1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
62 static int target_read_buffer_default(struct target
*target
, target_addr_t address
,
63 uint32_t count
, uint8_t *buffer
);
64 static int target_write_buffer_default(struct target
*target
, target_addr_t address
,
65 uint32_t count
, const uint8_t *buffer
);
66 static int target_array2mem(Jim_Interp
*interp
, struct target
*target
,
67 int argc
, Jim_Obj
* const *argv
);
68 static int target_mem2array(Jim_Interp
*interp
, struct target
*target
,
69 int argc
, Jim_Obj
* const *argv
);
70 static int target_register_user_commands(struct command_context
*cmd_ctx
);
71 static int target_get_gdb_fileio_info_default(struct target
*target
,
72 struct gdb_fileio_info
*fileio_info
);
73 static int target_gdb_fileio_end_default(struct target
*target
, int retcode
,
74 int fileio_errno
, bool ctrl_c
);
75 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
76 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
);
79 extern struct target_type arm7tdmi_target
;
80 extern struct target_type arm720t_target
;
81 extern struct target_type arm9tdmi_target
;
82 extern struct target_type arm920t_target
;
83 extern struct target_type arm966e_target
;
84 extern struct target_type arm946e_target
;
85 extern struct target_type arm926ejs_target
;
86 extern struct target_type fa526_target
;
87 extern struct target_type feroceon_target
;
88 extern struct target_type dragonite_target
;
89 extern struct target_type xscale_target
;
90 extern struct target_type cortexm_target
;
91 extern struct target_type cortexa_target
;
92 extern struct target_type aarch64_target
;
93 extern struct target_type cortexr4_target
;
94 extern struct target_type arm11_target
;
95 extern struct target_type ls1_sap_target
;
96 extern struct target_type mips_m4k_target
;
97 extern struct target_type avr_target
;
98 extern struct target_type dsp563xx_target
;
99 extern struct target_type dsp5680xx_target
;
100 extern struct target_type testee_target
;
101 extern struct target_type avr32_ap7k_target
;
102 extern struct target_type hla_target
;
103 extern struct target_type nds32_v2_target
;
104 extern struct target_type nds32_v3_target
;
105 extern struct target_type nds32_v3m_target
;
106 extern struct target_type or1k_target
;
107 extern struct target_type quark_x10xx_target
;
108 extern struct target_type quark_d20xx_target
;
109 extern struct target_type stm8_target
;
111 static struct target_type
*target_types
[] = {
148 struct target
*all_targets
;
149 static struct target_event_callback
*target_event_callbacks
;
150 static struct target_timer_callback
*target_timer_callbacks
;
151 LIST_HEAD(target_reset_callback_list
);
152 LIST_HEAD(target_trace_callback_list
);
153 static const int polling_interval
= 100;
155 static const Jim_Nvp nvp_assert
[] = {
156 { .name
= "assert", NVP_ASSERT
},
157 { .name
= "deassert", NVP_DEASSERT
},
158 { .name
= "T", NVP_ASSERT
},
159 { .name
= "F", NVP_DEASSERT
},
160 { .name
= "t", NVP_ASSERT
},
161 { .name
= "f", NVP_DEASSERT
},
162 { .name
= NULL
, .value
= -1 }
165 static const Jim_Nvp nvp_error_target
[] = {
166 { .value
= ERROR_TARGET_INVALID
, .name
= "err-invalid" },
167 { .value
= ERROR_TARGET_INIT_FAILED
, .name
= "err-init-failed" },
168 { .value
= ERROR_TARGET_TIMEOUT
, .name
= "err-timeout" },
169 { .value
= ERROR_TARGET_NOT_HALTED
, .name
= "err-not-halted" },
170 { .value
= ERROR_TARGET_FAILURE
, .name
= "err-failure" },
171 { .value
= ERROR_TARGET_UNALIGNED_ACCESS
, .name
= "err-unaligned-access" },
172 { .value
= ERROR_TARGET_DATA_ABORT
, .name
= "err-data-abort" },
173 { .value
= ERROR_TARGET_RESOURCE_NOT_AVAILABLE
, .name
= "err-resource-not-available" },
174 { .value
= ERROR_TARGET_TRANSLATION_FAULT
, .name
= "err-translation-fault" },
175 { .value
= ERROR_TARGET_NOT_RUNNING
, .name
= "err-not-running" },
176 { .value
= ERROR_TARGET_NOT_EXAMINED
, .name
= "err-not-examined" },
177 { .value
= -1, .name
= NULL
}
180 static const char *target_strerror_safe(int err
)
184 n
= Jim_Nvp_value2name_simple(nvp_error_target
, err
);
191 static const Jim_Nvp nvp_target_event
[] = {
193 { .value
= TARGET_EVENT_GDB_HALT
, .name
= "gdb-halt" },
194 { .value
= TARGET_EVENT_HALTED
, .name
= "halted" },
195 { .value
= TARGET_EVENT_RESUMED
, .name
= "resumed" },
196 { .value
= TARGET_EVENT_RESUME_START
, .name
= "resume-start" },
197 { .value
= TARGET_EVENT_RESUME_END
, .name
= "resume-end" },
199 { .name
= "gdb-start", .value
= TARGET_EVENT_GDB_START
},
200 { .name
= "gdb-end", .value
= TARGET_EVENT_GDB_END
},
202 { .value
= TARGET_EVENT_RESET_START
, .name
= "reset-start" },
203 { .value
= TARGET_EVENT_RESET_ASSERT_PRE
, .name
= "reset-assert-pre" },
204 { .value
= TARGET_EVENT_RESET_ASSERT
, .name
= "reset-assert" },
205 { .value
= TARGET_EVENT_RESET_ASSERT_POST
, .name
= "reset-assert-post" },
206 { .value
= TARGET_EVENT_RESET_DEASSERT_PRE
, .name
= "reset-deassert-pre" },
207 { .value
= TARGET_EVENT_RESET_DEASSERT_POST
, .name
= "reset-deassert-post" },
208 { .value
= TARGET_EVENT_RESET_INIT
, .name
= "reset-init" },
209 { .value
= TARGET_EVENT_RESET_END
, .name
= "reset-end" },
211 { .value
= TARGET_EVENT_EXAMINE_START
, .name
= "examine-start" },
212 { .value
= TARGET_EVENT_EXAMINE_END
, .name
= "examine-end" },
214 { .value
= TARGET_EVENT_DEBUG_HALTED
, .name
= "debug-halted" },
215 { .value
= TARGET_EVENT_DEBUG_RESUMED
, .name
= "debug-resumed" },
217 { .value
= TARGET_EVENT_GDB_ATTACH
, .name
= "gdb-attach" },
218 { .value
= TARGET_EVENT_GDB_DETACH
, .name
= "gdb-detach" },
220 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_START
, .name
= "gdb-flash-write-start" },
221 { .value
= TARGET_EVENT_GDB_FLASH_WRITE_END
, .name
= "gdb-flash-write-end" },
223 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_START
, .name
= "gdb-flash-erase-start" },
224 { .value
= TARGET_EVENT_GDB_FLASH_ERASE_END
, .name
= "gdb-flash-erase-end" },
226 { .value
= TARGET_EVENT_TRACE_CONFIG
, .name
= "trace-config" },
228 { .name
= NULL
, .value
= -1 }
231 static const Jim_Nvp nvp_target_state
[] = {
232 { .name
= "unknown", .value
= TARGET_UNKNOWN
},
233 { .name
= "running", .value
= TARGET_RUNNING
},
234 { .name
= "halted", .value
= TARGET_HALTED
},
235 { .name
= "reset", .value
= TARGET_RESET
},
236 { .name
= "debug-running", .value
= TARGET_DEBUG_RUNNING
},
237 { .name
= NULL
, .value
= -1 },
240 static const Jim_Nvp nvp_target_debug_reason
[] = {
241 { .name
= "debug-request" , .value
= DBG_REASON_DBGRQ
},
242 { .name
= "breakpoint" , .value
= DBG_REASON_BREAKPOINT
},
243 { .name
= "watchpoint" , .value
= DBG_REASON_WATCHPOINT
},
244 { .name
= "watchpoint-and-breakpoint", .value
= DBG_REASON_WPTANDBKPT
},
245 { .name
= "single-step" , .value
= DBG_REASON_SINGLESTEP
},
246 { .name
= "target-not-halted" , .value
= DBG_REASON_NOTHALTED
},
247 { .name
= "program-exit" , .value
= DBG_REASON_EXIT
},
248 { .name
= "undefined" , .value
= DBG_REASON_UNDEFINED
},
249 { .name
= NULL
, .value
= -1 },
252 static const Jim_Nvp nvp_target_endian
[] = {
253 { .name
= "big", .value
= TARGET_BIG_ENDIAN
},
254 { .name
= "little", .value
= TARGET_LITTLE_ENDIAN
},
255 { .name
= "be", .value
= TARGET_BIG_ENDIAN
},
256 { .name
= "le", .value
= TARGET_LITTLE_ENDIAN
},
257 { .name
= NULL
, .value
= -1 },
260 static const Jim_Nvp nvp_reset_modes
[] = {
261 { .name
= "unknown", .value
= RESET_UNKNOWN
},
262 { .name
= "run" , .value
= RESET_RUN
},
263 { .name
= "halt" , .value
= RESET_HALT
},
264 { .name
= "init" , .value
= RESET_INIT
},
265 { .name
= NULL
, .value
= -1 },
268 const char *debug_reason_name(struct target
*t
)
272 cp
= Jim_Nvp_value2name_simple(nvp_target_debug_reason
,
273 t
->debug_reason
)->name
;
275 LOG_ERROR("Invalid debug reason: %d", (int)(t
->debug_reason
));
276 cp
= "(*BUG*unknown*BUG*)";
281 const char *target_state_name(struct target
*t
)
284 cp
= Jim_Nvp_value2name_simple(nvp_target_state
, t
->state
)->name
;
286 LOG_ERROR("Invalid target state: %d", (int)(t
->state
));
287 cp
= "(*BUG*unknown*BUG*)";
290 if (!target_was_examined(t
) && t
->defer_examine
)
291 cp
= "examine deferred";
296 const char *target_event_name(enum target_event event
)
299 cp
= Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
;
301 LOG_ERROR("Invalid target event: %d", (int)(event
));
302 cp
= "(*BUG*unknown*BUG*)";
307 const char *target_reset_mode_name(enum target_reset_mode reset_mode
)
310 cp
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
;
312 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode
));
313 cp
= "(*BUG*unknown*BUG*)";
318 /* determine the number of the new target */
319 static int new_target_number(void)
324 /* number is 0 based */
328 if (x
< t
->target_number
)
329 x
= t
->target_number
;
335 /* read a uint64_t from a buffer in target memory endianness */
336 uint64_t target_buffer_get_u64(struct target
*target
, const uint8_t *buffer
)
338 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
339 return le_to_h_u64(buffer
);
341 return be_to_h_u64(buffer
);
344 /* read a uint32_t from a buffer in target memory endianness */
345 uint32_t target_buffer_get_u32(struct target
*target
, const uint8_t *buffer
)
347 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
348 return le_to_h_u32(buffer
);
350 return be_to_h_u32(buffer
);
353 /* read a uint24_t from a buffer in target memory endianness */
354 uint32_t target_buffer_get_u24(struct target
*target
, const uint8_t *buffer
)
356 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
357 return le_to_h_u24(buffer
);
359 return be_to_h_u24(buffer
);
362 /* read a uint16_t from a buffer in target memory endianness */
363 uint16_t target_buffer_get_u16(struct target
*target
, const uint8_t *buffer
)
365 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
366 return le_to_h_u16(buffer
);
368 return be_to_h_u16(buffer
);
371 /* read a uint8_t from a buffer in target memory endianness */
372 static uint8_t target_buffer_get_u8(struct target
*target
, const uint8_t *buffer
)
374 return *buffer
& 0x0ff;
377 /* write a uint64_t to a buffer in target memory endianness */
378 void target_buffer_set_u64(struct target
*target
, uint8_t *buffer
, uint64_t value
)
380 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
381 h_u64_to_le(buffer
, value
);
383 h_u64_to_be(buffer
, value
);
386 /* write a uint32_t to a buffer in target memory endianness */
387 void target_buffer_set_u32(struct target
*target
, uint8_t *buffer
, uint32_t value
)
389 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
390 h_u32_to_le(buffer
, value
);
392 h_u32_to_be(buffer
, value
);
395 /* write a uint24_t to a buffer in target memory endianness */
396 void target_buffer_set_u24(struct target
*target
, uint8_t *buffer
, uint32_t value
)
398 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
399 h_u24_to_le(buffer
, value
);
401 h_u24_to_be(buffer
, value
);
404 /* write a uint16_t to a buffer in target memory endianness */
405 void target_buffer_set_u16(struct target
*target
, uint8_t *buffer
, uint16_t value
)
407 if (target
->endianness
== TARGET_LITTLE_ENDIAN
)
408 h_u16_to_le(buffer
, value
);
410 h_u16_to_be(buffer
, value
);
413 /* write a uint8_t to a buffer in target memory endianness */
414 static void target_buffer_set_u8(struct target
*target
, uint8_t *buffer
, uint8_t value
)
419 /* write a uint64_t array to a buffer in target memory endianness */
420 void target_buffer_get_u64_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint64_t *dstbuf
)
423 for (i
= 0; i
< count
; i
++)
424 dstbuf
[i
] = target_buffer_get_u64(target
, &buffer
[i
* 8]);
427 /* write a uint32_t array to a buffer in target memory endianness */
428 void target_buffer_get_u32_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint32_t *dstbuf
)
431 for (i
= 0; i
< count
; i
++)
432 dstbuf
[i
] = target_buffer_get_u32(target
, &buffer
[i
* 4]);
435 /* write a uint16_t array to a buffer in target memory endianness */
436 void target_buffer_get_u16_array(struct target
*target
, const uint8_t *buffer
, uint32_t count
, uint16_t *dstbuf
)
439 for (i
= 0; i
< count
; i
++)
440 dstbuf
[i
] = target_buffer_get_u16(target
, &buffer
[i
* 2]);
443 /* write a uint64_t array to a buffer in target memory endianness */
444 void target_buffer_set_u64_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint64_t *srcbuf
)
447 for (i
= 0; i
< count
; i
++)
448 target_buffer_set_u64(target
, &buffer
[i
* 8], srcbuf
[i
]);
451 /* write a uint32_t array to a buffer in target memory endianness */
452 void target_buffer_set_u32_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint32_t *srcbuf
)
455 for (i
= 0; i
< count
; i
++)
456 target_buffer_set_u32(target
, &buffer
[i
* 4], srcbuf
[i
]);
459 /* write a uint16_t array to a buffer in target memory endianness */
460 void target_buffer_set_u16_array(struct target
*target
, uint8_t *buffer
, uint32_t count
, const uint16_t *srcbuf
)
463 for (i
= 0; i
< count
; i
++)
464 target_buffer_set_u16(target
, &buffer
[i
* 2], srcbuf
[i
]);
467 /* return a pointer to a configured target; id is name or number */
468 struct target
*get_target(const char *id
)
470 struct target
*target
;
472 /* try as tcltarget name */
473 for (target
= all_targets
; target
; target
= target
->next
) {
474 if (target_name(target
) == NULL
)
476 if (strcmp(id
, target_name(target
)) == 0)
480 /* It's OK to remove this fallback sometime after August 2010 or so */
482 /* no match, try as number */
484 if (parse_uint(id
, &num
) != ERROR_OK
)
487 for (target
= all_targets
; target
; target
= target
->next
) {
488 if (target
->target_number
== (int)num
) {
489 LOG_WARNING("use '%s' as target identifier, not '%u'",
490 target_name(target
), num
);
498 /* returns a pointer to the n-th configured target */
499 struct target
*get_target_by_num(int num
)
501 struct target
*target
= all_targets
;
504 if (target
->target_number
== num
)
506 target
= target
->next
;
512 struct target
*get_current_target(struct command_context
*cmd_ctx
)
514 struct target
*target
= cmd_ctx
->current_target_override
515 ? cmd_ctx
->current_target_override
516 : cmd_ctx
->current_target
;
518 if (target
== NULL
) {
519 LOG_ERROR("BUG: current_target out of bounds");
526 int target_poll(struct target
*target
)
530 /* We can't poll until after examine */
531 if (!target_was_examined(target
)) {
532 /* Fail silently lest we pollute the log */
536 retval
= target
->type
->poll(target
);
537 if (retval
!= ERROR_OK
)
540 if (target
->halt_issued
) {
541 if (target
->state
== TARGET_HALTED
)
542 target
->halt_issued
= false;
544 int64_t t
= timeval_ms() - target
->halt_issued_time
;
545 if (t
> DEFAULT_HALT_TIMEOUT
) {
546 target
->halt_issued
= false;
547 LOG_INFO("Halt timed out, wake up GDB.");
548 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
556 int target_halt(struct target
*target
)
559 /* We can't poll until after examine */
560 if (!target_was_examined(target
)) {
561 LOG_ERROR("Target not examined yet");
565 retval
= target
->type
->halt(target
);
566 if (retval
!= ERROR_OK
)
569 target
->halt_issued
= true;
570 target
->halt_issued_time
= timeval_ms();
576 * Make the target (re)start executing using its saved execution
577 * context (possibly with some modifications).
579 * @param target Which target should start executing.
580 * @param current True to use the target's saved program counter instead
581 * of the address parameter
582 * @param address Optionally used as the program counter.
583 * @param handle_breakpoints True iff breakpoints at the resumption PC
584 * should be skipped. (For example, maybe execution was stopped by
585 * such a breakpoint, in which case it would be counterprodutive to
587 * @param debug_execution False if all working areas allocated by OpenOCD
588 * should be released and/or restored to their original contents.
589 * (This would for example be true to run some downloaded "helper"
590 * algorithm code, which resides in one such working buffer and uses
591 * another for data storage.)
593 * @todo Resolve the ambiguity about what the "debug_execution" flag
594 * signifies. For example, Target implementations don't agree on how
595 * it relates to invalidation of the register cache, or to whether
596 * breakpoints and watchpoints should be enabled. (It would seem wrong
597 * to enable breakpoints when running downloaded "helper" algorithms
598 * (debug_execution true), since the breakpoints would be set to match
599 * target firmware being debugged, not the helper algorithm.... and
600 * enabling them could cause such helpers to malfunction (for example,
601 * by overwriting data with a breakpoint instruction. On the other
602 * hand the infrastructure for running such helpers might use this
603 * procedure but rely on hardware breakpoint to detect termination.)
605 int target_resume(struct target
*target
, int current
, target_addr_t address
,
606 int handle_breakpoints
, int debug_execution
)
610 /* We can't poll until after examine */
611 if (!target_was_examined(target
)) {
612 LOG_ERROR("Target not examined yet");
616 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_START
);
618 /* note that resume *must* be asynchronous. The CPU can halt before
619 * we poll. The CPU can even halt at the current PC as a result of
620 * a software breakpoint being inserted by (a bug?) the application.
622 retval
= target
->type
->resume(target
, current
, address
, handle_breakpoints
, debug_execution
);
623 if (retval
!= ERROR_OK
)
626 target_call_event_callbacks(target
, TARGET_EVENT_RESUME_END
);
631 static int target_process_reset(struct command_context
*cmd_ctx
, enum target_reset_mode reset_mode
)
636 n
= Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
);
637 if (n
->name
== NULL
) {
638 LOG_ERROR("invalid reset mode");
642 struct target
*target
;
643 for (target
= all_targets
; target
; target
= target
->next
)
644 target_call_reset_callbacks(target
, reset_mode
);
646 /* disable polling during reset to make reset event scripts
647 * more predictable, i.e. dr/irscan & pathmove in events will
648 * not have JTAG operations injected into the middle of a sequence.
650 bool save_poll
= jtag_poll_get_enabled();
652 jtag_poll_set_enabled(false);
654 sprintf(buf
, "ocd_process_reset %s", n
->name
);
655 retval
= Jim_Eval(cmd_ctx
->interp
, buf
);
657 jtag_poll_set_enabled(save_poll
);
659 if (retval
!= JIM_OK
) {
660 Jim_MakeErrorMessage(cmd_ctx
->interp
);
661 command_print(NULL
, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx
->interp
), NULL
));
665 /* We want any events to be processed before the prompt */
666 retval
= target_call_timer_callbacks_now();
668 for (target
= all_targets
; target
; target
= target
->next
) {
669 target
->type
->check_reset(target
);
670 target
->running_alg
= false;
676 static int identity_virt2phys(struct target
*target
,
677 target_addr_t
virtual, target_addr_t
*physical
)
683 static int no_mmu(struct target
*target
, int *enabled
)
689 static int default_examine(struct target
*target
)
691 target_set_examined(target
);
695 /* no check by default */
696 static int default_check_reset(struct target
*target
)
701 int target_examine_one(struct target
*target
)
703 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_START
);
705 int retval
= target
->type
->examine(target
);
706 if (retval
!= ERROR_OK
)
709 target_call_event_callbacks(target
, TARGET_EVENT_EXAMINE_END
);
714 static int jtag_enable_callback(enum jtag_event event
, void *priv
)
716 struct target
*target
= priv
;
718 if (event
!= JTAG_TAP_EVENT_ENABLE
|| !target
->tap
->enabled
)
721 jtag_unregister_event_callback(jtag_enable_callback
, target
);
723 return target_examine_one(target
);
726 /* Targets that correctly implement init + examine, i.e.
727 * no communication with target during init:
731 int target_examine(void)
733 int retval
= ERROR_OK
;
734 struct target
*target
;
736 for (target
= all_targets
; target
; target
= target
->next
) {
737 /* defer examination, but don't skip it */
738 if (!target
->tap
->enabled
) {
739 jtag_register_event_callback(jtag_enable_callback
,
744 if (target
->defer_examine
)
747 retval
= target_examine_one(target
);
748 if (retval
!= ERROR_OK
)
754 const char *target_type_name(struct target
*target
)
756 return target
->type
->name
;
759 static int target_soft_reset_halt(struct target
*target
)
761 if (!target_was_examined(target
)) {
762 LOG_ERROR("Target not examined yet");
765 if (!target
->type
->soft_reset_halt
) {
766 LOG_ERROR("Target %s does not support soft_reset_halt",
767 target_name(target
));
770 return target
->type
->soft_reset_halt(target
);
774 * Downloads a target-specific native code algorithm to the target,
775 * and executes it. * Note that some targets may need to set up, enable,
776 * and tear down a breakpoint (hard or * soft) to detect algorithm
777 * termination, while others may support lower overhead schemes where
778 * soft breakpoints embedded in the algorithm automatically terminate the
781 * @param target used to run the algorithm
782 * @param arch_info target-specific description of the algorithm.
784 int target_run_algorithm(struct target
*target
,
785 int num_mem_params
, struct mem_param
*mem_params
,
786 int num_reg_params
, struct reg_param
*reg_param
,
787 uint32_t entry_point
, uint32_t exit_point
,
788 int timeout_ms
, void *arch_info
)
790 int retval
= ERROR_FAIL
;
792 if (!target_was_examined(target
)) {
793 LOG_ERROR("Target not examined yet");
796 if (!target
->type
->run_algorithm
) {
797 LOG_ERROR("Target type '%s' does not support %s",
798 target_type_name(target
), __func__
);
802 target
->running_alg
= true;
803 retval
= target
->type
->run_algorithm(target
,
804 num_mem_params
, mem_params
,
805 num_reg_params
, reg_param
,
806 entry_point
, exit_point
, timeout_ms
, arch_info
);
807 target
->running_alg
= false;
814 * Executes a target-specific native code algorithm and leaves it running.
816 * @param target used to run the algorithm
817 * @param arch_info target-specific description of the algorithm.
819 int target_start_algorithm(struct target
*target
,
820 int num_mem_params
, struct mem_param
*mem_params
,
821 int num_reg_params
, struct reg_param
*reg_params
,
822 uint32_t entry_point
, uint32_t exit_point
,
825 int retval
= ERROR_FAIL
;
827 if (!target_was_examined(target
)) {
828 LOG_ERROR("Target not examined yet");
831 if (!target
->type
->start_algorithm
) {
832 LOG_ERROR("Target type '%s' does not support %s",
833 target_type_name(target
), __func__
);
836 if (target
->running_alg
) {
837 LOG_ERROR("Target is already running an algorithm");
841 target
->running_alg
= true;
842 retval
= target
->type
->start_algorithm(target
,
843 num_mem_params
, mem_params
,
844 num_reg_params
, reg_params
,
845 entry_point
, exit_point
, arch_info
);
852 * Waits for an algorithm started with target_start_algorithm() to complete.
854 * @param target used to run the algorithm
855 * @param arch_info target-specific description of the algorithm.
857 int target_wait_algorithm(struct target
*target
,
858 int num_mem_params
, struct mem_param
*mem_params
,
859 int num_reg_params
, struct reg_param
*reg_params
,
860 uint32_t exit_point
, int timeout_ms
,
863 int retval
= ERROR_FAIL
;
865 if (!target
->type
->wait_algorithm
) {
866 LOG_ERROR("Target type '%s' does not support %s",
867 target_type_name(target
), __func__
);
870 if (!target
->running_alg
) {
871 LOG_ERROR("Target is not running an algorithm");
875 retval
= target
->type
->wait_algorithm(target
,
876 num_mem_params
, mem_params
,
877 num_reg_params
, reg_params
,
878 exit_point
, timeout_ms
, arch_info
);
879 if (retval
!= ERROR_TARGET_TIMEOUT
)
880 target
->running_alg
= false;
887 * Streams data to a circular buffer on target intended for consumption by code
888 * running asynchronously on target.
890 * This is intended for applications where target-specific native code runs
891 * on the target, receives data from the circular buffer, does something with
892 * it (most likely writing it to a flash memory), and advances the circular
895 * This assumes that the helper algorithm has already been loaded to the target,
896 * but has not been started yet. Given memory and register parameters are passed
899 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
902 * [buffer_start + 0, buffer_start + 4):
903 * Write Pointer address (aka head). Written and updated by this
904 * routine when new data is written to the circular buffer.
905 * [buffer_start + 4, buffer_start + 8):
906 * Read Pointer address (aka tail). Updated by code running on the
907 * target after it consumes data.
908 * [buffer_start + 8, buffer_start + buffer_size):
909 * Circular buffer contents.
911 * See contrib/loaders/flash/stm32f1x.S for an example.
913 * @param target used to run the algorithm
914 * @param buffer address on the host where data to be sent is located
915 * @param count number of blocks to send
916 * @param block_size size in bytes of each block
917 * @param num_mem_params count of memory-based params to pass to algorithm
918 * @param mem_params memory-based params to pass to algorithm
919 * @param num_reg_params count of register-based params to pass to algorithm
920 * @param reg_params memory-based params to pass to algorithm
921 * @param buffer_start address on the target of the circular buffer structure
922 * @param buffer_size size of the circular buffer structure
923 * @param entry_point address on the target to execute to start the algorithm
924 * @param exit_point address at which to set a breakpoint to catch the
925 * end of the algorithm; can be 0 if target triggers a breakpoint itself
928 int target_run_flash_async_algorithm(struct target
*target
,
929 const uint8_t *buffer
, uint32_t count
, int block_size
,
930 int num_mem_params
, struct mem_param
*mem_params
,
931 int num_reg_params
, struct reg_param
*reg_params
,
932 uint32_t buffer_start
, uint32_t buffer_size
,
933 uint32_t entry_point
, uint32_t exit_point
, void *arch_info
)
938 const uint8_t *buffer_orig
= buffer
;
940 /* Set up working area. First word is write pointer, second word is read pointer,
941 * rest is fifo data area. */
942 uint32_t wp_addr
= buffer_start
;
943 uint32_t rp_addr
= buffer_start
+ 4;
944 uint32_t fifo_start_addr
= buffer_start
+ 8;
945 uint32_t fifo_end_addr
= buffer_start
+ buffer_size
;
947 uint32_t wp
= fifo_start_addr
;
948 uint32_t rp
= fifo_start_addr
;
950 /* validate block_size is 2^n */
951 assert(!block_size
|| !(block_size
& (block_size
- 1)));
953 retval
= target_write_u32(target
, wp_addr
, wp
);
954 if (retval
!= ERROR_OK
)
956 retval
= target_write_u32(target
, rp_addr
, rp
);
957 if (retval
!= ERROR_OK
)
960 /* Start up algorithm on target and let it idle while writing the first chunk */
961 retval
= target_start_algorithm(target
, num_mem_params
, mem_params
,
962 num_reg_params
, reg_params
,
967 if (retval
!= ERROR_OK
) {
968 LOG_ERROR("error starting target flash write algorithm");
974 retval
= target_read_u32(target
, rp_addr
, &rp
);
975 if (retval
!= ERROR_OK
) {
976 LOG_ERROR("failed to get read pointer");
980 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32
" wp 0x%" PRIx32
" rp 0x%" PRIx32
,
981 (size_t) (buffer
- buffer_orig
), count
, wp
, rp
);
984 LOG_ERROR("flash write algorithm aborted by target");
985 retval
= ERROR_FLASH_OPERATION_FAILED
;
989 if (((rp
- fifo_start_addr
) & (block_size
- 1)) || rp
< fifo_start_addr
|| rp
>= fifo_end_addr
) {
990 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32
, rp
);
994 /* Count the number of bytes available in the fifo without
995 * crossing the wrap around. Make sure to not fill it completely,
996 * because that would make wp == rp and that's the empty condition. */
997 uint32_t thisrun_bytes
;
999 thisrun_bytes
= rp
- wp
- block_size
;
1000 else if (rp
> fifo_start_addr
)
1001 thisrun_bytes
= fifo_end_addr
- wp
;
1003 thisrun_bytes
= fifo_end_addr
- wp
- block_size
;
1005 if (thisrun_bytes
== 0) {
1006 /* Throttle polling a bit if transfer is (much) faster than flash
1007 * programming. The exact delay shouldn't matter as long as it's
1008 * less than buffer size / flash speed. This is very unlikely to
1009 * run when using high latency connections such as USB. */
1012 /* to stop an infinite loop on some targets check and increment a timeout
1013 * this issue was observed on a stellaris using the new ICDI interface */
1014 if (timeout
++ >= 500) {
1015 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1016 return ERROR_FLASH_OPERATION_FAILED
;
1021 /* reset our timeout */
1024 /* Limit to the amount of data we actually want to write */
1025 if (thisrun_bytes
> count
* block_size
)
1026 thisrun_bytes
= count
* block_size
;
1028 /* Write data to fifo */
1029 retval
= target_write_buffer(target
, wp
, thisrun_bytes
, buffer
);
1030 if (retval
!= ERROR_OK
)
1033 /* Update counters and wrap write pointer */
1034 buffer
+= thisrun_bytes
;
1035 count
-= thisrun_bytes
/ block_size
;
1036 wp
+= thisrun_bytes
;
1037 if (wp
>= fifo_end_addr
)
1038 wp
= fifo_start_addr
;
1040 /* Store updated write pointer to target */
1041 retval
= target_write_u32(target
, wp_addr
, wp
);
1042 if (retval
!= ERROR_OK
)
1046 if (retval
!= ERROR_OK
) {
1047 /* abort flash write algorithm on target */
1048 target_write_u32(target
, wp_addr
, 0);
1051 int retval2
= target_wait_algorithm(target
, num_mem_params
, mem_params
,
1052 num_reg_params
, reg_params
,
1057 if (retval2
!= ERROR_OK
) {
1058 LOG_ERROR("error waiting for target flash write algorithm");
1062 if (retval
== ERROR_OK
) {
1063 /* check if algorithm set rp = 0 after fifo writer loop finished */
1064 retval
= target_read_u32(target
, rp_addr
, &rp
);
1065 if (retval
== ERROR_OK
&& rp
== 0) {
1066 LOG_ERROR("flash write algorithm aborted by target");
1067 retval
= ERROR_FLASH_OPERATION_FAILED
;
1074 int target_read_memory(struct target
*target
,
1075 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1077 if (!target_was_examined(target
)) {
1078 LOG_ERROR("Target not examined yet");
1081 if (!target
->type
->read_memory
) {
1082 LOG_ERROR("Target %s doesn't support read_memory", target_name(target
));
1085 return target
->type
->read_memory(target
, address
, size
, count
, buffer
);
1088 int target_read_phys_memory(struct target
*target
,
1089 target_addr_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
1091 if (!target_was_examined(target
)) {
1092 LOG_ERROR("Target not examined yet");
1095 if (!target
->type
->read_phys_memory
) {
1096 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target
));
1099 return target
->type
->read_phys_memory(target
, address
, size
, count
, buffer
);
1102 int target_write_memory(struct target
*target
,
1103 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1105 if (!target_was_examined(target
)) {
1106 LOG_ERROR("Target not examined yet");
1109 if (!target
->type
->write_memory
) {
1110 LOG_ERROR("Target %s doesn't support write_memory", target_name(target
));
1113 return target
->type
->write_memory(target
, address
, size
, count
, buffer
);
1116 int target_write_phys_memory(struct target
*target
,
1117 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
)
1119 if (!target_was_examined(target
)) {
1120 LOG_ERROR("Target not examined yet");
1123 if (!target
->type
->write_phys_memory
) {
1124 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target
));
1127 return target
->type
->write_phys_memory(target
, address
, size
, count
, buffer
);
1130 int target_add_breakpoint(struct target
*target
,
1131 struct breakpoint
*breakpoint
)
1133 if ((target
->state
!= TARGET_HALTED
) && (breakpoint
->type
!= BKPT_HARD
)) {
1134 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target
));
1135 return ERROR_TARGET_NOT_HALTED
;
1137 return target
->type
->add_breakpoint(target
, breakpoint
);
1140 int target_add_context_breakpoint(struct target
*target
,
1141 struct breakpoint
*breakpoint
)
1143 if (target
->state
!= TARGET_HALTED
) {
1144 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target
));
1145 return ERROR_TARGET_NOT_HALTED
;
1147 return target
->type
->add_context_breakpoint(target
, breakpoint
);
1150 int target_add_hybrid_breakpoint(struct target
*target
,
1151 struct breakpoint
*breakpoint
)
1153 if (target
->state
!= TARGET_HALTED
) {
1154 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target
));
1155 return ERROR_TARGET_NOT_HALTED
;
1157 return target
->type
->add_hybrid_breakpoint(target
, breakpoint
);
1160 int target_remove_breakpoint(struct target
*target
,
1161 struct breakpoint
*breakpoint
)
1163 return target
->type
->remove_breakpoint(target
, breakpoint
);
1166 int target_add_watchpoint(struct target
*target
,
1167 struct watchpoint
*watchpoint
)
1169 if (target
->state
!= TARGET_HALTED
) {
1170 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target
));
1171 return ERROR_TARGET_NOT_HALTED
;
1173 return target
->type
->add_watchpoint(target
, watchpoint
);
1175 int target_remove_watchpoint(struct target
*target
,
1176 struct watchpoint
*watchpoint
)
1178 return target
->type
->remove_watchpoint(target
, watchpoint
);
1180 int target_hit_watchpoint(struct target
*target
,
1181 struct watchpoint
**hit_watchpoint
)
1183 if (target
->state
!= TARGET_HALTED
) {
1184 LOG_WARNING("target %s is not halted (hit watchpoint)", target
->cmd_name
);
1185 return ERROR_TARGET_NOT_HALTED
;
1188 if (target
->type
->hit_watchpoint
== NULL
) {
1189 /* For backward compatible, if hit_watchpoint is not implemented,
1190 * return ERROR_FAIL such that gdb_server will not take the nonsense
1195 return target
->type
->hit_watchpoint(target
, hit_watchpoint
);
1198 int target_get_gdb_reg_list(struct target
*target
,
1199 struct reg
**reg_list
[], int *reg_list_size
,
1200 enum target_register_class reg_class
)
1202 return target
->type
->get_gdb_reg_list(target
, reg_list
, reg_list_size
, reg_class
);
1204 int target_step(struct target
*target
,
1205 int current
, target_addr_t address
, int handle_breakpoints
)
1207 return target
->type
->step(target
, current
, address
, handle_breakpoints
);
1210 int target_get_gdb_fileio_info(struct target
*target
, struct gdb_fileio_info
*fileio_info
)
1212 if (target
->state
!= TARGET_HALTED
) {
1213 LOG_WARNING("target %s is not halted (gdb fileio)", target
->cmd_name
);
1214 return ERROR_TARGET_NOT_HALTED
;
1216 return target
->type
->get_gdb_fileio_info(target
, fileio_info
);
1219 int target_gdb_fileio_end(struct target
*target
, int retcode
, int fileio_errno
, bool ctrl_c
)
1221 if (target
->state
!= TARGET_HALTED
) {
1222 LOG_WARNING("target %s is not halted (gdb fileio end)", target
->cmd_name
);
1223 return ERROR_TARGET_NOT_HALTED
;
1225 return target
->type
->gdb_fileio_end(target
, retcode
, fileio_errno
, ctrl_c
);
1228 int target_profiling(struct target
*target
, uint32_t *samples
,
1229 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
1231 if (target
->state
!= TARGET_HALTED
) {
1232 LOG_WARNING("target %s is not halted (profiling)", target
->cmd_name
);
1233 return ERROR_TARGET_NOT_HALTED
;
1235 return target
->type
->profiling(target
, samples
, max_num_samples
,
1236 num_samples
, seconds
);
1240 * Reset the @c examined flag for the given target.
1241 * Pure paranoia -- targets are zeroed on allocation.
1243 static void target_reset_examined(struct target
*target
)
1245 target
->examined
= false;
1248 static int handle_target(void *priv
);
1250 static int target_init_one(struct command_context
*cmd_ctx
,
1251 struct target
*target
)
1253 target_reset_examined(target
);
1255 struct target_type
*type
= target
->type
;
1256 if (type
->examine
== NULL
)
1257 type
->examine
= default_examine
;
1259 if (type
->check_reset
== NULL
)
1260 type
->check_reset
= default_check_reset
;
1262 assert(type
->init_target
!= NULL
);
1264 int retval
= type
->init_target(cmd_ctx
, target
);
1265 if (ERROR_OK
!= retval
) {
1266 LOG_ERROR("target '%s' init failed", target_name(target
));
1270 /* Sanity-check MMU support ... stub in what we must, to help
1271 * implement it in stages, but warn if we need to do so.
1274 if (type
->virt2phys
== NULL
) {
1275 LOG_ERROR("type '%s' is missing virt2phys", type
->name
);
1276 type
->virt2phys
= identity_virt2phys
;
1279 /* Make sure no-MMU targets all behave the same: make no
1280 * distinction between physical and virtual addresses, and
1281 * ensure that virt2phys() is always an identity mapping.
1283 if (type
->write_phys_memory
|| type
->read_phys_memory
|| type
->virt2phys
)
1284 LOG_WARNING("type '%s' has bad MMU hooks", type
->name
);
1287 type
->write_phys_memory
= type
->write_memory
;
1288 type
->read_phys_memory
= type
->read_memory
;
1289 type
->virt2phys
= identity_virt2phys
;
1292 if (target
->type
->read_buffer
== NULL
)
1293 target
->type
->read_buffer
= target_read_buffer_default
;
1295 if (target
->type
->write_buffer
== NULL
)
1296 target
->type
->write_buffer
= target_write_buffer_default
;
1298 if (target
->type
->get_gdb_fileio_info
== NULL
)
1299 target
->type
->get_gdb_fileio_info
= target_get_gdb_fileio_info_default
;
1301 if (target
->type
->gdb_fileio_end
== NULL
)
1302 target
->type
->gdb_fileio_end
= target_gdb_fileio_end_default
;
1304 if (target
->type
->profiling
== NULL
)
1305 target
->type
->profiling
= target_profiling_default
;
1310 static int target_init(struct command_context
*cmd_ctx
)
1312 struct target
*target
;
1315 for (target
= all_targets
; target
; target
= target
->next
) {
1316 retval
= target_init_one(cmd_ctx
, target
);
1317 if (ERROR_OK
!= retval
)
1324 retval
= target_register_user_commands(cmd_ctx
);
1325 if (ERROR_OK
!= retval
)
1328 retval
= target_register_timer_callback(&handle_target
,
1329 polling_interval
, 1, cmd_ctx
->interp
);
1330 if (ERROR_OK
!= retval
)
1336 COMMAND_HANDLER(handle_target_init_command
)
1341 return ERROR_COMMAND_SYNTAX_ERROR
;
1343 static bool target_initialized
;
1344 if (target_initialized
) {
1345 LOG_INFO("'target init' has already been called");
1348 target_initialized
= true;
1350 retval
= command_run_line(CMD_CTX
, "init_targets");
1351 if (ERROR_OK
!= retval
)
1354 retval
= command_run_line(CMD_CTX
, "init_target_events");
1355 if (ERROR_OK
!= retval
)
1358 retval
= command_run_line(CMD_CTX
, "init_board");
1359 if (ERROR_OK
!= retval
)
1362 LOG_DEBUG("Initializing targets...");
1363 return target_init(CMD_CTX
);
1366 int target_register_event_callback(int (*callback
)(struct target
*target
,
1367 enum target_event event
, void *priv
), void *priv
)
1369 struct target_event_callback
**callbacks_p
= &target_event_callbacks
;
1371 if (callback
== NULL
)
1372 return ERROR_COMMAND_SYNTAX_ERROR
;
1375 while ((*callbacks_p
)->next
)
1376 callbacks_p
= &((*callbacks_p
)->next
);
1377 callbacks_p
= &((*callbacks_p
)->next
);
1380 (*callbacks_p
) = malloc(sizeof(struct target_event_callback
));
1381 (*callbacks_p
)->callback
= callback
;
1382 (*callbacks_p
)->priv
= priv
;
1383 (*callbacks_p
)->next
= NULL
;
1388 int target_register_reset_callback(int (*callback
)(struct target
*target
,
1389 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1391 struct target_reset_callback
*entry
;
1393 if (callback
== NULL
)
1394 return ERROR_COMMAND_SYNTAX_ERROR
;
1396 entry
= malloc(sizeof(struct target_reset_callback
));
1397 if (entry
== NULL
) {
1398 LOG_ERROR("error allocating buffer for reset callback entry");
1399 return ERROR_COMMAND_SYNTAX_ERROR
;
1402 entry
->callback
= callback
;
1404 list_add(&entry
->list
, &target_reset_callback_list
);
1410 int target_register_trace_callback(int (*callback
)(struct target
*target
,
1411 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1413 struct target_trace_callback
*entry
;
1415 if (callback
== NULL
)
1416 return ERROR_COMMAND_SYNTAX_ERROR
;
1418 entry
= malloc(sizeof(struct target_trace_callback
));
1419 if (entry
== NULL
) {
1420 LOG_ERROR("error allocating buffer for trace callback entry");
1421 return ERROR_COMMAND_SYNTAX_ERROR
;
1424 entry
->callback
= callback
;
1426 list_add(&entry
->list
, &target_trace_callback_list
);
1432 int target_register_timer_callback(int (*callback
)(void *priv
), int time_ms
, int periodic
, void *priv
)
1434 struct target_timer_callback
**callbacks_p
= &target_timer_callbacks
;
1436 if (callback
== NULL
)
1437 return ERROR_COMMAND_SYNTAX_ERROR
;
1440 while ((*callbacks_p
)->next
)
1441 callbacks_p
= &((*callbacks_p
)->next
);
1442 callbacks_p
= &((*callbacks_p
)->next
);
1445 (*callbacks_p
) = malloc(sizeof(struct target_timer_callback
));
1446 (*callbacks_p
)->callback
= callback
;
1447 (*callbacks_p
)->periodic
= periodic
;
1448 (*callbacks_p
)->time_ms
= time_ms
;
1449 (*callbacks_p
)->removed
= false;
1451 gettimeofday(&(*callbacks_p
)->when
, NULL
);
1452 timeval_add_time(&(*callbacks_p
)->when
, 0, time_ms
* 1000);
1454 (*callbacks_p
)->priv
= priv
;
1455 (*callbacks_p
)->next
= NULL
;
1460 int target_unregister_event_callback(int (*callback
)(struct target
*target
,
1461 enum target_event event
, void *priv
), void *priv
)
1463 struct target_event_callback
**p
= &target_event_callbacks
;
1464 struct target_event_callback
*c
= target_event_callbacks
;
1466 if (callback
== NULL
)
1467 return ERROR_COMMAND_SYNTAX_ERROR
;
1470 struct target_event_callback
*next
= c
->next
;
1471 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1483 int target_unregister_reset_callback(int (*callback
)(struct target
*target
,
1484 enum target_reset_mode reset_mode
, void *priv
), void *priv
)
1486 struct target_reset_callback
*entry
;
1488 if (callback
== NULL
)
1489 return ERROR_COMMAND_SYNTAX_ERROR
;
1491 list_for_each_entry(entry
, &target_reset_callback_list
, list
) {
1492 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1493 list_del(&entry
->list
);
1502 int target_unregister_trace_callback(int (*callback
)(struct target
*target
,
1503 size_t len
, uint8_t *data
, void *priv
), void *priv
)
1505 struct target_trace_callback
*entry
;
1507 if (callback
== NULL
)
1508 return ERROR_COMMAND_SYNTAX_ERROR
;
1510 list_for_each_entry(entry
, &target_trace_callback_list
, list
) {
1511 if (entry
->callback
== callback
&& entry
->priv
== priv
) {
1512 list_del(&entry
->list
);
1521 int target_unregister_timer_callback(int (*callback
)(void *priv
), void *priv
)
1523 if (callback
== NULL
)
1524 return ERROR_COMMAND_SYNTAX_ERROR
;
1526 for (struct target_timer_callback
*c
= target_timer_callbacks
;
1528 if ((c
->callback
== callback
) && (c
->priv
== priv
)) {
1537 int target_call_event_callbacks(struct target
*target
, enum target_event event
)
1539 struct target_event_callback
*callback
= target_event_callbacks
;
1540 struct target_event_callback
*next_callback
;
1542 if (event
== TARGET_EVENT_HALTED
) {
1543 /* execute early halted first */
1544 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
1547 LOG_DEBUG("target event %i (%s)", event
,
1548 Jim_Nvp_value2name_simple(nvp_target_event
, event
)->name
);
1550 target_handle_event(target
, event
);
1553 next_callback
= callback
->next
;
1554 callback
->callback(target
, event
, callback
->priv
);
1555 callback
= next_callback
;
1561 int target_call_reset_callbacks(struct target
*target
, enum target_reset_mode reset_mode
)
1563 struct target_reset_callback
*callback
;
1565 LOG_DEBUG("target reset %i (%s)", reset_mode
,
1566 Jim_Nvp_value2name_simple(nvp_reset_modes
, reset_mode
)->name
);
1568 list_for_each_entry(callback
, &target_reset_callback_list
, list
)
1569 callback
->callback(target
, reset_mode
, callback
->priv
);
1574 int target_call_trace_callbacks(struct target
*target
, size_t len
, uint8_t *data
)
1576 struct target_trace_callback
*callback
;
1578 list_for_each_entry(callback
, &target_trace_callback_list
, list
)
1579 callback
->callback(target
, len
, data
, callback
->priv
);
1584 static int target_timer_callback_periodic_restart(
1585 struct target_timer_callback
*cb
, struct timeval
*now
)
1588 timeval_add_time(&cb
->when
, 0, cb
->time_ms
* 1000L);
1592 static int target_call_timer_callback(struct target_timer_callback
*cb
,
1593 struct timeval
*now
)
1595 cb
->callback(cb
->priv
);
1598 return target_timer_callback_periodic_restart(cb
, now
);
1600 return target_unregister_timer_callback(cb
->callback
, cb
->priv
);
1603 static int target_call_timer_callbacks_check_time(int checktime
)
1605 static bool callback_processing
;
1607 /* Do not allow nesting */
1608 if (callback_processing
)
1611 callback_processing
= true;
1616 gettimeofday(&now
, NULL
);
1618 /* Store an address of the place containing a pointer to the
1619 * next item; initially, that's a standalone "root of the
1620 * list" variable. */
1621 struct target_timer_callback
**callback
= &target_timer_callbacks
;
1623 if ((*callback
)->removed
) {
1624 struct target_timer_callback
*p
= *callback
;
1625 *callback
= (*callback
)->next
;
1630 bool call_it
= (*callback
)->callback
&&
1631 ((!checktime
&& (*callback
)->periodic
) ||
1632 timeval_compare(&now
, &(*callback
)->when
) >= 0);
1635 target_call_timer_callback(*callback
, &now
);
1637 callback
= &(*callback
)->next
;
1640 callback_processing
= false;
1644 int target_call_timer_callbacks(void)
1646 return target_call_timer_callbacks_check_time(1);
1649 /* invoke periodic callbacks immediately */
1650 int target_call_timer_callbacks_now(void)
1652 return target_call_timer_callbacks_check_time(0);
1655 /* Prints the working area layout for debug purposes */
1656 static void print_wa_layout(struct target
*target
)
1658 struct working_area
*c
= target
->working_areas
;
1661 LOG_DEBUG("%c%c " TARGET_ADDR_FMT
"-" TARGET_ADDR_FMT
" (%" PRIu32
" bytes)",
1662 c
->backup
? 'b' : ' ', c
->free
? ' ' : '*',
1663 c
->address
, c
->address
+ c
->size
- 1, c
->size
);
1668 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1669 static void target_split_working_area(struct working_area
*area
, uint32_t size
)
1671 assert(area
->free
); /* Shouldn't split an allocated area */
1672 assert(size
<= area
->size
); /* Caller should guarantee this */
1674 /* Split only if not already the right size */
1675 if (size
< area
->size
) {
1676 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1681 new_wa
->next
= area
->next
;
1682 new_wa
->size
= area
->size
- size
;
1683 new_wa
->address
= area
->address
+ size
;
1684 new_wa
->backup
= NULL
;
1685 new_wa
->user
= NULL
;
1686 new_wa
->free
= true;
1688 area
->next
= new_wa
;
1691 /* If backup memory was allocated to this area, it has the wrong size
1692 * now so free it and it will be reallocated if/when needed */
1695 area
->backup
= NULL
;
1700 /* Merge all adjacent free areas into one */
1701 static void target_merge_working_areas(struct target
*target
)
1703 struct working_area
*c
= target
->working_areas
;
1705 while (c
&& c
->next
) {
1706 assert(c
->next
->address
== c
->address
+ c
->size
); /* This is an invariant */
1708 /* Find two adjacent free areas */
1709 if (c
->free
&& c
->next
->free
) {
1710 /* Merge the last into the first */
1711 c
->size
+= c
->next
->size
;
1713 /* Remove the last */
1714 struct working_area
*to_be_freed
= c
->next
;
1715 c
->next
= c
->next
->next
;
1716 if (to_be_freed
->backup
)
1717 free(to_be_freed
->backup
);
1720 /* If backup memory was allocated to the remaining area, it's has
1721 * the wrong size now */
1732 int target_alloc_working_area_try(struct target
*target
, uint32_t size
, struct working_area
**area
)
1734 /* Reevaluate working area address based on MMU state*/
1735 if (target
->working_areas
== NULL
) {
1739 retval
= target
->type
->mmu(target
, &enabled
);
1740 if (retval
!= ERROR_OK
)
1744 if (target
->working_area_phys_spec
) {
1745 LOG_DEBUG("MMU disabled, using physical "
1746 "address for working memory " TARGET_ADDR_FMT
,
1747 target
->working_area_phys
);
1748 target
->working_area
= target
->working_area_phys
;
1750 LOG_ERROR("No working memory available. "
1751 "Specify -work-area-phys to target.");
1752 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1755 if (target
->working_area_virt_spec
) {
1756 LOG_DEBUG("MMU enabled, using virtual "
1757 "address for working memory " TARGET_ADDR_FMT
,
1758 target
->working_area_virt
);
1759 target
->working_area
= target
->working_area_virt
;
1761 LOG_ERROR("No working memory available. "
1762 "Specify -work-area-virt to target.");
1763 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1767 /* Set up initial working area on first call */
1768 struct working_area
*new_wa
= malloc(sizeof(*new_wa
));
1770 new_wa
->next
= NULL
;
1771 new_wa
->size
= target
->working_area_size
& ~3UL; /* 4-byte align */
1772 new_wa
->address
= target
->working_area
;
1773 new_wa
->backup
= NULL
;
1774 new_wa
->user
= NULL
;
1775 new_wa
->free
= true;
1778 target
->working_areas
= new_wa
;
1781 /* only allocate multiples of 4 byte */
1783 size
= (size
+ 3) & (~3UL);
1785 struct working_area
*c
= target
->working_areas
;
1787 /* Find the first large enough working area */
1789 if (c
->free
&& c
->size
>= size
)
1795 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
1797 /* Split the working area into the requested size */
1798 target_split_working_area(c
, size
);
1800 LOG_DEBUG("allocated new working area of %" PRIu32
" bytes at address " TARGET_ADDR_FMT
,
1803 if (target
->backup_working_area
) {
1804 if (c
->backup
== NULL
) {
1805 c
->backup
= malloc(c
->size
);
1806 if (c
->backup
== NULL
)
1810 int retval
= target_read_memory(target
, c
->address
, 4, c
->size
/ 4, c
->backup
);
1811 if (retval
!= ERROR_OK
)
1815 /* mark as used, and return the new (reused) area */
1822 print_wa_layout(target
);
1827 int target_alloc_working_area(struct target
*target
, uint32_t size
, struct working_area
**area
)
1831 retval
= target_alloc_working_area_try(target
, size
, area
);
1832 if (retval
== ERROR_TARGET_RESOURCE_NOT_AVAILABLE
)
1833 LOG_WARNING("not enough working area available(requested %"PRIu32
")", size
);
1838 static int target_restore_working_area(struct target
*target
, struct working_area
*area
)
1840 int retval
= ERROR_OK
;
1842 if (target
->backup_working_area
&& area
->backup
!= NULL
) {
1843 retval
= target_write_memory(target
, area
->address
, 4, area
->size
/ 4, area
->backup
);
1844 if (retval
!= ERROR_OK
)
1845 LOG_ERROR("failed to restore %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
1846 area
->size
, area
->address
);
1852 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1853 static int target_free_working_area_restore(struct target
*target
, struct working_area
*area
, int restore
)
1855 int retval
= ERROR_OK
;
1861 retval
= target_restore_working_area(target
, area
);
1862 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1863 if (retval
!= ERROR_OK
)
1869 LOG_DEBUG("freed %" PRIu32
" bytes of working area at address " TARGET_ADDR_FMT
,
1870 area
->size
, area
->address
);
1872 /* mark user pointer invalid */
1873 /* TODO: Is this really safe? It points to some previous caller's memory.
1874 * How could we know that the area pointer is still in that place and not
1875 * some other vital data? What's the purpose of this, anyway? */
1879 target_merge_working_areas(target
);
1881 print_wa_layout(target
);
1886 int target_free_working_area(struct target
*target
, struct working_area
*area
)
1888 return target_free_working_area_restore(target
, area
, 1);
1891 static void target_destroy(struct target
*target
)
1893 if (target
->type
->deinit_target
)
1894 target
->type
->deinit_target(target
);
1896 jtag_unregister_event_callback(jtag_enable_callback
, target
);
1898 struct target_event_action
*teap
= target
->event_action
;
1900 struct target_event_action
*next
= teap
->next
;
1901 Jim_DecrRefCount(teap
->interp
, teap
->body
);
1906 target_free_all_working_areas(target
);
1907 /* Now we have none or only one working area marked as free */
1908 if (target
->working_areas
) {
1909 free(target
->working_areas
->backup
);
1910 free(target
->working_areas
);
1914 free(target
->trace_info
);
1915 free(target
->fileio_info
);
1916 free(target
->cmd_name
);
1920 void target_quit(void)
1922 struct target_event_callback
*pe
= target_event_callbacks
;
1924 struct target_event_callback
*t
= pe
->next
;
1928 target_event_callbacks
= NULL
;
1930 struct target_timer_callback
*pt
= target_timer_callbacks
;
1932 struct target_timer_callback
*t
= pt
->next
;
1936 target_timer_callbacks
= NULL
;
1938 for (struct target
*target
= all_targets
; target
;) {
1942 target_destroy(target
);
1949 /* free resources and restore memory, if restoring memory fails,
1950 * free up resources anyway
1952 static void target_free_all_working_areas_restore(struct target
*target
, int restore
)
1954 struct working_area
*c
= target
->working_areas
;
1956 LOG_DEBUG("freeing all working areas");
1958 /* Loop through all areas, restoring the allocated ones and marking them as free */
1962 target_restore_working_area(target
, c
);
1964 *c
->user
= NULL
; /* Same as above */
1970 /* Run a merge pass to combine all areas into one */
1971 target_merge_working_areas(target
);
1973 print_wa_layout(target
);
1976 void target_free_all_working_areas(struct target
*target
)
1978 target_free_all_working_areas_restore(target
, 1);
1981 /* Find the largest number of bytes that can be allocated */
1982 uint32_t target_get_working_area_avail(struct target
*target
)
1984 struct working_area
*c
= target
->working_areas
;
1985 uint32_t max_size
= 0;
1988 return target
->working_area_size
;
1991 if (c
->free
&& max_size
< c
->size
)
2000 int target_arch_state(struct target
*target
)
2003 if (target
== NULL
) {
2004 LOG_WARNING("No target has been configured");
2008 if (target
->state
!= TARGET_HALTED
)
2011 retval
= target
->type
->arch_state(target
);
2015 static int target_get_gdb_fileio_info_default(struct target
*target
,
2016 struct gdb_fileio_info
*fileio_info
)
2018 /* If target does not support semi-hosting function, target
2019 has no need to provide .get_gdb_fileio_info callback.
2020 It just return ERROR_FAIL and gdb_server will return "Txx"
2021 as target halted every time. */
2025 static int target_gdb_fileio_end_default(struct target
*target
,
2026 int retcode
, int fileio_errno
, bool ctrl_c
)
2031 static int target_profiling_default(struct target
*target
, uint32_t *samples
,
2032 uint32_t max_num_samples
, uint32_t *num_samples
, uint32_t seconds
)
2034 struct timeval timeout
, now
;
2036 gettimeofday(&timeout
, NULL
);
2037 timeval_add_time(&timeout
, seconds
, 0);
2039 LOG_INFO("Starting profiling. Halting and resuming the"
2040 " target as often as we can...");
2042 uint32_t sample_count
= 0;
2043 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2044 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
2046 int retval
= ERROR_OK
;
2048 target_poll(target
);
2049 if (target
->state
== TARGET_HALTED
) {
2050 uint32_t t
= buf_get_u32(reg
->value
, 0, 32);
2051 samples
[sample_count
++] = t
;
2052 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2053 retval
= target_resume(target
, 1, 0, 0, 0);
2054 target_poll(target
);
2055 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2056 } else if (target
->state
== TARGET_RUNNING
) {
2057 /* We want to quickly sample the PC. */
2058 retval
= target_halt(target
);
2060 LOG_INFO("Target not halted or running");
2065 if (retval
!= ERROR_OK
)
2068 gettimeofday(&now
, NULL
);
2069 if ((sample_count
>= max_num_samples
) || timeval_compare(&now
, &timeout
) >= 0) {
2070 LOG_INFO("Profiling completed. %" PRIu32
" samples.", sample_count
);
2075 *num_samples
= sample_count
;
2079 /* Single aligned words are guaranteed to use 16 or 32 bit access
2080 * mode respectively, otherwise data is handled as quickly as
2083 int target_write_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, const uint8_t *buffer
)
2085 LOG_DEBUG("writing buffer of %" PRIi32
" byte at " TARGET_ADDR_FMT
,
2088 if (!target_was_examined(target
)) {
2089 LOG_ERROR("Target not examined yet");
2096 if ((address
+ size
- 1) < address
) {
2097 /* GDB can request this when e.g. PC is 0xfffffffc */
2098 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2104 return target
->type
->write_buffer(target
, address
, size
, buffer
);
2107 static int target_write_buffer_default(struct target
*target
,
2108 target_addr_t address
, uint32_t count
, const uint8_t *buffer
)
2112 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2113 * will have something to do with the size we leave to it. */
2114 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2115 if (address
& size
) {
2116 int retval
= target_write_memory(target
, address
, size
, 1, buffer
);
2117 if (retval
!= ERROR_OK
)
2125 /* Write the data with as large access size as possible. */
2126 for (; size
> 0; size
/= 2) {
2127 uint32_t aligned
= count
- count
% size
;
2129 int retval
= target_write_memory(target
, address
, size
, aligned
/ size
, buffer
);
2130 if (retval
!= ERROR_OK
)
2141 /* Single aligned words are guaranteed to use 16 or 32 bit access
2142 * mode respectively, otherwise data is handled as quickly as
2145 int target_read_buffer(struct target
*target
, target_addr_t address
, uint32_t size
, uint8_t *buffer
)
2147 LOG_DEBUG("reading buffer of %" PRIi32
" byte at " TARGET_ADDR_FMT
,
2150 if (!target_was_examined(target
)) {
2151 LOG_ERROR("Target not examined yet");
2158 if ((address
+ size
- 1) < address
) {
2159 /* GDB can request this when e.g. PC is 0xfffffffc */
2160 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT
", 0x%08" PRIx32
")",
2166 return target
->type
->read_buffer(target
, address
, size
, buffer
);
2169 static int target_read_buffer_default(struct target
*target
, target_addr_t address
, uint32_t count
, uint8_t *buffer
)
2173 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2174 * will have something to do with the size we leave to it. */
2175 for (size
= 1; size
< 4 && count
>= size
* 2 + (address
& size
); size
*= 2) {
2176 if (address
& size
) {
2177 int retval
= target_read_memory(target
, address
, size
, 1, buffer
);
2178 if (retval
!= ERROR_OK
)
2186 /* Read the data with as large access size as possible. */
2187 for (; size
> 0; size
/= 2) {
2188 uint32_t aligned
= count
- count
% size
;
2190 int retval
= target_read_memory(target
, address
, size
, aligned
/ size
, buffer
);
2191 if (retval
!= ERROR_OK
)
2202 int target_checksum_memory(struct target
*target
, target_addr_t address
, uint32_t size
, uint32_t* crc
)
2207 uint32_t checksum
= 0;
2208 if (!target_was_examined(target
)) {
2209 LOG_ERROR("Target not examined yet");
2213 retval
= target
->type
->checksum_memory(target
, address
, size
, &checksum
);
2214 if (retval
!= ERROR_OK
) {
2215 buffer
= malloc(size
);
2216 if (buffer
== NULL
) {
2217 LOG_ERROR("error allocating buffer for section (%" PRId32
" bytes)", size
);
2218 return ERROR_COMMAND_SYNTAX_ERROR
;
2220 retval
= target_read_buffer(target
, address
, size
, buffer
);
2221 if (retval
!= ERROR_OK
) {
2226 /* convert to target endianness */
2227 for (i
= 0; i
< (size
/sizeof(uint32_t)); i
++) {
2228 uint32_t target_data
;
2229 target_data
= target_buffer_get_u32(target
, &buffer
[i
*sizeof(uint32_t)]);
2230 target_buffer_set_u32(target
, &buffer
[i
*sizeof(uint32_t)], target_data
);
2233 retval
= image_calculate_checksum(buffer
, size
, &checksum
);
2242 int target_blank_check_memory(struct target
*target
, target_addr_t address
, uint32_t size
, uint32_t* blank
,
2243 uint8_t erased_value
)
2246 if (!target_was_examined(target
)) {
2247 LOG_ERROR("Target not examined yet");
2251 if (target
->type
->blank_check_memory
== 0)
2252 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2254 retval
= target
->type
->blank_check_memory(target
, address
, size
, blank
, erased_value
);
2259 int target_read_u64(struct target
*target
, target_addr_t address
, uint64_t *value
)
2261 uint8_t value_buf
[8];
2262 if (!target_was_examined(target
)) {
2263 LOG_ERROR("Target not examined yet");
2267 int retval
= target_read_memory(target
, address
, 8, 1, value_buf
);
2269 if (retval
== ERROR_OK
) {
2270 *value
= target_buffer_get_u64(target
, value_buf
);
2271 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2276 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2283 int target_read_u32(struct target
*target
, target_addr_t address
, uint32_t *value
)
2285 uint8_t value_buf
[4];
2286 if (!target_was_examined(target
)) {
2287 LOG_ERROR("Target not examined yet");
2291 int retval
= target_read_memory(target
, address
, 4, 1, value_buf
);
2293 if (retval
== ERROR_OK
) {
2294 *value
= target_buffer_get_u32(target
, value_buf
);
2295 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2300 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2307 int target_read_u16(struct target
*target
, target_addr_t address
, uint16_t *value
)
2309 uint8_t value_buf
[2];
2310 if (!target_was_examined(target
)) {
2311 LOG_ERROR("Target not examined yet");
2315 int retval
= target_read_memory(target
, address
, 2, 1, value_buf
);
2317 if (retval
== ERROR_OK
) {
2318 *value
= target_buffer_get_u16(target
, value_buf
);
2319 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%4.4" PRIx16
,
2324 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2331 int target_read_u8(struct target
*target
, target_addr_t address
, uint8_t *value
)
2333 if (!target_was_examined(target
)) {
2334 LOG_ERROR("Target not examined yet");
2338 int retval
= target_read_memory(target
, address
, 1, 1, value
);
2340 if (retval
== ERROR_OK
) {
2341 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2346 LOG_DEBUG("address: " TARGET_ADDR_FMT
" failed",
2353 int target_write_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2356 uint8_t value_buf
[8];
2357 if (!target_was_examined(target
)) {
2358 LOG_ERROR("Target not examined yet");
2362 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2366 target_buffer_set_u64(target
, value_buf
, value
);
2367 retval
= target_write_memory(target
, address
, 8, 1, value_buf
);
2368 if (retval
!= ERROR_OK
)
2369 LOG_DEBUG("failed: %i", retval
);
2374 int target_write_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2377 uint8_t value_buf
[4];
2378 if (!target_was_examined(target
)) {
2379 LOG_ERROR("Target not examined yet");
2383 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2387 target_buffer_set_u32(target
, value_buf
, value
);
2388 retval
= target_write_memory(target
, address
, 4, 1, value_buf
);
2389 if (retval
!= ERROR_OK
)
2390 LOG_DEBUG("failed: %i", retval
);
2395 int target_write_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2398 uint8_t value_buf
[2];
2399 if (!target_was_examined(target
)) {
2400 LOG_ERROR("Target not examined yet");
2404 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2408 target_buffer_set_u16(target
, value_buf
, value
);
2409 retval
= target_write_memory(target
, address
, 2, 1, value_buf
);
2410 if (retval
!= ERROR_OK
)
2411 LOG_DEBUG("failed: %i", retval
);
2416 int target_write_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2419 if (!target_was_examined(target
)) {
2420 LOG_ERROR("Target not examined yet");
2424 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2427 retval
= target_write_memory(target
, address
, 1, 1, &value
);
2428 if (retval
!= ERROR_OK
)
2429 LOG_DEBUG("failed: %i", retval
);
2434 int target_write_phys_u64(struct target
*target
, target_addr_t address
, uint64_t value
)
2437 uint8_t value_buf
[8];
2438 if (!target_was_examined(target
)) {
2439 LOG_ERROR("Target not examined yet");
2443 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%16.16" PRIx64
"",
2447 target_buffer_set_u64(target
, value_buf
, value
);
2448 retval
= target_write_phys_memory(target
, address
, 8, 1, value_buf
);
2449 if (retval
!= ERROR_OK
)
2450 LOG_DEBUG("failed: %i", retval
);
2455 int target_write_phys_u32(struct target
*target
, target_addr_t address
, uint32_t value
)
2458 uint8_t value_buf
[4];
2459 if (!target_was_examined(target
)) {
2460 LOG_ERROR("Target not examined yet");
2464 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx32
"",
2468 target_buffer_set_u32(target
, value_buf
, value
);
2469 retval
= target_write_phys_memory(target
, address
, 4, 1, value_buf
);
2470 if (retval
!= ERROR_OK
)
2471 LOG_DEBUG("failed: %i", retval
);
2476 int target_write_phys_u16(struct target
*target
, target_addr_t address
, uint16_t value
)
2479 uint8_t value_buf
[2];
2480 if (!target_was_examined(target
)) {
2481 LOG_ERROR("Target not examined yet");
2485 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%8.8" PRIx16
,
2489 target_buffer_set_u16(target
, value_buf
, value
);
2490 retval
= target_write_phys_memory(target
, address
, 2, 1, value_buf
);
2491 if (retval
!= ERROR_OK
)
2492 LOG_DEBUG("failed: %i", retval
);
2497 int target_write_phys_u8(struct target
*target
, target_addr_t address
, uint8_t value
)
2500 if (!target_was_examined(target
)) {
2501 LOG_ERROR("Target not examined yet");
2505 LOG_DEBUG("address: " TARGET_ADDR_FMT
", value: 0x%2.2" PRIx8
,
2508 retval
= target_write_phys_memory(target
, address
, 1, 1, &value
);
2509 if (retval
!= ERROR_OK
)
2510 LOG_DEBUG("failed: %i", retval
);
2515 static int find_target(struct command_context
*cmd_ctx
, const char *name
)
2517 struct target
*target
= get_target(name
);
2518 if (target
== NULL
) {
2519 LOG_ERROR("Target: %s is unknown, try one of:\n", name
);
2522 if (!target
->tap
->enabled
) {
2523 LOG_USER("Target: TAP %s is disabled, "
2524 "can't be the current target\n",
2525 target
->tap
->dotted_name
);
2529 cmd_ctx
->current_target
= target
;
2530 if (cmd_ctx
->current_target_override
)
2531 cmd_ctx
->current_target_override
= target
;
2537 COMMAND_HANDLER(handle_targets_command
)
2539 int retval
= ERROR_OK
;
2540 if (CMD_ARGC
== 1) {
2541 retval
= find_target(CMD_CTX
, CMD_ARGV
[0]);
2542 if (retval
== ERROR_OK
) {
2548 struct target
*target
= all_targets
;
2549 command_print(CMD_CTX
, " TargetName Type Endian TapName State ");
2550 command_print(CMD_CTX
, "-- ------------------ ---------- ------ ------------------ ------------");
2555 if (target
->tap
->enabled
)
2556 state
= target_state_name(target
);
2558 state
= "tap-disabled";
2560 if (CMD_CTX
->current_target
== target
)
2563 /* keep columns lined up to match the headers above */
2564 command_print(CMD_CTX
,
2565 "%2d%c %-18s %-10s %-6s %-18s %s",
2566 target
->target_number
,
2568 target_name(target
),
2569 target_type_name(target
),
2570 Jim_Nvp_value2name_simple(nvp_target_endian
,
2571 target
->endianness
)->name
,
2572 target
->tap
->dotted_name
,
2574 target
= target
->next
;
2580 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2582 static int powerDropout
;
2583 static int srstAsserted
;
2585 static int runPowerRestore
;
2586 static int runPowerDropout
;
2587 static int runSrstAsserted
;
2588 static int runSrstDeasserted
;
2590 static int sense_handler(void)
2592 static int prevSrstAsserted
;
2593 static int prevPowerdropout
;
2595 int retval
= jtag_power_dropout(&powerDropout
);
2596 if (retval
!= ERROR_OK
)
2600 powerRestored
= prevPowerdropout
&& !powerDropout
;
2602 runPowerRestore
= 1;
2604 int64_t current
= timeval_ms();
2605 static int64_t lastPower
;
2606 bool waitMore
= lastPower
+ 2000 > current
;
2607 if (powerDropout
&& !waitMore
) {
2608 runPowerDropout
= 1;
2609 lastPower
= current
;
2612 retval
= jtag_srst_asserted(&srstAsserted
);
2613 if (retval
!= ERROR_OK
)
2617 srstDeasserted
= prevSrstAsserted
&& !srstAsserted
;
2619 static int64_t lastSrst
;
2620 waitMore
= lastSrst
+ 2000 > current
;
2621 if (srstDeasserted
&& !waitMore
) {
2622 runSrstDeasserted
= 1;
2626 if (!prevSrstAsserted
&& srstAsserted
)
2627 runSrstAsserted
= 1;
2629 prevSrstAsserted
= srstAsserted
;
2630 prevPowerdropout
= powerDropout
;
2632 if (srstDeasserted
|| powerRestored
) {
2633 /* Other than logging the event we can't do anything here.
2634 * Issuing a reset is a particularly bad idea as we might
2635 * be inside a reset already.
2642 /* process target state changes */
2643 static int handle_target(void *priv
)
2645 Jim_Interp
*interp
= (Jim_Interp
*)priv
;
2646 int retval
= ERROR_OK
;
2648 if (!is_jtag_poll_safe()) {
2649 /* polling is disabled currently */
2653 /* we do not want to recurse here... */
2654 static int recursive
;
2658 /* danger! running these procedures can trigger srst assertions and power dropouts.
2659 * We need to avoid an infinite loop/recursion here and we do that by
2660 * clearing the flags after running these events.
2662 int did_something
= 0;
2663 if (runSrstAsserted
) {
2664 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2665 Jim_Eval(interp
, "srst_asserted");
2668 if (runSrstDeasserted
) {
2669 Jim_Eval(interp
, "srst_deasserted");
2672 if (runPowerDropout
) {
2673 LOG_INFO("Power dropout detected, running power_dropout proc.");
2674 Jim_Eval(interp
, "power_dropout");
2677 if (runPowerRestore
) {
2678 Jim_Eval(interp
, "power_restore");
2682 if (did_something
) {
2683 /* clear detect flags */
2687 /* clear action flags */
2689 runSrstAsserted
= 0;
2690 runSrstDeasserted
= 0;
2691 runPowerRestore
= 0;
2692 runPowerDropout
= 0;
2697 /* Poll targets for state changes unless that's globally disabled.
2698 * Skip targets that are currently disabled.
2700 for (struct target
*target
= all_targets
;
2701 is_jtag_poll_safe() && target
;
2702 target
= target
->next
) {
2704 if (!target_was_examined(target
))
2707 if (!target
->tap
->enabled
)
2710 if (target
->backoff
.times
> target
->backoff
.count
) {
2711 /* do not poll this time as we failed previously */
2712 target
->backoff
.count
++;
2715 target
->backoff
.count
= 0;
2717 /* only poll target if we've got power and srst isn't asserted */
2718 if (!powerDropout
&& !srstAsserted
) {
2719 /* polling may fail silently until the target has been examined */
2720 retval
= target_poll(target
);
2721 if (retval
!= ERROR_OK
) {
2722 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2723 if (target
->backoff
.times
* polling_interval
< 5000) {
2724 target
->backoff
.times
*= 2;
2725 target
->backoff
.times
++;
2728 /* Tell GDB to halt the debugger. This allows the user to
2729 * run monitor commands to handle the situation.
2731 target_call_event_callbacks(target
, TARGET_EVENT_GDB_HALT
);
2733 if (target
->backoff
.times
> 0) {
2734 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target
));
2735 target_reset_examined(target
);
2736 retval
= target_examine_one(target
);
2737 /* Target examination could have failed due to unstable connection,
2738 * but we set the examined flag anyway to repoll it later */
2739 if (retval
!= ERROR_OK
) {
2740 target
->examined
= true;
2741 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2742 target
->backoff
.times
* polling_interval
);
2747 /* Since we succeeded, we reset backoff count */
2748 target
->backoff
.times
= 0;
2755 COMMAND_HANDLER(handle_reg_command
)
2757 struct target
*target
;
2758 struct reg
*reg
= NULL
;
2764 target
= get_current_target(CMD_CTX
);
2766 /* list all available registers for the current target */
2767 if (CMD_ARGC
== 0) {
2768 struct reg_cache
*cache
= target
->reg_cache
;
2774 command_print(CMD_CTX
, "===== %s", cache
->name
);
2776 for (i
= 0, reg
= cache
->reg_list
;
2777 i
< cache
->num_regs
;
2778 i
++, reg
++, count
++) {
2779 /* only print cached values if they are valid */
2781 value
= buf_to_str(reg
->value
,
2783 command_print(CMD_CTX
,
2784 "(%i) %s (/%" PRIu32
"): 0x%s%s",
2792 command_print(CMD_CTX
, "(%i) %s (/%" PRIu32
")",
2797 cache
= cache
->next
;
2803 /* access a single register by its ordinal number */
2804 if ((CMD_ARGV
[0][0] >= '0') && (CMD_ARGV
[0][0] <= '9')) {
2806 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[0], num
);
2808 struct reg_cache
*cache
= target
->reg_cache
;
2812 for (i
= 0; i
< cache
->num_regs
; i
++) {
2813 if (count
++ == num
) {
2814 reg
= &cache
->reg_list
[i
];
2820 cache
= cache
->next
;
2824 command_print(CMD_CTX
, "%i is out of bounds, the current target "
2825 "has only %i registers (0 - %i)", num
, count
, count
- 1);
2829 /* access a single register by its name */
2830 reg
= register_get_by_name(target
->reg_cache
, CMD_ARGV
[0], 1);
2833 command_print(CMD_CTX
, "register %s not found in current target", CMD_ARGV
[0]);
2838 assert(reg
!= NULL
); /* give clang a hint that we *know* reg is != NULL here */
2840 /* display a register */
2841 if ((CMD_ARGC
== 1) || ((CMD_ARGC
== 2) && !((CMD_ARGV
[1][0] >= '0')
2842 && (CMD_ARGV
[1][0] <= '9')))) {
2843 if ((CMD_ARGC
== 2) && (strcmp(CMD_ARGV
[1], "force") == 0))
2846 if (reg
->valid
== 0)
2847 reg
->type
->get(reg
);
2848 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2849 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2854 /* set register value */
2855 if (CMD_ARGC
== 2) {
2856 uint8_t *buf
= malloc(DIV_ROUND_UP(reg
->size
, 8));
2859 str_to_buf(CMD_ARGV
[1], strlen(CMD_ARGV
[1]), buf
, reg
->size
, 0);
2861 reg
->type
->set(reg
, buf
);
2863 value
= buf_to_str(reg
->value
, reg
->size
, 16);
2864 command_print(CMD_CTX
, "%s (/%i): 0x%s", reg
->name
, (int)(reg
->size
), value
);
2872 return ERROR_COMMAND_SYNTAX_ERROR
;
2875 COMMAND_HANDLER(handle_poll_command
)
2877 int retval
= ERROR_OK
;
2878 struct target
*target
= get_current_target(CMD_CTX
);
2880 if (CMD_ARGC
== 0) {
2881 command_print(CMD_CTX
, "background polling: %s",
2882 jtag_poll_get_enabled() ? "on" : "off");
2883 command_print(CMD_CTX
, "TAP: %s (%s)",
2884 target
->tap
->dotted_name
,
2885 target
->tap
->enabled
? "enabled" : "disabled");
2886 if (!target
->tap
->enabled
)
2888 retval
= target_poll(target
);
2889 if (retval
!= ERROR_OK
)
2891 retval
= target_arch_state(target
);
2892 if (retval
!= ERROR_OK
)
2894 } else if (CMD_ARGC
== 1) {
2896 COMMAND_PARSE_ON_OFF(CMD_ARGV
[0], enable
);
2897 jtag_poll_set_enabled(enable
);
2899 return ERROR_COMMAND_SYNTAX_ERROR
;
2904 COMMAND_HANDLER(handle_wait_halt_command
)
2907 return ERROR_COMMAND_SYNTAX_ERROR
;
2909 unsigned ms
= DEFAULT_HALT_TIMEOUT
;
2910 if (1 == CMD_ARGC
) {
2911 int retval
= parse_uint(CMD_ARGV
[0], &ms
);
2912 if (ERROR_OK
!= retval
)
2913 return ERROR_COMMAND_SYNTAX_ERROR
;
2916 struct target
*target
= get_current_target(CMD_CTX
);
2917 return target_wait_state(target
, TARGET_HALTED
, ms
);
2920 /* wait for target state to change. The trick here is to have a low
2921 * latency for short waits and not to suck up all the CPU time
2924 * After 500ms, keep_alive() is invoked
2926 int target_wait_state(struct target
*target
, enum target_state state
, int ms
)
2929 int64_t then
= 0, cur
;
2933 retval
= target_poll(target
);
2934 if (retval
!= ERROR_OK
)
2936 if (target
->state
== state
)
2941 then
= timeval_ms();
2942 LOG_DEBUG("waiting for target %s...",
2943 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2949 if ((cur
-then
) > ms
) {
2950 LOG_ERROR("timed out while waiting for target %s",
2951 Jim_Nvp_value2name_simple(nvp_target_state
, state
)->name
);
2959 COMMAND_HANDLER(handle_halt_command
)
2963 struct target
*target
= get_current_target(CMD_CTX
);
2965 target
->verbose_halt_msg
= true;
2967 int retval
= target_halt(target
);
2968 if (ERROR_OK
!= retval
)
2971 if (CMD_ARGC
== 1) {
2972 unsigned wait_local
;
2973 retval
= parse_uint(CMD_ARGV
[0], &wait_local
);
2974 if (ERROR_OK
!= retval
)
2975 return ERROR_COMMAND_SYNTAX_ERROR
;
2980 return CALL_COMMAND_HANDLER(handle_wait_halt_command
);
2983 COMMAND_HANDLER(handle_soft_reset_halt_command
)
2985 struct target
*target
= get_current_target(CMD_CTX
);
2987 LOG_USER("requesting target halt and executing a soft reset");
2989 target_soft_reset_halt(target
);
2994 COMMAND_HANDLER(handle_reset_command
)
2997 return ERROR_COMMAND_SYNTAX_ERROR
;
2999 enum target_reset_mode reset_mode
= RESET_RUN
;
3000 if (CMD_ARGC
== 1) {
3002 n
= Jim_Nvp_name2value_simple(nvp_reset_modes
, CMD_ARGV
[0]);
3003 if ((n
->name
== NULL
) || (n
->value
== RESET_UNKNOWN
))
3004 return ERROR_COMMAND_SYNTAX_ERROR
;
3005 reset_mode
= n
->value
;
3008 /* reset *all* targets */
3009 return target_process_reset(CMD_CTX
, reset_mode
);
3013 COMMAND_HANDLER(handle_resume_command
)
3017 return ERROR_COMMAND_SYNTAX_ERROR
;
3019 struct target
*target
= get_current_target(CMD_CTX
);
3021 /* with no CMD_ARGV, resume from current pc, addr = 0,
3022 * with one arguments, addr = CMD_ARGV[0],
3023 * handle breakpoints, not debugging */
3024 target_addr_t addr
= 0;
3025 if (CMD_ARGC
== 1) {
3026 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], addr
);
3030 return target_resume(target
, current
, addr
, 1, 0);
3033 COMMAND_HANDLER(handle_step_command
)
3036 return ERROR_COMMAND_SYNTAX_ERROR
;
3040 /* with no CMD_ARGV, step from current pc, addr = 0,
3041 * with one argument addr = CMD_ARGV[0],
3042 * handle breakpoints, debugging */
3043 target_addr_t addr
= 0;
3045 if (CMD_ARGC
== 1) {
3046 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], addr
);
3050 struct target
*target
= get_current_target(CMD_CTX
);
3052 return target
->type
->step(target
, current_pc
, addr
, 1);
3055 static void handle_md_output(struct command_context
*cmd_ctx
,
3056 struct target
*target
, target_addr_t address
, unsigned size
,
3057 unsigned count
, const uint8_t *buffer
)
3059 const unsigned line_bytecnt
= 32;
3060 unsigned line_modulo
= line_bytecnt
/ size
;
3062 char output
[line_bytecnt
* 4 + 1];
3063 unsigned output_len
= 0;
3065 const char *value_fmt
;
3068 value_fmt
= "%16.16"PRIx64
" ";
3071 value_fmt
= "%8.8"PRIx64
" ";
3074 value_fmt
= "%4.4"PRIx64
" ";
3077 value_fmt
= "%2.2"PRIx64
" ";
3080 /* "can't happen", caller checked */
3081 LOG_ERROR("invalid memory read size: %u", size
);
3085 for (unsigned i
= 0; i
< count
; i
++) {
3086 if (i
% line_modulo
== 0) {
3087 output_len
+= snprintf(output
+ output_len
,
3088 sizeof(output
) - output_len
,
3089 TARGET_ADDR_FMT
": ",
3090 (address
+ (i
* size
)));
3094 const uint8_t *value_ptr
= buffer
+ i
* size
;
3097 value
= target_buffer_get_u64(target
, value_ptr
);
3100 value
= target_buffer_get_u32(target
, value_ptr
);
3103 value
= target_buffer_get_u16(target
, value_ptr
);
3108 output_len
+= snprintf(output
+ output_len
,
3109 sizeof(output
) - output_len
,
3112 if ((i
% line_modulo
== line_modulo
- 1) || (i
== count
- 1)) {
3113 command_print(cmd_ctx
, "%s", output
);
3119 COMMAND_HANDLER(handle_md_command
)
3122 return ERROR_COMMAND_SYNTAX_ERROR
;
3125 switch (CMD_NAME
[2]) {
3139 return ERROR_COMMAND_SYNTAX_ERROR
;
3142 bool physical
= strcmp(CMD_ARGV
[0], "phys") == 0;
3143 int (*fn
)(struct target
*target
,
3144 target_addr_t address
, uint32_t size_value
, uint32_t count
, uint8_t *buffer
);
3148 fn
= target_read_phys_memory
;
3150 fn
= target_read_memory
;
3151 if ((CMD_ARGC
< 1) || (CMD_ARGC
> 2))
3152 return ERROR_COMMAND_SYNTAX_ERROR
;
3154 target_addr_t address
;
3155 COMMAND_PARSE_ADDRESS(CMD_ARGV
[0], address
);
3159 COMMAND_PARSE_NUMBER(uint
, CMD_ARGV
[1], count
);
3161 uint8_t *buffer
= calloc(count
, size
);
3162 if (buffer
== NULL
) {
3163 LOG_ERROR("Failed to allocate md read buffer");
3167 struct target
*target
= get_current_target(CMD_CTX
);
3168 int retval
= fn(target
, address
, size
, count
, buffer
);
3169 if (ERROR_OK
== retval
)
3170 handle_md_output(CMD_CTX
, target
, address
, size
, count
, buffer
);
3177 typedef int (*target_write_fn
)(struct target
*target
,
3178 target_addr_t address
, uint32_t size
, uint32_t count
, const uint8_t *buffer
);
3180 static int target_fill_mem(struct target
*target
,
3181 target_addr_t address
,
3189 /* We have to write in reasonably large chunks to be able
3190 * to fill large memory areas with any sane speed */
3191 const unsigned chunk_size
= 16384;
3192 uint8_t *target_buf
= malloc(chunk_size
* data_size
);
3193 if (target_buf
== NULL
) {
3194 LOG_ERROR("Out of memory");