c09dfd865e5b087a40c41d34f89e349aa5bf0e49
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106
107 static struct target_type *target_types[] = {
108 &arm7tdmi_target,
109 &arm9tdmi_target,
110 &arm920t_target,
111 &arm720t_target,
112 &arm966e_target,
113 &arm946e_target,
114 &arm926ejs_target,
115 &fa526_target,
116 &feroceon_target,
117 &dragonite_target,
118 &xscale_target,
119 &cortexm_target,
120 &cortexa8_target,
121 &cortexr4_target,
122 &arm11_target,
123 &mips_m4k_target,
124 &avr_target,
125 &dsp563xx_target,
126 &dsp5680xx_target,
127 &testee_target,
128 &avr32_ap7k_target,
129 &hla_target,
130 &nds32_v2_target,
131 &nds32_v3_target,
132 &nds32_v3m_target,
133 &or1k_target,
134 &quark_x10xx_target,
135 NULL,
136 };
137
138 struct target *all_targets;
139 static struct target_event_callback *target_event_callbacks;
140 static struct target_timer_callback *target_timer_callbacks;
141 static const int polling_interval = 100;
142
143 static const Jim_Nvp nvp_assert[] = {
144 { .name = "assert", NVP_ASSERT },
145 { .name = "deassert", NVP_DEASSERT },
146 { .name = "T", NVP_ASSERT },
147 { .name = "F", NVP_DEASSERT },
148 { .name = "t", NVP_ASSERT },
149 { .name = "f", NVP_DEASSERT },
150 { .name = NULL, .value = -1 }
151 };
152
153 static const Jim_Nvp nvp_error_target[] = {
154 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
155 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
156 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
157 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
158 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
159 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
160 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
161 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
162 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
163 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
164 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
165 { .value = -1, .name = NULL }
166 };
167
168 static const char *target_strerror_safe(int err)
169 {
170 const Jim_Nvp *n;
171
172 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
173 if (n->name == NULL)
174 return "unknown";
175 else
176 return n->name;
177 }
178
179 static const Jim_Nvp nvp_target_event[] = {
180
181 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
182 { .value = TARGET_EVENT_HALTED, .name = "halted" },
183 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
184 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
186
187 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
188 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
189
190 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
191 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
192 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
193 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
194 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
195 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
196 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
197 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
198 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
199 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
200 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
201 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
202
203 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
204 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
205
206 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
207 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
208
209 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
210 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
211
212 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
213 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
214
215 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
216 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
217
218 { .name = NULL, .value = -1 }
219 };
220
221 static const Jim_Nvp nvp_target_state[] = {
222 { .name = "unknown", .value = TARGET_UNKNOWN },
223 { .name = "running", .value = TARGET_RUNNING },
224 { .name = "halted", .value = TARGET_HALTED },
225 { .name = "reset", .value = TARGET_RESET },
226 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
227 { .name = NULL, .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_target_debug_reason[] = {
231 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
232 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
233 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
234 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
235 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
236 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
237 { .name = "program-exit" , .value = DBG_REASON_EXIT },
238 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
239 { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_endian[] = {
243 { .name = "big", .value = TARGET_BIG_ENDIAN },
244 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
245 { .name = "be", .value = TARGET_BIG_ENDIAN },
246 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
247 { .name = NULL, .value = -1 },
248 };
249
250 static const Jim_Nvp nvp_reset_modes[] = {
251 { .name = "unknown", .value = RESET_UNKNOWN },
252 { .name = "run" , .value = RESET_RUN },
253 { .name = "halt" , .value = RESET_HALT },
254 { .name = "init" , .value = RESET_INIT },
255 { .name = NULL , .value = -1 },
256 };
257
258 const char *debug_reason_name(struct target *t)
259 {
260 const char *cp;
261
262 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
263 t->debug_reason)->name;
264 if (!cp) {
265 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
266 cp = "(*BUG*unknown*BUG*)";
267 }
268 return cp;
269 }
270
271 const char *target_state_name(struct target *t)
272 {
273 const char *cp;
274 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
275 if (!cp) {
276 LOG_ERROR("Invalid target state: %d", (int)(t->state));
277 cp = "(*BUG*unknown*BUG*)";
278 }
279 return cp;
280 }
281
282 /* determine the number of the new target */
283 static int new_target_number(void)
284 {
285 struct target *t;
286 int x;
287
288 /* number is 0 based */
289 x = -1;
290 t = all_targets;
291 while (t) {
292 if (x < t->target_number)
293 x = t->target_number;
294 t = t->next;
295 }
296 return x + 1;
297 }
298
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
301 {
302 if (target->endianness == TARGET_LITTLE_ENDIAN)
303 return le_to_h_u64(buffer);
304 else
305 return be_to_h_u64(buffer);
306 }
307
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
310 {
311 if (target->endianness == TARGET_LITTLE_ENDIAN)
312 return le_to_h_u32(buffer);
313 else
314 return be_to_h_u32(buffer);
315 }
316
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
319 {
320 if (target->endianness == TARGET_LITTLE_ENDIAN)
321 return le_to_h_u24(buffer);
322 else
323 return be_to_h_u24(buffer);
324 }
325
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
328 {
329 if (target->endianness == TARGET_LITTLE_ENDIAN)
330 return le_to_h_u16(buffer);
331 else
332 return be_to_h_u16(buffer);
333 }
334
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
337 {
338 return *buffer & 0x0ff;
339 }
340
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
343 {
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 h_u64_to_le(buffer, value);
346 else
347 h_u64_to_be(buffer, value);
348 }
349
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
352 {
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 h_u32_to_le(buffer, value);
355 else
356 h_u32_to_be(buffer, value);
357 }
358
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
361 {
362 if (target->endianness == TARGET_LITTLE_ENDIAN)
363 h_u24_to_le(buffer, value);
364 else
365 h_u24_to_be(buffer, value);
366 }
367
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
370 {
371 if (target->endianness == TARGET_LITTLE_ENDIAN)
372 h_u16_to_le(buffer, value);
373 else
374 h_u16_to_be(buffer, value);
375 }
376
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
379 {
380 *buffer = value;
381 }
382
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
385 {
386 uint32_t i;
387 for (i = 0; i < count; i++)
388 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
389 }
390
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
393 {
394 uint32_t i;
395 for (i = 0; i < count; i++)
396 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
397 }
398
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
401 {
402 uint32_t i;
403 for (i = 0; i < count; i++)
404 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
409 {
410 uint32_t i;
411 for (i = 0; i < count; i++)
412 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
417 {
418 uint32_t i;
419 for (i = 0; i < count; i++)
420 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
425 {
426 uint32_t i;
427 for (i = 0; i < count; i++)
428 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
429 }
430
431 /* return a pointer to a configured target; id is name or number */
432 struct target *get_target(const char *id)
433 {
434 struct target *target;
435
436 /* try as tcltarget name */
437 for (target = all_targets; target; target = target->next) {
438 if (target_name(target) == NULL)
439 continue;
440 if (strcmp(id, target_name(target)) == 0)
441 return target;
442 }
443
444 /* It's OK to remove this fallback sometime after August 2010 or so */
445
446 /* no match, try as number */
447 unsigned num;
448 if (parse_uint(id, &num) != ERROR_OK)
449 return NULL;
450
451 for (target = all_targets; target; target = target->next) {
452 if (target->target_number == (int)num) {
453 LOG_WARNING("use '%s' as target identifier, not '%u'",
454 target_name(target), num);
455 return target;
456 }
457 }
458
459 return NULL;
460 }
461
462 /* returns a pointer to the n-th configured target */
463 static struct target *get_target_by_num(int num)
464 {
465 struct target *target = all_targets;
466
467 while (target) {
468 if (target->target_number == num)
469 return target;
470 target = target->next;
471 }
472
473 return NULL;
474 }
475
476 struct target *get_current_target(struct command_context *cmd_ctx)
477 {
478 struct target *target = get_target_by_num(cmd_ctx->current_target);
479
480 if (target == NULL) {
481 LOG_ERROR("BUG: current_target out of bounds");
482 exit(-1);
483 }
484
485 return target;
486 }
487
488 int target_poll(struct target *target)
489 {
490 int retval;
491
492 /* We can't poll until after examine */
493 if (!target_was_examined(target)) {
494 /* Fail silently lest we pollute the log */
495 return ERROR_FAIL;
496 }
497
498 retval = target->type->poll(target);
499 if (retval != ERROR_OK)
500 return retval;
501
502 if (target->halt_issued) {
503 if (target->state == TARGET_HALTED)
504 target->halt_issued = false;
505 else {
506 long long t = timeval_ms() - target->halt_issued_time;
507 if (t > DEFAULT_HALT_TIMEOUT) {
508 target->halt_issued = false;
509 LOG_INFO("Halt timed out, wake up GDB.");
510 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
511 }
512 }
513 }
514
515 return ERROR_OK;
516 }
517
518 int target_halt(struct target *target)
519 {
520 int retval;
521 /* We can't poll until after examine */
522 if (!target_was_examined(target)) {
523 LOG_ERROR("Target not examined yet");
524 return ERROR_FAIL;
525 }
526
527 retval = target->type->halt(target);
528 if (retval != ERROR_OK)
529 return retval;
530
531 target->halt_issued = true;
532 target->halt_issued_time = timeval_ms();
533
534 return ERROR_OK;
535 }
536
537 /**
538 * Make the target (re)start executing using its saved execution
539 * context (possibly with some modifications).
540 *
541 * @param target Which target should start executing.
542 * @param current True to use the target's saved program counter instead
543 * of the address parameter
544 * @param address Optionally used as the program counter.
545 * @param handle_breakpoints True iff breakpoints at the resumption PC
546 * should be skipped. (For example, maybe execution was stopped by
547 * such a breakpoint, in which case it would be counterprodutive to
548 * let it re-trigger.
549 * @param debug_execution False if all working areas allocated by OpenOCD
550 * should be released and/or restored to their original contents.
551 * (This would for example be true to run some downloaded "helper"
552 * algorithm code, which resides in one such working buffer and uses
553 * another for data storage.)
554 *
555 * @todo Resolve the ambiguity about what the "debug_execution" flag
556 * signifies. For example, Target implementations don't agree on how
557 * it relates to invalidation of the register cache, or to whether
558 * breakpoints and watchpoints should be enabled. (It would seem wrong
559 * to enable breakpoints when running downloaded "helper" algorithms
560 * (debug_execution true), since the breakpoints would be set to match
561 * target firmware being debugged, not the helper algorithm.... and
562 * enabling them could cause such helpers to malfunction (for example,
563 * by overwriting data with a breakpoint instruction. On the other
564 * hand the infrastructure for running such helpers might use this
565 * procedure but rely on hardware breakpoint to detect termination.)
566 */
567 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
568 {
569 int retval;
570
571 /* We can't poll until after examine */
572 if (!target_was_examined(target)) {
573 LOG_ERROR("Target not examined yet");
574 return ERROR_FAIL;
575 }
576
577 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
578
579 /* note that resume *must* be asynchronous. The CPU can halt before
580 * we poll. The CPU can even halt at the current PC as a result of
581 * a software breakpoint being inserted by (a bug?) the application.
582 */
583 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
584 if (retval != ERROR_OK)
585 return retval;
586
587 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
588
589 return retval;
590 }
591
592 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
593 {
594 char buf[100];
595 int retval;
596 Jim_Nvp *n;
597 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
598 if (n->name == NULL) {
599 LOG_ERROR("invalid reset mode");
600 return ERROR_FAIL;
601 }
602
603 /* disable polling during reset to make reset event scripts
604 * more predictable, i.e. dr/irscan & pathmove in events will
605 * not have JTAG operations injected into the middle of a sequence.
606 */
607 bool save_poll = jtag_poll_get_enabled();
608
609 jtag_poll_set_enabled(false);
610
611 sprintf(buf, "ocd_process_reset %s", n->name);
612 retval = Jim_Eval(cmd_ctx->interp, buf);
613
614 jtag_poll_set_enabled(save_poll);
615
616 if (retval != JIM_OK) {
617 Jim_MakeErrorMessage(cmd_ctx->interp);
618 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
619 return ERROR_FAIL;
620 }
621
622 /* We want any events to be processed before the prompt */
623 retval = target_call_timer_callbacks_now();
624
625 struct target *target;
626 for (target = all_targets; target; target = target->next) {
627 target->type->check_reset(target);
628 target->running_alg = false;
629 }
630
631 return retval;
632 }
633
634 static int identity_virt2phys(struct target *target,
635 uint32_t virtual, uint32_t *physical)
636 {
637 *physical = virtual;
638 return ERROR_OK;
639 }
640
641 static int no_mmu(struct target *target, int *enabled)
642 {
643 *enabled = 0;
644 return ERROR_OK;
645 }
646
647 static int default_examine(struct target *target)
648 {
649 target_set_examined(target);
650 return ERROR_OK;
651 }
652
653 /* no check by default */
654 static int default_check_reset(struct target *target)
655 {
656 return ERROR_OK;
657 }
658
659 int target_examine_one(struct target *target)
660 {
661 return target->type->examine(target);
662 }
663
664 static int jtag_enable_callback(enum jtag_event event, void *priv)
665 {
666 struct target *target = priv;
667
668 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
669 return ERROR_OK;
670
671 jtag_unregister_event_callback(jtag_enable_callback, target);
672
673 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
674
675 int retval = target_examine_one(target);
676 if (retval != ERROR_OK)
677 return retval;
678
679 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
680
681 return retval;
682 }
683
684 /* Targets that correctly implement init + examine, i.e.
685 * no communication with target during init:
686 *
687 * XScale
688 */
689 int target_examine(void)
690 {
691 int retval = ERROR_OK;
692 struct target *target;
693
694 for (target = all_targets; target; target = target->next) {
695 /* defer examination, but don't skip it */
696 if (!target->tap->enabled) {
697 jtag_register_event_callback(jtag_enable_callback,
698 target);
699 continue;
700 }
701
702 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704 retval = target_examine_one(target);
705 if (retval != ERROR_OK)
706 return retval;
707
708 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709 }
710 return retval;
711 }
712
713 const char *target_type_name(struct target *target)
714 {
715 return target->type->name;
716 }
717
718 static int target_soft_reset_halt(struct target *target)
719 {
720 if (!target_was_examined(target)) {
721 LOG_ERROR("Target not examined yet");
722 return ERROR_FAIL;
723 }
724 if (!target->type->soft_reset_halt) {
725 LOG_ERROR("Target %s does not support soft_reset_halt",
726 target_name(target));
727 return ERROR_FAIL;
728 }
729 return target->type->soft_reset_halt(target);
730 }
731
732 /**
733 * Downloads a target-specific native code algorithm to the target,
734 * and executes it. * Note that some targets may need to set up, enable,
735 * and tear down a breakpoint (hard or * soft) to detect algorithm
736 * termination, while others may support lower overhead schemes where
737 * soft breakpoints embedded in the algorithm automatically terminate the
738 * algorithm.
739 *
740 * @param target used to run the algorithm
741 * @param arch_info target-specific description of the algorithm.
742 */
743 int target_run_algorithm(struct target *target,
744 int num_mem_params, struct mem_param *mem_params,
745 int num_reg_params, struct reg_param *reg_param,
746 uint32_t entry_point, uint32_t exit_point,
747 int timeout_ms, void *arch_info)
748 {
749 int retval = ERROR_FAIL;
750
751 if (!target_was_examined(target)) {
752 LOG_ERROR("Target not examined yet");
753 goto done;
754 }
755 if (!target->type->run_algorithm) {
756 LOG_ERROR("Target type '%s' does not support %s",
757 target_type_name(target), __func__);
758 goto done;
759 }
760
761 target->running_alg = true;
762 retval = target->type->run_algorithm(target,
763 num_mem_params, mem_params,
764 num_reg_params, reg_param,
765 entry_point, exit_point, timeout_ms, arch_info);
766 target->running_alg = false;
767
768 done:
769 return retval;
770 }
771
772 /**
773 * Downloads a target-specific native code algorithm to the target,
774 * executes and leaves it running.
775 *
776 * @param target used to run the algorithm
777 * @param arch_info target-specific description of the algorithm.
778 */
779 int target_start_algorithm(struct target *target,
780 int num_mem_params, struct mem_param *mem_params,
781 int num_reg_params, struct reg_param *reg_params,
782 uint32_t entry_point, uint32_t exit_point,
783 void *arch_info)
784 {
785 int retval = ERROR_FAIL;
786
787 if (!target_was_examined(target)) {
788 LOG_ERROR("Target not examined yet");
789 goto done;
790 }
791 if (!target->type->start_algorithm) {
792 LOG_ERROR("Target type '%s' does not support %s",
793 target_type_name(target), __func__);
794 goto done;
795 }
796 if (target->running_alg) {
797 LOG_ERROR("Target is already running an algorithm");
798 goto done;
799 }
800
801 target->running_alg = true;
802 retval = target->type->start_algorithm(target,
803 num_mem_params, mem_params,
804 num_reg_params, reg_params,
805 entry_point, exit_point, arch_info);
806
807 done:
808 return retval;
809 }
810
811 /**
812 * Waits for an algorithm started with target_start_algorithm() to complete.
813 *
814 * @param target used to run the algorithm
815 * @param arch_info target-specific description of the algorithm.
816 */
817 int target_wait_algorithm(struct target *target,
818 int num_mem_params, struct mem_param *mem_params,
819 int num_reg_params, struct reg_param *reg_params,
820 uint32_t exit_point, int timeout_ms,
821 void *arch_info)
822 {
823 int retval = ERROR_FAIL;
824
825 if (!target->type->wait_algorithm) {
826 LOG_ERROR("Target type '%s' does not support %s",
827 target_type_name(target), __func__);
828 goto done;
829 }
830 if (!target->running_alg) {
831 LOG_ERROR("Target is not running an algorithm");
832 goto done;
833 }
834
835 retval = target->type->wait_algorithm(target,
836 num_mem_params, mem_params,
837 num_reg_params, reg_params,
838 exit_point, timeout_ms, arch_info);
839 if (retval != ERROR_TARGET_TIMEOUT)
840 target->running_alg = false;
841
842 done:
843 return retval;
844 }
845
846 /**
847 * Executes a target-specific native code algorithm in the target.
848 * It differs from target_run_algorithm in that the algorithm is asynchronous.
849 * Because of this it requires an compliant algorithm:
850 * see contrib/loaders/flash/stm32f1x.S for example.
851 *
852 * @param target used to run the algorithm
853 */
854
855 int target_run_flash_async_algorithm(struct target *target,
856 const uint8_t *buffer, uint32_t count, int block_size,
857 int num_mem_params, struct mem_param *mem_params,
858 int num_reg_params, struct reg_param *reg_params,
859 uint32_t buffer_start, uint32_t buffer_size,
860 uint32_t entry_point, uint32_t exit_point, void *arch_info)
861 {
862 int retval;
863 int timeout = 0;
864
865 /* Set up working area. First word is write pointer, second word is read pointer,
866 * rest is fifo data area. */
867 uint32_t wp_addr = buffer_start;
868 uint32_t rp_addr = buffer_start + 4;
869 uint32_t fifo_start_addr = buffer_start + 8;
870 uint32_t fifo_end_addr = buffer_start + buffer_size;
871
872 uint32_t wp = fifo_start_addr;
873 uint32_t rp = fifo_start_addr;
874
875 /* validate block_size is 2^n */
876 assert(!block_size || !(block_size & (block_size - 1)));
877
878 retval = target_write_u32(target, wp_addr, wp);
879 if (retval != ERROR_OK)
880 return retval;
881 retval = target_write_u32(target, rp_addr, rp);
882 if (retval != ERROR_OK)
883 return retval;
884
885 /* Start up algorithm on target and let it idle while writing the first chunk */
886 retval = target_start_algorithm(target, num_mem_params, mem_params,
887 num_reg_params, reg_params,
888 entry_point,
889 exit_point,
890 arch_info);
891
892 if (retval != ERROR_OK) {
893 LOG_ERROR("error starting target flash write algorithm");
894 return retval;
895 }
896
897 while (count > 0) {
898
899 retval = target_read_u32(target, rp_addr, &rp);
900 if (retval != ERROR_OK) {
901 LOG_ERROR("failed to get read pointer");
902 break;
903 }
904
905 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
906
907 if (rp == 0) {
908 LOG_ERROR("flash write algorithm aborted by target");
909 retval = ERROR_FLASH_OPERATION_FAILED;
910 break;
911 }
912
913 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
914 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
915 break;
916 }
917
918 /* Count the number of bytes available in the fifo without
919 * crossing the wrap around. Make sure to not fill it completely,
920 * because that would make wp == rp and that's the empty condition. */
921 uint32_t thisrun_bytes;
922 if (rp > wp)
923 thisrun_bytes = rp - wp - block_size;
924 else if (rp > fifo_start_addr)
925 thisrun_bytes = fifo_end_addr - wp;
926 else
927 thisrun_bytes = fifo_end_addr - wp - block_size;
928
929 if (thisrun_bytes == 0) {
930 /* Throttle polling a bit if transfer is (much) faster than flash
931 * programming. The exact delay shouldn't matter as long as it's
932 * less than buffer size / flash speed. This is very unlikely to
933 * run when using high latency connections such as USB. */
934 alive_sleep(10);
935
936 /* to stop an infinite loop on some targets check and increment a timeout
937 * this issue was observed on a stellaris using the new ICDI interface */
938 if (timeout++ >= 500) {
939 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940 return ERROR_FLASH_OPERATION_FAILED;
941 }
942 continue;
943 }
944
945 /* reset our timeout */
946 timeout = 0;
947
948 /* Limit to the amount of data we actually want to write */
949 if (thisrun_bytes > count * block_size)
950 thisrun_bytes = count * block_size;
951
952 /* Write data to fifo */
953 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
954 if (retval != ERROR_OK)
955 break;
956
957 /* Update counters and wrap write pointer */
958 buffer += thisrun_bytes;
959 count -= thisrun_bytes / block_size;
960 wp += thisrun_bytes;
961 if (wp >= fifo_end_addr)
962 wp = fifo_start_addr;
963
964 /* Store updated write pointer to target */
965 retval = target_write_u32(target, wp_addr, wp);
966 if (retval != ERROR_OK)
967 break;
968 }
969
970 if (retval != ERROR_OK) {
971 /* abort flash write algorithm on target */
972 target_write_u32(target, wp_addr, 0);
973 }
974
975 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
976 num_reg_params, reg_params,
977 exit_point,
978 10000,
979 arch_info);
980
981 if (retval2 != ERROR_OK) {
982 LOG_ERROR("error waiting for target flash write algorithm");
983 retval = retval2;
984 }
985
986 return retval;
987 }
988
989 int target_read_memory(struct target *target,
990 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
991 {
992 if (!target_was_examined(target)) {
993 LOG_ERROR("Target not examined yet");
994 return ERROR_FAIL;
995 }
996 return target->type->read_memory(target, address, size, count, buffer);
997 }
998
999 int target_read_phys_memory(struct target *target,
1000 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1001 {
1002 if (!target_was_examined(target)) {
1003 LOG_ERROR("Target not examined yet");
1004 return ERROR_FAIL;
1005 }
1006 return target->type->read_phys_memory(target, address, size, count, buffer);
1007 }
1008
1009 int target_write_memory(struct target *target,
1010 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1011 {
1012 if (!target_was_examined(target)) {
1013 LOG_ERROR("Target not examined yet");
1014 return ERROR_FAIL;
1015 }
1016 return target->type->write_memory(target, address, size, count, buffer);
1017 }
1018
1019 int target_write_phys_memory(struct target *target,
1020 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1021 {
1022 if (!target_was_examined(target)) {
1023 LOG_ERROR("Target not examined yet");
1024 return ERROR_FAIL;
1025 }
1026 return target->type->write_phys_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_add_breakpoint(struct target *target,
1030 struct breakpoint *breakpoint)
1031 {
1032 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1033 LOG_WARNING("target %s is not halted", target_name(target));
1034 return ERROR_TARGET_NOT_HALTED;
1035 }
1036 return target->type->add_breakpoint(target, breakpoint);
1037 }
1038
1039 int target_add_context_breakpoint(struct target *target,
1040 struct breakpoint *breakpoint)
1041 {
1042 if (target->state != TARGET_HALTED) {
1043 LOG_WARNING("target %s is not halted", target_name(target));
1044 return ERROR_TARGET_NOT_HALTED;
1045 }
1046 return target->type->add_context_breakpoint(target, breakpoint);
1047 }
1048
1049 int target_add_hybrid_breakpoint(struct target *target,
1050 struct breakpoint *breakpoint)
1051 {
1052 if (target->state != TARGET_HALTED) {
1053 LOG_WARNING("target %s is not halted", target_name(target));
1054 return ERROR_TARGET_NOT_HALTED;
1055 }
1056 return target->type->add_hybrid_breakpoint(target, breakpoint);
1057 }
1058
1059 int target_remove_breakpoint(struct target *target,
1060 struct breakpoint *breakpoint)
1061 {
1062 return target->type->remove_breakpoint(target, breakpoint);
1063 }
1064
1065 int target_add_watchpoint(struct target *target,
1066 struct watchpoint *watchpoint)
1067 {
1068 if (target->state != TARGET_HALTED) {
1069 LOG_WARNING("target %s is not halted", target_name(target));
1070 return ERROR_TARGET_NOT_HALTED;
1071 }
1072 return target->type->add_watchpoint(target, watchpoint);
1073 }
1074 int target_remove_watchpoint(struct target *target,
1075 struct watchpoint *watchpoint)
1076 {
1077 return target->type->remove_watchpoint(target, watchpoint);
1078 }
1079 int target_hit_watchpoint(struct target *target,
1080 struct watchpoint **hit_watchpoint)
1081 {
1082 if (target->state != TARGET_HALTED) {
1083 LOG_WARNING("target %s is not halted", target->cmd_name);
1084 return ERROR_TARGET_NOT_HALTED;
1085 }
1086
1087 if (target->type->hit_watchpoint == NULL) {
1088 /* For backward compatible, if hit_watchpoint is not implemented,
1089 * return ERROR_FAIL such that gdb_server will not take the nonsense
1090 * information. */
1091 return ERROR_FAIL;
1092 }
1093
1094 return target->type->hit_watchpoint(target, hit_watchpoint);
1095 }
1096
1097 int target_get_gdb_reg_list(struct target *target,
1098 struct reg **reg_list[], int *reg_list_size,
1099 enum target_register_class reg_class)
1100 {
1101 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1102 }
1103 int target_step(struct target *target,
1104 int current, uint32_t address, int handle_breakpoints)
1105 {
1106 return target->type->step(target, current, address, handle_breakpoints);
1107 }
1108
1109 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1110 {
1111 if (target->state != TARGET_HALTED) {
1112 LOG_WARNING("target %s is not halted", target->cmd_name);
1113 return ERROR_TARGET_NOT_HALTED;
1114 }
1115 return target->type->get_gdb_fileio_info(target, fileio_info);
1116 }
1117
1118 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1119 {
1120 if (target->state != TARGET_HALTED) {
1121 LOG_WARNING("target %s is not halted", target->cmd_name);
1122 return ERROR_TARGET_NOT_HALTED;
1123 }
1124 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1125 }
1126
1127 int target_profiling(struct target *target, uint32_t *samples,
1128 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1129 {
1130 if (target->state != TARGET_HALTED) {
1131 LOG_WARNING("target %s is not halted", target->cmd_name);
1132 return ERROR_TARGET_NOT_HALTED;
1133 }
1134 return target->type->profiling(target, samples, max_num_samples,
1135 num_samples, seconds);
1136 }
1137
1138 /**
1139 * Reset the @c examined flag for the given target.
1140 * Pure paranoia -- targets are zeroed on allocation.
1141 */
1142 static void target_reset_examined(struct target *target)
1143 {
1144 target->examined = false;
1145 }
1146
1147 static int err_read_phys_memory(struct target *target, uint32_t address,
1148 uint32_t size, uint32_t count, uint8_t *buffer)
1149 {
1150 LOG_ERROR("Not implemented: %s", __func__);
1151 return ERROR_FAIL;
1152 }
1153
1154 static int err_write_phys_memory(struct target *target, uint32_t address,
1155 uint32_t size, uint32_t count, const uint8_t *buffer)
1156 {
1157 LOG_ERROR("Not implemented: %s", __func__);
1158 return ERROR_FAIL;
1159 }
1160
1161 static int handle_target(void *priv);
1162
1163 static int target_init_one(struct command_context *cmd_ctx,
1164 struct target *target)
1165 {
1166 target_reset_examined(target);
1167
1168 struct target_type *type = target->type;
1169 if (type->examine == NULL)
1170 type->examine = default_examine;
1171
1172 if (type->check_reset == NULL)
1173 type->check_reset = default_check_reset;
1174
1175 assert(type->init_target != NULL);
1176
1177 int retval = type->init_target(cmd_ctx, target);
1178 if (ERROR_OK != retval) {
1179 LOG_ERROR("target '%s' init failed", target_name(target));
1180 return retval;
1181 }
1182
1183 /* Sanity-check MMU support ... stub in what we must, to help
1184 * implement it in stages, but warn if we need to do so.
1185 */
1186 if (type->mmu) {
1187 if (type->write_phys_memory == NULL) {
1188 LOG_ERROR("type '%s' is missing write_phys_memory",
1189 type->name);
1190 type->write_phys_memory = err_write_phys_memory;
1191 }
1192 if (type->read_phys_memory == NULL) {
1193 LOG_ERROR("type '%s' is missing read_phys_memory",
1194 type->name);
1195 type->read_phys_memory = err_read_phys_memory;
1196 }
1197 if (type->virt2phys == NULL) {
1198 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1199 type->virt2phys = identity_virt2phys;
1200 }
1201 } else {
1202 /* Make sure no-MMU targets all behave the same: make no
1203 * distinction between physical and virtual addresses, and
1204 * ensure that virt2phys() is always an identity mapping.
1205 */
1206 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1207 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1208
1209 type->mmu = no_mmu;
1210 type->write_phys_memory = type->write_memory;
1211 type->read_phys_memory = type->read_memory;
1212 type->virt2phys = identity_virt2phys;
1213 }
1214
1215 if (target->type->read_buffer == NULL)
1216 target->type->read_buffer = target_read_buffer_default;
1217
1218 if (target->type->write_buffer == NULL)
1219 target->type->write_buffer = target_write_buffer_default;
1220
1221 if (target->type->get_gdb_fileio_info == NULL)
1222 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1223
1224 if (target->type->gdb_fileio_end == NULL)
1225 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1226
1227 if (target->type->profiling == NULL)
1228 target->type->profiling = target_profiling_default;
1229
1230 return ERROR_OK;
1231 }
1232
1233 static int target_init(struct command_context *cmd_ctx)
1234 {
1235 struct target *target;
1236 int retval;
1237
1238 for (target = all_targets; target; target = target->next) {
1239 retval = target_init_one(cmd_ctx, target);
1240 if (ERROR_OK != retval)
1241 return retval;
1242 }
1243
1244 if (!all_targets)
1245 return ERROR_OK;
1246
1247 retval = target_register_user_commands(cmd_ctx);
1248 if (ERROR_OK != retval)
1249 return retval;
1250
1251 retval = target_register_timer_callback(&handle_target,
1252 polling_interval, 1, cmd_ctx->interp);
1253 if (ERROR_OK != retval)
1254 return retval;
1255
1256 return ERROR_OK;
1257 }
1258
1259 COMMAND_HANDLER(handle_target_init_command)
1260 {
1261 int retval;
1262
1263 if (CMD_ARGC != 0)
1264 return ERROR_COMMAND_SYNTAX_ERROR;
1265
1266 static bool target_initialized;
1267 if (target_initialized) {
1268 LOG_INFO("'target init' has already been called");
1269 return ERROR_OK;
1270 }
1271 target_initialized = true;
1272
1273 retval = command_run_line(CMD_CTX, "init_targets");
1274 if (ERROR_OK != retval)
1275 return retval;
1276
1277 retval = command_run_line(CMD_CTX, "init_board");
1278 if (ERROR_OK != retval)
1279 return retval;
1280
1281 LOG_DEBUG("Initializing targets...");
1282 return target_init(CMD_CTX);
1283 }
1284
1285 int target_register_event_callback(int (*callback)(struct target *target,
1286 enum target_event event, void *priv), void *priv)
1287 {
1288 struct target_event_callback **callbacks_p = &target_event_callbacks;
1289
1290 if (callback == NULL)
1291 return ERROR_COMMAND_SYNTAX_ERROR;
1292
1293 if (*callbacks_p) {
1294 while ((*callbacks_p)->next)
1295 callbacks_p = &((*callbacks_p)->next);
1296 callbacks_p = &((*callbacks_p)->next);
1297 }
1298
1299 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1300 (*callbacks_p)->callback = callback;
1301 (*callbacks_p)->priv = priv;
1302 (*callbacks_p)->next = NULL;
1303
1304 return ERROR_OK;
1305 }
1306
1307 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1308 {
1309 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1310 struct timeval now;
1311
1312 if (callback == NULL)
1313 return ERROR_COMMAND_SYNTAX_ERROR;
1314
1315 if (*callbacks_p) {
1316 while ((*callbacks_p)->next)
1317 callbacks_p = &((*callbacks_p)->next);
1318 callbacks_p = &((*callbacks_p)->next);
1319 }
1320
1321 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1322 (*callbacks_p)->callback = callback;
1323 (*callbacks_p)->periodic = periodic;
1324 (*callbacks_p)->time_ms = time_ms;
1325
1326 gettimeofday(&now, NULL);
1327 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1328 time_ms -= (time_ms % 1000);
1329 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1330 if ((*callbacks_p)->when.tv_usec > 1000000) {
1331 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1332 (*callbacks_p)->when.tv_sec += 1;
1333 }
1334
1335 (*callbacks_p)->priv = priv;
1336 (*callbacks_p)->next = NULL;
1337
1338 return ERROR_OK;
1339 }
1340
1341 int target_unregister_event_callback(int (*callback)(struct target *target,
1342 enum target_event event, void *priv), void *priv)
1343 {
1344 struct target_event_callback **p = &target_event_callbacks;
1345 struct target_event_callback *c = target_event_callbacks;
1346
1347 if (callback == NULL)
1348 return ERROR_COMMAND_SYNTAX_ERROR;
1349
1350 while (c) {
1351 struct target_event_callback *next = c->next;
1352 if ((c->callback == callback) && (c->priv == priv)) {
1353 *p = next;
1354 free(c);
1355 return ERROR_OK;
1356 } else
1357 p = &(c->next);
1358 c = next;
1359 }
1360
1361 return ERROR_OK;
1362 }
1363
1364 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1365 {
1366 struct target_timer_callback **p = &target_timer_callbacks;
1367 struct target_timer_callback *c = target_timer_callbacks;
1368
1369 if (callback == NULL)
1370 return ERROR_COMMAND_SYNTAX_ERROR;
1371
1372 while (c) {
1373 struct target_timer_callback *next = c->next;
1374 if ((c->callback == callback) && (c->priv == priv)) {
1375 *p = next;
1376 free(c);
1377 return ERROR_OK;
1378 } else
1379 p = &(c->next);
1380 c = next;
1381 }
1382
1383 return ERROR_OK;
1384 }
1385
1386 int target_call_event_callbacks(struct target *target, enum target_event event)
1387 {
1388 struct target_event_callback *callback = target_event_callbacks;
1389 struct target_event_callback *next_callback;
1390
1391 if (event == TARGET_EVENT_HALTED) {
1392 /* execute early halted first */
1393 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1394 }
1395
1396 LOG_DEBUG("target event %i (%s)", event,
1397 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1398
1399 target_handle_event(target, event);
1400
1401 while (callback) {
1402 next_callback = callback->next;
1403 callback->callback(target, event, callback->priv);
1404 callback = next_callback;
1405 }
1406
1407 return ERROR_OK;
1408 }
1409
1410 static int target_timer_callback_periodic_restart(
1411 struct target_timer_callback *cb, struct timeval *now)
1412 {
1413 int time_ms = cb->time_ms;
1414 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1415 time_ms -= (time_ms % 1000);
1416 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1417 if (cb->when.tv_usec > 1000000) {
1418 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1419 cb->when.tv_sec += 1;
1420 }
1421 return ERROR_OK;
1422 }
1423
1424 static int target_call_timer_callback(struct target_timer_callback *cb,
1425 struct timeval *now)
1426 {
1427 cb->callback(cb->priv);
1428
1429 if (cb->periodic)
1430 return target_timer_callback_periodic_restart(cb, now);
1431
1432 return target_unregister_timer_callback(cb->callback, cb->priv);
1433 }
1434
1435 static int target_call_timer_callbacks_check_time(int checktime)
1436 {
1437 keep_alive();
1438
1439 struct timeval now;
1440 gettimeofday(&now, NULL);
1441
1442 struct target_timer_callback *callback = target_timer_callbacks;
1443 while (callback) {
1444 /* cleaning up may unregister and free this callback */
1445 struct target_timer_callback *next_callback = callback->next;
1446
1447 bool call_it = callback->callback &&
1448 ((!checktime && callback->periodic) ||
1449 now.tv_sec > callback->when.tv_sec ||
1450 (now.tv_sec == callback->when.tv_sec &&
1451 now.tv_usec >= callback->when.tv_usec));
1452
1453 if (call_it) {
1454 int retval = target_call_timer_callback(callback, &now);
1455 if (retval != ERROR_OK)
1456 return retval;
1457 }
1458
1459 callback = next_callback;
1460 }
1461
1462 return ERROR_OK;
1463 }
1464
1465 int target_call_timer_callbacks(void)
1466 {
1467 return target_call_timer_callbacks_check_time(1);
1468 }
1469
1470 /* invoke periodic callbacks immediately */
1471 int target_call_timer_callbacks_now(void)
1472 {
1473 return target_call_timer_callbacks_check_time(0);
1474 }
1475
1476 /* Prints the working area layout for debug purposes */
1477 static void print_wa_layout(struct target *target)
1478 {
1479 struct working_area *c = target->working_areas;
1480
1481 while (c) {
1482 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1483 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1484 c->address, c->address + c->size - 1, c->size);
1485 c = c->next;
1486 }
1487 }
1488
1489 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1490 static void target_split_working_area(struct working_area *area, uint32_t size)
1491 {
1492 assert(area->free); /* Shouldn't split an allocated area */
1493 assert(size <= area->size); /* Caller should guarantee this */
1494
1495 /* Split only if not already the right size */
1496 if (size < area->size) {
1497 struct working_area *new_wa = malloc(sizeof(*new_wa));
1498
1499 if (new_wa == NULL)
1500 return;
1501
1502 new_wa->next = area->next;
1503 new_wa->size = area->size - size;
1504 new_wa->address = area->address + size;
1505 new_wa->backup = NULL;
1506 new_wa->user = NULL;
1507 new_wa->free = true;
1508
1509 area->next = new_wa;
1510 area->size = size;
1511
1512 /* If backup memory was allocated to this area, it has the wrong size
1513 * now so free it and it will be reallocated if/when needed */
1514 if (area->backup) {
1515 free(area->backup);
1516 area->backup = NULL;
1517 }
1518 }
1519 }
1520
1521 /* Merge all adjacent free areas into one */
1522 static void target_merge_working_areas(struct target *target)
1523 {
1524 struct working_area *c = target->working_areas;
1525
1526 while (c && c->next) {
1527 assert(c->next->address == c->address + c->size); /* This is an invariant */
1528
1529 /* Find two adjacent free areas */
1530 if (c->free && c->next->free) {
1531 /* Merge the last into the first */
1532 c->size += c->next->size;
1533
1534 /* Remove the last */
1535 struct working_area *to_be_freed = c->next;
1536 c->next = c->next->next;
1537 if (to_be_freed->backup)
1538 free(to_be_freed->backup);
1539 free(to_be_freed);
1540
1541 /* If backup memory was allocated to the remaining area, it's has
1542 * the wrong size now */
1543 if (c->backup) {
1544 free(c->backup);
1545 c->backup = NULL;
1546 }
1547 } else {
1548 c = c->next;
1549 }
1550 }
1551 }
1552
1553 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1554 {
1555 /* Reevaluate working area address based on MMU state*/
1556 if (target->working_areas == NULL) {
1557 int retval;
1558 int enabled;
1559
1560 retval = target->type->mmu(target, &enabled);
1561 if (retval != ERROR_OK)
1562 return retval;
1563
1564 if (!enabled) {
1565 if (target->working_area_phys_spec) {
1566 LOG_DEBUG("MMU disabled, using physical "
1567 "address for working memory 0x%08"PRIx32,
1568 target->working_area_phys);
1569 target->working_area = target->working_area_phys;
1570 } else {
1571 LOG_ERROR("No working memory available. "
1572 "Specify -work-area-phys to target.");
1573 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1574 }
1575 } else {
1576 if (target->working_area_virt_spec) {
1577 LOG_DEBUG("MMU enabled, using virtual "
1578 "address for working memory 0x%08"PRIx32,
1579 target->working_area_virt);
1580 target->working_area = target->working_area_virt;
1581 } else {
1582 LOG_ERROR("No working memory available. "
1583 "Specify -work-area-virt to target.");
1584 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1585 }
1586 }
1587
1588 /* Set up initial working area on first call */
1589 struct working_area *new_wa = malloc(sizeof(*new_wa));
1590 if (new_wa) {
1591 new_wa->next = NULL;
1592 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1593 new_wa->address = target->working_area;
1594 new_wa->backup = NULL;
1595 new_wa->user = NULL;
1596 new_wa->free = true;
1597 }
1598
1599 target->working_areas = new_wa;
1600 }
1601
1602 /* only allocate multiples of 4 byte */
1603 if (size % 4)
1604 size = (size + 3) & (~3UL);
1605
1606 struct working_area *c = target->working_areas;
1607
1608 /* Find the first large enough working area */
1609 while (c) {
1610 if (c->free && c->size >= size)
1611 break;
1612 c = c->next;
1613 }
1614
1615 if (c == NULL)
1616 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1617
1618 /* Split the working area into the requested size */
1619 target_split_working_area(c, size);
1620
1621 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1622
1623 if (target->backup_working_area) {
1624 if (c->backup == NULL) {
1625 c->backup = malloc(c->size);
1626 if (c->backup == NULL)
1627 return ERROR_FAIL;
1628 }
1629
1630 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1631 if (retval != ERROR_OK)
1632 return retval;
1633 }
1634
1635 /* mark as used, and return the new (reused) area */
1636 c->free = false;
1637 *area = c;
1638
1639 /* user pointer */
1640 c->user = area;
1641
1642 print_wa_layout(target);
1643
1644 return ERROR_OK;
1645 }
1646
1647 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1648 {
1649 int retval;
1650
1651 retval = target_alloc_working_area_try(target, size, area);
1652 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1653 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1654 return retval;
1655
1656 }
1657
1658 static int target_restore_working_area(struct target *target, struct working_area *area)
1659 {
1660 int retval = ERROR_OK;
1661
1662 if (target->backup_working_area && area->backup != NULL) {
1663 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1664 if (retval != ERROR_OK)
1665 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1666 area->size, area->address);
1667 }
1668
1669 return retval;
1670 }
1671
1672 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1673 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1674 {
1675 int retval = ERROR_OK;
1676
1677 if (area->free)
1678 return retval;
1679
1680 if (restore) {
1681 retval = target_restore_working_area(target, area);
1682 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1683 if (retval != ERROR_OK)
1684 return retval;
1685 }
1686
1687 area->free = true;
1688
1689 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1690 area->size, area->address);
1691
1692 /* mark user pointer invalid */
1693 /* TODO: Is this really safe? It points to some previous caller's memory.
1694 * How could we know that the area pointer is still in that place and not
1695 * some other vital data? What's the purpose of this, anyway? */
1696 *area->user = NULL;
1697 area->user = NULL;
1698
1699 target_merge_working_areas(target);
1700
1701 print_wa_layout(target);
1702
1703 return retval;
1704 }
1705
1706 int target_free_working_area(struct target *target, struct working_area *area)
1707 {
1708 return target_free_working_area_restore(target, area, 1);
1709 }
1710
1711 /* free resources and restore memory, if restoring memory fails,
1712 * free up resources anyway
1713 */
1714 static void target_free_all_working_areas_restore(struct target *target, int restore)
1715 {
1716 struct working_area *c = target->working_areas;
1717
1718 LOG_DEBUG("freeing all working areas");
1719
1720 /* Loop through all areas, restoring the allocated ones and marking them as free */
1721 while (c) {
1722 if (!c->free) {
1723 if (restore)
1724 target_restore_working_area(target, c);
1725 c->free = true;
1726 *c->user = NULL; /* Same as above */
1727 c->user = NULL;
1728 }
1729 c = c->next;
1730 }
1731
1732 /* Run a merge pass to combine all areas into one */
1733 target_merge_working_areas(target);
1734
1735 print_wa_layout(target);
1736 }
1737
1738 void target_free_all_working_areas(struct target *target)
1739 {
1740 target_free_all_working_areas_restore(target, 1);
1741 }
1742
1743 /* Find the largest number of bytes that can be allocated */
1744 uint32_t target_get_working_area_avail(struct target *target)
1745 {
1746 struct working_area *c = target->working_areas;
1747 uint32_t max_size = 0;
1748
1749 if (c == NULL)
1750 return target->working_area_size;
1751
1752 while (c) {
1753 if (c->free && max_size < c->size)
1754 max_size = c->size;
1755
1756 c = c->next;
1757 }
1758
1759 return max_size;
1760 }
1761
1762 int target_arch_state(struct target *target)
1763 {
1764 int retval;
1765 if (target == NULL) {
1766 LOG_USER("No target has been configured");
1767 return ERROR_OK;
1768 }
1769
1770 LOG_USER("target state: %s", target_state_name(target));
1771
1772 if (target->state != TARGET_HALTED)
1773 return ERROR_OK;
1774
1775 retval = target->type->arch_state(target);
1776 return retval;
1777 }
1778
1779 static int target_get_gdb_fileio_info_default(struct target *target,
1780 struct gdb_fileio_info *fileio_info)
1781 {
1782 /* If target does not support semi-hosting function, target
1783 has no need to provide .get_gdb_fileio_info callback.
1784 It just return ERROR_FAIL and gdb_server will return "Txx"
1785 as target halted every time. */
1786 return ERROR_FAIL;
1787 }
1788
1789 static int target_gdb_fileio_end_default(struct target *target,
1790 int retcode, int fileio_errno, bool ctrl_c)
1791 {
1792 return ERROR_OK;
1793 }
1794
1795 static int target_profiling_default(struct target *target, uint32_t *samples,
1796 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1797 {
1798 struct timeval timeout, now;
1799
1800 gettimeofday(&timeout, NULL);
1801 timeval_add_time(&timeout, seconds, 0);
1802
1803 LOG_INFO("Starting profiling. Halting and resuming the"
1804 " target as often as we can...");
1805
1806 uint32_t sample_count = 0;
1807 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1808 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1809
1810 int retval = ERROR_OK;
1811 for (;;) {
1812 target_poll(target);
1813 if (target->state == TARGET_HALTED) {
1814 uint32_t t = *((uint32_t *)reg->value);
1815 samples[sample_count++] = t;
1816 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1817 retval = target_resume(target, 1, 0, 0, 0);
1818 target_poll(target);
1819 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1820 } else if (target->state == TARGET_RUNNING) {
1821 /* We want to quickly sample the PC. */
1822 retval = target_halt(target);
1823 } else {
1824 LOG_INFO("Target not halted or running");
1825 retval = ERROR_OK;
1826 break;
1827 }
1828
1829 if (retval != ERROR_OK)
1830 break;
1831
1832 gettimeofday(&now, NULL);
1833 if ((sample_count >= max_num_samples) ||
1834 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1835 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1836 break;
1837 }
1838 }
1839
1840 *num_samples = sample_count;
1841 return retval;
1842 }
1843
1844 /* Single aligned words are guaranteed to use 16 or 32 bit access
1845 * mode respectively, otherwise data is handled as quickly as
1846 * possible
1847 */
1848 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1849 {
1850 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1851 (int)size, (unsigned)address);
1852
1853 if (!target_was_examined(target)) {
1854 LOG_ERROR("Target not examined yet");
1855 return ERROR_FAIL;
1856 }
1857
1858 if (size == 0)
1859 return ERROR_OK;
1860
1861 if ((address + size - 1) < address) {
1862 /* GDB can request this when e.g. PC is 0xfffffffc*/
1863 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1864 (unsigned)address,
1865 (unsigned)size);
1866 return ERROR_FAIL;
1867 }
1868
1869 return target->type->write_buffer(target, address, size, buffer);
1870 }
1871
1872 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1873 {
1874 uint32_t size;
1875
1876 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1877 * will have something to do with the size we leave to it. */
1878 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1879 if (address & size) {
1880 int retval = target_write_memory(target, address, size, 1, buffer);
1881 if (retval != ERROR_OK)
1882 return retval;
1883 address += size;
1884 count -= size;
1885 buffer += size;
1886 }
1887 }
1888
1889 /* Write the data with as large access size as possible. */
1890 for (; size > 0; size /= 2) {
1891 uint32_t aligned = count - count % size;
1892 if (aligned > 0) {
1893 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1894 if (retval != ERROR_OK)
1895 return retval;
1896 address += aligned;
1897 count -= aligned;
1898 buffer += aligned;
1899 }
1900 }
1901
1902 return ERROR_OK;
1903 }
1904
1905 /* Single aligned words are guaranteed to use 16 or 32 bit access
1906 * mode respectively, otherwise data is handled as quickly as
1907 * possible
1908 */
1909 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1910 {
1911 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1912 (int)size, (unsigned)address);
1913
1914 if (!target_was_examined(target)) {
1915 LOG_ERROR("Target not examined yet");
1916 return ERROR_FAIL;
1917 }
1918
1919 if (size == 0)
1920 return ERROR_OK;
1921
1922 if ((address + size - 1) < address) {
1923 /* GDB can request this when e.g. PC is 0xfffffffc*/
1924 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1925 address,
1926 size);
1927 return ERROR_FAIL;
1928 }
1929
1930 return target->type->read_buffer(target, address, size, buffer);
1931 }
1932
1933 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1934 {
1935 uint32_t size;
1936
1937 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1938 * will have something to do with the size we leave to it. */
1939 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1940 if (address & size) {
1941 int retval = target_read_memory(target, address, size, 1, buffer);
1942 if (retval != ERROR_OK)
1943 return retval;
1944 address += size;
1945 count -= size;
1946 buffer += size;
1947 }
1948 }
1949
1950 /* Read the data with as large access size as possible. */
1951 for (; size > 0; size /= 2) {
1952 uint32_t aligned = count - count % size;
1953 if (aligned > 0) {
1954 int retval = target_read_memory(target, address, size, aligned / size, buffer);
1955 if (retval != ERROR_OK)
1956 return retval;
1957 address += aligned;
1958 count -= aligned;
1959 buffer += aligned;
1960 }
1961 }
1962
1963 return ERROR_OK;
1964 }
1965
1966 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1967 {
1968 uint8_t *buffer;
1969 int retval;
1970 uint32_t i;
1971 uint32_t checksum = 0;
1972 if (!target_was_examined(target)) {
1973 LOG_ERROR("Target not examined yet");
1974 return ERROR_FAIL;
1975 }
1976
1977 retval = target->type->checksum_memory(target, address, size, &checksum);
1978 if (retval != ERROR_OK) {
1979 buffer = malloc(size);
1980 if (buffer == NULL) {
1981 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1982 return ERROR_COMMAND_SYNTAX_ERROR;
1983 }
1984 retval = target_read_buffer(target, address, size, buffer);
1985 if (retval != ERROR_OK) {
1986 free(buffer);
1987 return retval;
1988 }
1989
1990 /* convert to target endianness */
1991 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1992 uint32_t target_data;
1993 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1994 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1995 }
1996
1997 retval = image_calculate_checksum(buffer, size, &checksum);
1998 free(buffer);
1999 }
2000
2001 *crc = checksum;
2002
2003 return retval;
2004 }
2005
2006 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2007 {
2008 int retval;
2009 if (!target_was_examined(target)) {
2010 LOG_ERROR("Target not examined yet");
2011 return ERROR_FAIL;
2012 }
2013
2014 if (target->type->blank_check_memory == 0)
2015 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2016
2017 retval = target->type->blank_check_memory(target, address, size, blank);
2018
2019 return retval;
2020 }
2021
2022 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2023 {
2024 uint8_t value_buf[8];
2025 if (!target_was_examined(target)) {
2026 LOG_ERROR("Target not examined yet");
2027 return ERROR_FAIL;
2028 }
2029
2030 int retval = target_read_memory(target, address, 8, 1, value_buf);
2031
2032 if (retval == ERROR_OK) {
2033 *value = target_buffer_get_u64(target, value_buf);
2034 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2035 address,
2036 *value);
2037 } else {
2038 *value = 0x0;
2039 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2040 address);
2041 }
2042
2043 return retval;
2044 }
2045
2046 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2047 {
2048 uint8_t value_buf[4];
2049 if (!target_was_examined(target)) {
2050 LOG_ERROR("Target not examined yet");
2051 return ERROR_FAIL;
2052 }
2053
2054 int retval = target_read_memory(target, address, 4, 1, value_buf);
2055
2056 if (retval == ERROR_OK) {
2057 *value = target_buffer_get_u32(target, value_buf);
2058 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2059 address,
2060 *value);
2061 } else {
2062 *value = 0x0;
2063 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2064 address);
2065 }
2066
2067 return retval;
2068 }
2069
2070 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2071 {
2072 uint8_t value_buf[2];
2073 if (!target_was_examined(target)) {
2074 LOG_ERROR("Target not examined yet");
2075 return ERROR_FAIL;
2076 }
2077
2078 int retval = target_read_memory(target, address, 2, 1, value_buf);
2079
2080 if (retval == ERROR_OK) {
2081 *value = target_buffer_get_u16(target, value_buf);
2082 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2083 address,
2084 *value);
2085 } else {
2086 *value = 0x0;
2087 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2088 address);
2089 }
2090
2091 return retval;
2092 }
2093
2094 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2095 {
2096 if (!target_was_examined(target)) {
2097 LOG_ERROR("Target not examined yet");
2098 return ERROR_FAIL;
2099 }
2100
2101 int retval = target_read_memory(target, address, 1, 1, value);
2102
2103 if (retval == ERROR_OK) {
2104 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2105 address,
2106 *value);
2107 } else {
2108 *value = 0x0;
2109 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2110 address);
2111 }
2112
2113 return retval;
2114 }
2115
2116 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2117 {
2118 int retval;
2119 uint8_t value_buf[8];
2120 if (!target_was_examined(target)) {
2121 LOG_ERROR("Target not examined yet");
2122 return ERROR_FAIL;
2123 }
2124
2125 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2126 address,
2127 value);
2128
2129 target_buffer_set_u64(target, value_buf, value);
2130 retval = target_write_memory(target, address, 8, 1, value_buf);
2131 if (retval != ERROR_OK)
2132 LOG_DEBUG("failed: %i", retval);
2133
2134 return retval;
2135 }
2136
2137 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2138 {
2139 int retval;
2140 uint8_t value_buf[4];
2141 if (!target_was_examined(target)) {
2142 LOG_ERROR("Target not examined yet");
2143 return ERROR_FAIL;
2144 }
2145
2146 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2147 address,
2148 value);
2149
2150 target_buffer_set_u32(target, value_buf, value);
2151 retval = target_write_memory(target, address, 4, 1, value_buf);
2152 if (retval != ERROR_OK)
2153 LOG_DEBUG("failed: %i", retval);
2154
2155 return retval;
2156 }
2157
2158 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2159 {
2160 int retval;
2161 uint8_t value_buf[2];
2162 if (!target_was_examined(target)) {
2163 LOG_ERROR("Target not examined yet");
2164 return ERROR_FAIL;
2165 }
2166
2167 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2168 address,
2169 value);
2170
2171 target_buffer_set_u16(target, value_buf, value);
2172 retval = target_write_memory(target, address, 2, 1, value_buf);
2173 if (retval != ERROR_OK)
2174 LOG_DEBUG("failed: %i", retval);
2175
2176 return retval;
2177 }
2178
2179 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2180 {
2181 int retval;
2182 if (!target_was_examined(target)) {
2183 LOG_ERROR("Target not examined yet");
2184 return ERROR_FAIL;
2185 }
2186
2187 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2188 address, value);
2189
2190 retval = target_write_memory(target, address, 1, 1, &value);
2191 if (retval != ERROR_OK)
2192 LOG_DEBUG("failed: %i", retval);
2193
2194 return retval;
2195 }
2196
2197 static int find_target(struct command_context *cmd_ctx, const char *name)
2198 {
2199 struct target *target = get_target(name);
2200 if (target == NULL) {
2201 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2202 return ERROR_FAIL;
2203 }
2204 if (!target->tap->enabled) {
2205 LOG_USER("Target: TAP %s is disabled, "
2206 "can't be the current target\n",
2207 target->tap->dotted_name);
2208 return ERROR_FAIL;
2209 }
2210
2211 cmd_ctx->current_target = target->target_number;
2212 return ERROR_OK;
2213 }
2214
2215
2216 COMMAND_HANDLER(handle_targets_command)
2217 {
2218 int retval = ERROR_OK;
2219 if (CMD_ARGC == 1) {
2220 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2221 if (retval == ERROR_OK) {
2222 /* we're done! */
2223 return retval;
2224 }
2225 }
2226
2227 struct target *target = all_targets;
2228 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2229 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2230 while (target) {
2231 const char *state;
2232 char marker = ' ';
2233
2234 if (target->tap->enabled)
2235 state = target_state_name(target);
2236 else
2237 state = "tap-disabled";
2238
2239 if (CMD_CTX->current_target == target->target_number)
2240 marker = '*';
2241
2242 /* keep columns lined up to match the headers above */
2243 command_print(CMD_CTX,
2244 "%2d%c %-18s %-10s %-6s %-18s %s",
2245 target->target_number,
2246 marker,
2247 target_name(target),
2248 target_type_name(target),
2249 Jim_Nvp_value2name_simple(nvp_target_endian,
2250 target->endianness)->name,
2251 target->tap->dotted_name,
2252 state);
2253 target = target->next;
2254 }
2255
2256 return retval;
2257 }
2258
2259 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2260
2261 static int powerDropout;
2262 static int srstAsserted;
2263
2264 static int runPowerRestore;
2265 static int runPowerDropout;
2266 static int runSrstAsserted;
2267 static int runSrstDeasserted;
2268
2269 static int sense_handler(void)
2270 {
2271 static int prevSrstAsserted;
2272 static int prevPowerdropout;
2273
2274 int retval = jtag_power_dropout(&powerDropout);
2275 if (retval != ERROR_OK)
2276 return retval;
2277
2278 int powerRestored;
2279 powerRestored = prevPowerdropout && !powerDropout;
2280 if (powerRestored)
2281 runPowerRestore = 1;
2282
2283 long long current = timeval_ms();
2284 static long long lastPower;
2285 int waitMore = lastPower + 2000 > current;
2286 if (powerDropout && !waitMore) {
2287 runPowerDropout = 1;
2288 lastPower = current;
2289 }
2290
2291 retval = jtag_srst_asserted(&srstAsserted);
2292 if (retval != ERROR_OK)
2293 return retval;
2294
2295 int srstDeasserted;
2296 srstDeasserted = prevSrstAsserted && !srstAsserted;
2297
2298 static long long lastSrst;
2299 waitMore = lastSrst + 2000 > current;
2300 if (srstDeasserted && !waitMore) {
2301 runSrstDeasserted = 1;
2302 lastSrst = current;
2303 }
2304
2305 if (!prevSrstAsserted && srstAsserted)
2306 runSrstAsserted = 1;
2307
2308 prevSrstAsserted = srstAsserted;
2309 prevPowerdropout = powerDropout;
2310
2311 if (srstDeasserted || powerRestored) {
2312 /* Other than logging the event we can't do anything here.
2313 * Issuing a reset is a particularly bad idea as we might
2314 * be inside a reset already.
2315 */
2316 }
2317
2318 return ERROR_OK;
2319 }
2320
2321 /* process target state changes */
2322 static int handle_target(void *priv)
2323 {
2324 Jim_Interp *interp = (Jim_Interp *)priv;
2325 int retval = ERROR_OK;
2326
2327 if (!is_jtag_poll_safe()) {
2328 /* polling is disabled currently */
2329 return ERROR_OK;
2330 }
2331
2332 /* we do not want to recurse here... */
2333 static int recursive;
2334 if (!recursive) {
2335 recursive = 1;
2336 sense_handler();
2337 /* danger! running these procedures can trigger srst assertions and power dropouts.
2338 * We need to avoid an infinite loop/recursion here and we do that by
2339 * clearing the flags after running these events.
2340 */
2341 int did_something = 0;
2342 if (runSrstAsserted) {
2343 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2344 Jim_Eval(interp, "srst_asserted");
2345 did_something = 1;
2346 }
2347 if (runSrstDeasserted) {
2348 Jim_Eval(interp, "srst_deasserted");
2349 did_something = 1;
2350 }
2351 if (runPowerDropout) {
2352 LOG_INFO("Power dropout detected, running power_dropout proc.");
2353 Jim_Eval(interp, "power_dropout");
2354 did_something = 1;
2355 }
2356 if (runPowerRestore) {
2357 Jim_Eval(interp, "power_restore");
2358 did_something = 1;
2359 }
2360
2361 if (did_something) {
2362 /* clear detect flags */
2363 sense_handler();
2364 }
2365
2366 /* clear action flags */
2367
2368 runSrstAsserted = 0;
2369 runSrstDeasserted = 0;
2370 runPowerRestore = 0;
2371 runPowerDropout = 0;
2372
2373 recursive = 0;
2374 }
2375
2376 /* Poll targets for state changes unless that's globally disabled.
2377 * Skip targets that are currently disabled.
2378 */
2379 for (struct target *target = all_targets;
2380 is_jtag_poll_safe() && target;
2381 target = target->next) {
2382
2383 if (!target_was_examined(target))
2384 continue;
2385
2386 if (!target->tap->enabled)
2387 continue;
2388
2389 if (target->backoff.times > target->backoff.count) {
2390 /* do not poll this time as we failed previously */
2391 target->backoff.count++;
2392 continue;
2393 }
2394 target->backoff.count = 0;
2395
2396 /* only poll target if we've got power and srst isn't asserted */
2397 if (!powerDropout && !srstAsserted) {
2398 /* polling may fail silently until the target has been examined */
2399 retval = target_poll(target);
2400 if (retval != ERROR_OK) {
2401 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2402 if (target->backoff.times * polling_interval < 5000) {
2403 target->backoff.times *= 2;
2404 target->backoff.times++;
2405 }
2406 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2407 target_name(target),
2408 target->backoff.times * polling_interval);
2409
2410 /* Tell GDB to halt the debugger. This allows the user to
2411 * run monitor commands to handle the situation.
2412 */
2413 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2414 return retval;
2415 }
2416 /* Since we succeeded, we reset backoff count */
2417 if (target->backoff.times > 0)
2418 LOG_USER("Polling target %s succeeded again", target_name(target));
2419 target->backoff.times = 0;
2420 }
2421 }
2422
2423 return retval;
2424 }
2425
2426 COMMAND_HANDLER(handle_reg_command)
2427 {
2428 struct target *target;
2429 struct reg *reg = NULL;
2430 unsigned count = 0;
2431 char *value;
2432
2433 LOG_DEBUG("-");
2434
2435 target = get_current_target(CMD_CTX);
2436
2437 /* list all available registers for the current target */
2438 if (CMD_ARGC == 0) {
2439 struct reg_cache *cache = target->reg_cache;
2440
2441 count = 0;
2442 while (cache) {
2443 unsigned i;
2444
2445 command_print(CMD_CTX, "===== %s", cache->name);
2446
2447 for (i = 0, reg = cache->reg_list;
2448 i < cache->num_regs;
2449 i++, reg++, count++) {
2450 /* only print cached values if they are valid */
2451 if (reg->valid) {
2452 value = buf_to_str(reg->value,
2453 reg->size, 16);
2454 command_print(CMD_CTX,
2455 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2456 count, reg->name,
2457 reg->size, value,
2458 reg->dirty
2459 ? " (dirty)"
2460 : "");
2461 free(value);
2462 } else {
2463 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2464 count, reg->name,
2465 reg->size) ;
2466 }
2467 }
2468 cache = cache->next;
2469 }
2470
2471 return ERROR_OK;
2472 }
2473
2474 /* access a single register by its ordinal number */
2475 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2476 unsigned num;
2477 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2478
2479 struct reg_cache *cache = target->reg_cache;
2480 count = 0;
2481 while (cache) {
2482 unsigned i;
2483 for (i = 0; i < cache->num_regs; i++) {
2484 if (count++ == num) {
2485 reg = &cache->reg_list[i];
2486 break;
2487 }
2488 }
2489 if (reg)
2490 break;
2491 cache = cache->next;
2492 }
2493
2494 if (!reg) {
2495 command_print(CMD_CTX, "%i is out of bounds, the current target "
2496 "has only %i registers (0 - %i)", num, count, count - 1);
2497 return ERROR_OK;
2498 }
2499 } else {
2500 /* access a single register by its name */
2501 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2502
2503 if (!reg) {
2504 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2505 return ERROR_OK;
2506 }
2507 }
2508
2509 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2510
2511 /* display a register */
2512 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2513 && (CMD_ARGV[1][0] <= '9')))) {
2514 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2515 reg->valid = 0;
2516
2517 if (reg->valid == 0)
2518 reg->type->get(reg);
2519 value = buf_to_str(reg->value, reg->size, 16);
2520 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2521 free(value);
2522 return ERROR_OK;
2523 }
2524
2525 /* set register value */
2526 if (CMD_ARGC == 2) {
2527 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2528 if (buf == NULL)
2529 return ERROR_FAIL;
2530 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2531
2532 reg->type->set(reg, buf);
2533
2534 value = buf_to_str(reg->value, reg->size, 16);
2535 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2536 free(value);
2537
2538 free(buf);
2539
2540 return ERROR_OK;
2541 }
2542
2543 return ERROR_COMMAND_SYNTAX_ERROR;
2544 }
2545
2546 COMMAND_HANDLER(handle_poll_command)
2547 {
2548 int retval = ERROR_OK;
2549 struct target *target = get_current_target(CMD_CTX);
2550
2551 if (CMD_ARGC == 0) {
2552 command_print(CMD_CTX, "background polling: %s",
2553 jtag_poll_get_enabled() ? "on" : "off");
2554 command_print(CMD_CTX, "TAP: %s (%s)",
2555 target->tap->dotted_name,
2556 target->tap->enabled ? "enabled" : "disabled");
2557 if (!target->tap->enabled)
2558 return ERROR_OK;
2559 retval = target_poll(target);
2560 if (retval != ERROR_OK)
2561 return retval;
2562 retval = target_arch_state(target);
2563 if (retval != ERROR_OK)
2564 return retval;
2565 } else if (CMD_ARGC == 1) {
2566 bool enable;
2567 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2568 jtag_poll_set_enabled(enable);
2569 } else
2570 return ERROR_COMMAND_SYNTAX_ERROR;
2571
2572 return retval;
2573 }
2574
2575 COMMAND_HANDLER(handle_wait_halt_command)
2576 {
2577 if (CMD_ARGC > 1)
2578 return ERROR_COMMAND_SYNTAX_ERROR;
2579
2580 unsigned ms = DEFAULT_HALT_TIMEOUT;
2581 if (1 == CMD_ARGC) {
2582 int retval = parse_uint(CMD_ARGV[0], &ms);
2583 if (ERROR_OK != retval)
2584 return ERROR_COMMAND_SYNTAX_ERROR;
2585 }
2586
2587 struct target *target = get_current_target(CMD_CTX);
2588 return target_wait_state(target, TARGET_HALTED, ms);
2589 }
2590
2591 /* wait for target state to change. The trick here is to have a low
2592 * latency for short waits and not to suck up all the CPU time
2593 * on longer waits.
2594 *
2595 * After 500ms, keep_alive() is invoked
2596 */
2597 int target_wait_state(struct target *target, enum target_state state, int ms)
2598 {
2599 int retval;
2600 long long then = 0, cur;
2601 int once = 1;
2602
2603 for (;;) {
2604 retval = target_poll(target);
2605 if (retval != ERROR_OK)
2606 return retval;
2607 if (target->state == state)
2608 break;
2609 cur = timeval_ms();
2610 if (once) {
2611 once = 0;
2612 then = timeval_ms();
2613 LOG_DEBUG("waiting for target %s...",
2614 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2615 }
2616
2617 if (cur-then > 500)
2618 keep_alive();
2619
2620 if ((cur-then) > ms) {
2621 LOG_ERROR("timed out while waiting for target %s",
2622 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2623 return ERROR_FAIL;
2624 }
2625 }
2626
2627 return ERROR_OK;
2628 }
2629
2630 COMMAND_HANDLER(handle_halt_command)
2631 {
2632 LOG_DEBUG("-");
2633
2634 struct target *target = get_current_target(CMD_CTX);
2635 int retval = target_halt(target);
2636 if (ERROR_OK != retval)
2637 return retval;
2638
2639 if (CMD_ARGC == 1) {
2640 unsigned wait_local;
2641 retval = parse_uint(CMD_ARGV[0], &wait_local);
2642 if (ERROR_OK != retval)
2643 return ERROR_COMMAND_SYNTAX_ERROR;
2644 if (!wait_local)
2645 return ERROR_OK;
2646 }
2647
2648 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2649 }
2650
2651 COMMAND_HANDLER(handle_soft_reset_halt_command)
2652 {
2653 struct target *target = get_current_target(CMD_CTX);
2654
2655 LOG_USER("requesting target halt and executing a soft reset");
2656
2657 target_soft_reset_halt(target);
2658
2659 return ERROR_OK;
2660 }
2661
2662 COMMAND_HANDLER(handle_reset_command)
2663 {
2664 if (CMD_ARGC > 1)
2665 return ERROR_COMMAND_SYNTAX_ERROR;
2666
2667 enum target_reset_mode reset_mode = RESET_RUN;
2668 if (CMD_ARGC == 1) {
2669 const Jim_Nvp *n;
2670 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2671 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2672 return ERROR_COMMAND_SYNTAX_ERROR;
2673 reset_mode = n->value;
2674 }
2675
2676 /* reset *all* targets */
2677 return target_process_reset(CMD_CTX, reset_mode);
2678 }
2679
2680
2681 COMMAND_HANDLER(handle_resume_command)
2682 {
2683 int current = 1;
2684 if (CMD_ARGC > 1)
2685 return ERROR_COMMAND_SYNTAX_ERROR;
2686
2687 struct target *target = get_current_target(CMD_CTX);
2688
2689 /* with no CMD_ARGV, resume from current pc, addr = 0,
2690 * with one arguments, addr = CMD_ARGV[0],
2691 * handle breakpoints, not debugging */
2692 uint32_t addr = 0;
2693 if (CMD_ARGC == 1) {
2694 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2695 current = 0;
2696 }
2697
2698 return target_resume(target, current, addr, 1, 0);
2699 }
2700
2701 COMMAND_HANDLER(handle_step_command)
2702 {
2703 if (CMD_ARGC > 1)
2704 return ERROR_COMMAND_SYNTAX_ERROR;
2705
2706 LOG_DEBUG("-");
2707
2708 /* with no CMD_ARGV, step from current pc, addr = 0,
2709 * with one argument addr = CMD_ARGV[0],
2710 * handle breakpoints, debugging */
2711 uint32_t addr = 0;
2712 int current_pc = 1;
2713 if (CMD_ARGC == 1) {
2714 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2715 current_pc = 0;
2716 }
2717
2718 struct target *target = get_current_target(CMD_CTX);
2719
2720 return target->type->step(target, current_pc, addr, 1);
2721 }
2722
2723 static void handle_md_output(struct command_context *cmd_ctx,
2724 struct target *target, uint32_t address, unsigned size,
2725 unsigned count, const uint8_t *buffer)
2726 {
2727 const unsigned line_bytecnt = 32;
2728 unsigned line_modulo = line_bytecnt / size;
2729
2730 char output[line_bytecnt * 4 + 1];
2731 unsigned output_len = 0;
2732
2733 const char *value_fmt;
2734 switch (size) {
2735 case 4:
2736 value_fmt = "%8.8x ";
2737 break;
2738 case 2:
2739 value_fmt = "%4.4x ";
2740 break;
2741 case 1:
2742 value_fmt = "%2.2x ";
2743 break;
2744 default:
2745 /* "can't happen", caller checked */
2746 LOG_ERROR("invalid memory read size: %u", size);
2747 return;
2748 }
2749
2750 for (unsigned i = 0; i < count; i++) {
2751 if (i % line_modulo == 0) {
2752 output_len += snprintf(output + output_len,
2753 sizeof(output) - output_len,
2754 "0x%8.8x: ",
2755 (unsigned)(address + (i*size)));
2756 }
2757
2758 uint32_t value = 0;
2759 const uint8_t *value_ptr = buffer + i * size;
2760 switch (size) {
2761 case 4:
2762 value = target_buffer_get_u32(target, value_ptr);
2763 break;
2764 case 2:
2765 value = target_buffer_get_u16(target, value_ptr);
2766 break;
2767 case 1:
2768 value = *value_ptr;
2769 }
2770 output_len += snprintf(output + output_len,
2771 sizeof(output) - output_len,
2772 value_fmt, value);
2773
2774 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2775 command_print(cmd_ctx, "%s", output);
2776 output_len = 0;
2777 }
2778 }
2779 }
2780
2781 COMMAND_HANDLER(handle_md_command)
2782 {
2783 if (CMD_ARGC < 1)
2784 return ERROR_COMMAND_SYNTAX_ERROR;
2785
2786 unsigned size = 0;
2787 switch (CMD_NAME[2]) {
2788 case 'w':
2789 size = 4;
2790 break;
2791 case 'h':
2792 size = 2;
2793 break;
2794 case 'b':
2795 size = 1;
2796 break;
2797 default:
2798 return ERROR_COMMAND_SYNTAX_ERROR;
2799 }
2800
2801 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2802 int (*fn)(struct target *target,
2803 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2804 if (physical) {
2805 CMD_ARGC--;
2806 CMD_ARGV++;
2807 fn = target_read_phys_memory;
2808 } else
2809 fn = target_read_memory;
2810 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2811 return ERROR_COMMAND_SYNTAX_ERROR;
2812
2813 uint32_t address;
2814 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2815
2816 unsigned count = 1;
2817 if (CMD_ARGC == 2)
2818 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2819
2820 uint8_t *buffer = calloc(count, size);
2821
2822 struct target *target = get_current_target(CMD_CTX);
2823 int retval = fn(target, address, size, count, buffer);
2824 if (ERROR_OK == retval)
2825 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2826
2827 free(buffer);
2828
2829 return retval;
2830 }
2831
2832 typedef int (*target_write_fn)(struct target *target,
2833 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2834
2835 static int target_fill_mem(struct target *target,
2836 uint32_t address,
2837 target_write_fn fn,
2838 unsigned data_size,
2839 /* value */
2840 uint32_t b,
2841 /* count */
2842 unsigned c)
2843 {
2844 /* We have to write in reasonably large chunks to be able
2845 * to fill large memory areas with any sane speed */
2846 const unsigned chunk_size = 16384;
2847 uint8_t *target_buf = malloc(chunk_size * data_size);
2848 if (target_buf == NULL) {
2849 LOG_ERROR("Out of memory");
2850 return ERROR_FAIL;
2851 }
2852
2853 for (unsigned i = 0; i < chunk_size; i++) {
2854 switch (data_size) {
2855 case 4:
2856 target_buffer_set_u32(target, target_buf + i * data_size, b);
2857 break;
2858 case 2:
2859 target_buffer_set_u16(target, target_buf + i * data_size, b);
2860 break;
2861 case 1:
2862 target_buffer_set_u8(target, target_buf + i * data_size, b);
2863 break;
2864 default:
2865 exit(-1);
2866 }
2867 }
2868
2869 int retval = ERROR_OK;
2870
2871 for (unsigned x = 0; x < c; x += chunk_size) {
2872 unsigned current;
2873 current = c - x;
2874 if (current > chunk_size)
2875 current = chunk_size;
2876 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2877 if (retval != ERROR_OK)
2878 break;
2879 /* avoid GDB timeouts */
2880 keep_alive();
2881 }
2882 free(target_buf);
2883
2884 return retval;
2885 }
2886
2887
2888 COMMAND_HANDLER(handle_mw_command)
2889 {
2890 if (CMD_ARGC < 2)
2891 return ERROR_COMMAND_SYNTAX_ERROR;
2892 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2893 target_write_fn fn;
2894 if (physical) {
2895 CMD_ARGC--;
2896 CMD_ARGV++;
2897 fn = target_write_phys_memory;
2898 } else
2899 fn = target_write_memory;
2900 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2901 return ERROR_COMMAND_SYNTAX_ERROR;
2902
2903 uint32_t address;
2904 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2905
2906 uint32_t value;
2907 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2908
2909 unsigned count = 1;
2910 if (CMD_ARGC == 3)
2911 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2912
2913 struct target *target = get_current_target(CMD_CTX);
2914 unsigned wordsize;
2915 switch (CMD_NAME[2]) {
2916 case 'w':
2917 wordsize = 4;
2918 break;
2919 case 'h':
2920 wordsize = 2;
2921 break;
2922 case 'b':
2923 wordsize = 1;
2924 break;
2925 default:
2926 return ERROR_COMMAND_SYNTAX_ERROR;
2927 }
2928
2929 return target_fill_mem(target, address, fn, wordsize, value, count);
2930 }
2931
2932 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2933 uint32_t *min_address, uint32_t *max_address)
2934 {
2935 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2936 return ERROR_COMMAND_SYNTAX_ERROR;
2937
2938 /* a base address isn't always necessary,
2939 * default to 0x0 (i.e. don't relocate) */
2940 if (CMD_ARGC >= 2) {
2941 uint32_t addr;
2942 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2943 image->base_address = addr;
2944 image->base_address_set = 1;
2945 } else
2946 image->base_address_set = 0;
2947
2948 image->start_address_set = 0;
2949
2950 if (CMD_ARGC >= 4)
2951 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2952 if (CMD_ARGC == 5) {
2953 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2954 /* use size (given) to find max (required) */
2955 *max_address += *min_address;
2956 }
2957
2958 if (*min_address > *max_address)
2959 return ERROR_COMMAND_SYNTAX_ERROR;
2960
2961 return ERROR_OK;
2962 }
2963
2964 COMMAND_HANDLER(handle_load_image_command)
2965 {
2966 uint8_t *buffer;
2967 size_t buf_cnt;
2968 uint32_t image_size;
2969 uint32_t min_address = 0;
2970 uint32_t max_address = 0xffffffff;
2971 int i;
2972 struct image image;
2973
2974 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2975 &image, &min_address, &max_address);
2976 if (ERROR_OK != retval)
2977 return retval;
2978
2979 struct target *target = get_current_target(CMD_CTX);
2980
2981 struct duration bench;
2982 duration_start(&bench);
2983
2984 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2985 return ERROR_OK;
2986
2987 image_size = 0x0;
2988 retval = ERROR_OK;
2989 for (i = 0; i < image.num_sections; i++) {
2990 buffer = malloc(image.sections[i].size);
2991 if (buffer == NULL) {
2992 command_print(CMD_CTX,
2993 "error allocating buffer for section (%d bytes)",
2994 (int)(image.sections[i].size));
2995 break;
2996 }
2997
2998 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2999 if (retval != ERROR_OK) {
3000 free(buffer);
3001 break;
3002 }
3003
3004 uint32_t offset = 0;
3005 uint32_t length = buf_cnt;
3006
3007 /* DANGER!!! beware of unsigned comparision here!!! */
3008
3009 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3010 (image.sections[i].base_address < max_address)) {
3011
3012 if (image.sections[i].base_address < min_address) {
3013 /* clip addresses below */
3014 offset += min_address-image.sections[i].base_address;
3015 length -= offset;
3016 }
3017
3018 if (image.sections[i].base_address + buf_cnt > max_address)
3019 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3020
3021 retval = target_write_buffer(target,
3022 image.sections[i].base_address + offset, length, buffer + offset);
3023 if (retval != ERROR_OK) {
3024 free(buffer);
3025 break;
3026 }
3027 image_size += length;
3028 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3029 (unsigned int)length,
3030 image.sections[i].base_address + offset);
3031 }
3032
3033 free(buffer);
3034 }
3035
3036 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3037 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3038 "in %fs (%0.3f KiB/s)", image_size,
3039 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3040 }
3041
3042 image_close(&image);
3043
3044 return retval;
3045
3046 }
3047
3048 COMMAND_HANDLER(handle_dump_image_command)
3049 {
3050 struct fileio fileio;
3051 uint8_t *buffer;
3052 int retval, retvaltemp;
3053 uint32_t address, size;
3054 struct duration bench;
3055 struct target *target = get_current_target(CMD_CTX);
3056
3057 if (CMD_ARGC != 3)
3058 return ERROR_COMMAND_SYNTAX_ERROR;
3059
3060 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3061 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3062
3063 uint32_t buf_size = (size > 4096) ? 4096 : size;
3064 buffer = malloc(buf_size);
3065 if (!buffer)
3066 return ERROR_FAIL;
3067
3068 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3069 if (retval != ERROR_OK) {
3070 free(buffer);
3071 return retval;
3072 }
3073
3074 duration_start(&bench);
3075
3076 while (size > 0) {
3077 size_t size_written;
3078 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3079 retval = target_read_buffer(target, address, this_run_size, buffer);
3080 if (retval != ERROR_OK)
3081 break;
3082
3083 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3084 if (retval != ERROR_OK)
3085 break;
3086
3087 size -= this_run_size;
3088 address += this_run_size;
3089 }
3090
3091 free(buffer);
3092
3093 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3094 int filesize;
3095 retval = fileio_size(&fileio, &filesize);
3096 if (retval != ERROR_OK)
3097 return retval;
3098 command_print(CMD_CTX,
3099 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3100 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3101 }
3102
3103 retvaltemp = fileio_close(&fileio);
3104 if (retvaltemp != ERROR_OK)
3105 return retvaltemp;
3106
3107 return retval;
3108 }
3109
3110 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3111 {
3112 uint8_t *buffer;
3113 size_t buf_cnt;
3114 uint32_t image_size;
3115 int i;
3116 int retval;
3117 uint32_t checksum = 0;
3118 uint32_t mem_checksum = 0;
3119
3120 struct image image;
3121
3122 struct target *target = get_current_target(CMD_CTX);
3123
3124 if (CMD_ARGC < 1)
3125 return ERROR_COMMAND_SYNTAX_ERROR;
3126
3127 if (!target) {
3128 LOG_ERROR("no target selected");
3129 return ERROR_FAIL;
3130 }
3131
3132 struct duration bench;
3133 duration_start(&bench);
3134
3135 if (CMD_ARGC >= 2) {
3136 uint32_t addr;
3137 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3138 image.base_address = addr;
3139 image.base_address_set = 1;
3140 } else {
3141 image.base_address_set = 0;
3142 image.base_address = 0x0;
3143 }
3144
3145 image.start_address_set = 0;
3146
3147 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3148 if (retval != ERROR_OK)
3149 return retval;
3150
3151 image_size = 0x0;
3152 int diffs = 0;
3153 retval = ERROR_OK;
3154 for (i = 0; i < image.num_sections; i++) {
3155 buffer = malloc(image.sections[i].size);
3156 if (buffer == NULL) {
3157 command_print(CMD_CTX,
3158 "error allocating buffer for section (%d bytes)",
3159 (int)(image.sections[i].size));
3160 break;
3161 }
3162 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3163 if (retval != ERROR_OK) {
3164 free(buffer);
3165 break;
3166 }
3167
3168 if (verify) {
3169 /* calculate checksum of image */
3170 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3171 if (retval != ERROR_OK) {
3172 free(buffer);
3173 break;
3174 }
3175
3176 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3177 if (retval != ERROR_OK) {
3178 free(buffer);
3179 break;
3180 }
3181
3182 if (checksum != mem_checksum) {
3183 /* failed crc checksum, fall back to a binary compare */
3184 uint8_t *data;
3185
3186 if (diffs == 0)
3187 LOG_ERROR("checksum mismatch - attempting binary compare");
3188
3189 data = (uint8_t *)malloc(buf_cnt);
3190
3191 /* Can we use 32bit word accesses? */
3192 int size = 1;
3193 int count = buf_cnt;
3194 if ((count % 4) == 0) {
3195 size *= 4;
3196 count /= 4;
3197 }
3198 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3199 if (retval == ERROR_OK) {
3200 uint32_t t;
3201 for (t = 0; t < buf_cnt; t++) {
3202 if (data[t] != buffer[t]) {
3203 command_print(CMD_CTX,
3204 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3205 diffs,
3206 (unsigned)(t + image.sections[i].base_address),
3207 data[t],
3208 buffer[t]);
3209 if (diffs++ >= 127) {
3210 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3211 free(data);
3212 free(buffer);
3213 goto done;
3214 }
3215 }
3216 keep_alive();
3217 }
3218 }
3219 free(data);
3220 }
3221 } else {
3222 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3223 image.sections[i].base_address,
3224 buf_cnt);
3225 }
3226
3227 free(buffer);
3228 image_size += buf_cnt;
3229 }
3230 if (diffs > 0)
3231 command_print(CMD_CTX, "No more differences found.");
3232 done:
3233 if (diffs > 0)
3234 retval = ERROR_FAIL;
3235 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3236 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3237 "in %fs (%0.3f KiB/s)", image_size,
3238 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3239 }
3240
3241 image_close(&image);
3242
3243 return retval;
3244 }
3245
3246 COMMAND_HANDLER(handle_verify_image_command)
3247 {
3248 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3249 }
3250
3251 COMMAND_HANDLER(handle_test_image_command)
3252 {
3253 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3254 }
3255
3256 static int handle_bp_command_list(struct command_context *cmd_ctx)
3257 {
3258 struct target *target = get_current_target(cmd_ctx);
3259 struct breakpoint *breakpoint = target->breakpoints;
3260 while (breakpoint) {
3261 if (breakpoint->type == BKPT_SOFT) {
3262 char *buf = buf_to_str(breakpoint->orig_instr,
3263 breakpoint->length, 16);
3264 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3265 breakpoint->address,
3266 breakpoint->length,
3267 breakpoint->set, buf);
3268 free(buf);
3269 } else {
3270 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3271 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3272 breakpoint->asid,
3273 breakpoint->length, breakpoint->set);
3274 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3275 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3276 breakpoint->address,
3277 breakpoint->length, breakpoint->set);
3278 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3279 breakpoint->asid);
3280 } else
3281 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3282 breakpoint->address,
3283 breakpoint->length, breakpoint->set);
3284 }
3285
3286 breakpoint = breakpoint->next;
3287 }
3288 return ERROR_OK;
3289 }
3290
3291 static int handle_bp_command_set(struct command_context *cmd_ctx,
3292 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3293 {
3294 struct target *target = get_current_target(cmd_ctx);
3295
3296 if (asid == 0) {
3297 int retval = breakpoint_add(target, addr, length, hw);
3298 if (ERROR_OK == retval)
3299 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3300 else {
3301 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3302 return retval;
3303 }
3304 } else if (addr == 0) {
3305 int retval = context_breakpoint_add(target, asid, length, hw);
3306 if (ERROR_OK == retval)
3307 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3308 else {
3309 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3310 return retval;
3311 }
3312 } else {
3313 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3314 if (ERROR_OK == retval)
3315 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3316 else {
3317 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3318 return retval;
3319 }
3320 }
3321 return ERROR_OK;
3322 }
3323
3324 COMMAND_HANDLER(handle_bp_command)
3325 {
3326 uint32_t addr;
3327 uint32_t asid;
3328 uint32_t length;
3329 int hw = BKPT_SOFT;
3330
3331 switch (CMD_ARGC) {
3332 case 0:
3333 return handle_bp_command_list(CMD_CTX);
3334
3335 case 2:
3336 asid = 0;
3337 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3338 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3339 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3340
3341 case 3:
3342 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3343 hw = BKPT_HARD;
3344 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3345
3346 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3347
3348 asid = 0;
3349 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3350 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3351 hw = BKPT_HARD;
3352 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3353 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3354 addr = 0;
3355 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3356 }
3357
3358 case 4:
3359 hw = BKPT_HARD;
3360 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3361 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3362 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3363 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3364
3365 default:
3366 return ERROR_COMMAND_SYNTAX_ERROR;
3367 }
3368 }
3369
3370 COMMAND_HANDLER(handle_rbp_command)
3371 {
3372 if (CMD_ARGC != 1)
3373 return ERROR_COMMAND_SYNTAX_ERROR;
3374
3375 uint32_t addr;
3376 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3377
3378 struct target *target = get_current_target(CMD_CTX);
3379 breakpoint_remove(target, addr);
3380
3381 return ERROR_OK;
3382 }
3383
3384 COMMAND_HANDLER(handle_wp_command)
3385 {
3386 struct target *target = get_current_target(CMD_CTX);
3387
3388 if (CMD_ARGC == 0) {
3389 struct watchpoint *watchpoint = target->watchpoints;
3390
3391 while (watchpoint) {
3392 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3393 ", len: 0x%8.8" PRIx32
3394 ", r/w/a: %i, value: 0x%8.8" PRIx32
3395 ", mask: 0x%8.8" PRIx32,
3396 watchpoint->address,
3397 watchpoint->length,
3398 (int)watchpoint->rw,
3399 watchpoint->value,
3400 watchpoint->mask);
3401 watchpoint = watchpoint->next;
3402 }
3403 return ERROR_OK;
3404 }
3405
3406 enum watchpoint_rw type = WPT_ACCESS;
3407 uint32_t addr = 0;
3408 uint32_t length = 0;
3409 uint32_t data_value = 0x0;
3410 uint32_t data_mask = 0xffffffff;
3411
3412 switch (CMD_ARGC) {
3413 case 5:
3414 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3415 /* fall through */
3416 case 4:
3417 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3418 /* fall through */
3419 case 3:
3420 switch (CMD_ARGV[2][0]) {
3421 case 'r':
3422 type = WPT_READ;
3423 break;
3424 case 'w':
3425 type = WPT_WRITE;
3426 break;
3427 case 'a':
3428 type = WPT_ACCESS;
3429 break;
3430 default:
3431 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3432 return ERROR_COMMAND_SYNTAX_ERROR;
3433 }
3434 /* fall through */
3435 case 2:
3436 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3437 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3438 break;
3439
3440 default:
3441 return ERROR_COMMAND_SYNTAX_ERROR;
3442 }
3443
3444 int retval = watchpoint_add(target, addr, length, type,
3445 data_value, data_mask);
3446 if (ERROR_OK != retval)
3447 LOG_ERROR("Failure setting watchpoints");
3448
3449 return retval;
3450 }
3451
3452 COMMAND_HANDLER(handle_rwp_command)
3453 {
3454 if (CMD_ARGC != 1)
3455 return ERROR_COMMAND_SYNTAX_ERROR;
3456
3457 uint32_t addr;
3458 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3459
3460 struct target *target = get_current_target(CMD_CTX);
3461 watchpoint_remove(target, addr);
3462
3463 return ERROR_OK;
3464 }
3465
3466 /**
3467 * Translate a virtual address to a physical address.
3468 *
3469 * The low-level target implementation must have logged a detailed error
3470 * which is forwarded to telnet/GDB session.
3471 */
3472 COMMAND_HANDLER(handle_virt2phys_command)
3473 {
3474 if (CMD_ARGC != 1)
3475 return ERROR_COMMAND_SYNTAX_ERROR;
3476
3477 uint32_t va;
3478 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3479 uint32_t pa;
3480
3481 struct target *target = get_current_target(CMD_CTX);
3482 int retval = target->type->virt2phys(target, va, &pa);
3483 if (retval == ERROR_OK)
3484 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3485
3486 return retval;
3487 }
3488
3489 static void writeData(FILE *f, const void *data, size_t len)
3490 {
3491 size_t written = fwrite(data, 1, len, f);
3492 if (written != len)
3493 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3494 }
3495
3496 static void writeLong(FILE *f, int l)
3497 {
3498 int i;
3499 for (i = 0; i < 4; i++) {
3500 char c = (l >> (i*8))&0xff;
3501 writeData(f, &c, 1);
3502 }
3503
3504 }
3505
3506 static void writeString(FILE *f, char *s)
3507 {
3508 writeData(f, s, strlen(s));
3509 }
3510
3511 typedef unsigned char UNIT[2]; /* unit of profiling */
3512
3513 /* Dump a gmon.out histogram file. */
3514 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3515 bool with_range, uint32_t start_address, uint32_t end_address)
3516 {
3517 uint32_t i;
3518 FILE *f = fopen(filename, "w");
3519 if (f == NULL)
3520 return;
3521 writeString(f, "gmon");
3522 writeLong(f, 0x00000001); /* Version */
3523 writeLong(f, 0); /* padding */
3524 writeLong(f, 0); /* padding */
3525 writeLong(f, 0); /* padding */
3526
3527 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3528 writeData(f, &zero, 1);
3529
3530 /* figure out bucket size */
3531 uint32_t min;
3532 uint32_t max;
3533 if (with_range) {
3534 min = start_address;
3535 max = end_address;
3536 } else {
3537 min = samples[0];
3538 max = samples[0];
3539 for (i = 0; i < sampleNum; i++) {
3540 if (min > samples[i])
3541 min = samples[i];
3542 if (max < samples[i])
3543 max = samples[i];
3544 }
3545
3546 /* max should be (largest sample + 1)
3547 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3548 max++;
3549 }
3550
3551 int addressSpace = max - min;
3552 assert(addressSpace >= 2);
3553
3554 /* FIXME: What is the reasonable number of buckets?
3555 * The profiling result will be more accurate if there are enough buckets. */
3556 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3557 uint32_t numBuckets = addressSpace / sizeof(UNIT);
3558 if (numBuckets > maxBuckets)
3559 numBuckets = maxBuckets;
3560 int *buckets = malloc(sizeof(int) * numBuckets);
3561 if (buckets == NULL) {
3562 fclose(f);
3563 return;
3564 }
3565 memset(buckets, 0, sizeof(int) * numBuckets);
3566 for (i = 0; i < sampleNum; i++) {
3567 uint32_t address = samples[i];
3568
3569 if ((address < min) || (max <= address))
3570 continue;
3571
3572 long long a = address - min;
3573 long long b = numBuckets;
3574 long long c = addressSpace;
3575 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3576 buckets[index_t]++;
3577 }
3578
3579 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3580 writeLong(f, min); /* low_pc */
3581 writeLong(f, max); /* high_pc */
3582 writeLong(f, numBuckets); /* # of buckets */
3583 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3584 writeString(f, "seconds");
3585 for (i = 0; i < (15-strlen("seconds")); i++)
3586 writeData(f, &zero, 1);
3587 writeString(f, "s");
3588
3589 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3590
3591 char *data = malloc(2 * numBuckets);
3592 if (data != NULL) {
3593 for (i = 0; i < numBuckets; i++) {
3594 int val;
3595 val = buckets[i];
3596 if (val > 65535)
3597 val = 65535;
3598 data[i * 2] = val&0xff;
3599 data[i * 2 + 1] = (val >> 8) & 0xff;
3600 }
3601 free(buckets);
3602 writeData(f, data, numBuckets * 2);
3603 free(data);
3604 } else
3605 free(buckets);
3606
3607 fclose(f);
3608 }
3609
3610 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3611 * which will be used as a random sampling of PC */
3612 COMMAND_HANDLER(handle_profile_command)
3613 {
3614 struct target *target = get_current_target(CMD_CTX);
3615
3616 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3617 return ERROR_COMMAND_SYNTAX_ERROR;
3618
3619 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3620 uint32_t offset;
3621 uint32_t num_of_sampels;
3622 int retval = ERROR_OK;
3623 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3624 if (samples == NULL) {
3625 LOG_ERROR("No memory to store samples.");
3626 return ERROR_FAIL;
3627 }
3628
3629 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3630
3631 /**
3632 * Some cores let us sample the PC without the
3633 * annoying halt/resume step; for example, ARMv7 PCSR.
3634 * Provide a way to use that more efficient mechanism.
3635 */
3636 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3637 &num_of_sampels, offset);
3638 if (retval != ERROR_OK) {
3639 free(samples);
3640 return retval;
3641 }
3642
3643 assert(num_of_sampels <= MAX_PROFILE_SAMPLE_NUM);
3644
3645 retval = target_poll(target);
3646 if (retval != ERROR_OK) {
3647 free(samples