cc8d500f0ccbc1c889da65c1079072f7c03f56df
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
49 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50
51 /* targets */
52 extern struct target_type arm7tdmi_target;
53 extern struct target_type arm720t_target;
54 extern struct target_type arm9tdmi_target;
55 extern struct target_type arm920t_target;
56 extern struct target_type arm966e_target;
57 extern struct target_type arm926ejs_target;
58 extern struct target_type fa526_target;
59 extern struct target_type feroceon_target;
60 extern struct target_type dragonite_target;
61 extern struct target_type xscale_target;
62 extern struct target_type cortexm3_target;
63 extern struct target_type cortexa8_target;
64 extern struct target_type arm11_target;
65 extern struct target_type mips_m4k_target;
66 extern struct target_type avr_target;
67
68 struct target_type *target_types[] =
69 {
70 &arm7tdmi_target,
71 &arm9tdmi_target,
72 &arm920t_target,
73 &arm720t_target,
74 &arm966e_target,
75 &arm926ejs_target,
76 &fa526_target,
77 &feroceon_target,
78 &dragonite_target,
79 &xscale_target,
80 &cortexm3_target,
81 &cortexa8_target,
82 &arm11_target,
83 &mips_m4k_target,
84 &avr_target,
85 NULL,
86 };
87
88 struct target *all_targets = NULL;
89 struct target_event_callback *target_event_callbacks = NULL;
90 struct target_timer_callback *target_timer_callbacks = NULL;
91
92 const Jim_Nvp nvp_assert[] = {
93 { .name = "assert", NVP_ASSERT },
94 { .name = "deassert", NVP_DEASSERT },
95 { .name = "T", NVP_ASSERT },
96 { .name = "F", NVP_DEASSERT },
97 { .name = "t", NVP_ASSERT },
98 { .name = "f", NVP_DEASSERT },
99 { .name = NULL, .value = -1 }
100 };
101
102 const Jim_Nvp nvp_error_target[] = {
103 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
104 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
105 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
106 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
107 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
108 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
109 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
110 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
111 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
112 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
113 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
114 { .value = -1, .name = NULL }
115 };
116
117 const char *target_strerror_safe(int err)
118 {
119 const Jim_Nvp *n;
120
121 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
122 if (n->name == NULL) {
123 return "unknown";
124 } else {
125 return n->name;
126 }
127 }
128
129 static const Jim_Nvp nvp_target_event[] = {
130 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
131 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
132
133 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
134 { .value = TARGET_EVENT_HALTED, .name = "halted" },
135 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
136 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
137 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
138
139 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
140 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
141
142 /* historical name */
143
144 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
145
146 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
147 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
148 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
149 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
150 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
151 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
152 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
153 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
154 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
155 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
156
157 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
158 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
159
160 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
161 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
162
163 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
164 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
165
166 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
167 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
168
169 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
170 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
171
172 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
173 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
174 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
175
176 { .name = NULL, .value = -1 }
177 };
178
179 const Jim_Nvp nvp_target_state[] = {
180 { .name = "unknown", .value = TARGET_UNKNOWN },
181 { .name = "running", .value = TARGET_RUNNING },
182 { .name = "halted", .value = TARGET_HALTED },
183 { .name = "reset", .value = TARGET_RESET },
184 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
185 { .name = NULL, .value = -1 },
186 };
187
188 const Jim_Nvp nvp_target_debug_reason [] = {
189 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
190 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
191 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
192 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
193 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
194 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
195 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
196 { .name = NULL, .value = -1 },
197 };
198
199 const Jim_Nvp nvp_target_endian[] = {
200 { .name = "big", .value = TARGET_BIG_ENDIAN },
201 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
202 { .name = "be", .value = TARGET_BIG_ENDIAN },
203 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
204 { .name = NULL, .value = -1 },
205 };
206
207 const Jim_Nvp nvp_reset_modes[] = {
208 { .name = "unknown", .value = RESET_UNKNOWN },
209 { .name = "run" , .value = RESET_RUN },
210 { .name = "halt" , .value = RESET_HALT },
211 { .name = "init" , .value = RESET_INIT },
212 { .name = NULL , .value = -1 },
213 };
214
215 const char *
216 target_state_name( struct target *t )
217 {
218 const char *cp;
219 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
220 if( !cp ){
221 LOG_ERROR("Invalid target state: %d", (int)(t->state));
222 cp = "(*BUG*unknown*BUG*)";
223 }
224 return cp;
225 }
226
227 /* determine the number of the new target */
228 static int new_target_number(void)
229 {
230 struct target *t;
231 int x;
232
233 /* number is 0 based */
234 x = -1;
235 t = all_targets;
236 while (t) {
237 if (x < t->target_number) {
238 x = t->target_number;
239 }
240 t = t->next;
241 }
242 return x + 1;
243 }
244
245 /* read a uint32_t from a buffer in target memory endianness */
246 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
247 {
248 if (target->endianness == TARGET_LITTLE_ENDIAN)
249 return le_to_h_u32(buffer);
250 else
251 return be_to_h_u32(buffer);
252 }
253
254 /* read a uint16_t from a buffer in target memory endianness */
255 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
256 {
257 if (target->endianness == TARGET_LITTLE_ENDIAN)
258 return le_to_h_u16(buffer);
259 else
260 return be_to_h_u16(buffer);
261 }
262
263 /* read a uint8_t from a buffer in target memory endianness */
264 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
265 {
266 return *buffer & 0x0ff;
267 }
268
269 /* write a uint32_t to a buffer in target memory endianness */
270 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
271 {
272 if (target->endianness == TARGET_LITTLE_ENDIAN)
273 h_u32_to_le(buffer, value);
274 else
275 h_u32_to_be(buffer, value);
276 }
277
278 /* write a uint16_t to a buffer in target memory endianness */
279 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
280 {
281 if (target->endianness == TARGET_LITTLE_ENDIAN)
282 h_u16_to_le(buffer, value);
283 else
284 h_u16_to_be(buffer, value);
285 }
286
287 /* write a uint8_t to a buffer in target memory endianness */
288 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
289 {
290 *buffer = value;
291 }
292
293 /* return a pointer to a configured target; id is name or number */
294 struct target *get_target(const char *id)
295 {
296 struct target *target;
297
298 /* try as tcltarget name */
299 for (target = all_targets; target; target = target->next) {
300 if (target->cmd_name == NULL)
301 continue;
302 if (strcmp(id, target->cmd_name) == 0)
303 return target;
304 }
305
306 /* It's OK to remove this fallback sometime after August 2010 or so */
307
308 /* no match, try as number */
309 unsigned num;
310 if (parse_uint(id, &num) != ERROR_OK)
311 return NULL;
312
313 for (target = all_targets; target; target = target->next) {
314 if (target->target_number == (int)num) {
315 LOG_WARNING("use '%s' as target identifier, not '%u'",
316 target->cmd_name, num);
317 return target;
318 }
319 }
320
321 return NULL;
322 }
323
324 /* returns a pointer to the n-th configured target */
325 static struct target *get_target_by_num(int num)
326 {
327 struct target *target = all_targets;
328
329 while (target) {
330 if (target->target_number == num) {
331 return target;
332 }
333 target = target->next;
334 }
335
336 return NULL;
337 }
338
339 struct target* get_current_target(struct command_context *cmd_ctx)
340 {
341 struct target *target = get_target_by_num(cmd_ctx->current_target);
342
343 if (target == NULL)
344 {
345 LOG_ERROR("BUG: current_target out of bounds");
346 exit(-1);
347 }
348
349 return target;
350 }
351
352 int target_poll(struct target *target)
353 {
354 int retval;
355
356 /* We can't poll until after examine */
357 if (!target_was_examined(target))
358 {
359 /* Fail silently lest we pollute the log */
360 return ERROR_FAIL;
361 }
362
363 retval = target->type->poll(target);
364 if (retval != ERROR_OK)
365 return retval;
366
367 if (target->halt_issued)
368 {
369 if (target->state == TARGET_HALTED)
370 {
371 target->halt_issued = false;
372 } else
373 {
374 long long t = timeval_ms() - target->halt_issued_time;
375 if (t>1000)
376 {
377 target->halt_issued = false;
378 LOG_INFO("Halt timed out, wake up GDB.");
379 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
380 }
381 }
382 }
383
384 return ERROR_OK;
385 }
386
387 int target_halt(struct target *target)
388 {
389 int retval;
390 /* We can't poll until after examine */
391 if (!target_was_examined(target))
392 {
393 LOG_ERROR("Target not examined yet");
394 return ERROR_FAIL;
395 }
396
397 retval = target->type->halt(target);
398 if (retval != ERROR_OK)
399 return retval;
400
401 target->halt_issued = true;
402 target->halt_issued_time = timeval_ms();
403
404 return ERROR_OK;
405 }
406
407 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
408 {
409 int retval;
410
411 /* We can't poll until after examine */
412 if (!target_was_examined(target))
413 {
414 LOG_ERROR("Target not examined yet");
415 return ERROR_FAIL;
416 }
417
418 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
419 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
420 * the application.
421 */
422 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
423 return retval;
424
425 return retval;
426 }
427
428 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
429 {
430 char buf[100];
431 int retval;
432 Jim_Nvp *n;
433 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
434 if (n->name == NULL) {
435 LOG_ERROR("invalid reset mode");
436 return ERROR_FAIL;
437 }
438
439 /* disable polling during reset to make reset event scripts
440 * more predictable, i.e. dr/irscan & pathmove in events will
441 * not have JTAG operations injected into the middle of a sequence.
442 */
443 bool save_poll = jtag_poll_get_enabled();
444
445 jtag_poll_set_enabled(false);
446
447 sprintf(buf, "ocd_process_reset %s", n->name);
448 retval = Jim_Eval(interp, buf);
449
450 jtag_poll_set_enabled(save_poll);
451
452 if (retval != JIM_OK) {
453 Jim_PrintErrorMessage(interp);
454 return ERROR_FAIL;
455 }
456
457 /* We want any events to be processed before the prompt */
458 retval = target_call_timer_callbacks_now();
459
460 return retval;
461 }
462
463 static int identity_virt2phys(struct target *target,
464 uint32_t virtual, uint32_t *physical)
465 {
466 *physical = virtual;
467 return ERROR_OK;
468 }
469
470 static int no_mmu(struct target *target, int *enabled)
471 {
472 *enabled = 0;
473 return ERROR_OK;
474 }
475
476 static int default_examine(struct target *target)
477 {
478 target_set_examined(target);
479 return ERROR_OK;
480 }
481
482 int target_examine_one(struct target *target)
483 {
484 return target->type->examine(target);
485 }
486
487 static int jtag_enable_callback(enum jtag_event event, void *priv)
488 {
489 struct target *target = priv;
490
491 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
492 return ERROR_OK;
493
494 jtag_unregister_event_callback(jtag_enable_callback, target);
495 return target_examine_one(target);
496 }
497
498
499 /* Targets that correctly implement init + examine, i.e.
500 * no communication with target during init:
501 *
502 * XScale
503 */
504 int target_examine(void)
505 {
506 int retval = ERROR_OK;
507 struct target *target;
508
509 for (target = all_targets; target; target = target->next)
510 {
511 /* defer examination, but don't skip it */
512 if (!target->tap->enabled) {
513 jtag_register_event_callback(jtag_enable_callback,
514 target);
515 continue;
516 }
517 if ((retval = target_examine_one(target)) != ERROR_OK)
518 return retval;
519 }
520 return retval;
521 }
522 const char *target_get_name(struct target *target)
523 {
524 return target->type->name;
525 }
526
527 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
528 {
529 if (!target_was_examined(target))
530 {
531 LOG_ERROR("Target not examined yet");
532 return ERROR_FAIL;
533 }
534 return target->type->write_memory_imp(target, address, size, count, buffer);
535 }
536
537 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
538 {
539 if (!target_was_examined(target))
540 {
541 LOG_ERROR("Target not examined yet");
542 return ERROR_FAIL;
543 }
544 return target->type->read_memory_imp(target, address, size, count, buffer);
545 }
546
547 static int target_soft_reset_halt_imp(struct target *target)
548 {
549 if (!target_was_examined(target))
550 {
551 LOG_ERROR("Target not examined yet");
552 return ERROR_FAIL;
553 }
554 if (!target->type->soft_reset_halt_imp) {
555 LOG_ERROR("Target %s does not support soft_reset_halt",
556 target->cmd_name);
557 return ERROR_FAIL;
558 }
559 return target->type->soft_reset_halt_imp(target);
560 }
561
562 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
563 {
564 if (!target_was_examined(target))
565 {
566 LOG_ERROR("Target not examined yet");
567 return ERROR_FAIL;
568 }
569 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
570 }
571
572 int target_read_memory(struct target *target,
573 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
574 {
575 return target->type->read_memory(target, address, size, count, buffer);
576 }
577
578 int target_read_phys_memory(struct target *target,
579 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
580 {
581 return target->type->read_phys_memory(target, address, size, count, buffer);
582 }
583
584 int target_write_memory(struct target *target,
585 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
586 {
587 return target->type->write_memory(target, address, size, count, buffer);
588 }
589
590 int target_write_phys_memory(struct target *target,
591 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
592 {
593 return target->type->write_phys_memory(target, address, size, count, buffer);
594 }
595
596 int target_bulk_write_memory(struct target *target,
597 uint32_t address, uint32_t count, uint8_t *buffer)
598 {
599 return target->type->bulk_write_memory(target, address, count, buffer);
600 }
601
602 int target_add_breakpoint(struct target *target,
603 struct breakpoint *breakpoint)
604 {
605 return target->type->add_breakpoint(target, breakpoint);
606 }
607 int target_remove_breakpoint(struct target *target,
608 struct breakpoint *breakpoint)
609 {
610 return target->type->remove_breakpoint(target, breakpoint);
611 }
612
613 int target_add_watchpoint(struct target *target,
614 struct watchpoint *watchpoint)
615 {
616 return target->type->add_watchpoint(target, watchpoint);
617 }
618 int target_remove_watchpoint(struct target *target,
619 struct watchpoint *watchpoint)
620 {
621 return target->type->remove_watchpoint(target, watchpoint);
622 }
623
624 int target_get_gdb_reg_list(struct target *target,
625 struct reg **reg_list[], int *reg_list_size)
626 {
627 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
628 }
629 int target_step(struct target *target,
630 int current, uint32_t address, int handle_breakpoints)
631 {
632 return target->type->step(target, current, address, handle_breakpoints);
633 }
634
635
636 int target_run_algorithm(struct target *target,
637 int num_mem_params, struct mem_param *mem_params,
638 int num_reg_params, struct reg_param *reg_param,
639 uint32_t entry_point, uint32_t exit_point,
640 int timeout_ms, void *arch_info)
641 {
642 return target->type->run_algorithm(target,
643 num_mem_params, mem_params, num_reg_params, reg_param,
644 entry_point, exit_point, timeout_ms, arch_info);
645 }
646
647 /// @returns @c true if the target has been examined.
648 bool target_was_examined(struct target *target)
649 {
650 return target->type->examined;
651 }
652 /// Sets the @c examined flag for the given target.
653 void target_set_examined(struct target *target)
654 {
655 target->type->examined = true;
656 }
657 // Reset the @c examined flag for the given target.
658 void target_reset_examined(struct target *target)
659 {
660 target->type->examined = false;
661 }
662
663
664
665 static int default_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
666 {
667 LOG_ERROR("Not implemented: %s", __func__);
668 return ERROR_FAIL;
669 }
670
671 static int default_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
672 {
673 LOG_ERROR("Not implemented: %s", __func__);
674 return ERROR_FAIL;
675 }
676
677 static int arm_cp_check(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
678 {
679 /* basic check */
680 if (!target_was_examined(target))
681 {
682 LOG_ERROR("Target not examined yet");
683 return ERROR_FAIL;
684 }
685
686 if ((cpnum <0) || (cpnum > 15))
687 {
688 LOG_ERROR("Illegal co-processor %d", cpnum);
689 return ERROR_FAIL;
690 }
691
692 if (op1 > 7)
693 {
694 LOG_ERROR("Illegal op1");
695 return ERROR_FAIL;
696 }
697
698 if (op2 > 7)
699 {
700 LOG_ERROR("Illegal op2");
701 return ERROR_FAIL;
702 }
703
704 if (CRn > 15)
705 {
706 LOG_ERROR("Illegal CRn");
707 return ERROR_FAIL;
708 }
709
710 if (CRm > 15)
711 {
712 LOG_ERROR("Illegal CRm");
713 return ERROR_FAIL;
714 }
715
716 return ERROR_OK;
717 }
718
719 int target_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
720 {
721 int retval;
722
723 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
724 if (retval != ERROR_OK)
725 return retval;
726
727 return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
728 }
729
730 int target_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
731 {
732 int retval;
733
734 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
735 if (retval != ERROR_OK)
736 return retval;
737
738 return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
739 }
740
741 static int
742 err_read_phys_memory(struct target *target, uint32_t address,
743 uint32_t size, uint32_t count, uint8_t *buffer)
744 {
745 LOG_ERROR("Not implemented: %s", __func__);
746 return ERROR_FAIL;
747 }
748
749 static int
750 err_write_phys_memory(struct target *target, uint32_t address,
751 uint32_t size, uint32_t count, uint8_t *buffer)
752 {
753 LOG_ERROR("Not implemented: %s", __func__);
754 return ERROR_FAIL;
755 }
756
757 int target_init(struct command_context *cmd_ctx)
758 {
759 struct target *target;
760 int retval;
761
762 for (target = all_targets; target; target = target->next) {
763 struct target_type *type = target->type;
764
765 target_reset_examined(target);
766 if (target->type->examine == NULL)
767 {
768 target->type->examine = default_examine;
769 }
770
771 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
772 {
773 LOG_ERROR("target '%s' init failed", target_get_name(target));
774 return retval;
775 }
776
777 /**
778 * @todo MCR/MRC are ARM-specific; don't require them in
779 * all targets, or for ARMs without coprocessors.
780 */
781 if (target->type->mcr == NULL)
782 {
783 target->type->mcr = default_mcr;
784 } else
785 {
786 /* FIX! multiple targets will generally register global commands
787 * multiple times. Only register this one if *one* of the
788 * targets need the command. Hmm... make it a command on the
789 * Jim Tcl target object?
790 */
791 register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
792 }
793
794 if (target->type->mrc == NULL)
795 {
796 target->type->mrc = default_mrc;
797 } else
798 {
799 register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
800 }
801
802
803 /**
804 * @todo get rid of those *memory_imp() methods, now that all
805 * callers are using target_*_memory() accessors ... and make
806 * sure the "physical" paths handle the same issues.
807 */
808
809 /* a non-invasive way(in terms of patches) to add some code that
810 * runs before the type->write/read_memory implementation
811 */
812 target->type->write_memory_imp = target->type->write_memory;
813 target->type->write_memory = target_write_memory_imp;
814 target->type->read_memory_imp = target->type->read_memory;
815 target->type->read_memory = target_read_memory_imp;
816 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
817 target->type->soft_reset_halt = target_soft_reset_halt_imp;
818 target->type->run_algorithm_imp = target->type->run_algorithm;
819 target->type->run_algorithm = target_run_algorithm_imp;
820
821 /* Sanity-check MMU support ... stub in what we must, to help
822 * implement it in stages, but warn if we need to do so.
823 */
824 if (type->mmu) {
825 if (type->write_phys_memory == NULL) {
826 LOG_ERROR("type '%s' is missing %s",
827 type->name,
828 "write_phys_memory");
829 type->write_phys_memory = err_write_phys_memory;
830 }
831 if (type->read_phys_memory == NULL) {
832 LOG_ERROR("type '%s' is missing %s",
833 type->name,
834 "read_phys_memory");
835 type->read_phys_memory = err_read_phys_memory;
836 }
837 if (type->virt2phys == NULL) {
838 LOG_ERROR("type '%s' is missing %s",
839 type->name,
840 "virt2phys");
841 type->virt2phys = identity_virt2phys;
842 }
843
844 /* Make sure no-MMU targets all behave the same: make no
845 * distinction between physical and virtual addresses, and
846 * ensure that virt2phys() is always an identity mapping.
847 */
848 } else {
849 if (type->write_phys_memory
850 || type->read_phys_memory
851 || type->virt2phys)
852 LOG_WARNING("type '%s' has broken MMU hooks",
853 type->name);
854
855 type->mmu = no_mmu;
856 type->write_phys_memory = type->write_memory;
857 type->read_phys_memory = type->read_memory;
858 type->virt2phys = identity_virt2phys;
859 }
860 }
861
862 if (all_targets)
863 {
864 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
865 return retval;
866 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
867 return retval;
868 }
869
870 return ERROR_OK;
871 }
872
873 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
874 {
875 struct target_event_callback **callbacks_p = &target_event_callbacks;
876
877 if (callback == NULL)
878 {
879 return ERROR_INVALID_ARGUMENTS;
880 }
881
882 if (*callbacks_p)
883 {
884 while ((*callbacks_p)->next)
885 callbacks_p = &((*callbacks_p)->next);
886 callbacks_p = &((*callbacks_p)->next);
887 }
888
889 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
890 (*callbacks_p)->callback = callback;
891 (*callbacks_p)->priv = priv;
892 (*callbacks_p)->next = NULL;
893
894 return ERROR_OK;
895 }
896
897 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
898 {
899 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
900 struct timeval now;
901
902 if (callback == NULL)
903 {
904 return ERROR_INVALID_ARGUMENTS;
905 }
906
907 if (*callbacks_p)
908 {
909 while ((*callbacks_p)->next)
910 callbacks_p = &((*callbacks_p)->next);
911 callbacks_p = &((*callbacks_p)->next);
912 }
913
914 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
915 (*callbacks_p)->callback = callback;
916 (*callbacks_p)->periodic = periodic;
917 (*callbacks_p)->time_ms = time_ms;
918
919 gettimeofday(&now, NULL);
920 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
921 time_ms -= (time_ms % 1000);
922 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
923 if ((*callbacks_p)->when.tv_usec > 1000000)
924 {
925 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
926 (*callbacks_p)->when.tv_sec += 1;
927 }
928
929 (*callbacks_p)->priv = priv;
930 (*callbacks_p)->next = NULL;
931
932 return ERROR_OK;
933 }
934
935 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
936 {
937 struct target_event_callback **p = &target_event_callbacks;
938 struct target_event_callback *c = target_event_callbacks;
939
940 if (callback == NULL)
941 {
942 return ERROR_INVALID_ARGUMENTS;
943 }
944
945 while (c)
946 {
947 struct target_event_callback *next = c->next;
948 if ((c->callback == callback) && (c->priv == priv))
949 {
950 *p = next;
951 free(c);
952 return ERROR_OK;
953 }
954 else
955 p = &(c->next);
956 c = next;
957 }
958
959 return ERROR_OK;
960 }
961
962 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
963 {
964 struct target_timer_callback **p = &target_timer_callbacks;
965 struct target_timer_callback *c = target_timer_callbacks;
966
967 if (callback == NULL)
968 {
969 return ERROR_INVALID_ARGUMENTS;
970 }
971
972 while (c)
973 {
974 struct target_timer_callback *next = c->next;
975 if ((c->callback == callback) && (c->priv == priv))
976 {
977 *p = next;
978 free(c);
979 return ERROR_OK;
980 }
981 else
982 p = &(c->next);
983 c = next;
984 }
985
986 return ERROR_OK;
987 }
988
989 int target_call_event_callbacks(struct target *target, enum target_event event)
990 {
991 struct target_event_callback *callback = target_event_callbacks;
992 struct target_event_callback *next_callback;
993
994 if (event == TARGET_EVENT_HALTED)
995 {
996 /* execute early halted first */
997 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
998 }
999
1000 LOG_DEBUG("target event %i (%s)",
1001 event,
1002 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1003
1004 target_handle_event(target, event);
1005
1006 while (callback)
1007 {
1008 next_callback = callback->next;
1009 callback->callback(target, event, callback->priv);
1010 callback = next_callback;
1011 }
1012
1013 return ERROR_OK;
1014 }
1015
1016 static int target_timer_callback_periodic_restart(
1017 struct target_timer_callback *cb, struct timeval *now)
1018 {
1019 int time_ms = cb->time_ms;
1020 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1021 time_ms -= (time_ms % 1000);
1022 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1023 if (cb->when.tv_usec > 1000000)
1024 {
1025 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1026 cb->when.tv_sec += 1;
1027 }
1028 return ERROR_OK;
1029 }
1030
1031 static int target_call_timer_callback(struct target_timer_callback *cb,
1032 struct timeval *now)
1033 {
1034 cb->callback(cb->priv);
1035
1036 if (cb->periodic)
1037 return target_timer_callback_periodic_restart(cb, now);
1038
1039 return target_unregister_timer_callback(cb->callback, cb->priv);
1040 }
1041
1042 static int target_call_timer_callbacks_check_time(int checktime)
1043 {
1044 keep_alive();
1045
1046 struct timeval now;
1047 gettimeofday(&now, NULL);
1048
1049 struct target_timer_callback *callback = target_timer_callbacks;
1050 while (callback)
1051 {
1052 // cleaning up may unregister and free this callback
1053 struct target_timer_callback *next_callback = callback->next;
1054
1055 bool call_it = callback->callback &&
1056 ((!checktime && callback->periodic) ||
1057 now.tv_sec > callback->when.tv_sec ||
1058 (now.tv_sec == callback->when.tv_sec &&
1059 now.tv_usec >= callback->when.tv_usec));
1060
1061 if (call_it)
1062 {
1063 int retval = target_call_timer_callback(callback, &now);
1064 if (retval != ERROR_OK)
1065 return retval;
1066 }
1067
1068 callback = next_callback;
1069 }
1070
1071 return ERROR_OK;
1072 }
1073
1074 int target_call_timer_callbacks(void)
1075 {
1076 return target_call_timer_callbacks_check_time(1);
1077 }
1078
1079 /* invoke periodic callbacks immediately */
1080 int target_call_timer_callbacks_now(void)
1081 {
1082 return target_call_timer_callbacks_check_time(0);
1083 }
1084
1085 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1086 {
1087 struct working_area *c = target->working_areas;
1088 struct working_area *new_wa = NULL;
1089
1090 /* Reevaluate working area address based on MMU state*/
1091 if (target->working_areas == NULL)
1092 {
1093 int retval;
1094 int enabled;
1095
1096 retval = target->type->mmu(target, &enabled);
1097 if (retval != ERROR_OK)
1098 {
1099 return retval;
1100 }
1101
1102 if (!enabled) {
1103 if (target->working_area_phys_spec) {
1104 LOG_DEBUG("MMU disabled, using physical "
1105 "address for working memory 0x%08x",
1106 (unsigned)target->working_area_phys);
1107 target->working_area = target->working_area_phys;
1108 } else {
1109 LOG_ERROR("No working memory available. "
1110 "Specify -work-area-phys to target.");
1111 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1112 }
1113 } else {
1114 if (target->working_area_virt_spec) {
1115 LOG_DEBUG("MMU enabled, using virtual "
1116 "address for working memory 0x%08x",
1117 (unsigned)target->working_area_virt);
1118 target->working_area = target->working_area_virt;
1119 } else {
1120 LOG_ERROR("No working memory available. "
1121 "Specify -work-area-virt to target.");
1122 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1123 }
1124 }
1125 }
1126
1127 /* only allocate multiples of 4 byte */
1128 if (size % 4)
1129 {
1130 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1131 size = (size + 3) & (~3);
1132 }
1133
1134 /* see if there's already a matching working area */
1135 while (c)
1136 {
1137 if ((c->free) && (c->size == size))
1138 {
1139 new_wa = c;
1140 break;
1141 }
1142 c = c->next;
1143 }
1144
1145 /* if not, allocate a new one */
1146 if (!new_wa)
1147 {
1148 struct working_area **p = &target->working_areas;
1149 uint32_t first_free = target->working_area;
1150 uint32_t free_size = target->working_area_size;
1151
1152 c = target->working_areas;
1153 while (c)
1154 {
1155 first_free += c->size;
1156 free_size -= c->size;
1157 p = &c->next;
1158 c = c->next;
1159 }
1160
1161 if (free_size < size)
1162 {
1163 LOG_WARNING("not enough working area available(requested %u, free %u)",
1164 (unsigned)(size), (unsigned)(free_size));
1165 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1166 }
1167
1168 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1169
1170 new_wa = malloc(sizeof(struct working_area));
1171 new_wa->next = NULL;
1172 new_wa->size = size;
1173 new_wa->address = first_free;
1174
1175 if (target->backup_working_area)
1176 {
1177 int retval;
1178 new_wa->backup = malloc(new_wa->size);
1179 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1180 {
1181 free(new_wa->backup);
1182 free(new_wa);
1183 return retval;
1184 }
1185 }
1186 else
1187 {
1188 new_wa->backup = NULL;
1189 }
1190
1191 /* put new entry in list */
1192 *p = new_wa;
1193 }
1194
1195 /* mark as used, and return the new (reused) area */
1196 new_wa->free = 0;
1197 *area = new_wa;
1198
1199 /* user pointer */
1200 new_wa->user = area;
1201
1202 return ERROR_OK;
1203 }
1204
1205 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1206 {
1207 if (area->free)
1208 return ERROR_OK;
1209
1210 if (restore && target->backup_working_area)
1211 {
1212 int retval;
1213 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1214 return retval;
1215 }
1216
1217 area->free = 1;
1218
1219 /* mark user pointer invalid */
1220 *area->user = NULL;
1221 area->user = NULL;
1222
1223 return ERROR_OK;
1224 }
1225
1226 int target_free_working_area(struct target *target, struct working_area *area)
1227 {
1228 return target_free_working_area_restore(target, area, 1);
1229 }
1230
1231 /* free resources and restore memory, if restoring memory fails,
1232 * free up resources anyway
1233 */
1234 void target_free_all_working_areas_restore(struct target *target, int restore)
1235 {
1236 struct working_area *c = target->working_areas;
1237
1238 while (c)
1239 {
1240 struct working_area *next = c->next;
1241 target_free_working_area_restore(target, c, restore);
1242
1243 if (c->backup)
1244 free(c->backup);
1245
1246 free(c);
1247
1248 c = next;
1249 }
1250
1251 target->working_areas = NULL;
1252 }
1253
1254 void target_free_all_working_areas(struct target *target)
1255 {
1256 target_free_all_working_areas_restore(target, 1);
1257 }
1258
1259 int target_arch_state(struct target *target)
1260 {
1261 int retval;
1262 if (target == NULL)
1263 {
1264 LOG_USER("No target has been configured");
1265 return ERROR_OK;
1266 }
1267
1268 LOG_USER("target state: %s", target_state_name( target ));
1269
1270 if (target->state != TARGET_HALTED)
1271 return ERROR_OK;
1272
1273 retval = target->type->arch_state(target);
1274 return retval;
1275 }
1276
1277 /* Single aligned words are guaranteed to use 16 or 32 bit access
1278 * mode respectively, otherwise data is handled as quickly as
1279 * possible
1280 */
1281 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1282 {
1283 int retval;
1284 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1285 (int)size, (unsigned)address);
1286
1287 if (!target_was_examined(target))
1288 {
1289 LOG_ERROR("Target not examined yet");
1290 return ERROR_FAIL;
1291 }
1292
1293 if (size == 0) {
1294 return ERROR_OK;
1295 }
1296
1297 if ((address + size - 1) < address)
1298 {
1299 /* GDB can request this when e.g. PC is 0xfffffffc*/
1300 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1301 (unsigned)address,
1302 (unsigned)size);
1303 return ERROR_FAIL;
1304 }
1305
1306 if (((address % 2) == 0) && (size == 2))
1307 {
1308 return target_write_memory(target, address, 2, 1, buffer);
1309 }
1310
1311 /* handle unaligned head bytes */
1312 if (address % 4)
1313 {
1314 uint32_t unaligned = 4 - (address % 4);
1315
1316 if (unaligned > size)
1317 unaligned = size;
1318
1319 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1320 return retval;
1321
1322 buffer += unaligned;
1323 address += unaligned;
1324 size -= unaligned;
1325 }
1326
1327 /* handle aligned words */
1328 if (size >= 4)
1329 {
1330 int aligned = size - (size % 4);
1331
1332 /* use bulk writes above a certain limit. This may have to be changed */
1333 if (aligned > 128)
1334 {
1335 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1336 return retval;
1337 }
1338 else
1339 {
1340 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1341 return retval;
1342 }
1343
1344 buffer += aligned;
1345 address += aligned;
1346 size -= aligned;
1347 }
1348
1349 /* handle tail writes of less than 4 bytes */
1350 if (size > 0)
1351 {
1352 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1353 return retval;
1354 }
1355
1356 return ERROR_OK;
1357 }
1358
1359 /* Single aligned words are guaranteed to use 16 or 32 bit access
1360 * mode respectively, otherwise data is handled as quickly as
1361 * possible
1362 */
1363 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1364 {
1365 int retval;
1366 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1367 (int)size, (unsigned)address);
1368
1369 if (!target_was_examined(target))
1370 {
1371 LOG_ERROR("Target not examined yet");
1372 return ERROR_FAIL;
1373 }
1374
1375 if (size == 0) {
1376 return ERROR_OK;
1377 }
1378
1379 if ((address + size - 1) < address)
1380 {
1381 /* GDB can request this when e.g. PC is 0xfffffffc*/
1382 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1383 address,
1384 size);
1385 return ERROR_FAIL;
1386 }
1387
1388 if (((address % 2) == 0) && (size == 2))
1389 {
1390 return target_read_memory(target, address, 2, 1, buffer);
1391 }
1392
1393 /* handle unaligned head bytes */
1394 if (address % 4)
1395 {
1396 uint32_t unaligned = 4 - (address % 4);
1397
1398 if (unaligned > size)
1399 unaligned = size;
1400
1401 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1402 return retval;
1403
1404 buffer += unaligned;
1405 address += unaligned;
1406 size -= unaligned;
1407 }
1408
1409 /* handle aligned words */
1410 if (size >= 4)
1411 {
1412 int aligned = size - (size % 4);
1413
1414 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1415 return retval;
1416
1417 buffer += aligned;
1418 address += aligned;
1419 size -= aligned;
1420 }
1421
1422 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1423 if(size >=2)
1424 {
1425 int aligned = size - (size%2);
1426 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1427 if (retval != ERROR_OK)
1428 return retval;
1429
1430 buffer += aligned;
1431 address += aligned;
1432 size -= aligned;
1433 }
1434 /* handle tail writes of less than 4 bytes */
1435 if (size > 0)
1436 {
1437 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1438 return retval;
1439 }
1440
1441 return ERROR_OK;
1442 }
1443
1444 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1445 {
1446 uint8_t *buffer;
1447 int retval;
1448 uint32_t i;
1449 uint32_t checksum = 0;
1450 if (!target_was_examined(target))
1451 {
1452 LOG_ERROR("Target not examined yet");
1453 return ERROR_FAIL;
1454 }
1455
1456 if ((retval = target->type->checksum_memory(target, address,
1457 size, &checksum)) != ERROR_OK)
1458 {
1459 buffer = malloc(size);
1460 if (buffer == NULL)
1461 {
1462 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1463 return ERROR_INVALID_ARGUMENTS;
1464 }
1465 retval = target_read_buffer(target, address, size, buffer);
1466 if (retval != ERROR_OK)
1467 {
1468 free(buffer);
1469 return retval;
1470 }
1471
1472 /* convert to target endianess */
1473 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1474 {
1475 uint32_t target_data;
1476 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1477 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1478 }
1479
1480 retval = image_calculate_checksum(buffer, size, &checksum);
1481 free(buffer);
1482 }
1483
1484 *crc = checksum;
1485
1486 return retval;
1487 }
1488
1489 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1490 {
1491 int retval;
1492 if (!target_was_examined(target))
1493 {
1494 LOG_ERROR("Target not examined yet");
1495 return ERROR_FAIL;
1496 }
1497
1498 if (target->type->blank_check_memory == 0)
1499 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1500
1501 retval = target->type->blank_check_memory(target, address, size, blank);
1502
1503 return retval;
1504 }
1505
1506 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1507 {
1508 uint8_t value_buf[4];
1509 if (!target_was_examined(target))
1510 {
1511 LOG_ERROR("Target not examined yet");
1512 return ERROR_FAIL;
1513 }
1514
1515 int retval = target_read_memory(target, address, 4, 1, value_buf);
1516
1517 if (retval == ERROR_OK)
1518 {
1519 *value = target_buffer_get_u32(target, value_buf);
1520 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1521 address,
1522 *value);
1523 }
1524 else
1525 {
1526 *value = 0x0;
1527 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1528 address);
1529 }
1530
1531 return retval;
1532 }
1533
1534 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1535 {
1536 uint8_t value_buf[2];
1537 if (!target_was_examined(target))
1538 {
1539 LOG_ERROR("Target not examined yet");
1540 return ERROR_FAIL;
1541 }
1542
1543 int retval = target_read_memory(target, address, 2, 1, value_buf);
1544
1545 if (retval == ERROR_OK)
1546 {
1547 *value = target_buffer_get_u16(target, value_buf);
1548 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1549 address,
1550 *value);
1551 }
1552 else
1553 {
1554 *value = 0x0;
1555 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1556 address);
1557 }
1558
1559 return retval;
1560 }
1561
1562 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1563 {
1564 int retval = target_read_memory(target, address, 1, 1, value);
1565 if (!target_was_examined(target))
1566 {
1567 LOG_ERROR("Target not examined yet");
1568 return ERROR_FAIL;
1569 }
1570
1571 if (retval == ERROR_OK)
1572 {
1573 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1574 address,
1575 *value);
1576 }
1577 else
1578 {
1579 *value = 0x0;
1580 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1581 address);
1582 }
1583
1584 return retval;
1585 }
1586
1587 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1588 {
1589 int retval;
1590 uint8_t value_buf[4];
1591 if (!target_was_examined(target))
1592 {
1593 LOG_ERROR("Target not examined yet");
1594 return ERROR_FAIL;
1595 }
1596
1597 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1598 address,
1599 value);
1600
1601 target_buffer_set_u32(target, value_buf, value);
1602 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1603 {
1604 LOG_DEBUG("failed: %i", retval);
1605 }
1606
1607 return retval;
1608 }
1609
1610 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1611 {
1612 int retval;
1613 uint8_t value_buf[2];
1614 if (!target_was_examined(target))
1615 {
1616 LOG_ERROR("Target not examined yet");
1617 return ERROR_FAIL;
1618 }
1619
1620 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1621 address,
1622 value);
1623
1624 target_buffer_set_u16(target, value_buf, value);
1625 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1626 {
1627 LOG_DEBUG("failed: %i", retval);
1628 }
1629
1630 return retval;
1631 }
1632
1633 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1634 {
1635 int retval;
1636 if (!target_was_examined(target))
1637 {
1638 LOG_ERROR("Target not examined yet");
1639 return ERROR_FAIL;
1640 }
1641
1642 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1643 address, value);
1644
1645 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1646 {
1647 LOG_DEBUG("failed: %i", retval);
1648 }
1649
1650 return retval;
1651 }
1652
1653 COMMAND_HANDLER(handle_targets_command)
1654 {
1655 struct target *target = all_targets;
1656
1657 if (argc == 1)
1658 {
1659 target = get_target(args[0]);
1660 if (target == NULL) {
1661 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1662 goto DumpTargets;
1663 }
1664 if (!target->tap->enabled) {
1665 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1666 "can't be the current target\n",
1667 target->tap->dotted_name);
1668 return ERROR_FAIL;
1669 }
1670
1671 cmd_ctx->current_target = target->target_number;
1672 return ERROR_OK;
1673 }
1674 DumpTargets:
1675
1676 target = all_targets;
1677 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1678 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1679 while (target)
1680 {
1681 const char *state;
1682 char marker = ' ';
1683
1684 if (target->tap->enabled)
1685 state = target_state_name( target );
1686 else
1687 state = "tap-disabled";
1688
1689 if (cmd_ctx->current_target == target->target_number)
1690 marker = '*';
1691
1692 /* keep columns lined up to match the headers above */
1693 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1694 target->target_number,
1695 marker,
1696 target->cmd_name,
1697 target_get_name(target),
1698 Jim_Nvp_value2name_simple(nvp_target_endian,
1699 target->endianness)->name,
1700 target->tap->dotted_name,
1701 state);
1702 target = target->next;
1703 }
1704
1705 return ERROR_OK;
1706 }
1707
1708 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1709
1710 static int powerDropout;
1711 static int srstAsserted;
1712
1713 static int runPowerRestore;
1714 static int runPowerDropout;
1715 static int runSrstAsserted;
1716 static int runSrstDeasserted;
1717
1718 static int sense_handler(void)
1719 {
1720 static int prevSrstAsserted = 0;
1721 static int prevPowerdropout = 0;
1722
1723 int retval;
1724 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1725 return retval;
1726
1727 int powerRestored;
1728 powerRestored = prevPowerdropout && !powerDropout;
1729 if (powerRestored)
1730 {
1731 runPowerRestore = 1;
1732 }
1733
1734 long long current = timeval_ms();
1735 static long long lastPower = 0;
1736 int waitMore = lastPower + 2000 > current;
1737 if (powerDropout && !waitMore)
1738 {
1739 runPowerDropout = 1;
1740 lastPower = current;
1741 }
1742
1743 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1744 return retval;
1745
1746 int srstDeasserted;
1747 srstDeasserted = prevSrstAsserted && !srstAsserted;
1748
1749 static long long lastSrst = 0;
1750 waitMore = lastSrst + 2000 > current;
1751 if (srstDeasserted && !waitMore)
1752 {
1753 runSrstDeasserted = 1;
1754 lastSrst = current;
1755 }
1756
1757 if (!prevSrstAsserted && srstAsserted)
1758 {
1759 runSrstAsserted = 1;
1760 }
1761
1762 prevSrstAsserted = srstAsserted;
1763 prevPowerdropout = powerDropout;
1764
1765 if (srstDeasserted || powerRestored)
1766 {
1767 /* Other than logging the event we can't do anything here.
1768 * Issuing a reset is a particularly bad idea as we might
1769 * be inside a reset already.
1770 */
1771 }
1772
1773 return ERROR_OK;
1774 }
1775
1776 static void target_call_event_callbacks_all(enum target_event e) {
1777 struct target *target;
1778 target = all_targets;
1779 while (target) {
1780 target_call_event_callbacks(target, e);
1781 target = target->next;
1782 }
1783 }
1784
1785 /* process target state changes */
1786 int handle_target(void *priv)
1787 {
1788 int retval = ERROR_OK;
1789
1790 /* we do not want to recurse here... */
1791 static int recursive = 0;
1792 if (! recursive)
1793 {
1794 recursive = 1;
1795 sense_handler();
1796 /* danger! running these procedures can trigger srst assertions and power dropouts.
1797 * We need to avoid an infinite loop/recursion here and we do that by
1798 * clearing the flags after running these events.
1799 */
1800 int did_something = 0;
1801 if (runSrstAsserted)
1802 {
1803 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1804 Jim_Eval(interp, "srst_asserted");
1805 did_something = 1;
1806 }
1807 if (runSrstDeasserted)
1808 {
1809 Jim_Eval(interp, "srst_deasserted");
1810 did_something = 1;
1811 }
1812 if (runPowerDropout)
1813 {
1814 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1815 Jim_Eval(interp, "power_dropout");
1816 did_something = 1;
1817 }
1818 if (runPowerRestore)
1819 {
1820 Jim_Eval(interp, "power_restore");
1821 did_something = 1;
1822 }
1823
1824 if (did_something)
1825 {
1826 /* clear detect flags */
1827 sense_handler();
1828 }
1829
1830 /* clear action flags */
1831
1832 runSrstAsserted = 0;
1833 runSrstDeasserted = 0;
1834 runPowerRestore = 0;
1835 runPowerDropout = 0;
1836
1837 recursive = 0;
1838 }
1839
1840 /* Poll targets for state changes unless that's globally disabled.
1841 * Skip targets that are currently disabled.
1842 */
1843 for (struct target *target = all_targets;
1844 is_jtag_poll_safe() && target;
1845 target = target->next)
1846 {
1847 if (!target->tap->enabled)
1848 continue;
1849
1850 /* only poll target if we've got power and srst isn't asserted */
1851 if (!powerDropout && !srstAsserted)
1852 {
1853 /* polling may fail silently until the target has been examined */
1854 if ((retval = target_poll(target)) != ERROR_OK)
1855 {
1856 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1857 return retval;
1858 }
1859 }
1860 }
1861
1862 return retval;
1863 }
1864
1865 COMMAND_HANDLER(handle_reg_command)
1866 {
1867 struct target *target;
1868 struct reg *reg = NULL;
1869 int count = 0;
1870 char *value;
1871
1872 LOG_DEBUG("-");
1873
1874 target = get_current_target(cmd_ctx);
1875
1876 /* list all available registers for the current target */
1877 if (argc == 0)
1878 {
1879 struct reg_cache *cache = target->reg_cache;
1880
1881 count = 0;
1882 while (cache)
1883 {
1884 int i;
1885
1886 command_print(cmd_ctx, "===== %s", cache->name);
1887
1888 for (i = 0, reg = cache->reg_list;
1889 i < cache->num_regs;
1890 i++, reg++, count++)
1891 {
1892 /* only print cached values if they are valid */
1893 if (reg->valid) {
1894 value = buf_to_str(reg->value,
1895 reg->size, 16);
1896 command_print(cmd_ctx,
1897 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1898 count, reg->name,
1899 reg->size, value,
1900 reg->dirty
1901 ? " (dirty)"
1902 : "");
1903 free(value);
1904 } else {
1905 command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1906 count, reg->name,
1907 reg->size) ;
1908 }
1909 }
1910 cache = cache->next;
1911 }
1912
1913 return ERROR_OK;
1914 }
1915
1916 /* access a single register by its ordinal number */
1917 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1918 {
1919 unsigned num;
1920 COMMAND_PARSE_NUMBER(uint, args[0], num);
1921
1922 struct reg_cache *cache = target->reg_cache;
1923 count = 0;
1924 while (cache)
1925 {
1926 int i;
1927 for (i = 0; i < cache->num_regs; i++)
1928 {
1929 if (count++ == (int)num)
1930 {
1931 reg = &cache->reg_list[i];
1932 break;
1933 }
1934 }
1935 if (reg)
1936 break;
1937 cache = cache->next;
1938 }
1939
1940 if (!reg)
1941 {
1942 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1943 return ERROR_OK;
1944 }
1945 } else /* access a single register by its name */
1946 {
1947 reg = register_get_by_name(target->reg_cache, args[0], 1);
1948
1949 if (!reg)
1950 {
1951 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1952 return ERROR_OK;
1953 }
1954 }
1955
1956 /* display a register */
1957 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1958 {
1959 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1960 reg->valid = 0;
1961
1962 if (reg->valid == 0)
1963 {
1964 struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1965 arch_type->get(reg);
1966 }
1967 value = buf_to_str(reg->value, reg->size, 16);
1968 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1969 free(value);
1970 return ERROR_OK;
1971 }
1972
1973 /* set register value */
1974 if (argc == 2)
1975 {
1976 uint8_t *buf = malloc(CEIL(reg->size, 8));
1977 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1978
1979 struct reg_arch_type *arch_type = register_get_arch_type(reg->arch_type);
1980 arch_type->set(reg, buf);
1981
1982 value = buf_to_str(reg->value, reg->size, 16);
1983 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1984 free(value);
1985
1986 free(buf);
1987
1988 return ERROR_OK;
1989 }
1990
1991 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1992
1993 return ERROR_OK;
1994 }
1995
1996 COMMAND_HANDLER(handle_poll_command)
1997 {
1998 int retval = ERROR_OK;
1999 struct target *target = get_current_target(cmd_ctx);
2000
2001 if (argc == 0)
2002 {
2003 command_print(cmd_ctx, "background polling: %s",
2004 jtag_poll_get_enabled() ? "on" : "off");
2005 command_print(cmd_ctx, "TAP: %s (%s)",
2006 target->tap->dotted_name,
2007 target->tap->enabled ? "enabled" : "disabled");
2008 if (!target->tap->enabled)
2009 return ERROR_OK;
2010 if ((retval = target_poll(target)) != ERROR_OK)
2011 return retval;
2012 if ((retval = target_arch_state(target)) != ERROR_OK)
2013 return retval;
2014
2015 }
2016 else if (argc == 1)
2017 {
2018 if (strcmp(args[0], "on") == 0)
2019 {
2020 jtag_poll_set_enabled(true);
2021 }
2022 else if (strcmp(args[0], "off") == 0)
2023 {
2024 jtag_poll_set_enabled(false);
2025 }
2026 else
2027 {
2028 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2029 }
2030 } else
2031 {
2032 return ERROR_COMMAND_SYNTAX_ERROR;
2033 }
2034
2035 return retval;
2036 }
2037
2038 COMMAND_HANDLER(handle_wait_halt_command)
2039 {
2040 if (argc > 1)
2041 return ERROR_COMMAND_SYNTAX_ERROR;
2042
2043 unsigned ms = 5000;
2044 if (1 == argc)
2045 {
2046 int retval = parse_uint(args[0], &ms);
2047 if (ERROR_OK != retval)
2048 {
2049 command_print(cmd_ctx, "usage: %s [seconds]", CMD_NAME);
2050 return ERROR_COMMAND_SYNTAX_ERROR;
2051 }
2052 // convert seconds (given) to milliseconds (needed)
2053 ms *= 1000;
2054 }
2055
2056 struct target *target = get_current_target(cmd_ctx);
2057 return target_wait_state(target, TARGET_HALTED, ms);
2058 }
2059
2060 /* wait for target state to change. The trick here is to have a low
2061 * latency for short waits and not to suck up all the CPU time
2062 * on longer waits.
2063 *
2064 * After 500ms, keep_alive() is invoked
2065 */
2066 int target_wait_state(struct target *target, enum target_state state, int ms)
2067 {
2068 int retval;
2069 long long then = 0, cur;
2070 int once = 1;
2071
2072 for (;;)
2073 {
2074 if ((retval = target_poll(target)) != ERROR_OK)
2075 return retval;
2076 if (target->state == state)
2077 {
2078 break;
2079 }
2080 cur = timeval_ms();
2081 if (once)
2082 {
2083 once = 0;
2084 then = timeval_ms();
2085 LOG_DEBUG("waiting for target %s...",
2086 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2087 }
2088
2089 if (cur-then > 500)
2090 {
2091 keep_alive();
2092 }
2093
2094 if ((cur-then) > ms)
2095 {
2096 LOG_ERROR("timed out while waiting for target %s",
2097 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2098 return ERROR_FAIL;
2099 }
2100 }
2101
2102 return ERROR_OK;
2103 }
2104
2105 COMMAND_HANDLER(handle_halt_command)
2106 {
2107 LOG_DEBUG("-");
2108
2109 struct target *target = get_current_target(cmd_ctx);
2110 int retval = target_halt(target);
2111 if (ERROR_OK != retval)
2112 return retval;
2113
2114 if (argc == 1)
2115 {
2116 unsigned wait;
2117 retval = parse_uint(args[0], &wait);
2118 if (ERROR_OK != retval)
2119 return ERROR_COMMAND_SYNTAX_ERROR;
2120 if (!wait)
2121 return ERROR_OK;
2122 }
2123
2124 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2125 }
2126
2127 COMMAND_HANDLER(handle_soft_reset_halt_command)
2128 {
2129 struct target *target = get_current_target(cmd_ctx);
2130
2131 LOG_USER("requesting target halt and executing a soft reset");
2132
2133 target->type->soft_reset_halt(target);
2134
2135 return ERROR_OK;
2136 }
2137
2138 COMMAND_HANDLER(handle_reset_command)
2139 {
2140 if (argc > 1)
2141 return ERROR_COMMAND_SYNTAX_ERROR;
2142
2143 enum target_reset_mode reset_mode = RESET_RUN;
2144 if (argc == 1)
2145 {
2146 const Jim_Nvp *n;
2147 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2148 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2149 return ERROR_COMMAND_SYNTAX_ERROR;
2150 }
2151 reset_mode = n->value;
2152 }
2153
2154 /* reset *all* targets */
2155 return target_process_reset(cmd_ctx, reset_mode);
2156 }
2157
2158
2159 COMMAND_HANDLER(handle_resume_command)
2160 {
2161 int current = 1;
2162 if (argc > 1)
2163 return ERROR_COMMAND_SYNTAX_ERROR;
2164
2165 struct target *target = get_current_target(cmd_ctx);
2166 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2167
2168 /* with no args, resume from current pc, addr = 0,
2169 * with one arguments, addr = args[0],
2170 * handle breakpoints, not debugging */
2171 uint32_t addr = 0;
2172 if (argc == 1)
2173 {
2174 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2175 current = 0;
2176 }
2177
2178 return target_resume(target, current, addr, 1, 0);
2179 }
2180
2181 COMMAND_HANDLER(handle_step_command)
2182 {
2183 if (argc > 1)
2184 return ERROR_COMMAND_SYNTAX_ERROR;
2185
2186 LOG_DEBUG("-");
2187
2188 /* with no args, step from current pc, addr = 0,
2189 * with one argument addr = args[0],
2190 * handle breakpoints, debugging */
2191 uint32_t addr = 0;
2192 int current_pc = 1;
2193 if (argc == 1)
2194 {
2195 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2196 current_pc = 0;
2197 }
2198
2199 struct target *target = get_current_target(cmd_ctx);
2200
2201 return target->type->step(target, current_pc, addr, 1);
2202 }
2203
2204 static void handle_md_output(struct command_context *cmd_ctx,
2205 struct target *target, uint32_t address, unsigned size,
2206 unsigned count, const uint8_t *buffer)
2207 {
2208 const unsigned line_bytecnt = 32;
2209 unsigned line_modulo = line_bytecnt / size;
2210
2211 char output[line_bytecnt * 4 + 1];
2212 unsigned output_len = 0;
2213
2214 const char *value_fmt;
2215 switch (size) {
2216 case 4: value_fmt = "%8.8x "; break;
2217 case 2: value_fmt = "%4.2x "; break;
2218 case 1: value_fmt = "%2.2x "; break;
2219 default:
2220 LOG_ERROR("invalid memory read size: %u", size);
2221 exit(-1);
2222 }
2223
2224 for (unsigned i = 0; i < count; i++)
2225 {
2226 if (i % line_modulo == 0)
2227 {
2228 output_len += snprintf(output + output_len,
2229 sizeof(output) - output_len,
2230 "0x%8.8x: ",
2231 (unsigned)(address + (i*size)));
2232 }
2233
2234 uint32_t value = 0;
2235 const uint8_t *value_ptr = buffer + i * size;
2236 switch (size) {
2237 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2238 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2239 case 1: value = *value_ptr;
2240 }
2241 output_len += snprintf(output + output_len,
2242 sizeof(output) - output_len,
2243 value_fmt, value);
2244
2245 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2246 {
2247 command_print(cmd_ctx, "%s", output);
2248 output_len = 0;
2249 }
2250 }
2251 }
2252
2253 COMMAND_HANDLER(handle_md_command)
2254 {
2255 if (argc < 1)
2256 return ERROR_COMMAND_SYNTAX_ERROR;
2257
2258 unsigned size = 0;
2259 switch (CMD_NAME[2]) {
2260 case 'w': size = 4; break;
2261 case 'h': size = 2; break;
2262 case 'b': size = 1; break;
2263 default: return ERROR_COMMAND_SYNTAX_ERROR;
2264 }
2265
2266 bool physical=strcmp(args[0], "phys")==0;
2267 int (*fn)(struct target *target,
2268 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2269 if (physical)
2270 {
2271 argc--;
2272 args++;
2273 fn=target_read_phys_memory;
2274 } else
2275 {
2276 fn=target_read_memory;
2277 }
2278 if ((argc < 1) || (argc > 2))
2279 {
2280 return ERROR_COMMAND_SYNTAX_ERROR;
2281 }
2282
2283 uint32_t address;
2284 COMMAND_PARSE_NUMBER(u32, args[0], address);
2285
2286 unsigned count = 1;
2287 if (argc == 2)
2288 COMMAND_PARSE_NUMBER(uint, args[1], count);
2289
2290 uint8_t *buffer = calloc(count, size);
2291
2292 struct target *target = get_current_target(cmd_ctx);
2293 int retval = fn(target, address, size, count, buffer);
2294 if (ERROR_OK == retval)
2295 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2296
2297 free(buffer);
2298
2299 return retval;
2300 }
2301
2302 COMMAND_HANDLER(handle_mw_command)
2303 {
2304 if (argc < 2)
2305 {
2306 return ERROR_COMMAND_SYNTAX_ERROR;
2307 }
2308 bool physical=strcmp(args[0], "phys")==0;
2309 int (*fn)(struct target *target,
2310 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2311 if (physical)
2312 {
2313 argc--;
2314 args++;
2315 fn=target_write_phys_memory;
2316 } else
2317 {
2318 fn=target_write_memory;
2319 }
2320 if ((argc < 2) || (argc > 3))
2321 return ERROR_COMMAND_SYNTAX_ERROR;
2322
2323 uint32_t address;
2324 COMMAND_PARSE_NUMBER(u32, args[0], address);
2325
2326 uint32_t value;
2327 COMMAND_PARSE_NUMBER(u32, args[1], value);
2328
2329 unsigned count = 1;
2330 if (argc == 3)
2331 COMMAND_PARSE_NUMBER(uint, args[2], count);
2332
2333 struct target *target = get_current_target(cmd_ctx);
2334 unsigned wordsize;
2335 uint8_t value_buf[4];
2336 switch (CMD_NAME[2])
2337 {
2338 case 'w':
2339 wordsize = 4;
2340 target_buffer_set_u32(target, value_buf, value);
2341 break;
2342 case 'h':
2343 wordsize = 2;
2344 target_buffer_set_u16(target, value_buf, value);
2345 break;
2346 case 'b':
2347 wordsize = 1;
2348 value_buf[0] = value;
2349 break;
2350 default:
2351 return ERROR_COMMAND_SYNTAX_ERROR;
2352 }
2353 for (unsigned i = 0; i < count; i++)
2354 {
2355 int retval = fn(target,
2356 address + i * wordsize, wordsize, 1, value_buf);
2357 if (ERROR_OK != retval)
2358 return retval;
2359 keep_alive();
2360 }
2361
2362 return ERROR_OK;
2363
2364 }
2365
2366 static COMMAND_HELPER(parse_load_image_command_args, struct image *image,
2367 uint32_t *min_address, uint32_t *max_address)
2368 {
2369 if (argc < 1 || argc > 5)
2370 return ERROR_COMMAND_SYNTAX_ERROR;
2371
2372 /* a base address isn't always necessary,
2373 * default to 0x0 (i.e. don't relocate) */
2374 if (argc >= 2)
2375 {
2376 uint32_t addr;
2377 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2378 image->base_address = addr;
2379 image->base_address_set = 1;
2380 }
2381 else
2382 image->base_address_set = 0;
2383
2384 image->start_address_set = 0;
2385
2386 if (argc >= 4)
2387 {
2388 COMMAND_PARSE_NUMBER(u32, args[3], *min_address);
2389 }
2390 if (argc == 5)
2391 {
2392 COMMAND_PARSE_NUMBER(u32, args[4], *max_address);
2393 // use size (given) to find max (required)
2394 *max_address += *min_address;
2395 }
2396
2397 if (*min_address > *max_address)
2398 return ERROR_COMMAND_SYNTAX_ERROR;
2399
2400 return ERROR_OK;
2401 }
2402
2403 COMMAND_HANDLER(handle_load_image_command)
2404 {
2405 uint8_t *buffer;
2406 uint32_t buf_cnt;
2407 uint32_t image_size;
2408 uint32_t min_address = 0;
2409 uint32_t max_address = 0xffffffff;
2410 int i;
2411 struct image image;
2412
2413 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_args,
2414 &image, &min_address, &max_address);
2415 if (ERROR_OK != retval)
2416 return retval;
2417
2418 struct target *target = get_current_target(cmd_ctx);
2419
2420 struct duration bench;
2421 duration_start(&bench);
2422
2423 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2424 {
2425 return ERROR_OK;
2426 }
2427
2428 image_size = 0x0;
2429 retval = ERROR_OK;
2430 for (i = 0; i < image.num_sections; i++)
2431 {
2432 buffer = malloc(image.sections[i].size);
2433 if (buffer == NULL)
2434 {
2435 command_print(cmd_ctx,
2436 "error allocating buffer for section (%d bytes)",
2437 (int)(image.sections[i].size));
2438 break;
2439 }
2440
2441 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2442 {
2443 free(buffer);
2444 break;
2445 }
2446
2447 uint32_t offset = 0;
2448 uint32_t length = buf_cnt;
2449
2450 /* DANGER!!! beware of unsigned comparision here!!! */
2451
2452 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2453 (image.sections[i].base_address < max_address))
2454 {
2455 if (image.sections[i].base_address < min_address)
2456 {
2457 /* clip addresses below */
2458 offset += min_address-image.sections[i].base_address;
2459 length -= offset;
2460 }
2461
2462 if (image.sections[i].base_address + buf_cnt > max_address)
2463 {
2464 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2465 }
2466
2467 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2468 {
2469 free(buffer);
2470 break;
2471 }
2472 image_size += length;
2473 command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2474 (unsigned int)length,
2475 image.sections[i].base_address + offset);
2476 }
2477
2478 free(buffer);
2479 }
2480
2481 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2482 {
2483 command_print(cmd_ctx, "downloaded %" PRIu32 " bytes "
2484 "in %fs (%0.3f kb/s)", image_size,
2485 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2486 }
2487
2488 image_close(&image);
2489
2490 return retval;
2491
2492 }
2493
2494 COMMAND_HANDLER(handle_dump_image_command)
2495 {
2496 struct fileio fileio;
2497
2498 uint8_t buffer[560];
2499 int retvaltemp;
2500
2501
2502 struct target *target = get_current_target(cmd_ctx);
2503
2504 if (argc != 3)
2505 {
2506 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2507 return ERROR_OK;
2508 }
2509
2510 uint32_t address;
2511 COMMAND_PARSE_NUMBER(u32, args[1], address);
2512 uint32_t size;
2513 COMMAND_PARSE_NUMBER(u32, args[2], size);
2514
2515 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2516 {
2517 return ERROR_OK;
2518 }
2519
2520 struct duration bench;
2521 duration_start(&bench);
2522
2523 int retval = ERROR_OK;
2524 while (size > 0)
2525 {
2526 uint32_t size_written;
2527 uint32_t this_run_size = (size > 560) ? 560 : size;
2528 retval = target_read_buffer(target, address, this_run_size, buffer);
2529 if (retval != ERROR_OK)
2530 {
2531 break;
2532 }
2533
2534 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2535 if (retval != ERROR_OK)
2536 {
2537 break;
2538 }
2539
2540 size -= this_run_size;
2541 address += this_run_size;
2542 }
2543
2544 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2545 return retvaltemp;
2546
2547 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2548 {
2549 command_print(cmd_ctx,
2550 "dumped %lld bytes in %fs (%0.3f kb/s)", fileio.size,
2551 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2552 }
2553
2554 return retval;
2555 }
2556
2557 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2558 {
2559 uint8_t *buffer;
2560 uint32_t buf_cnt;
2561 uint32_t image_size;
2562 int i;
2563 int retval;
2564 uint32_t checksum = 0;
2565 uint32_t mem_checksum = 0;
2566
2567 struct image image;
2568
2569 struct target *target = get_current_target(cmd_ctx);
2570
2571 if (argc < 1)
2572 {
2573 return ERROR_COMMAND_SYNTAX_ERROR;
2574 }
2575
2576 if (!target)
2577 {
2578 LOG_ERROR("no target selected");
2579 return ERROR_FAIL;
2580 }
2581
2582 struct duration bench;
2583 duration_start(&bench);
2584
2585 if (argc >= 2)
2586 {
2587 uint32_t addr;
2588 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2589 image.base_address = addr;
2590 image.base_address_set = 1;
2591 }
2592 else
2593 {
2594 image.base_address_set = 0;
2595 image.base_address = 0x0;
2596 }
2597
2598 image.start_address_set = 0;
2599
2600 if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2601 {
2602 return retval;
2603 }
2604
2605 image_size = 0x0;
2606 retval = ERROR_OK;
2607 for (i = 0; i < image.num_sections; i++)
2608 {
2609 buffer = malloc(image.sections[i].size);
2610 if (buffer == NULL)
2611 {
2612 command_print(cmd_ctx,
2613 "error allocating buffer for section (%d bytes)",
2614 (int)(image.sections[i].size));
2615 break;
2616 }
2617 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2618 {
2619 free(buffer);
2620 break;
2621 }
2622
2623 if (verify)
2624 {
2625 /* calculate checksum of image */
2626 image_calculate_checksum(buffer, buf_cnt, &checksum);
2627
2628 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2629 if (retval != ERROR_OK)
2630 {
2631 free(buffer);
2632 break;
2633 }
2634
2635 if (checksum != mem_checksum)
2636 {
2637 /* failed crc checksum, fall back to a binary compare */
2638 uint8_t *data;
2639
2640 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2641
2642 data = (uint8_t*)malloc(buf_cnt);
2643
2644 /* Can we use 32bit word accesses? */
2645 int size = 1;
2646 int count = buf_cnt;
2647 if ((count % 4) == 0)
2648 {
2649 size *= 4;
2650 count /= 4;
2651 }
2652 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2653 if (retval == ERROR_OK)
2654 {
2655 uint32_t t;
2656 for (t = 0; t < buf_cnt; t++)
2657 {
2658 if (data[t] != buffer[t])
2659 {
2660 command_print(cmd_ctx,
2661 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2662 (unsigned)(t + image.sections[i].base_address),
2663 data[t],
2664 buffer[t]);
2665 free(data);
2666 free(buffer);
2667 retval = ERROR_FAIL;
2668 goto done;
2669 }
2670 if ((t%16384) == 0)
2671 {
2672 keep_alive();
2673 }
2674 }
2675 }
2676
2677 free(data);
2678 }
2679 } else
2680 {
2681 command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2682 image.sections[i].base_address,
2683 buf_cnt);
2684 }
2685
2686 free(buffer);
2687 image_size += buf_cnt;
2688 }
2689 done:
2690 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2691 {
2692 command_print(cmd_ctx, "verified %" PRIu32 " bytes "
2693 "in %fs (%0.3f kb/s)", image_size,
2694 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2695 }
2696
2697 image_close(&image);
2698
2699 return retval;
2700 }
2701
2702 COMMAND_HANDLER(handle_verify_image_command)
2703 {
2704 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2705 }
2706
2707 COMMAND_HANDLER(handle_test_image_command)
2708 {
2709 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2710 }
2711
2712 static int handle_bp_command_list(struct command_context *cmd_ctx)
2713 {
2714 struct target *target = get_current_target(cmd_ctx);
2715 struct breakpoint *breakpoint = target->breakpoints;
2716 while (breakpoint)
2717 {
2718 if (breakpoint->type == BKPT_SOFT)
2719 {
2720 char* buf = buf_to_str(breakpoint->orig_instr,
2721 breakpoint->length, 16);
2722 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2723 breakpoint->address,
2724 breakpoint->length,
2725 breakpoint->set, buf);
2726 free(buf);
2727 }
2728 else
2729 {
2730 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2731 breakpoint->address,
2732 breakpoint->length, breakpoint->set);
2733 }
2734
2735 breakpoint = breakpoint->next;
2736 }
2737 return ERROR_OK;
2738 }
2739
2740 static int handle_bp_command_set(struct command_context *cmd_ctx,
2741 uint32_t addr, uint32_t length, int hw)
2742 {
2743 struct target *target = get_current_target(cmd_ctx);
2744 int retval = breakpoint_add(target, addr, length, hw);
2745 if (ERROR_OK == retval)
2746 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2747 else
2748 LOG_ERROR("Failure setting breakpoint");
2749 return retval;
2750 }
2751
2752 COMMAND_HANDLER(handle_bp_command)
2753 {
2754 if (argc == 0)
2755 return handle_bp_command_list(cmd_ctx);
2756
2757 if (argc < 2 || argc > 3)
2758 {
2759 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2760 return ERROR_COMMAND_SYNTAX_ERROR;
2761 }
2762
2763 uint32_t addr;
2764 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2765 uint32_t length;
2766 COMMAND_PARSE_NUMBER(u32, args[1], length);
2767
2768 int hw = BKPT_SOFT;
2769 if (argc == 3)
2770 {
2771 if (strcmp(args[2], "hw") == 0)
2772 hw = BKPT_HARD;
2773 else
2774 return ERROR_COMMAND_SYNTAX_ERROR;
2775 }
2776
2777 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2778 }
2779
2780 COMMAND_HANDLER(handle_rbp_command)
2781 {
2782 if (argc != 1)
2783 return ERROR_COMMAND_SYNTAX_ERROR;
2784
2785 uint32_t addr;
2786 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2787
2788 struct target *target = get_current_target(cmd_ctx);
2789 breakpoint_remove(target, addr);
2790
2791 return ERROR_OK;
2792 }
2793
2794 COMMAND_HANDLER(handle_wp_command)
2795 {
2796 struct target *target = get_current_target(cmd_ctx);
2797
2798 if (argc == 0)
2799 {
2800 struct watchpoint *watchpoint = target->watchpoints;
2801
2802 while (watchpoint)
2803 {
2804 command_print(cmd_ctx, "address: 0x%8.8" PRIx32
2805 ", len: 0x%8.8" PRIx32
2806 ", r/w/a: %i, value: 0x%8.8" PRIx32
2807 ", mask: 0x%8.8" PRIx32,
2808 watchpoint->address,
2809 watchpoint->length,
2810 (int)watchpoint->rw,
2811 watchpoint->value,
2812 watchpoint->mask);
2813 watchpoint = watchpoint->next;
2814 }
2815 return ERROR_OK;
2816 }
2817
2818 enum watchpoint_rw type = WPT_ACCESS;
2819 uint32_t addr = 0;
2820 uint32_t length = 0;
2821 uint32_t data_value = 0x0;
2822 uint32_t data_mask = 0xffffffff;
2823
2824 switch (argc)
2825 {
2826 case 5:
2827 COMMAND_PARSE_NUMBER(u32, args[4], data_mask);
2828 // fall through
2829 case 4:
2830 COMMAND_PARSE_NUMBER(u32, args[3], data_value);
2831 // fall through
2832 case 3:
2833 switch (args[2][0])
2834 {
2835 case 'r':
2836 type = WPT_READ;
2837 break;
2838 case 'w':
2839 type = WPT_WRITE;
2840 break;
2841 case 'a':
2842 type = WPT_ACCESS;
2843 break;
2844 default:
2845 LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2846 return ERROR_COMMAND_SYNTAX_ERROR;
2847 }
2848 // fall through
2849 case 2:
2850 COMMAND_PARSE_NUMBER(u32, args[1], length);
2851 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2852 break;
2853
2854 default:
2855 command_print(cmd_ctx, "usage: wp [address length "
2856 "[(r|w|a) [value [mask]]]]");
2857 return ERROR_COMMAND_SYNTAX_ERROR;
2858 }
2859
2860 int retval = watchpoint_add(target, addr, length, type,
2861 data_value, data_mask);
2862 if (ERROR_OK != retval)
2863 LOG_ERROR("Failure setting watchpoints");
2864
2865 return retval;
2866 }
2867
2868 COMMAND_HANDLER(handle_rwp_command)
2869 {
2870 if (argc != 1)
2871 return ERROR_COMMAND_SYNTAX_ERROR;
2872
2873 uint32_t addr;
2874 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2875
2876 struct target *target = get_current_target(cmd_ctx);
2877 watchpoint_remove(target, addr);
2878
2879 return ERROR_OK;
2880 }
2881
2882
2883 /**
2884 * Translate a virtual address to a physical address.
2885 *
2886 * The low-level target implementation must have logged a detailed error
2887 * which is forwarded to telnet/GDB session.
2888 */
2889 COMMAND_HANDLER(handle_virt2phys_command)
2890 {
2891 if (argc != 1)
2892 return ERROR_COMMAND_SYNTAX_ERROR;
2893
2894 uint32_t va;
2895 COMMAND_PARSE_NUMBER(u32, args[0], va);
2896 uint32_t pa;
2897
2898 struct target *target = get_current_target(cmd_ctx);
2899 int retval = target->type->virt2phys(target, va, &pa);
2900 if (retval == ERROR_OK)
2901 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2902
2903 return retval;
2904 }
2905
2906 static void writeData(FILE *f, const void *data, size_t len)
2907 {
2908 size_t written = fwrite(data, 1, len, f);
2909 if (written != len)
2910 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2911 }
2912
2913 static void writeLong(FILE *f, int l)
2914 {
2915 int i;
2916 for (i = 0; i < 4; i++)
2917 {
2918 char c = (l >> (i*8))&0xff;
2919 writeData(f, &c, 1);
2920 }
2921
2922 }
2923
2924 static void writeString(FILE *f, char *s)
2925 {
2926 writeData(f, s, strlen(s));
2927 }
2928
2929 /* Dump a gmon.out histogram file. */
2930 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2931 {
2932 uint32_t i;
2933 FILE *f = fopen(filename, "w");
2934 if (f == NULL)
2935 return;
2936 writeString(f, "gmon");
2937 writeLong(f, 0x00000001); /* Version */
2938 writeLong(f, 0); /* padding */
2939 writeLong(f, 0); /* padding */
2940 writeLong(f, 0); /* padding */
2941
2942 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
2943 writeData(f, &zero, 1);
2944
2945 /* figure out bucket size */
2946 uint32_t min = samples[0];
2947 uint32_t max = samples[0];
2948 for (i = 0; i < sampleNum; i++)
2949 {
2950 if (min > samples[i])
2951 {
2952 min = samples[i];
2953 }
2954 if (max < samples[i])
2955 {
2956 max = samples[i];
2957 }
2958 }
2959
2960 int addressSpace = (max-min + 1);
2961
2962 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2963 uint32_t length = addressSpace;
2964 if (length > maxBuckets)
2965 {
2966 length = maxBuckets;
2967 }
2968 int *buckets = malloc(sizeof(int)*length);
2969 if (buckets == NULL)
2970 {
2971 fclose(f);
2972 return;
2973 }
2974 memset(buckets, 0, sizeof(int)*length);
2975 for (i = 0; i < sampleNum;i++)
2976 {
2977 uint32_t address = samples[i];
2978 long long a = address-min;
2979 long long b = length-1;
2980 long long c = addressSpace-1;
2981 int index = (a*b)/c; /* danger!!!! int32 overflows */
2982 buckets[index]++;
2983 }
2984
2985 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2986 writeLong(f, min); /* low_pc */
2987 writeLong(f, max); /* high_pc */
2988 writeLong(f, length); /* # of samples */
2989 writeLong(f, 64000000); /* 64MHz */
2990 writeString(f, "seconds");
2991 for (i = 0; i < (15-strlen("seconds")); i++)
2992 writeData(f, &zero, 1);
2993 writeString(f, "s");
2994
2995 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2996
2997 char *data = malloc(2*length);
2998 if (data != NULL)
2999 {
3000 for (i = 0; i < length;i++)
3001 {
3002 int val;
3003 val = buckets[i];
3004 if (val > 65535)
3005 {
3006 val = 65535;
3007 }
3008 data[i*2]=val&0xff;
3009 data[i*2 + 1]=(val >> 8)&0xff;
3010 }
3011 free(buckets);
3012 writeData(f, data, length * 2);
3013 free(data);
3014 } else
3015 {
3016 free(buckets);
3017 }
3018
3019 fclose(f);
3020 }
3021
3022 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3023 COMMAND_HANDLER(handle_profile_command)
3024 {
3025 struct target *target = get_current_target(cmd_ctx);
3026 struct timeval timeout, now;
3027
3028 gettimeofday(&timeout, NULL);
3029 if (argc != 2)
3030 {
3031 return ERROR_COMMAND_SYNTAX_ERROR;
3032 }
3033 unsigned offset;
3034 COMMAND_PARSE_NUMBER(uint, args[0], offset);
3035
3036 timeval_add_time(&timeout, offset, 0);
3037
3038 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3039
3040 static const int maxSample = 10000;
3041 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3042 if (samples == NULL)
3043 return ERROR_OK;
3044
3045 int numSamples = 0;
3046 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3047 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3048
3049 for (;;)
3050 {
3051 int retval;
3052 target_poll(target);
3053 if (target->state == TARGET_HALTED)
3054 {
3055 uint32_t t=*((uint32_t *)reg->value);
3056 samples[numSamples++]=t;
3057 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3058 target_poll(target);
3059 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3060 } else if (target->state == TARGET_RUNNING)
3061 {
3062 /* We want to quickly sample the PC. */
3063 if ((retval = target_halt(target)) != ERROR_OK)
3064 {
3065 free(samples);
3066 return retval;
3067 }
3068 } else
3069 {
3070 command_print(cmd_ctx, "Target not halted or running");
3071 retval = ERROR_OK;
3072 break;
3073 }
3074 if (retval != ERROR_OK)
3075 {
3076 break;
3077 }
3078
3079 gettimeofday(&now, NULL);
3080 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3081 {
3082 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3083 if ((retval = target_poll(target)) != ERROR_OK)
3084 {
3085 free(samples);
3086 return retval;
3087 }
3088 if (target->state == TARGET_HALTED)
3089 {
3090 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3091 }
3092 if ((retval = target_poll(target)) != ERROR_OK)
3093 {
3094 free(samples);
3095 return retval;
3096 }
3097 writeGmon(samples, numSamples, args[1]);
3098 command_print(cmd_ctx, "Wrote %s", args[1]);
3099 break;
3100 }
3101 }
3102 free(samples);
3103
3104 return ERROR_OK;
3105 }
3106
3107 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3108 {
3109 char *namebuf;
3110 Jim_Obj *nameObjPtr, *valObjPtr;
3111 int result;
3112
3113 namebuf = alloc_printf("%s(%d)", varname, idx);
3114 if (!namebuf)
3115 return JIM_ERR;
3116
3117 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3118 valObjPtr = Jim_NewIntObj(interp, val);
3119 if (!nameObjPtr || !valObjPtr)
3120 {
3121 free(namebuf);
3122 return JIM_ERR;
3123 }
3124
3125 Jim_IncrRefCount(nameObjPtr);
3126 Jim_IncrRefCount(valObjPtr);
3127 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3128 Jim_DecrRefCount(interp, nameObjPtr);
3129 Jim_DecrRefCount(interp, valObjPtr);
3130 free(namebuf);
3131 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3132 return result;
3133 }
3134
3135 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3136 {
3137 struct command_context *context;
3138 struct target *target;
3139
3140 context = Jim_GetAssocData(interp, "context");
3141 if (context == NULL)
3142 {
3143 LOG_ERROR("mem2array: no command context");
3144 return JIM_ERR;
3145 }
3146 target = get_current_target(context);
3147 if (target == NULL)
3148 {
3149 LOG_ERROR("mem2array: no current target");
3150 return JIM_ERR;
3151 }
3152
3153 return target_mem2array(interp, target, argc-1, argv + 1);
3154 }
3155
3156 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3157 {
3158 long l;
3159 uint32_t width;
3160 int len;
3161 uint32_t addr;
3162 uint32_t count;
3163 uint32_t v;
3164 const char *varname;
3165 uint8_t buffer[4096];
3166 int n, e, retval;
3167 uint32_t i;
3168
3169 /* argv[1] = name of array to receive the data
3170 * argv[2] = desired width
3171 * argv[3] = memory address
3172 * argv[4] = count of times to read
3173 */
3174 if (argc != 4) {
3175 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3176 return JIM_ERR;
3177 }
3178 varname = Jim_GetString(argv[0], &len);
3179 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3180
3181 e = Jim_GetLong(interp, argv[1], &l);
3182 width = l;
3183 if (e != JIM_OK) {
3184 return e;
3185 }
3186
3187 e = Jim_GetLong(interp, argv[2], &l);
3188 addr = l;
3189 if (e != JIM_OK) {
3190 return e;
3191 }
3192 e = Jim_GetLong(interp, argv[3], &l);
3193 len = l;
3194 if (e != JIM_OK) {
3195 return e;
3196 }
3197 switch (width) {
3198 case 8:
3199 width = 1;
3200 break;
3201 case 16:
3202 width = 2;
3203 break;
3204 case 32:
3205 width = 4;
3206 break;
3207 default:
3208 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3209 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3210 return JIM_ERR;
3211 }
3212 if (len == 0) {
3213 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3214 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3215 return JIM_ERR;
3216 }
3217 if ((addr + (len * width)) < addr) {
3218 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3219 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3220 return JIM_ERR;
3221 }
3222 /* absurd transfer size? */
3223 if (len > 65536) {
3224 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3225 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3226 return JIM_ERR;
3227 }
3228
3229 if ((width == 1) ||
3230 ((width == 2) && ((addr & 1) == 0)) ||
3231 ((width == 4) && ((addr & 3) == 0))) {
3232 /* all is well */
3233 } else {
3234 char buf[100];
3235 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3236 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3237 addr,
3238 width);
3239 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3240 return JIM_ERR;
3241 }
3242
3243 /* Transfer loop */
3244
3245 /* index counter */
3246 n = 0;
3247 /* assume ok */
3248 e = JIM_OK;
3249 while (len) {
3250 /* Slurp... in buffer size chunks */
3251
3252 count = len; /* in objects.. */
3253 if (count > (sizeof(buffer)/width)) {
3254 count = (sizeof(buffer)/width);
3255 }
3256
3257 retval = target_read_memory(target, addr, width, count, buffer);
3258 if (retval != ERROR_OK) {
3259 /* BOO !*/
3260 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3261 (unsigned int)addr,
3262 (int)width,
3263 (int)count);
3264 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3265 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3266 e = JIM_ERR;
3267 len = 0;
3268 } else {
3269 v = 0; /* shut up gcc */
3270 for (i = 0 ;i < count ;i++, n++) {
3271 switch (width) {
3272 case 4:
3273 v = target_buffer_get_u32(target, &buffer[i*width]);
3274 break;
3275 case 2:
3276 v = target_buffer_get_u16(target, &buffer[i*width]);
3277 break;
3278 case 1:
3279 v = buffer[i] & 0x0ff;
3280 break;
3281 }
3282 new_int_array_element(interp, varname, n, v);
3283 }
3284 len -= count;
3285 }
3286 }
3287
3288 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3289
3290 return JIM_OK;
3291 }
3292
3293 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3294 {
3295 char *namebuf;
3296 Jim_Obj *nameObjPtr, *valObjPtr;
3297 int result;
3298 long l;
3299
3300 namebuf = alloc_printf("%s(%d)", varname, idx);
3301 if (!namebuf)
3302 return JIM_ERR;
3303
3304 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3305 if (!nameObjPtr)
3306 {
3307 free(namebuf);
3308 return JIM_ERR;
3309 }
3310
3311 Jim_IncrRefCount(nameObjPtr);
3312 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3313 Jim_DecrRefCount(interp, nameObjPtr);
3314 free(namebuf);
3315 if (valObjPtr == NULL)
3316 return JIM_ERR;
3317
3318 result = Jim_GetLong(interp, valObjPtr, &l);
3319 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3320 *val = l;
3321 return result;
3322 }
3323
3324 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3325 {
3326 struct command_context *context;
3327 struct target *target;
3328
3329 context = Jim_GetAssocData(interp, "context");
3330 if (context == NULL) {
3331 LOG_ERROR("array2mem: no command context");
3332 return JIM_ERR;
3333 }
3334 target = get_current_target(context);
3335 if (target == NULL) {
3336 LOG_ERROR("array2mem: no current target");
3337 return JIM_ERR;
3338 }
3339
3340 return target_array2mem(interp,target, argc-1, argv + 1);
3341 }
3342 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3343 {
3344 long l;
3345 uint32_t width;
3346 int len;
3347 uint32_t addr;
3348 uint32_t count;
3349 uint32_t v;
3350 const char *varname;
3351 uint8_t buffer[4096];
3352 int n, e, retval;
3353 uint32_t i;
3354
3355 /* argv[1] = name of array to get the data
3356 * argv[2] = desired width
3357 * argv[3] = memory address
3358 * argv[4] = count to write
3359 */
3360 if (argc != 4) {
3361 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3362 return JIM_ERR;
3363 }
3364 varname = Jim_GetString(argv[0], &len);
3365 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3366
3367 e = Jim_GetLong(interp, argv[1], &l);
3368 width = l;
3369 if (e != JIM_OK) {
3370 return e;
3371 }
3372
3373 e = Jim_GetLong(interp, argv[2], &l);
3374 addr = l;
3375 if (e != JIM_OK) {
3376 return e;
3377 }
3378 e = Jim_GetLong(interp, argv[3], &l);
3379 len = l;
3380 if (e != JIM_OK) {
3381 return e;
3382 }
3383 switch (width) {
3384 case 8:
3385 width = 1;
3386 break;
3387 case 16:
3388 width = 2;
3389 break;
3390 case 32:
3391 width = 4;
3392 break;
3393 default:
3394 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3395 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3396 return JIM_ERR;
3397 }
3398 if (len == 0) {
3399 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3400 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3401 return JIM_ERR;
3402 }
3403 if ((addr + (len * width)) < addr) {
3404 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3405 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3406 return JIM_ERR;
3407 }
3408 /* absurd transfer size? */
3409 if (len > 65536) {
3410 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3411 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3412 return JIM_ERR;
3413 }
3414
3415 if ((width == 1) ||
3416 ((width == 2) && ((addr & 1) == 0)) ||
3417 ((width == 4) && ((addr & 3) == 0))) {
3418 /* all is well */
3419 } else {
3420 char buf[100];
3421 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3422 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3423 (unsigned int)addr,
3424 (int)width);
3425 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3426 return JIM_ERR;
3427 }
3428
3429 /* Transfer loop */
3430
3431 /* index counter */
3432 n = 0;
3433 /* assume ok */
3434 e = JIM_OK;
3435 while (len) {
3436 /* Slurp... in buffer size chunks */
3437
3438 count = len; /* in objects.. */
3439 if (count > (sizeof(buffer)/width)) {
3440 count = (sizeof(buffer)/width);
3441 }
3442
3443 v = 0; /* shut up gcc */
3444 for (i = 0 ;i < count ;i++, n++) {
3445 get_int_array_element(interp, varname, n, &v);
3446 switch (width) {
3447 case 4:
3448 target_buffer_set_u32(target, &buffer[i*width], v);
3449 break;
3450 case 2:
3451 target_buffer_set_u16(target, &buffer[i*width], v);
3452 break;
3453 case 1:
3454 buffer[i] = v & 0x0ff;
3455 break;
3456 }
3457 }
3458 len -= count;
3459
3460 retval = target_write_memory(target, addr, width, count, buffer);
3461 if (retval != ERROR_OK) {
3462 /* BOO !*/
3463 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3464 (unsigned int)addr,
3465 (int)width,
3466 (int)count);
3467 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3468 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3469 e = JIM_ERR;
3470 len = 0;
3471 }
3472 }
3473
3474 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3475
3476 return JIM_OK;
3477 }
3478
3479 void target_all_handle_event(enum target_event e)
3480 {
3481 struct target *target;
3482
3483 LOG_DEBUG("**all*targets: event: %d, %s",
3484 (int)e,
3485 Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3486
3487 target = all_targets;
3488 while (target) {
3489 target_handle_event(target, e);
3490 target = target->next;
3491 }
3492 }
3493
3494
3495 /* FIX? should we propagate errors here rather than printing them
3496 * and continuing?
3497 */
3498 void target_handle_event(struct target *target, enum target_event e)
3499 {
3500 struct target_event_action *teap;
3501
3502 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3503 if (teap->event == e) {
3504 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3505 target->target_number,
3506 target->cmd_name,
3507 target_get_name(target),
3508 e,
3509 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3510 Jim_GetString(teap->body, NULL));
3511 if (Jim_EvalObj(interp, teap->body) != JIM_OK)
3512 {
3513 Jim_PrintErrorMessage(interp);
3514 }
3515 }
3516 }
3517 }
3518
3519 enum target_cfg_param {
3520 TCFG_TYPE,
3521 TCFG_EVENT,
3522 TCFG_WORK_AREA_VIRT,
3523 TCFG_WORK_AREA_PHYS,
3524 TCFG_WORK_AREA_SIZE,
3525 TCFG_WORK_AREA_BACKUP,
3526 TCFG_ENDIAN,
3527 TCFG_VARIANT,
3528 TCFG_CHAIN_POSITION,
3529 };
3530
3531 static Jim_Nvp nvp_config_opts[] = {
3532 { .name = "-type", .value = TCFG_TYPE },
3533 { .name = "-event", .value = TCFG_EVENT },
3534 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3535 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3536 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3537 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3538 { .name = "-endian" , .value = TCFG_ENDIAN },
3539 { .name = "-variant", .value = TCFG_VARIANT },
3540 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3541
3542 { .name = NULL, .value = -1 }
3543 };
3544
3545 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3546 {
3547 Jim_Nvp *n;
3548 Jim_Obj *o;
3549 jim_wide w;
3550 char *cp;
3551 int e;
3552
3553 /* parse config or cget options ... */
3554 while (goi->argc > 0) {
3555 Jim_SetEmptyResult(goi->interp);
3556 /* Jim_GetOpt_Debug(goi); */
3557
3558 if (target->type->target_jim_configure) {
3559 /* target defines a configure function */
3560 /* target gets first dibs on parameters */
3561 e = (*(target->type->target_jim_configure))(target, goi);
3562 if (e == JIM_OK) {
3563 /* more? */
3564 continue;
3565 }
3566 if (e == JIM_ERR) {
3567 /* An error */
3568 return e;
3569 }
3570 /* otherwise we 'continue' below */
3571 }
3572 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3573 if (e != JIM_OK) {
3574 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3575 return e;
3576 }
3577 switch (n->value) {
3578 case TCFG_TYPE:
3579 /* not setable */
3580 if (goi->isconfigure) {
3581 Jim_SetResult_sprintf(goi->interp, "not setable: %s", n->name);
3582 return JIM_ERR;
3583 } else {
3584 no_params:
3585 if (goi->argc != 0) {
3586 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
3587 return JIM_ERR;
3588 }
3589 }
3590 Jim_SetResultString(goi->interp, target_get_name(target), -1);
3591 /* loop for more */
3592 break;
3593 case TCFG_EVENT:
3594 if (goi->argc == 0) {
3595 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3596 return JIM_ERR;
3597 }
3598
3599 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3600 if (e != JIM_OK) {
3601 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3602 return e;
3603 }
3604
3605 if (goi->isconfigure) {
3606 if (goi->argc != 1) {
3607 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3608 return JIM_ERR;
3609 }
3610 } else {
3611 if (goi->argc != 0) {
3612 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3613 return JIM_ERR;
3614 }
3615 }
3616
3617 {
3618 struct target_event_action *teap;
3619
3620 teap = target->event_action;
3621 /* replace existing? */
3622 while (teap) {
3623 if (teap->event == (enum target_event)n->value) {
3624 break;
3625 }
3626 teap = teap->next;
3627 }
3628
3629 if (goi->isconfigure) {
3630 bool replace = true;
3631 if (teap == NULL) {
3632 /* create new */
3633 teap = calloc(1, sizeof(*teap));
3634 replace = false;
3635 }
3636 teap->event = n->value;
3637 Jim_GetOpt_Obj(goi, &o);
3638 if (teap->body) {
3639 Jim_DecrRefCount(interp, teap->body);
3640 }
3641 teap->body = Jim_DuplicateObj(goi->interp, o);
3642 /*
3643 * FIXME:
3644 * Tcl/TK - "tk events" have a nice feature.
3645 * See the "BIND" command.
3646 * We should support that here.
3647 * You can specify %X and %Y in the event code.
3648 * The idea is: %T - target name.
3649 * The idea is: %N - target number
3650 * The idea is: %E - event name.
3651 */
3652 Jim_IncrRefCount(teap->body);
3653
3654 if (!replace)
3655 {
3656 /* add to head of event list */
3657 teap->next = target->event_action;
3658 target->event_action = teap;
3659 }
3660 Jim_SetEmptyResult(goi->interp);
3661 } else {
3662 /* get */
3663 if (teap == NULL) {
3664 Jim_SetEmptyResult(goi->interp);
3665 } else {
3666 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3667 }
3668 }
3669 }
3670 /* loop for more */
3671 break;
3672
3673 case TCFG_WORK_AREA_VIRT:
3674 if (goi->isconfigure) {
3675 target_free_all_working_areas(target);
3676 e = Jim_GetOpt_Wide(goi, &w);
3677 if (e != JIM_OK) {
3678 return e;
3679 }
3680 target