to do so.
1189 */
1190 if (type->mmu) {
1191 if (type->write_phys_memory == NULL) {
1192 LOG_ERROR("type '%s' is missing write_phys_memory",
1193 type->name);
1194 type->write_phys_memory = err_write_phys_memory;
1195 }
1196 if (type->read_phys_memory == NULL) {
1197 LOG_ERROR("type '%s' is missing read_phys_memory",
1198 type->name);
1199 type->read_phys_memory = err_read_phys_memory;
1200 }
1201 if (type->virt2phys == NULL) {
1202 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1203 type->virt2phys = identity_virt2phys;
1204 }
1205 } else {
1206 /* Make sure no-MMU targets all behave the same: make no
1207 * distinction between physical and virtual addresses, and
1208 * ensure that virt2phys() is always an identity mapping.
1209 */
1210 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1211 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1212
1213 type->mmu = no_mmu;
1214 type->write_phys_memory = type->write_memory;
1215 type->read_phys_memory = type->read_memory;
1216 type->virt2phys = identity_virt2phys;
1217 }
1218
1219 if (target->type->read_buffer == NULL)
1220 target->type->read_buffer = target_read_buffer_default;
1221
1222 if (target->type->write_buffer == NULL)
1223 target->type->write_buffer = target_write_buffer_default;
1224
1225 if (target->type->get_gdb_fileio_info == NULL)
1226 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1227
1228 if (target->type->gdb_fileio_end == NULL)
1229 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1230
1231 if (target->type->profiling == NULL)
1232 target->type->profiling = target_profiling_default;
1233
1234 return ERROR_OK;
1235 }
1236
1237 static int target_init(struct command_context *cmd_ctx)
1238 {
1239 struct target *target;
1240 int retval;
1241
1242 for (target = all_targets; target; target = target->next) {
1243 retval = target_init_one(cmd_ctx, target);
1244 if (ERROR_OK != retval)
1245 return retval;
1246 }
1247
1248 if (!all_targets)
1249 return ERROR_OK;
1250
1251 retval = target_register_user_commands(cmd_ctx);
1252 if (ERROR_OK != retval)
1253 return retval;
1254
1255 retval = target_register_timer_callback(&handle_target,
1256 polling_interval, 1, cmd_ctx->interp);
1257 if (ERROR_OK != retval)
1258 return retval;
1259
1260 return ERROR_OK;
1261 }
1262
1263 COMMAND_HANDLER(handle_target_init_command)
1264 {
1265 int retval;
1266
1267 if (CMD_ARGC != 0)
1268 return ERROR_COMMAND_SYNTAX_ERROR;
1269
1270 static bool target_initialized;
1271 if (target_initialized) {
1272 LOG_INFO("'target init' has already been called");
1273 return ERROR_OK;
1274 }
1275 target_initialized = true;
1276
1277 retval = command_run_line(CMD_CTX, "init_targets");
1278 if (ERROR_OK != retval)
1279 return retval;
1280
1281 retval = command_run_line(CMD_CTX, "init_target_events");
1282 if (ERROR_OK != retval)
1283 return retval;
1284
1285 retval = command_run_line(CMD_CTX, "init_board");
1286 if (ERROR_OK != retval)
1287 return retval;
1288
1289 LOG_DEBUG("Initializing targets...");
1290 return target_init(CMD_CTX);
1291 }
1292
1293 int target_register_event_callback(int (*callback)(struct target *target,
1294 enum target_event event, void *priv), void *priv)
1295 {
1296 struct target_event_callback **callbacks_p = &target_event_callbacks;
1297
1298 if (callback == NULL)
1299 return ERROR_COMMAND_SYNTAX_ERROR;
1300
1301 if (*callbacks_p) {
1302 while ((*callbacks_p)->next)
1303 callbacks_p = &((*callbacks_p)->next);
1304 callbacks_p = &((*callbacks_p)->next);
1305 }
1306
1307 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1308 (*callbacks_p)->callback = callback;
1309 (*callbacks_p)->priv = priv;
1310 (*callbacks_p)->next = NULL;
1311
1312 return ERROR_OK;
1313 }
1314
1315 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1316 {
1317 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1318 struct timeval now;
1319
1320 if (callback == NULL)
1321 return ERROR_COMMAND_SYNTAX_ERROR;
1322
1323 if (*callbacks_p) {
1324 while ((*callbacks_p)->next)
1325 callbacks_p = &((*callbacks_p)->next);
1326 callbacks_p = &((*callbacks_p)->next);
1327 }
1328
1329 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1330 (*callbacks_p)->callback = callback;
1331 (*callbacks_p)->periodic = periodic;
1332 (*callbacks_p)->time_ms = time_ms;
1333
1334 gettimeofday(&now, NULL);
1335 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1336 time_ms -= (time_ms % 1000);
1337 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1338 if ((*callbacks_p)->when.tv_usec > 1000000) {
1339 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1340 (*callbacks_p)->when.tv_sec += 1;
1341 }
1342
1343 (*callbacks_p)->priv = priv;
1344 (*callbacks_p)->next = NULL;
1345
1346 return ERROR_OK;
1347 }
1348
1349 int target_unregister_event_callback(int (*callback)(struct target *target,
1350 enum target_event event, void *priv), void *priv)
1351 {
1352 struct target_event_callback **p = &target_event_callbacks;
1353 struct target_event_callback *c = target_event_callbacks;
1354
1355 if (callback == NULL)
1356 return ERROR_COMMAND_SYNTAX_ERROR;
1357
1358 while (c) {
1359 struct target_event_callback *next = c->next;
1360 if ((c->callback == callback) && (c->priv == priv)) {
1361 *p = next;
1362 free(c);
1363 return ERROR_OK;
1364 } else
1365 p = &(c->next);
1366 c = next;
1367 }
1368
1369 return ERROR_OK;
1370 }
1371
1372 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1373 {
1374 struct target_timer_callback **p = &target_timer_callbacks;
1375 struct target_timer_callback *c = target_timer_callbacks;
1376
1377 if (callback == NULL)
1378 return ERROR_COMMAND_SYNTAX_ERROR;
1379
1380 while (c) {
1381 struct target_timer_callback *next = c->next;
1382 if ((c->callback == callback) && (c->priv == priv)) {
1383 *p = next;
1384 free(c);
1385 return ERROR_OK;
1386 } else
1387 p = &(c->next);
1388 c = next;
1389 }
1390
1391 return ERROR_OK;
1392 }
1393
1394 int target_call_event_callbacks(struct target *target, enum target_event event)
1395 {
1396 struct target_event_callback *callback = target_event_callbacks;
1397 struct target_event_callback *next_callback;
1398
1399 if (event == TARGET_EVENT_HALTED) {
1400 /* execute early halted first */
1401 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1402 }
1403
1404 LOG_DEBUG("target event %i (%s)", event,
1405 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1406
1407 target_handle_event(target, event);
1408
1409 while (callback) {
1410 next_callback = callback->next;
1411 callback->callback(target, event, callback->priv);
1412 callback = next_callback;
1413 }
1414
1415 return ERROR_OK;
1416 }
1417
1418 static int target_timer_callback_periodic_restart(
1419 struct target_timer_callback *cb, struct timeval *now)
1420 {
1421 int time_ms = cb->time_ms;
1422 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1423 time_ms -= (time_ms % 1000);
1424 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1425 if (cb->when.tv_usec > 1000000) {
1426 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1427 cb->when.tv_sec += 1;
1428 }
1429 return ERROR_OK;
1430 }
1431
1432 static int target_call_timer_callback(struct target_timer_callback *cb,
1433 struct timeval *now)
1434 {
1435 cb->callback(cb->priv);
1436
1437 if (cb->periodic)
1438 return target_timer_callback_periodic_restart(cb, now);
1439
1440 return target_unregister_timer_callback(cb->callback, cb->priv);
1441 }
1442
1443 static int target_call_timer_callbacks_check_time(int checktime)
1444 {
1445 keep_alive();
1446
1447 struct timeval now;
1448 gettimeofday(&now, NULL);
1449
1450 struct target_timer_callback *callback = target_timer_callbacks;
1451 while (callback) {
1452 /* cleaning up may unregister and free this callback */
1453 struct target_timer_callback *next_callback = callback->next;
1454
1455 bool call_it = callback->callback &&
1456 ((!checktime && callback->periodic) ||
1457 now.tv_sec > callback->when.tv_sec ||
1458 (now.tv_sec == callback->when.tv_sec &&
1459 now.tv_usec >= callback->when.tv_usec));
1460
1461 if (call_it) {
1462 int retval = target_call_timer_callback(callback, &now);
1463 if (retval != ERROR_OK)
1464 return retval;
1465 }
1466
1467 callback = next_callback;
1468 }
1469
1470 return ERROR_OK;
1471 }
1472
1473 int target_call_timer_callbacks(void)
1474 {
1475 return target_call_timer_callbacks_check_time(1);
1476 }
1477
1478 /* invoke periodic callbacks immediately */
1479 int target_call_timer_callbacks_now(void)
1480 {
1481 return target_call_timer_callbacks_check_time(0);
1482 }
1483
1484 /* Prints the working area layout for debug purposes */
1485 static void print_wa_layout(struct target *target)
1486 {
1487 struct working_area *c = target->working_areas;
1488
1489 while (c) {
1490 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1491 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1492 c->address, c->address + c->size - 1, c->size);
1493 c = c->next;
1494 }
1495 }
1496
1497 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1498 static void target_split_working_area(struct working_area *area, uint32_t size)
1499 {
1500 assert(area->free); /* Shouldn't split an allocated area */
1501 assert(size <= area->size); /* Caller should guarantee this */
1502
1503 /* Split only if not already the right size */
1504 if (size < area->size) {
1505 struct working_area *new_wa = malloc(sizeof(*new_wa));
1506
1507 if (new_wa == NULL)
1508 return;
1509
1510 new_wa->next = area->next;
1511 new_wa->size = area->size - size;
1512 new_wa->address = area->address + size;
1513 new_wa->backup = NULL;
1514 new_wa->user = NULL;
1515 new_wa->free = true;
1516
1517 area->next = new_wa;
1518 area->size = size;
1519
1520 /* If backup memory was allocated to this area, it has the wrong size
1521 * now so free it and it will be reallocated if/when needed */
1522 if (area->backup) {
1523 free(area->backup);
1524 area->backup = NULL;
1525 }
1526 }
1527 }
1528
1529 /* Merge all adjacent free areas into one */
1530 static void target_merge_working_areas(struct target *target)
1531 {
1532 struct working_area *c = target->working_areas;
1533
1534 while (c && c->next) {
1535 assert(c->next->address == c->address + c->size); /* This is an invariant */
1536
1537 /* Find two adjacent free areas */
1538 if (c->free && c->next->free) {
1539 /* Merge the last into the first */
1540 c->size += c->next->size;
1541
1542 /* Remove the last */
1543 struct working_area *to_be_freed = c->next;
1544 c->next = c->next->next;
1545 if (to_be_freed->backup)
1546 free(to_be_freed->backup);
1547 free(to_be_freed);
1548
1549 /* If backup memory was allocated to the remaining area, it's has
1550 * the wrong size now */
1551 if (c->backup) {
1552 free(c->backup);
1553 c->backup = NULL;
1554 }
1555 } else {
1556 c = c->next;
1557 }
1558 }
1559 }
1560
1561 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1562 {
1563 /* Reevaluate working area address based on MMU state*/
1564 if (target->working_areas == NULL) {
1565 int retval;
1566 int enabled;
1567
1568 retval = target->type->mmu(target, &enabled);
1569 if (retval != ERROR_OK)
1570 return retval;
1571
1572 if (!enabled) {
1573 if (target->working_area_phys_spec) {
1574 LOG_DEBUG("MMU disabled, using physical "
1575 "address for working memory 0x%08"PRIx32,
1576 target->working_area_phys);
1577 target->working_area = target->working_area_phys;
1578 } else {
1579 LOG_ERROR("No working memory available. "
1580 "Specify -work-area-phys to target.");
1581 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1582 }
1583 } else {
1584 if (target->working_area_virt_spec) {
1585 LOG_DEBUG("MMU enabled, using virtual "
1586 "address for working memory 0x%08"PRIx32,
1587 target->working_area_virt);
1588 target->working_area = target->working_area_virt;
1589 } else {
1590 LOG_ERROR("No working memory available. "
1591 "Specify -work-area-virt to target.");
1592 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1593 }
1594 }
1595
1596 /* Set up initial working area on first call */
1597 struct working_area *new_wa = malloc(sizeof(*new_wa));
1598 if (new_wa) {
1599 new_wa->next = NULL;
1600 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1601 new_wa->address = target->working_area;
1602 new_wa->backup = NULL;
1603 new_wa->user = NULL;
1604 new_wa->free = true;
1605 }
1606
1607 target->working_areas = new_wa;
1608 }
1609
1610 /* only allocate multiples of 4 byte */
1611 if (size % 4)
1612 size = (size + 3) & (~3UL);
1613
1614 struct working_area *c = target->working_areas;
1615
1616 /* Find the first large enough working area */
1617 while (c) {
1618 if (c->free && c->size >= size)
1619 break;
1620 c = c->next;
1621 }
1622
1623 if (c == NULL)
1624 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1625
1626 /* Split the working area into the requested size */
1627 target_split_working_area(c, size);
1628
1629 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1630
1631 if (target->backup_working_area) {
1632 if (c->backup == NULL) {
1633 c->backup = malloc(c->size);
1634 if (c->backup == NULL)
1635 return ERROR_FAIL;
1636 }
1637
1638 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1639 if (retval != ERROR_OK)
1640 return retval;
1641 }
1642
1643 /* mark as used, and return the new (reused) area */
1644 c->free = false;
1645 *area = c;
1646
1647 /* user pointer */
1648 c->user = area;
1649
1650 print_wa_layout(target);
1651
1652 return ERROR_OK;
1653 }
1654
1655 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1656 {
1657 int retval;
1658
1659 retval = target_alloc_working_area_try(target, size, area);
1660 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1661 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1662 return retval;
1663
1664 }
1665
1666 static int target_restore_working_area(struct target *target, struct working_area *area)
1667 {
1668 int retval = ERROR_OK;
1669
1670 if (target->backup_working_area && area->backup != NULL) {
1671 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1672 if (retval != ERROR_OK)
1673 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1674 area->size, area->address);
1675 }
1676
1677 return retval;
1678 }
1679
1680 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1681 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1682 {
1683 int retval = ERROR_OK;
1684
1685 if (area->free)
1686 return retval;
1687
1688 if (restore) {
1689 retval = target_restore_working_area(target, area);
1690 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1691 if (retval != ERROR_OK)
1692 return retval;
1693 }
1694
1695 area->free = true;
1696
1697 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1698 area->size, area->address);
1699
1700 /* mark user pointer invalid */
1701 /* TODO: Is this really safe? It points to some previous caller's memory.
1702 * How could we know that the area pointer is still in that place and not
1703 * some other vital data? What's the purpose of this, anyway? */
1704 *area->user = NULL;
1705 area->user = NULL;
1706
1707 target_merge_working_areas(target);
1708
1709 print_wa_layout(target);
1710
1711 return retval;
1712 }
1713
1714 int target_free_working_area(struct target *target, struct working_area *area)
1715 {
1716 return target_free_working_area_restore(target, area, 1);
1717 }
1718
1719 /* free resources and restore memory, if restoring memory fails,
1720 * free up resources anyway
1721 */
1722 static void target_free_all_working_areas_restore(struct target *target, int restore)
1723 {
1724 struct working_area *c = target->working_areas;
1725
1726 LOG_DEBUG("freeing all working areas");
1727
1728 /* Loop through all areas, restoring the allocated ones and marking them as free */
1729 while (c) {
1730 if (!c->free) {
1731 if (restore)
1732 target_restore_working_area(target, c);
1733 c->free = true;
1734 *c->user = NULL; /* Same as above */
1735 c->user = NULL;
1736 }
1737 c = c->next;
1738 }
1739
1740 /* Run a merge pass to combine all areas into one */
1741 target_merge_working_areas(target);
1742
1743 print_wa_layout(target);
1744 }
1745
1746 void target_free_all_working_areas(struct target *target)
1747 {
1748 target_free_all_working_areas_restore(target, 1);
1749 }
1750
1751 /* Find the largest number of bytes that can be allocated */
1752 uint32_t target_get_working_area_avail(struct target *target)
1753 {
1754 struct working_area *c = target->working_areas;
1755 uint32_t max_size = 0;
1756
1757 if (c == NULL)
1758 return target->working_area_size;
1759
1760 while (c) {
1761 if (c->free && max_size < c->size)
1762 max_size = c->size;
1763
1764 c = c->next;
1765 }
1766
1767 return max_size;
1768 }
1769
1770 int target_arch_state(struct target *target)
1771 {
1772 int retval;
1773 if (target == NULL) {
1774 LOG_USER("No target has been configured");
1775 return ERROR_OK;
1776 }
1777
1778 LOG_USER("target state: %s", target_state_name(target));
1779
1780 if (target->state != TARGET_HALTED)
1781 return ERROR_OK;
1782
1783 retval = target->type->arch_state(target);
1784 return retval;
1785 }
1786
1787 static int target_get_gdb_fileio_info_default(struct target *target,
1788 struct gdb_fileio_info *fileio_info)
1789 {
1790 /* If target does not support semi-hosting function, target
1791 has no need to provide .get_gdb_fileio_info callback.
1792 It just return ERROR_FAIL and gdb_server will return "Txx"
1793 as target halted every time. */
1794 return ERROR_FAIL;
1795 }
1796
1797 static int target_gdb_fileio_end_default(struct target *target,
1798 int retcode, int fileio_errno, bool ctrl_c)
1799 {
1800 return ERROR_OK;
1801 }
1802
1803 static int target_profiling_default(struct target *target, uint32_t *samples,
1804 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1805 {
1806 struct timeval timeout, now;
1807
1808 gettimeofday(&timeout, NULL);
1809 timeval_add_time(&timeout, seconds, 0);
1810
1811 LOG_INFO("Starting profiling. Halting and resuming the"
1812 " target as often as we can...");
1813
1814 uint32_t sample_count = 0;
1815 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1816 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1817
1818 int retval = ERROR_OK;
1819 for (;;) {
1820 target_poll(target);
1821 if (target->state == TARGET_HALTED) {
1822 uint32_t t = buf_get_u32(reg->value, 0, 32);
1823 samples[sample_count++] = t;
1824 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1825 retval = target_resume(target, 1, 0, 0, 0);
1826 target_poll(target);
1827 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1828 } else if (target->state == TARGET_RUNNING) {
1829 /* We want to quickly sample the PC. */
1830 retval = target_halt(target);
1831 } else {
1832 LOG_INFO("Target not halted or running");
1833 retval = ERROR_OK;
1834 break;
1835 }
1836
1837 if (retval != ERROR_OK)
1838 break;
1839
1840 gettimeofday(&now, NULL);
1841 if ((sample_count >= max_num_samples) ||
1842 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1843 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1844 break;
1845 }
1846 }
1847
1848 *num_samples = sample_count;
1849 return retval;
1850 }
1851
1852 /* Single aligned words are guaranteed to use 16 or 32 bit access
1853 * mode respectively, otherwise data is handled as quickly as
1854 * possible
1855 */
1856 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1857 {
1858 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1859 (int)size, (unsigned)address);
1860
1861 if (!target_was_examined(target)) {
1862 LOG_ERROR("Target not examined yet");
1863 return ERROR_FAIL;
1864 }
1865
1866 if (size == 0)
1867 return ERROR_OK;
1868
1869 if ((address + size - 1) < address) {
1870 /* GDB can request this when e.g. PC is 0xfffffffc*/
1871 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1872 (unsigned)address,
1873 (unsigned)size);
1874 return ERROR_FAIL;
1875 }
1876
1877 return target->type->write_buffer(target, address, size, buffer);
1878 }
1879
1880 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1881 {
1882 uint32_t size;
1883
1884 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1885 * will have something to do with the size we leave to it. */
1886 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1887 if (address & size) {
1888 int retval = target_write_memory(target, address, size, 1, buffer);
1889 if (retval != ERROR_OK)
1890 return retval;
1891 address += size;
1892 count -= size;
1893 buffer += size;
1894 }
1895 }
1896
1897 /* Write the data with as large access size as possible. */
1898 for (; size > 0; size /= 2) {
1899 uint32_t aligned = count - count % size;
1900 if (aligned > 0) {
1901 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1902 if (retval != ERROR_OK)
1903 return retval;
1904 address += aligned;
1905 count -= aligned;
1906 buffer += aligned;
1907 }
1908 }
1909
1910 return ERROR_OK;
1911 }
1912
1913 /* Single aligned words are guaranteed to use 16 or 32 bit access
1914 * mode respectively, otherwise data is handled as quickly as
1915 * possible
1916 */
1917 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1918 {
1919 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1920 (int)size, (unsigned)address);
1921
1922 if (!target_was_examined(target)) {
1923 LOG_ERROR("Target not examined yet");
1924 return ERROR_FAIL;
1925 }
1926
1927 if (size == 0)
1928 return ERROR_OK;
1929
1930 if ((address + size - 1) < address) {
1931 /* GDB can request this when e.g. PC is 0xfffffffc*/
1932 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1933 address,
1934 size);
1935 return ERROR_FAIL;
1936 }
1937
1938 return target->type->read_buffer(target, address, size, buffer);
1939 }
1940
1941 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1942 {
1943 uint32_t size;
1944
1945 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1946 * will have something to do with the size we leave to it. */
1947 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1948 if (address & size) {
1949 int retval = target_read_memory(target, address, size, 1, buffer);
1950 if (retval != ERROR_OK)
1951 return retval;
1952 address += size;
1953 count -= size;
1954 buffer += size;
1955 }
1956 }
1957
1958 /* Read the data with as large access size as possible. */
1959 for (; size > 0; size /= 2) {
1960 uint32_t aligned = count - count % size;
1961 if (aligned > 0) {
1962 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1963 if (retval != ERROR_OK)
1964 return retval;
1965 address += aligned;
1966 count -= aligned;
1967 buffer += aligned;
1968 }
1969 }
1970
1971 return ERROR_OK;
1972 }
1973
1974 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1975 {
1976 uint8_t *buffer;
1977 int retval;
1978 uint32_t i;
1979 uint32_t checksum = 0;
1980 if (!target_was_examined(target)) {
1981 LOG_ERROR("Target not examined yet");
1982 return ERROR_FAIL;
1983 }
1984
1985 retval = target->type->checksum_memory(target, address, size, &checksum);
1986 if (retval != ERROR_OK) {
1987 buffer = malloc(size);
1988 if (buffer == NULL) {
1989 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1990 return ERROR_COMMAND_SYNTAX_ERROR;
1991 }
1992 retval = target_read_buffer(target, address, size, buffer);
1993 if (retval != ERROR_OK) {
1994 free(buffer);
1995 return retval;
1996 }
1997
1998 /* convert to target endianness */
1999 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2000 uint32_t target_data;
2001 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2002 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2003 }
2004
2005 retval = image_calculate_checksum(buffer, size, &checksum);
2006 free(buffer);
2007 }
2008
2009 *crc = checksum;
2010
2011 return retval;
2012 }
2013
2014 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2015 {
2016 int retval;
2017 if (!target_was_examined(target)) {
2018 LOG_ERROR("Target not examined yet");
2019 return ERROR_FAIL;
2020 }
2021
2022 if (target->type->blank_check_memory == 0)
2023 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2024
2025 retval = target->type->blank_check_memory(target, address, size, blank);
2026
2027 return retval;
2028 }
2029
2030 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2031 {
2032 uint8_t value_buf[8];
2033 if (!target_was_examined(target)) {
2034 LOG_ERROR("Target not examined yet");
2035 return ERROR_FAIL;
2036 }
2037
2038 int retval = target_read_memory(target, address, 8, 1, value_buf);
2039
2040 if (retval == ERROR_OK) {
2041 *value = target_buffer_get_u64(target, value_buf);
2042 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2043 address,
2044 *value);
2045 } else {
2046 *value = 0x0;
2047 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2048 address);
2049 }
2050
2051 return retval;
2052 }
2053
2054 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2055 {
2056 uint8_t value_buf[4];
2057 if (!target_was_examined(target)) {
2058 LOG_ERROR("Target not examined yet");
2059 return ERROR_FAIL;
2060 }
2061
2062 int retval = target_read_memory(target, address, 4, 1, value_buf);
2063
2064 if (retval == ERROR_OK) {
2065 *value = target_buffer_get_u32(target, value_buf);
2066 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2067 address,
2068 *value);
2069 } else {
2070 *value = 0x0;
2071 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2072 address);
2073 }
2074
2075 return retval;
2076 }
2077
2078 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2079 {
2080 uint8_t value_buf[2];
2081 if (!target_was_examined(target)) {
2082 LOG_ERROR("Target not examined yet");
2083 return ERROR_FAIL;
2084 }
2085
2086 int retval = target_read_memory(target, address, 2, 1, value_buf);
2087
2088 if (retval == ERROR_OK) {
2089 *value = target_buffer_get_u16(target, value_buf);
2090 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2091 address,
2092 *value);
2093 } else {
2094 *value = 0x0;
2095 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2096 address);
2097 }
2098
2099 return retval;
2100 }
2101
2102 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2103 {
2104 if (!target_was_examined(target)) {
2105 LOG_ERROR("Target not examined yet");
2106 return ERROR_FAIL;
2107 }
2108
2109 int retval = target_read_memory(target, address, 1, 1, value);
2110
2111 if (retval == ERROR_OK) {
2112 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2113 address,
2114 *value);
2115 } else {
2116 *value = 0x0;
2117 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2118 address);
2119 }
2120
2121 return retval;
2122 }
2123
2124 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2125 {
2126 int retval;
2127 uint8_t value_buf[8];
2128 if (!target_was_examined(target)) {
2129 LOG_ERROR("Target not examined yet");
2130 return ERROR_FAIL;
2131 }
2132
2133 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2134 address,
2135 value);
2136
2137 target_buffer_set_u64(target, value_buf, value);
2138 retval = target_write_memory(target, address, 8, 1, value_buf);
2139 if (retval != ERROR_OK)
2140 LOG_DEBUG("failed: %i", retval);
2141
2142 return retval;
2143 }
2144
2145 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2146 {
2147 int retval;
2148 uint8_t value_buf[4];
2149 if (!target_was_examined(target)) {
2150 LOG_ERROR("Target not examined yet");
2151 return ERROR_FAIL;
2152 }
2153
2154 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2155 address,
2156 value);
2157
2158 target_buffer_set_u32(target, value_buf, value);
2159 retval = target_write_memory(target, address, 4, 1, value_buf);
2160 if (retval != ERROR_OK)
2161 LOG_DEBUG("failed: %i", retval);
2162
2163 return retval;
2164 }
2165
2166 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2167 {
2168 int retval;
2169 uint8_t value_buf[2];
2170 if (!target_was_examined(target)) {
2171 LOG_ERROR("Target not examined yet");
2172 return ERROR_FAIL;
2173 }
2174
2175 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2176 address,
2177 value);
2178
2179 target_buffer_set_u16(target, value_buf, value);
2180 retval = target_write_memory(target, address, 2, 1, value_buf);
2181 if (retval != ERROR_OK)
2182 LOG_DEBUG("failed: %i", retval);
2183
2184 return retval;
2185 }
2186
2187 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2188 {
2189 int retval;
2190 if (!target_was_examined(target)) {
2191 LOG_ERROR("Target not examined yet");
2192 return ERROR_FAIL;
2193 }
2194
2195 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2196 address, value);
2197
2198 retval = target_write_memory(target, address, 1, 1, &value);
2199 if (retval != ERROR_OK)
2200 LOG_DEBUG("failed: %i", retval);
2201
2202 return retval;
2203 }
2204
2205 static int find_target(struct command_context *cmd_ctx, const char *name)
2206 {
2207 struct target *target = get_target(name);
2208 if (target == NULL) {
2209 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2210 return ERROR_FAIL;
2211 }
2212 if (!target->tap->enabled) {
2213 LOG_USER("Target: TAP %s is disabled, "
2214 "can't be the current target\n",
2215 target->tap->dotted_name);
2216 return ERROR_FAIL;
2217 }
2218
2219 cmd_ctx->current_target = target->target_number;
2220 return ERROR_OK;
2221 }
2222
2223
2224 COMMAND_HANDLER(handle_targets_command)
2225 {
2226 int retval = ERROR_OK;
2227 if (CMD_ARGC == 1) {
2228 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2229 if (retval == ERROR_OK) {
2230 /* we're done! */
2231 return retval;
2232 }
2233 }
2234
2235 struct target *target = all_targets;
2236 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2237 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2238 while (target) {
2239 const char *state;
2240 char marker = ' ';
2241
2242 if (target->tap->enabled)
2243 state = target_state_name(target);
2244 else
2245 state = "tap-disabled";
2246
2247 if (CMD_CTX->current_target == target->target_number)
2248 marker = '*';
2249
2250 /* keep columns lined up to match the headers above */
2251 command_print(CMD_CTX,
2252 "%2d%c %-18s %-10s %-6s %-18s %s",
2253 target->target_number,
2254 marker,
2255 target_name(target),
2256 target_type_name(target),
2257 Jim_Nvp_value2name_simple(nvp_target_endian,
2258 target->endianness)->name,
2259 target->tap->dotted_name,
2260 state);
2261 target = target->next;
2262 }
2263
2264 return retval;
2265 }
2266
2267 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2268
2269 static int powerDropout;
2270 static int srstAsserted;
2271
2272 static int runPowerRestore;
2273 static int runPowerDropout;
2274 static int runSrstAsserted;
2275 static int runSrstDeasserted;
2276
2277 static int sense_handler(void)
2278 {
2279 static int prevSrstAsserted;
2280 static int prevPowerdropout;
2281
2282 int retval = jtag_power_dropout(&powerDropout);
2283 if (retval != ERROR_OK)
2284 return retval;
2285
2286 int powerRestored;
2287 powerRestored = prevPowerdropout && !powerDropout;
2288 if (powerRestored)
2289 runPowerRestore = 1;
2290
2291 long long current = timeval_ms();
2292 static long long lastPower;
2293 int waitMore = lastPower + 2000 > current;
2294 if (powerDropout && !waitMore) {
2295 runPowerDropout = 1;
2296 lastPower = current;
2297 }
2298
2299 retval = jtag_srst_asserted(&srstAsserted);
2300 if (retval != ERROR_OK)
2301 return retval;
2302
2303 int srstDeasserted;
2304 srstDeasserted = prevSrstAsserted && !srstAsserted;
2305
2306 static long long lastSrst;
2307 waitMore = lastSrst + 2000 > current;
2308 if (srstDeasserted && !waitMore) {
2309 runSrstDeasserted = 1;
2310 lastSrst = current;
2311 }
2312
2313 if (!prevSrstAsserted && srstAsserted)
2314 runSrstAsserted = 1;
2315
2316 prevSrstAsserted = srstAsserted;
2317 prevPowerdropout = powerDropout;
2318
2319 if (srstDeasserted || powerRestored) {
2320 /* Other than logging the event we can't do anything here.
2321 * Issuing a reset is a particularly bad idea as we might
2322 * be inside a reset already.
2323 */
2324 }
2325
2326 return ERROR_OK;
2327 }
2328
2329 /* process target state changes */
2330 static int handle_target(void *priv)
2331 {
2332 Jim_Interp *interp = (Jim_Interp *)priv;
2333 int retval = ERROR_OK;
2334
2335 if (!is_jtag_poll_safe()) {
2336 /* polling is disabled currently */
2337 return ERROR_OK;
2338 }
2339
2340 /* we do not want to recurse here... */
2341 static int recursive;
2342 if (!recursive) {
2343 recursive = 1;
2344 sense_handler();
2345 /* danger! running these procedures can trigger srst assertions and power dropouts.
2346 * We need to avoid an infinite loop/recursion here and we do that by
2347 * clearing the flags after running these events.
2348 */
2349 int did_something = 0;
2350 if (runSrstAsserted) {
2351 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2352 Jim_Eval(interp, "srst_asserted");
2353 did_something = 1;
2354 }
2355 if (runSrstDeasserted) {
2356 Jim_Eval(interp, "srst_deasserted");
2357 did_something = 1;
2358 }
2359 if (runPowerDropout) {
2360 LOG_INFO("Power dropout detected, running power_dropout proc.");
2361 Jim_Eval(interp, "power_dropout");
2362 did_something = 1;
2363 }
2364 if (runPowerRestore) {
2365 Jim_Eval(interp, "power_restore");
2366 did_something = 1;
2367 }
2368
2369 if (did_something) {
2370 /* clear detect flags */
2371 sense_handler();
2372 }
2373
2374 /* clear action flags */
2375
2376 runSrstAsserted = 0;
2377 runSrstDeasserted = 0;
2378 runPowerRestore = 0;
2379 runPowerDropout = 0;
2380
2381 recursive = 0;
2382 }
2383
2384 /* Poll targets for state changes unless that's globally disabled.
2385 * Skip targets that are currently disabled.
2386 */
2387 for (struct target *target = all_targets;
2388 is_jtag_poll_safe() && target;
2389 target = target->next) {
2390
2391 if (!target_was_examined(target))
2392 continue;
2393
2394 if (!target->tap->enabled)
2395 continue;
2396
2397 if (target->backoff.times > target->backoff.count) {
2398 /* do not poll this time as we failed previously */
2399 target->backoff.count++;
2400 continue;
2401 }
2402 target->backoff.count = 0;
2403
2404 /* only poll target if we've got power and srst isn't asserted */
2405 if (!powerDropout && !srstAsserted) {
2406 /* polling may fail silently until the target has been examined */
2407 retval = target_poll(target);
2408 if (retval != ERROR_OK) {
2409 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2410 if (target->backoff.times * polling_interval < 5000) {
2411 target->backoff.times *= 2;
2412 target->backoff.times++;
2413 }
2414 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2415 target_name(target),
2416 target->backoff.times * polling_interval);
2417
2418 /* Tell GDB to halt the debugger. This allows the user to
2419 * run monitor commands to handle the situation.
2420 */
2421 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2422 return retval;
2423 }
2424 /* Since we succeeded, we reset backoff count */
2425 if (target->backoff.times > 0) {
2426 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2427 target_reset_examined(target);
2428 retval = target_examine_one(target);
2429 /* Target examination could have failed due to unstable connection,
2430 * but we set the examined flag anyway to repoll it later */
2431 if (retval != ERROR_OK) {
2432 target->examined = true;
2433 return retval;
2434 }
2435 }
2436
2437 target->backoff.times = 0;
2438 }
2439 }
2440
2441 return retval;
2442 }
2443
2444 COMMAND_HANDLER(handle_reg_command)
2445 {
2446 struct target *target;
2447 struct reg *reg = NULL;
2448 unsigned count = 0;
2449 char *value;
2450
2451 LOG_DEBUG("-");
2452
2453 target = get_current_target(CMD_CTX);
2454
2455 /* list all available registers for the current target */
2456 if (CMD_ARGC == 0) {
2457 struct reg_cache *cache = target->reg_cache;
2458
2459 count = 0;
2460 while (cache) {
2461 unsigned i;
2462
2463 command_print(CMD_CTX, "===== %s", cache->name);
2464
2465 for (i = 0, reg = cache->reg_list;
2466 i < cache->num_regs;
2467 i++, reg++, count++) {
2468 /* only print cached values if they are valid */
2469 if (reg->valid) {
2470 value = buf_to_str(reg->value,
2471 reg->size, 16);
2472 command_print(CMD_CTX,
2473 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2474 count, reg->name,
2475 reg->size, value,
2476 reg->dirty
2477 ? " (dirty)"
2478 : "");
2479 free(value);
2480 } else {
2481 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2482 count, reg->name,
2483 reg->size) ;
2484 }
2485 }
2486 cache = cache->next;
2487 }
2488
2489 return ERROR_OK;
2490 }
2491
2492 /* access a single register by its ordinal number */
2493 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2494 unsigned num;
2495 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2496
2497 struct reg_cache *cache = target->reg_cache;
2498 count = 0;
2499 while (cache) {
2500 unsigned i;
2501 for (i = 0; i < cache->num_regs; i++) {
2502 if (count++ == num) {
2503 reg = &cache->reg_list[i];
2504 break;
2505 }
2506 }
2507 if (reg)
2508 break;
2509 cache = cache->next;
2510 }
2511
2512 if (!reg) {
2513 command_print(CMD_CTX, "%i is out of bounds, the current target "
2514 "has only %i registers (0 - %i)", num, count, count - 1);
2515 return ERROR_OK;
2516 }
2517 } else {
2518 /* access a single register by its name */
2519 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2520
2521 if (!reg) {
2522 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2523 return ERROR_OK;
2524 }
2525 }
2526
2527 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2528
2529 /* display a register */
2530 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2531 && (CMD_ARGV[1][0] <= '9')))) {
2532 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2533 reg->valid = 0;
2534
2535 if (reg->valid == 0)
2536 reg->type->get(reg);
2537 value = buf_to_str(reg->value, reg->size, 16);
2538 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2539 free(value);
2540 return ERROR_OK;
2541 }
2542
2543 /* set register value */
2544 if (CMD_ARGC == 2) {
2545 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2546 if (buf == NULL)
2547 return ERROR_FAIL;
2548 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2549
2550 reg->type->set(reg, buf);
2551
2552 value = buf_to_str(reg->value, reg->size, 16);
2553 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2554 free(value);
2555
2556 free(buf);
2557
2558 return ERROR_OK;
2559 }
2560
2561 return ERROR_COMMAND_SYNTAX_ERROR;
2562 }
2563
2564 COMMAND_HANDLER(handle_poll_command)
2565 {
2566 int retval = ERROR_OK;
2567 struct target *target = get_current_target(CMD_CTX);
2568
2569 if (CMD_ARGC == 0) {
2570 command_print(CMD_CTX, "background polling: %s",
2571 jtag_poll_get_enabled() ? "on" : "off");
2572 command_print(CMD_CTX, "TAP: %s (%s)",
2573 target->tap->dotted_name,
2574 target->tap->enabled ? "enabled" : "disabled");
2575 if (!target->tap->enabled)
2576 return ERROR_OK;
2577 retval = target_poll(target);
2578 if (retval != ERROR_OK)
2579 return retval;
2580 retval = target_arch_state(target);
2581 if (retval != ERROR_OK)
2582 return retval;
2583 } else if (CMD_ARGC == 1) {
2584 bool enable;
2585 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2586 jtag_poll_set_enabled(enable);
2587 } else
2588 return ERROR_COMMAND_SYNTAX_ERROR;
2589
2590 return retval;
2591 }
2592
2593 COMMAND_HANDLER(handle_wait_halt_command)
2594 {
2595 if (CMD_ARGC > 1)
2596 return ERROR_COMMAND_SYNTAX_ERROR;
2597
2598 unsigned ms = DEFAULT_HALT_TIMEOUT;
2599 if (1 == CMD_ARGC) {
2600 int retval = parse_uint(CMD_ARGV[0], &ms);
2601 if (ERROR_OK != retval)
2602 return ERROR_COMMAND_SYNTAX_ERROR;
2603 }
2604
2605 struct target *target = get_current_target(CMD_CTX);
2606 return target_wait_state(target, TARGET_HALTED, ms);
2607 }
2608
2609 /* wait for target state to change. The trick here is to have a low
2610 * latency for short waits and not to suck up all the CPU time
2611 * on longer waits.
2612 *
2613 * After 500ms, keep_alive() is invoked
2614 */
2615 int target_wait_state(struct target *target, enum target_state state, int ms)
2616 {
2617 int retval;
2618 long long then = 0, cur;
2619 int once = 1;
2620
2621 for (;;) {
2622 retval = target_poll(target);
2623 if (retval != ERROR_OK)
2624 return retval;
2625 if (target->state == state)
2626 break;
2627 cur = timeval_ms();
2628 if (once) {
2629 once = 0;
2630 then = timeval_ms();
2631 LOG_DEBUG("waiting for target %s...",
2632 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2633 }
2634
2635 if (cur-then > 500)
2636 keep_alive();
2637
2638 if ((cur-then) > ms) {
2639 LOG_ERROR("timed out while waiting for target %s",
2640 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2641 return ERROR_FAIL;
2642 }
2643 }
2644
2645 return ERROR_OK;
2646 }
2647
2648 COMMAND_HANDLER(handle_halt_command)
2649 {
2650 LOG_DEBUG("-");
2651
2652 struct target *target = get_current_target(CMD_CTX);
2653 int retval = target_halt(target);
2654 if (ERROR_OK != retval)
2655 return retval;
2656
2657 if (CMD_ARGC == 1) {
2658 unsigned wait_local;
2659 retval = parse_uint(CMD_ARGV[0], &wait_local);
2660 if (ERROR_OK != retval)
2661 return ERROR_COMMAND_SYNTAX_ERROR;
2662 if (!wait_local)
2663 return ERROR_OK;
2664 }
2665
2666 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2667 }
2668
2669 COMMAND_HANDLER(handle_soft_reset_halt_command)
2670 {
2671 struct target *target = get_current_target(CMD_CTX);
2672
2673 LOG_USER("requesting target halt and executing a soft reset");
2674
2675 target_soft_reset_halt(target);
2676
2677 return ERROR_OK;
2678 }
2679
2680 COMMAND_HANDLER(handle_reset_command)
2681 {
2682 if (CMD_ARGC > 1)
2683 return ERROR_COMMAND_SYNTAX_ERROR;
2684
2685 enum target_reset_mode reset_mode = RESET_RUN;
2686 if (CMD_ARGC == 1) {
2687 const Jim_Nvp *n;
2688 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2689 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2690 return ERROR_COMMAND_SYNTAX_ERROR;
2691 reset_mode = n->value;
2692 }
2693
2694 /* reset *all* targets */
2695 return target_process_reset(CMD_CTX, reset_mode);
2696 }
2697
2698
2699 COMMAND_HANDLER(handle_resume_command)
2700 {
2701 int current = 1;
2702 if (CMD_ARGC > 1)
2703 return ERROR_COMMAND_SYNTAX_ERROR;
2704
2705 struct target *target = get_current_target(CMD_CTX);
2706
2707 /* with no CMD_ARGV, resume from current pc, addr = 0,
2708 * with one arguments, addr = CMD_ARGV[0],
2709 * handle breakpoints, not debugging */
2710 uint32_t addr = 0;
2711 if (CMD_ARGC == 1) {
2712 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2713 current = 0;
2714 }
2715
2716 return target_resume(target, current, addr, 1, 0);
2717 }
2718
2719 COMMAND_HANDLER(handle_step_command)
2720 {
2721 if (CMD_ARGC > 1)
2722 return ERROR_COMMAND_SYNTAX_ERROR;
2723
2724 LOG_DEBUG("-");
2725
2726 /* with no CMD_ARGV, step from current pc, addr = 0,
2727 * with one argument addr = CMD_ARGV[0],
2728 * handle breakpoints, debugging */
2729 uint32_t addr = 0;
2730 int current_pc = 1;
2731 if (CMD_ARGC == 1) {
2732 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2733 current_pc = 0;
2734 }
2735
2736 struct target *target = get_current_target(CMD_CTX);
2737
2738 return target->type->step(target, current_pc, addr, 1);
2739 }
2740
2741 static void handle_md_output(struct command_context *cmd_ctx,
2742 struct target *target, uint32_t address, unsigned size,
2743 unsigned count, const uint8_t *buffer)
2744 {
2745 const unsigned line_bytecnt = 32;
2746 unsigned line_modulo = line_bytecnt / size;
2747
2748 char output[line_bytecnt * 4 + 1];
2749 unsigned output_len = 0;
2750
2751 const char *value_fmt;
2752 switch (size) {
2753 case 4:
2754 value_fmt = "%8.8x ";
2755 break;
2756 case 2:
2757 value_fmt = "%4.4x ";
2758 break;
2759 case 1:
2760 value_fmt = "%2.2x ";
2761 break;
2762 default:
2763 /* "can't happen", caller checked */
2764 LOG_ERROR("invalid memory read size: %u", size);
2765 return;
2766 }
2767
2768 for (unsigned i = 0; i < count; i++) {
2769 if (i % line_modulo == 0) {
2770 output_len += snprintf(output + output_len,
2771 sizeof(output) - output_len,
2772 "0x%8.8x: ",
2773 (unsigned)(address + (i*size)));
2774 }
2775
2776 uint32_t value = 0;
2777 const uint8_t *value_ptr = buffer + i * size;
2778 switch (size) {
2779 case 4:
2780 value = target_buffer_get_u32(target, value_ptr);
2781 break;
2782 case 2:
2783 value = target_buffer_get_u16(target, value_ptr);
2784 break;
2785 case 1:
2786 value = *value_ptr;
2787 }
2788 output_len += snprintf(output + output_len,
2789 sizeof(output) - output_len,
2790 value_fmt, value);
2791
2792 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2793 command_print(cmd_ctx, "%s", output);
2794 output_len = 0;
2795 }
2796 }
2797 }
2798
2799 COMMAND_HANDLER(handle_md_command)
2800 {
2801 if (CMD_ARGC < 1)
2802 return ERROR_COMMAND_SYNTAX_ERROR;
2803
2804 unsigned size = 0;
2805 switch (CMD_NAME[2]) {
2806 case 'w':
2807 size = 4;
2808 break;
2809 case 'h':
2810 size = 2;
2811 break;
2812 case 'b':
2813 size = 1;
2814 break;
2815 default:
2816 return ERROR_COMMAND_SYNTAX_ERROR;
2817 }
2818
2819 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2820 int (*fn)(struct target *target,
2821 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2822 if (physical) {
2823 CMD_ARGC--;
2824 CMD_ARGV++;
2825 fn = target_read_phys_memory;
2826 } else
2827 fn = target_read_memory;
2828 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2829 return ERROR_COMMAND_SYNTAX_ERROR;
2830
2831 uint32_t address;
2832 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2833
2834 unsigned count = 1;
2835 if (CMD_ARGC == 2)
2836 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2837
2838 uint8_t *buffer = calloc(count, size);
2839
2840 struct target *target = get_current_target(CMD_CTX);
2841 int retval = fn(target, address, size, count, buffer);
2842 if (ERROR_OK == retval)
2843 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2844
2845 free(buffer);
2846
2847 return retval;
2848 }
2849
2850 typedef int (*target_write_fn)(struct target *target,
2851 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2852
2853 static int target_fill_mem(struct target *target,
2854 uint32_t address,
2855 target_write_fn fn,
2856 unsigned data_size,
2857 /* value */
2858 uint32_t b,
2859 /* count */
2860 unsigned c)
2861 {
2862 /* We have to write in reasonably large chunks to be able
2863 * to fill large memory areas with any sane speed */
2864 const unsigned chunk_size = 16384;
2865 uint8_t *target_buf = malloc(chunk_size * data_size);
2866 if (target_buf == NULL) {
2867 LOG_ERROR("Out of memory");
2868 return ERROR_FAIL;
2869 }
2870
2871 for (unsigned i = 0; i < chunk_size; i++) {
2872 switch (data_size) {
2873 case 4:
2874 target_buffer_set_u32(target, target_buf + i * data_size, b);
2875 break;
2876 case 2:
2877 target_buffer_set_u16(target, target_buf + i * data_size, b);
2878 break;
2879 case 1:
2880 target_buffer_set_u8(target, target_buf + i * data_size, b);
2881 break;
2882 default:
2883 exit(-1);
2884 }
2885 }
2886
2887 int retval = ERROR_OK;
2888
2889 for (unsigned x = 0; x < c; x += chunk_size) {
2890 unsigned current;
2891 current = c - x;
2892 if (current > chunk_size)
2893 current = chunk_size;
2894 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2895 if (retval != ERROR_OK)
2896 break;
2897 /* avoid GDB timeouts */
2898 keep_alive();
2899 }
2900 free(target_buf);
2901
2902 return retval;
2903 }
2904
2905
2906 COMMAND_HANDLER(handle_mw_command)
2907 {
2908 if (CMD_ARGC < 2)
2909 return ERROR_COMMAND_SYNTAX_ERROR;
2910 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2911 target_write_fn fn;
2912 if (physical) {
2913 CMD_ARGC--;
2914 CMD_ARGV++;
2915 fn = target_write_phys_memory;
2916 } else
2917 fn = target_write_memory;
2918 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2919 return ERROR_COMMAND_SYNTAX_ERROR;
2920
2921 uint32_t address;
2922 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2923
2924 uint32_t value;
2925 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2926
2927 unsigned count = 1;
2928 if (CMD_ARGC == 3)
2929 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2930
2931 struct target *target = get_current_target(CMD_CTX);
2932 unsigned wordsize;
2933 switch (CMD_NAME[2]) {
2934 case 'w':
2935 wordsize = 4;
2936 break;
2937 case 'h':
2938 wordsize = 2;
2939 break;
2940 case 'b':
2941 wordsize = 1;
2942 break;
2943 default:
2944 return ERROR_COMMAND_SYNTAX_ERROR;
2945 }
2946
2947 return target_fill_mem(target, address, fn, wordsize, value, count);
2948 }
2949
2950 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2951 uint32_t *min_address, uint32_t *max_address)
2952 {
2953 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2954 return ERROR_COMMAND_SYNTAX_ERROR;
2955
2956 /* a base address isn't always necessary,
2957 * default to 0x0 (i.e. don't relocate) */
2958 if (CMD_ARGC >= 2) {
2959 uint32_t addr;
2960 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2961 image->base_address = addr;
2962 image->base_address_set = 1;
2963 } else
2964 image->base_address_set = 0;
2965
2966 image->start_address_set = 0;
2967
2968 if (CMD_ARGC >= 4)
2969 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2970 if (CMD_ARGC == 5) {
2971 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2972 /* use size (given) to find max (required) */
2973 *max_address += *min_address;
2974 }
2975
2976 if (*min_address > *max_address)
2977 return ERROR_COMMAND_SYNTAX_ERROR;
2978
2979 return ERROR_OK;
2980 }
2981
2982 COMMAND_HANDLER(handle_load_image_command)
2983 {
2984 uint8_t *buffer;
2985 size_t buf_cnt;
2986 uint32_t image_size;
2987 uint32_t min_address = 0;
2988 uint32_t max_address = 0xffffffff;
2989 int i;
2990 struct image image;
2991
2992 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2993 &image, &min_address, &max_address);
2994 if (ERROR_OK != retval)
2995 return retval;
2996
2997 struct target *target = get_current_target(CMD_CTX);
2998
2999 struct duration bench;
3000 duration_start(&bench);
3001
3002 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3003 return ERROR_OK;
3004
3005 image_size = 0x0;
3006 retval = ERROR_OK;
3007 for (i = 0; i < image.num_sections; i++) {
3008 buffer = malloc(image.sections[i].size);
3009 if (buffer == NULL) {
3010 command_print(CMD_CTX,
3011 "error allocating buffer for section (%d bytes)",
3012 (int)(image.sections[i].size));
3013 break;
3014 }
3015
3016 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3017 if (retval != ERROR_OK) {
3018 free(buffer);
3019 break;
3020 }
3021
3022 uint32_t offset = 0;
3023 uint32_t length = buf_cnt;
3024
3025 /* DANGER!!! beware of unsigned comparision here!!! */
3026
3027 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3028 (image.sections[i].base_address < max_address)) {
3029
3030 if (image.sections[i].base_address < min_address) {
3031 /* clip addresses below */
3032 offset += min_address-image.sections[i].base_address;
3033 length -= offset;
3034 }
3035
3036 if (image.sections[i].base_address + buf_cnt > max_address)
3037 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3038
3039 retval = target_write_buffer(target,
3040 image.sections[i].base_address + offset, length, buffer + offset);
3041 if (retval != ERROR_OK) {
3042 free(buffer);
3043 break;
3044 }
3045 image_size += length;
3046 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3047 (unsigned int)length,
3048 image.sections[i].base_address + offset);
3049 }
3050
3051 free(buffer);
3052 }
3053
3054 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3055 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3056 "in %fs (%0.3f KiB/s)", image_size,
3057 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3058 }
3059
3060 image_close(&image);
3061
3062 return retval;
3063
3064 }
3065
3066 COMMAND_HANDLER(handle_dump_image_command)
3067 {
3068 struct fileio fileio;
3069 uint8_t *buffer;
3070 int retval, retvaltemp;
3071 uint32_t address, size;
3072 struct duration bench;
3073 struct target *target = get_current_target(CMD_CTX);
3074
3075 if (CMD_ARGC != 3)
3076 return ERROR_COMMAND_SYNTAX_ERROR;
3077
3078 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3079 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3080
3081 uint32_t buf_size = (size > 4096) ? 4096 : size;
3082 buffer = malloc(buf_size);
3083 if (!buffer)
3084 return ERROR_FAIL;
3085
3086 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3087 if (retval != ERROR_OK) {
3088 free(buffer);
3089 return retval;
3090 }
3091
3092 duration_start(&bench);
3093
3094 while (size > 0) {
3095 size_t size_written;
3096 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3097 retval = target_read_buffer(target, address, this_run_size, buffer);
3098 if (retval != ERROR_OK)
3099 break;
3100
3101 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3102 if (retval != ERROR_OK)
3103 break;
3104
3105 size -= this_run_size;
3106 address += this_run_size;
3107 }
3108
3109 free(buffer);
3110
3111 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3112 int filesize;
3113 retval = fileio_size(&fileio, &filesize);
3114 if (retval != ERROR_OK)
3115 return retval;
3116 command_print(CMD_CTX,
3117 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3118 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3119 }
3120
3121 retvaltemp = fileio_close(&fileio);
3122 if (retvaltemp != ERROR_OK)
3123 return retvaltemp;
3124
3125 return retval;
3126 }
3127
3128 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3129 {
3130 uint8_t *buffer;
3131 size_t buf_cnt;
3132 uint32_t image_size;
3133 int i;
3134 int retval;
3135 uint32_t checksum = 0;
3136 uint32_t mem_checksum = 0;
3137
3138 struct image image;
3139
3140 struct target *target = get_current_target(CMD_CTX);
3141
3142 if (CMD_ARGC < 1)
3143 return ERROR_COMMAND_SYNTAX_ERROR;
3144
3145 if (!target) {
3146 LOG_ERROR("no target selected");
3147 return ERROR_FAIL;
3148 }
3149
3150 struct duration bench;
3151 duration_start(&bench);
3152
3153 if (CMD_ARGC >= 2) {
3154 uint32_t addr;
3155 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3156 image.base_address = addr;
3157 image.base_address_set = 1;
3158 } else {
3159 image.base_address_set = 0;
3160 image.base_address = 0x0;
3161 }
3162
3163 image.start_address_set = 0;
3164
3165 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3166 if (retval != ERROR_OK)
3167 return retval;
3168
3169 image_size = 0x0;
3170 int diffs = 0;
3171 retval = ERROR_OK;
3172 for (i = 0; i < image.num_sections; i++) {
3173 buffer = malloc(image.sections[i].size);
3174 if (buffer == NULL) {
3175 command_print(CMD_CTX,
3176 "error allocating buffer for section (%d bytes)",
3177 (int)(image.sections[i].size));
3178 break;
3179 }
3180 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3181 if (retval != ERROR_OK) {
3182 free(buffer);
3183 break;
3184 }
3185
3186 if (verify) {
3187 /* calculate checksum of image */
3188 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3189 if (retval != ERROR_OK) {
3190 free(buffer);
3191 break;
3192 }
3193
3194 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3195 if (retval != ERROR_OK) {
3196 free(buffer);
3197 break;
3198 }
3199
3200 if (checksum != mem_checksum) {
3201 /* failed crc checksum, fall back to a binary compare */
3202 uint8_t *data;
3203
3204 if (diffs == 0)
3205 LOG_ERROR("checksum mismatch - attempting binary compare");
3206
3207 data = malloc(buf_cnt);
3208
3209 /* Can we use 32bit word accesses? */
3210 int size = 1;
3211 int count = buf_cnt;
3212 if ((count % 4) == 0) {
3213 size *= 4;
3214 count /= 4;
3215 }
3216 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3217 if (retval == ERROR_OK) {
3218 uint32_t t;
3219 for (t = 0; t < buf_cnt; t++) {
3220 if (data[t] != buffer[t]) {
3221 command_print(CMD_CTX,
3222 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3223 diffs,
3224 (unsigned)(t + image.sections[i].base_address),
3225 data[t],
3226 buffer[t]);
3227 if (diffs++ >= 127) {
3228 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3229 free(data);
3230 free(buffer);
3231 goto done;
3232 }
3233 }
3234 keep_alive();
3235 }
3236 }
3237 free(data);
3238 }
3239 } else {
3240 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3241 image.sections[i].base_address,
3242 buf_cnt);
3243 }
3244
3245 free(buffer);
3246 image_size += buf_cnt;
3247 }
3248 if (diffs > 0)
3249 command_print(CMD_CTX, "No more differences found.");
3250 done:
3251 if (diffs > 0)
3252 retval = ERROR_FAIL;
3253 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3254 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3255 "in %fs (%0.3f KiB/s)", image_size,
3256 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3257 }
3258
3259 image_close(&image);
3260
3261 return retval;
3262 }
3263
3264 COMMAND_HANDLER(handle_verify_image_command)
3265 {
3266 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3267 }
3268
3269 COMMAND_HANDLER(handle_test_image_command)
3270 {
3271 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3272 }
3273
3274 static int handle_bp_command_list(struct command_context *cmd_ctx)
3275 {
3276 struct target *target = get_current_target(cmd_ctx);
3277 struct breakpoint *breakpoint = target->breakpoints;
3278 while (breakpoint) {
3279 if (breakpoint->type == BKPT_SOFT) {
3280 char *buf = buf_to_str(breakpoint->orig_instr,
3281 breakpoint->length, 16);
3282 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3283 breakpoint->address,
3284 breakpoint->length,
3285 breakpoint->set, buf);
3286 free(buf);
3287 } else {
3288 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3289 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3290 breakpoint->asid,
3291 breakpoint->length, breakpoint->set);
3292 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3293 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3294 breakpoint->address,
3295 breakpoint->length, breakpoint->set);
3296 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3297 breakpoint->asid);
3298 } else
3299 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3300 breakpoint->address,
3301 breakpoint->length, breakpoint->set);
3302 }
3303
3304 breakpoint = breakpoint->next;
3305 }
3306 return ERROR_OK;
3307 }
3308
3309 static int handle_bp_command_set(struct command_context *cmd_ctx,
3310 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3311 {
3312 struct target *target = get_current_target(cmd_ctx);
3313 int retval;
3314
3315 if (asid == 0) {
3316 retval = breakpoint_add(target, addr, length, hw);
3317 if (ERROR_OK == retval)
3318 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3319 else {
3320 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3321 return retval;
3322 }
3323 } else if (addr == 0) {
3324 if (target->type->add_context_breakpoint == NULL) {
3325 LOG_WARNING("Context breakpoint not available");
3326 return ERROR_OK;
3327 }
3328 retval = context_breakpoint_add(target, asid, length, hw);
3329 if (ERROR_OK == retval)
3330 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3331 else {
3332 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3333 return retval;
3334 }
3335 } else {
3336 if (target->type->add_hybrid_breakpoint == NULL) {
3337 LOG_WARNING("Hybrid breakpoint not available");
3338 return ERROR_OK;
3339 }
3340 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3341 if (ERROR_OK == retval)
3342 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3343 else {
3344 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3345 return retval;
3346 }
3347 }
3348 return ERROR_OK;
3349 }
3350
3351 COMMAND_HANDLER(handle_bp_command)
3352 {
3353 uint32_t addr;
3354 uint32_t asid;
3355 uint32_t length;
3356 int hw = BKPT_SOFT;
3357
3358 switch (CMD_ARGC) {
3359 case 0:
3360 return handle_bp_command_list(CMD_CTX);
3361
3362 case 2:
3363 asid = 0;
3364 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3365 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3366 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3367
3368 case 3:
3369 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3370 hw = BKPT_HARD;
3371 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3372
3373 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3374
3375 asid = 0;
3376 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3377 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3378 hw = BKPT_HARD;
3379 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3380 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3381 addr = 0;
3382 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3383 }
3384
3385 case 4:
3386 hw = BKPT_HARD;
3387 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3388 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3389 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3390 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3391
3392 default:
3393 return ERROR_COMMAND_SYNTAX_ERROR;
3394 }
3395 }
3396
3397 COMMAND_HANDLER(handle_rbp_command)
3398 {
3399 if (CMD_ARGC != 1)
3400 return ERROR_COMMAND_SYNTAX_ERROR;
3401
3402 uint32_t addr;
3403 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3404
3405 struct target *target = get_current_target(CMD_CTX);
3406 breakpoint_remove(target, addr);
3407
3408 return ERROR_OK;
3409 }
3410
3411 COMMAND_HANDLER(handle_wp_command)
3412 {
3413 struct target *target = get_current_target(CMD_CTX);
3414
3415 if (CMD_ARGC == 0) {
3416 struct watchpoint *watchpoint = target->watchpoints;
3417
3418 while (watchpoint) {
3419 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3420 ", len: 0x%8.8" PRIx32
3421 ", r/w/a: %i, value: 0x%8.8" PRIx32
3422 ", mask: 0x%8.8" PRIx32,
3423 watchpoint->address,
3424 watchpoint->length,
3425 (int)watchpoint->rw,
3426 watchpoint->value,
3427 watchpoint->mask);
3428 watchpoint = watchpoint->next;
3429 }
3430 return ERROR_OK;
3431 }
3432
3433 enum watchpoint_rw type = WPT_ACCESS;
3434 uint32_t addr = 0;
3435 uint32_t length = 0;
3436 uint32_t data_value = 0x0;
3437 uint32_t data_mask = 0xffffffff;
3438
3439 switch (CMD_ARGC) {
3440 case 5:
3441 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3442 /* fall through */
3443 case 4:
3444 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3445 /* fall through */
3446 case 3:
3447 switch (CMD_ARGV[2][0]) {
3448 case 'r':
3449 type = WPT_READ;
3450 break;
3451 case 'w':
3452 type = WPT_WRITE;
3453 break;
3454 case 'a':
3455 type = WPT_ACCESS;
3456 break;
3457 default:
3458 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3459 return ERROR_COMMAND_SYNTAX_ERROR;
3460 }
3461 /* fall through */
3462 case 2:
3463 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3464 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3465 break;
3466
3467 default:
3468 return ERROR_COMMAND_SYNTAX_ERROR;
3469 }
3470
3471 int retval = watchpoint_add(target, addr, length, type,
3472 data_value, data_mask);
3473 if (ERROR_OK != retval)
3474 LOG_ERROR("Failure setting watchpoints");
3475
3476 return retval;
3477 }
3478
3479 COMMAND_HANDLER(handle_rwp_command)
3480 {
3481 if (CMD_ARGC != 1)
3482 return ERROR_COMMAND_SYNTAX_ERROR;
3483
3484 uint32_t addr;
3485 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3486
3487 struct target *target = get_current_target(CMD_CTX);
3488 watchpoint_remove(target, addr);
3489
3490 return ERROR_OK;
3491 }
3492
3493 /**
3494 * Translate a virtual address to a physical address.
3495 *
3496 * The low-level target implementation must have logged a detailed error
3497 * which is forwarded to telnet/GDB session.
3498 */
3499 COMMAND_HANDLER(handle_virt2phys_command)
3500 {
3501 if (CMD_ARGC != 1)
3502 return ERROR_COMMAND_SYNTAX_ERROR;
3503
3504 uint32_t va;
3505 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3506 uint32_t pa;
3507
3508 struct target *target = get_current_target(CMD_CTX);
3509 int retval = target->type->virt2phys(target, va, &pa);
3510 if (retval == ERROR_OK)
3511 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3512
3513 return retval;
3514 }
3515
3516 static void writeData(FILE *f, const void *data, size_t len)
3517 {
3518 size_t written = fwrite(data, 1, len, f);
3519 if (written != len)
3520 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3521 }
3522
3523 static void writeLong(FILE *f, int l, struct target *target)
3524 {
3525 uint8_t val[4];
3526
3527 target_buffer_set_u32(target, val, l);
3528 writeData(f, val, 4);
3529 }
3530
3531 static void writeString(FILE *f, char *s)
3532 {
3533 writeData(f, s, strlen(s));
3534 }
3535
3536 typedef unsigned char UNIT[2]; /* unit of profiling */
3537
3538 /* Dump a gmon.out histogram file. */
3539 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3540 uint32_t start_address, uint32_t end_address, struct target *target)
3541 {
3542 uint32_t i;
3543 FILE *f = fopen(filename, "w");
3544 if (f == NULL)
3545 return;
3546 writeString(f, "gmon");
3547 writeLong(f, 0x00000001, target); /* Version */
3548 writeLong(f, 0, target); /* padding */
3549 writeLong(f, 0, target); /* padding */
3550 writeLong(f, 0, target); /* padding */
3551
3552 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3553 writeData(f, &zero, 1);
3554
3555 /* figure out bucket size */
3556 uint32_t min;
3557 uint32_t max;
3558 if (with_range) {
3559 min = start_address;
3560 max = end_address;
3561 } else {
3562 min = samples[0];
3563 max = samples[0];
3564 for (i = 0; i < sampleNum; i++) {
3565 if (min > samples[i])
3566 min = samples[i];
3567 if (max < samples[i])
3568 max = samples[i];
3569 }
3570
3571 /* max should be (largest sample + 1)
3572 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3573 max++;
3574 }
3575
3576 int addressSpace = max - min;
3577 assert(addressSpace >= 2);
3578
3579 /* FIXME: What is the reasonable number of buckets?
3580 * The profiling result will be more accurate if there are enough buckets. */
3581 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3582 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3583 if (numBuckets > maxBuckets)
3584 numBuckets = maxBuckets;
3585 int *buckets = malloc(sizeof(int) * numBuckets);
3586 if (buckets == NULL) {
3587 fclose(f);
3588 return;
3589 }
3590 memset(buckets, 0, sizeof(int) * numBuckets);
3591 for (i = 0; i < sampleNum; i++) {
3592 uint32_t address = samples[i];
3593
3594 if ((address < min) || (max <= address))
3595 continue;
3596
3597 long long a = address - min;
3598 long long b = numBuckets;
3599 long long c = addressSpace;
3600 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3601 buckets[index_t]++;
3602 }
3603
3604 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3605 writeLong(f, min, target); /* low_pc */
3606 writeLong(f, max, target); /* high_pc */
3607 writeLong(f, numBuckets, target); /* # of buckets */
3608 writeLong(f, 100, target); /* KLUDGE! We lie, ca. 100Hz best case. */
3609 writeString(f, "seconds");
3610 for (i = 0; i < (15-strlen("seconds")); i++)
3611 writeData(f, &zero, 1);
3612 writeString(f, "s");
3613
3614 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3615
3616 char *data = malloc(2 * numBuckets);
3617 if (data != NULL) {
3618 for (i = 0; i < numBuckets; i++) {
3619 int val;
3620 val = buckets[i];
3621 if (val > 65535)
3622 val = 65535;
3623 data[i * 2] = val&0xff;
3624 data[i * 2 + 1] = (val >> 8) & 0xff;
3625 }
3626 free(buckets);
3627 writeData(f, data, numBuckets * 2);
3628 free(data);
3629 } else
3630 free(buckets);
3631
3632 fclose(f);
3633 }
3634
3635 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3636 * which will be used as a random sampling of PC */
3637 COMMAND_HANDLER(handle_profile_command)
3638 {
3639 struct target *target = get_current_target(CMD_CTX);
3640
3641 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3642 return ERROR_COMMAND_SYNTAX_ERROR;
3643
3644 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;