ee302ee47c7a3673108ae2e9e9f4fe8d31318241
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57
58 /* default halt wait timeout (ms) */
59 #define DEFAULT_HALT_TIMEOUT 5000
60
61 static int target_read_buffer_default(struct target *target, target_addr_t address,
62 uint32_t count, uint8_t *buffer);
63 static int target_write_buffer_default(struct target *target, target_addr_t address,
64 uint32_t count, const uint8_t *buffer);
65 static int target_array2mem(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_mem2array(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_register_user_commands(struct command_context *cmd_ctx);
70 static int target_get_gdb_fileio_info_default(struct target *target,
71 struct gdb_fileio_info *fileio_info);
72 static int target_gdb_fileio_end_default(struct target *target, int retcode,
73 int fileio_errno, bool ctrl_c);
74 static int target_profiling_default(struct target *target, uint32_t *samples,
75 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
76
77 /* targets */
78 extern struct target_type arm7tdmi_target;
79 extern struct target_type arm720t_target;
80 extern struct target_type arm9tdmi_target;
81 extern struct target_type arm920t_target;
82 extern struct target_type arm966e_target;
83 extern struct target_type arm946e_target;
84 extern struct target_type arm926ejs_target;
85 extern struct target_type fa526_target;
86 extern struct target_type feroceon_target;
87 extern struct target_type dragonite_target;
88 extern struct target_type xscale_target;
89 extern struct target_type cortexm_target;
90 extern struct target_type cortexa_target;
91 extern struct target_type aarch64_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type ls1_sap_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108
109 static struct target_type *target_types[] = {
110 &arm7tdmi_target,
111 &arm9tdmi_target,
112 &arm920t_target,
113 &arm720t_target,
114 &arm966e_target,
115 &arm946e_target,
116 &arm926ejs_target,
117 &fa526_target,
118 &feroceon_target,
119 &dragonite_target,
120 &xscale_target,
121 &cortexm_target,
122 &cortexa_target,
123 &cortexr4_target,
124 &arm11_target,
125 &ls1_sap_target,
126 &mips_m4k_target,
127 &avr_target,
128 &dsp563xx_target,
129 &dsp5680xx_target,
130 &testee_target,
131 &avr32_ap7k_target,
132 &hla_target,
133 &nds32_v2_target,
134 &nds32_v3_target,
135 &nds32_v3m_target,
136 &or1k_target,
137 &quark_x10xx_target,
138 &quark_d20xx_target,
139 #if BUILD_TARGET64
140 &aarch64_target,
141 #endif
142 NULL,
143 };
144
145 struct target *all_targets;
146 static struct target_event_callback *target_event_callbacks;
147 static struct target_timer_callback *target_timer_callbacks;
148 LIST_HEAD(target_reset_callback_list);
149 LIST_HEAD(target_trace_callback_list);
150 static const int polling_interval = 100;
151
152 static const Jim_Nvp nvp_assert[] = {
153 { .name = "assert", NVP_ASSERT },
154 { .name = "deassert", NVP_DEASSERT },
155 { .name = "T", NVP_ASSERT },
156 { .name = "F", NVP_DEASSERT },
157 { .name = "t", NVP_ASSERT },
158 { .name = "f", NVP_DEASSERT },
159 { .name = NULL, .value = -1 }
160 };
161
162 static const Jim_Nvp nvp_error_target[] = {
163 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
164 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
165 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
166 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
167 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
168 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
169 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
170 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
171 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
172 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
173 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
174 { .value = -1, .name = NULL }
175 };
176
177 static const char *target_strerror_safe(int err)
178 {
179 const Jim_Nvp *n;
180
181 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
182 if (n->name == NULL)
183 return "unknown";
184 else
185 return n->name;
186 }
187
188 static const Jim_Nvp nvp_target_event[] = {
189
190 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
191 { .value = TARGET_EVENT_HALTED, .name = "halted" },
192 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
193 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
194 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
195
196 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
197 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
198
199 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
200 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
201 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
202 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
203 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
204 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
205 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
206 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
207 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
208 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
209 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
210 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
211
212 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
213 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
214
215 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
216 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
217
218 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
219 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
220
221 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
222 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
223
224 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
225 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
226
227 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
228
229 { .name = NULL, .value = -1 }
230 };
231
232 static const Jim_Nvp nvp_target_state[] = {
233 { .name = "unknown", .value = TARGET_UNKNOWN },
234 { .name = "running", .value = TARGET_RUNNING },
235 { .name = "halted", .value = TARGET_HALTED },
236 { .name = "reset", .value = TARGET_RESET },
237 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
238 { .name = NULL, .value = -1 },
239 };
240
241 static const Jim_Nvp nvp_target_debug_reason[] = {
242 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
243 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
244 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
245 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
246 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
247 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
248 { .name = "program-exit" , .value = DBG_REASON_EXIT },
249 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
250 { .name = NULL, .value = -1 },
251 };
252
253 static const Jim_Nvp nvp_target_endian[] = {
254 { .name = "big", .value = TARGET_BIG_ENDIAN },
255 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
256 { .name = "be", .value = TARGET_BIG_ENDIAN },
257 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
258 { .name = NULL, .value = -1 },
259 };
260
261 static const Jim_Nvp nvp_reset_modes[] = {
262 { .name = "unknown", .value = RESET_UNKNOWN },
263 { .name = "run" , .value = RESET_RUN },
264 { .name = "halt" , .value = RESET_HALT },
265 { .name = "init" , .value = RESET_INIT },
266 { .name = NULL , .value = -1 },
267 };
268
269 const char *debug_reason_name(struct target *t)
270 {
271 const char *cp;
272
273 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
274 t->debug_reason)->name;
275 if (!cp) {
276 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
277 cp = "(*BUG*unknown*BUG*)";
278 }
279 return cp;
280 }
281
282 const char *target_state_name(struct target *t)
283 {
284 const char *cp;
285 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
286 if (!cp) {
287 LOG_ERROR("Invalid target state: %d", (int)(t->state));
288 cp = "(*BUG*unknown*BUG*)";
289 }
290
291 if (!target_was_examined(t) && t->defer_examine)
292 cp = "examine deferred";
293
294 return cp;
295 }
296
297 const char *target_event_name(enum target_event event)
298 {
299 const char *cp;
300 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
301 if (!cp) {
302 LOG_ERROR("Invalid target event: %d", (int)(event));
303 cp = "(*BUG*unknown*BUG*)";
304 }
305 return cp;
306 }
307
308 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
309 {
310 const char *cp;
311 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
312 if (!cp) {
313 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
314 cp = "(*BUG*unknown*BUG*)";
315 }
316 return cp;
317 }
318
319 /* determine the number of the new target */
320 static int new_target_number(void)
321 {
322 struct target *t;
323 int x;
324
325 /* number is 0 based */
326 x = -1;
327 t = all_targets;
328 while (t) {
329 if (x < t->target_number)
330 x = t->target_number;
331 t = t->next;
332 }
333 return x + 1;
334 }
335
336 /* read a uint64_t from a buffer in target memory endianness */
337 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
338 {
339 if (target->endianness == TARGET_LITTLE_ENDIAN)
340 return le_to_h_u64(buffer);
341 else
342 return be_to_h_u64(buffer);
343 }
344
345 /* read a uint32_t from a buffer in target memory endianness */
346 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
347 {
348 if (target->endianness == TARGET_LITTLE_ENDIAN)
349 return le_to_h_u32(buffer);
350 else
351 return be_to_h_u32(buffer);
352 }
353
354 /* read a uint24_t from a buffer in target memory endianness */
355 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
356 {
357 if (target->endianness == TARGET_LITTLE_ENDIAN)
358 return le_to_h_u24(buffer);
359 else
360 return be_to_h_u24(buffer);
361 }
362
363 /* read a uint16_t from a buffer in target memory endianness */
364 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
365 {
366 if (target->endianness == TARGET_LITTLE_ENDIAN)
367 return le_to_h_u16(buffer);
368 else
369 return be_to_h_u16(buffer);
370 }
371
372 /* read a uint8_t from a buffer in target memory endianness */
373 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
374 {
375 return *buffer & 0x0ff;
376 }
377
378 /* write a uint64_t to a buffer in target memory endianness */
379 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
380 {
381 if (target->endianness == TARGET_LITTLE_ENDIAN)
382 h_u64_to_le(buffer, value);
383 else
384 h_u64_to_be(buffer, value);
385 }
386
387 /* write a uint32_t to a buffer in target memory endianness */
388 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
389 {
390 if (target->endianness == TARGET_LITTLE_ENDIAN)
391 h_u32_to_le(buffer, value);
392 else
393 h_u32_to_be(buffer, value);
394 }
395
396 /* write a uint24_t to a buffer in target memory endianness */
397 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
398 {
399 if (target->endianness == TARGET_LITTLE_ENDIAN)
400 h_u24_to_le(buffer, value);
401 else
402 h_u24_to_be(buffer, value);
403 }
404
405 /* write a uint16_t to a buffer in target memory endianness */
406 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
407 {
408 if (target->endianness == TARGET_LITTLE_ENDIAN)
409 h_u16_to_le(buffer, value);
410 else
411 h_u16_to_be(buffer, value);
412 }
413
414 /* write a uint8_t to a buffer in target memory endianness */
415 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
416 {
417 *buffer = value;
418 }
419
420 /* write a uint64_t array to a buffer in target memory endianness */
421 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
422 {
423 uint32_t i;
424 for (i = 0; i < count; i++)
425 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
426 }
427
428 /* write a uint32_t array to a buffer in target memory endianness */
429 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
430 {
431 uint32_t i;
432 for (i = 0; i < count; i++)
433 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
434 }
435
436 /* write a uint16_t array to a buffer in target memory endianness */
437 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
438 {
439 uint32_t i;
440 for (i = 0; i < count; i++)
441 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
442 }
443
444 /* write a uint64_t array to a buffer in target memory endianness */
445 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
446 {
447 uint32_t i;
448 for (i = 0; i < count; i++)
449 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
450 }
451
452 /* write a uint32_t array to a buffer in target memory endianness */
453 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
454 {
455 uint32_t i;
456 for (i = 0; i < count; i++)
457 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
458 }
459
460 /* write a uint16_t array to a buffer in target memory endianness */
461 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
462 {
463 uint32_t i;
464 for (i = 0; i < count; i++)
465 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
466 }
467
468 /* return a pointer to a configured target; id is name or number */
469 struct target *get_target(const char *id)
470 {
471 struct target *target;
472
473 /* try as tcltarget name */
474 for (target = all_targets; target; target = target->next) {
475 if (target_name(target) == NULL)
476 continue;
477 if (strcmp(id, target_name(target)) == 0)
478 return target;
479 }
480
481 /* It's OK to remove this fallback sometime after August 2010 or so */
482
483 /* no match, try as number */
484 unsigned num;
485 if (parse_uint(id, &num) != ERROR_OK)
486 return NULL;
487
488 for (target = all_targets; target; target = target->next) {
489 if (target->target_number == (int)num) {
490 LOG_WARNING("use '%s' as target identifier, not '%u'",
491 target_name(target), num);
492 return target;
493 }
494 }
495
496 return NULL;
497 }
498
499 /* returns a pointer to the n-th configured target */
500 struct target *get_target_by_num(int num)
501 {
502 struct target *target = all_targets;
503
504 while (target) {
505 if (target->target_number == num)
506 return target;
507 target = target->next;
508 }
509
510 return NULL;
511 }
512
513 struct target *get_current_target(struct command_context *cmd_ctx)
514 {
515 struct target *target = get_target_by_num(cmd_ctx->current_target);
516
517 if (target == NULL) {
518 LOG_ERROR("BUG: current_target out of bounds");
519 exit(-1);
520 }
521
522 return target;
523 }
524
525 int target_poll(struct target *target)
526 {
527 int retval;
528
529 /* We can't poll until after examine */
530 if (!target_was_examined(target)) {
531 /* Fail silently lest we pollute the log */
532 return ERROR_FAIL;
533 }
534
535 retval = target->type->poll(target);
536 if (retval != ERROR_OK)
537 return retval;
538
539 if (target->halt_issued) {
540 if (target->state == TARGET_HALTED)
541 target->halt_issued = false;
542 else {
543 int64_t t = timeval_ms() - target->halt_issued_time;
544 if (t > DEFAULT_HALT_TIMEOUT) {
545 target->halt_issued = false;
546 LOG_INFO("Halt timed out, wake up GDB.");
547 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
548 }
549 }
550 }
551
552 return ERROR_OK;
553 }
554
555 int target_halt(struct target *target)
556 {
557 int retval;
558 /* We can't poll until after examine */
559 if (!target_was_examined(target)) {
560 LOG_ERROR("Target not examined yet");
561 return ERROR_FAIL;
562 }
563
564 retval = target->type->halt(target);
565 if (retval != ERROR_OK)
566 return retval;
567
568 target->halt_issued = true;
569 target->halt_issued_time = timeval_ms();
570
571 return ERROR_OK;
572 }
573
574 /**
575 * Make the target (re)start executing using its saved execution
576 * context (possibly with some modifications).
577 *
578 * @param target Which target should start executing.
579 * @param current True to use the target's saved program counter instead
580 * of the address parameter
581 * @param address Optionally used as the program counter.
582 * @param handle_breakpoints True iff breakpoints at the resumption PC
583 * should be skipped. (For example, maybe execution was stopped by
584 * such a breakpoint, in which case it would be counterprodutive to
585 * let it re-trigger.
586 * @param debug_execution False if all working areas allocated by OpenOCD
587 * should be released and/or restored to their original contents.
588 * (This would for example be true to run some downloaded "helper"
589 * algorithm code, which resides in one such working buffer and uses
590 * another for data storage.)
591 *
592 * @todo Resolve the ambiguity about what the "debug_execution" flag
593 * signifies. For example, Target implementations don't agree on how
594 * it relates to invalidation of the register cache, or to whether
595 * breakpoints and watchpoints should be enabled. (It would seem wrong
596 * to enable breakpoints when running downloaded "helper" algorithms
597 * (debug_execution true), since the breakpoints would be set to match
598 * target firmware being debugged, not the helper algorithm.... and
599 * enabling them could cause such helpers to malfunction (for example,
600 * by overwriting data with a breakpoint instruction. On the other
601 * hand the infrastructure for running such helpers might use this
602 * procedure but rely on hardware breakpoint to detect termination.)
603 */
604 int target_resume(struct target *target, int current, target_addr_t address,
605 int handle_breakpoints, int debug_execution)
606 {
607 int retval;
608
609 /* We can't poll until after examine */
610 if (!target_was_examined(target)) {
611 LOG_ERROR("Target not examined yet");
612 return ERROR_FAIL;
613 }
614
615 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
616
617 /* note that resume *must* be asynchronous. The CPU can halt before
618 * we poll. The CPU can even halt at the current PC as a result of
619 * a software breakpoint being inserted by (a bug?) the application.
620 */
621 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
622 if (retval != ERROR_OK)
623 return retval;
624
625 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
626
627 return retval;
628 }
629
630 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
631 {
632 char buf[100];
633 int retval;
634 Jim_Nvp *n;
635 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
636 if (n->name == NULL) {
637 LOG_ERROR("invalid reset mode");
638 return ERROR_FAIL;
639 }
640
641 struct target *target;
642 for (target = all_targets; target; target = target->next)
643 target_call_reset_callbacks(target, reset_mode);
644
645 /* disable polling during reset to make reset event scripts
646 * more predictable, i.e. dr/irscan & pathmove in events will
647 * not have JTAG operations injected into the middle of a sequence.
648 */
649 bool save_poll = jtag_poll_get_enabled();
650
651 jtag_poll_set_enabled(false);
652
653 sprintf(buf, "ocd_process_reset %s", n->name);
654 retval = Jim_Eval(cmd_ctx->interp, buf);
655
656 jtag_poll_set_enabled(save_poll);
657
658 if (retval != JIM_OK) {
659 Jim_MakeErrorMessage(cmd_ctx->interp);
660 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
661 return ERROR_FAIL;
662 }
663
664 /* We want any events to be processed before the prompt */
665 retval = target_call_timer_callbacks_now();
666
667 for (target = all_targets; target; target = target->next) {
668 target->type->check_reset(target);
669 target->running_alg = false;
670 }
671
672 return retval;
673 }
674
675 static int identity_virt2phys(struct target *target,
676 target_addr_t virtual, target_addr_t *physical)
677 {
678 *physical = virtual;
679 return ERROR_OK;
680 }
681
682 static int no_mmu(struct target *target, int *enabled)
683 {
684 *enabled = 0;
685 return ERROR_OK;
686 }
687
688 static int default_examine(struct target *target)
689 {
690 target_set_examined(target);
691 return ERROR_OK;
692 }
693
694 /* no check by default */
695 static int default_check_reset(struct target *target)
696 {
697 return ERROR_OK;
698 }
699
700 int target_examine_one(struct target *target)
701 {
702 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704 int retval = target->type->examine(target);
705 if (retval != ERROR_OK)
706 return retval;
707
708 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709
710 return ERROR_OK;
711 }
712
713 static int jtag_enable_callback(enum jtag_event event, void *priv)
714 {
715 struct target *target = priv;
716
717 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
718 return ERROR_OK;
719
720 jtag_unregister_event_callback(jtag_enable_callback, target);
721
722 return target_examine_one(target);
723 }
724
725 /* Targets that correctly implement init + examine, i.e.
726 * no communication with target during init:
727 *
728 * XScale
729 */
730 int target_examine(void)
731 {
732 int retval = ERROR_OK;
733 struct target *target;
734
735 for (target = all_targets; target; target = target->next) {
736 /* defer examination, but don't skip it */
737 if (!target->tap->enabled) {
738 jtag_register_event_callback(jtag_enable_callback,
739 target);
740 continue;
741 }
742
743 if (target->defer_examine)
744 continue;
745
746 retval = target_examine_one(target);
747 if (retval != ERROR_OK)
748 return retval;
749 }
750 return retval;
751 }
752
753 const char *target_type_name(struct target *target)
754 {
755 return target->type->name;
756 }
757
758 static int target_soft_reset_halt(struct target *target)
759 {
760 if (!target_was_examined(target)) {
761 LOG_ERROR("Target not examined yet");
762 return ERROR_FAIL;
763 }
764 if (!target->type->soft_reset_halt) {
765 LOG_ERROR("Target %s does not support soft_reset_halt",
766 target_name(target));
767 return ERROR_FAIL;
768 }
769 return target->type->soft_reset_halt(target);
770 }
771
772 /**
773 * Downloads a target-specific native code algorithm to the target,
774 * and executes it. * Note that some targets may need to set up, enable,
775 * and tear down a breakpoint (hard or * soft) to detect algorithm
776 * termination, while others may support lower overhead schemes where
777 * soft breakpoints embedded in the algorithm automatically terminate the
778 * algorithm.
779 *
780 * @param target used to run the algorithm
781 * @param arch_info target-specific description of the algorithm.
782 */
783 int target_run_algorithm(struct target *target,
784 int num_mem_params, struct mem_param *mem_params,
785 int num_reg_params, struct reg_param *reg_param,
786 uint32_t entry_point, uint32_t exit_point,
787 int timeout_ms, void *arch_info)
788 {
789 int retval = ERROR_FAIL;
790
791 if (!target_was_examined(target)) {
792 LOG_ERROR("Target not examined yet");
793 goto done;
794 }
795 if (!target->type->run_algorithm) {
796 LOG_ERROR("Target type '%s' does not support %s",
797 target_type_name(target), __func__);
798 goto done;
799 }
800
801 target->running_alg = true;
802 retval = target->type->run_algorithm(target,
803 num_mem_params, mem_params,
804 num_reg_params, reg_param,
805 entry_point, exit_point, timeout_ms, arch_info);
806 target->running_alg = false;
807
808 done:
809 return retval;
810 }
811
812 /**
813 * Downloads a target-specific native code algorithm to the target,
814 * executes and leaves it running.
815 *
816 * @param target used to run the algorithm
817 * @param arch_info target-specific description of the algorithm.
818 */
819 int target_start_algorithm(struct target *target,
820 int num_mem_params, struct mem_param *mem_params,
821 int num_reg_params, struct reg_param *reg_params,
822 uint32_t entry_point, uint32_t exit_point,
823 void *arch_info)
824 {
825 int retval = ERROR_FAIL;
826
827 if (!target_was_examined(target)) {
828 LOG_ERROR("Target not examined yet");
829 goto done;
830 }
831 if (!target->type->start_algorithm) {
832 LOG_ERROR("Target type '%s' does not support %s",
833 target_type_name(target), __func__);
834 goto done;
835 }
836 if (target->running_alg) {
837 LOG_ERROR("Target is already running an algorithm");
838 goto done;
839 }
840
841 target->running_alg = true;
842 retval = target->type->start_algorithm(target,
843 num_mem_params, mem_params,
844 num_reg_params, reg_params,
845 entry_point, exit_point, arch_info);
846
847 done:
848 return retval;
849 }
850
851 /**
852 * Waits for an algorithm started with target_start_algorithm() to complete.
853 *
854 * @param target used to run the algorithm
855 * @param arch_info target-specific description of the algorithm.
856 */
857 int target_wait_algorithm(struct target *target,
858 int num_mem_params, struct mem_param *mem_params,
859 int num_reg_params, struct reg_param *reg_params,
860 uint32_t exit_point, int timeout_ms,
861 void *arch_info)
862 {
863 int retval = ERROR_FAIL;
864
865 if (!target->type->wait_algorithm) {
866 LOG_ERROR("Target type '%s' does not support %s",
867 target_type_name(target), __func__);
868 goto done;
869 }
870 if (!target->running_alg) {
871 LOG_ERROR("Target is not running an algorithm");
872 goto done;
873 }
874
875 retval = target->type->wait_algorithm(target,
876 num_mem_params, mem_params,
877 num_reg_params, reg_params,
878 exit_point, timeout_ms, arch_info);
879 if (retval != ERROR_TARGET_TIMEOUT)
880 target->running_alg = false;
881
882 done:
883 return retval;
884 }
885
886 /**
887 * Executes a target-specific native code algorithm in the target.
888 * It differs from target_run_algorithm in that the algorithm is asynchronous.
889 * Because of this it requires an compliant algorithm:
890 * see contrib/loaders/flash/stm32f1x.S for example.
891 *
892 * @param target used to run the algorithm
893 */
894
895 int target_run_flash_async_algorithm(struct target *target,
896 const uint8_t *buffer, uint32_t count, int block_size,
897 int num_mem_params, struct mem_param *mem_params,
898 int num_reg_params, struct reg_param *reg_params,
899 uint32_t buffer_start, uint32_t buffer_size,
900 uint32_t entry_point, uint32_t exit_point, void *arch_info)
901 {
902 int retval;
903 int timeout = 0;
904
905 const uint8_t *buffer_orig = buffer;
906
907 /* Set up working area. First word is write pointer, second word is read pointer,
908 * rest is fifo data area. */
909 uint32_t wp_addr = buffer_start;
910 uint32_t rp_addr = buffer_start + 4;
911 uint32_t fifo_start_addr = buffer_start + 8;
912 uint32_t fifo_end_addr = buffer_start + buffer_size;
913
914 uint32_t wp = fifo_start_addr;
915 uint32_t rp = fifo_start_addr;
916
917 /* validate block_size is 2^n */
918 assert(!block_size || !(block_size & (block_size - 1)));
919
920 retval = target_write_u32(target, wp_addr, wp);
921 if (retval != ERROR_OK)
922 return retval;
923 retval = target_write_u32(target, rp_addr, rp);
924 if (retval != ERROR_OK)
925 return retval;
926
927 /* Start up algorithm on target and let it idle while writing the first chunk */
928 retval = target_start_algorithm(target, num_mem_params, mem_params,
929 num_reg_params, reg_params,
930 entry_point,
931 exit_point,
932 arch_info);
933
934 if (retval != ERROR_OK) {
935 LOG_ERROR("error starting target flash write algorithm");
936 return retval;
937 }
938
939 while (count > 0) {
940
941 retval = target_read_u32(target, rp_addr, &rp);
942 if (retval != ERROR_OK) {
943 LOG_ERROR("failed to get read pointer");
944 break;
945 }
946
947 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
948 (size_t) (buffer - buffer_orig), count, wp, rp);
949
950 if (rp == 0) {
951 LOG_ERROR("flash write algorithm aborted by target");
952 retval = ERROR_FLASH_OPERATION_FAILED;
953 break;
954 }
955
956 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
957 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
958 break;
959 }
960
961 /* Count the number of bytes available in the fifo without
962 * crossing the wrap around. Make sure to not fill it completely,
963 * because that would make wp == rp and that's the empty condition. */
964 uint32_t thisrun_bytes;
965 if (rp > wp)
966 thisrun_bytes = rp - wp - block_size;
967 else if (rp > fifo_start_addr)
968 thisrun_bytes = fifo_end_addr - wp;
969 else
970 thisrun_bytes = fifo_end_addr - wp - block_size;
971
972 if (thisrun_bytes == 0) {
973 /* Throttle polling a bit if transfer is (much) faster than flash
974 * programming. The exact delay shouldn't matter as long as it's
975 * less than buffer size / flash speed. This is very unlikely to
976 * run when using high latency connections such as USB. */
977 alive_sleep(10);
978
979 /* to stop an infinite loop on some targets check and increment a timeout
980 * this issue was observed on a stellaris using the new ICDI interface */
981 if (timeout++ >= 500) {
982 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
983 return ERROR_FLASH_OPERATION_FAILED;
984 }
985 continue;
986 }
987
988 /* reset our timeout */
989 timeout = 0;
990
991 /* Limit to the amount of data we actually want to write */
992 if (thisrun_bytes > count * block_size)
993 thisrun_bytes = count * block_size;
994
995 /* Write data to fifo */
996 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
997 if (retval != ERROR_OK)
998 break;
999
1000 /* Update counters and wrap write pointer */
1001 buffer += thisrun_bytes;
1002 count -= thisrun_bytes / block_size;
1003 wp += thisrun_bytes;
1004 if (wp >= fifo_end_addr)
1005 wp = fifo_start_addr;
1006
1007 /* Store updated write pointer to target */
1008 retval = target_write_u32(target, wp_addr, wp);
1009 if (retval != ERROR_OK)
1010 break;
1011 }
1012
1013 if (retval != ERROR_OK) {
1014 /* abort flash write algorithm on target */
1015 target_write_u32(target, wp_addr, 0);
1016 }
1017
1018 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1019 num_reg_params, reg_params,
1020 exit_point,
1021 10000,
1022 arch_info);
1023
1024 if (retval2 != ERROR_OK) {
1025 LOG_ERROR("error waiting for target flash write algorithm");
1026 retval = retval2;
1027 }
1028
1029 if (retval == ERROR_OK) {
1030 /* check if algorithm set rp = 0 after fifo writer loop finished */
1031 retval = target_read_u32(target, rp_addr, &rp);
1032 if (retval == ERROR_OK && rp == 0) {
1033 LOG_ERROR("flash write algorithm aborted by target");
1034 retval = ERROR_FLASH_OPERATION_FAILED;
1035 }
1036 }
1037
1038 return retval;
1039 }
1040
1041 int target_read_memory(struct target *target,
1042 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1043 {
1044 if (!target_was_examined(target)) {
1045 LOG_ERROR("Target not examined yet");
1046 return ERROR_FAIL;
1047 }
1048 if (!target->type->read_memory) {
1049 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1050 return ERROR_FAIL;
1051 }
1052 return target->type->read_memory(target, address, size, count, buffer);
1053 }
1054
1055 int target_read_phys_memory(struct target *target,
1056 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1057 {
1058 if (!target_was_examined(target)) {
1059 LOG_ERROR("Target not examined yet");
1060 return ERROR_FAIL;
1061 }
1062 if (!target->type->read_phys_memory) {
1063 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1064 return ERROR_FAIL;
1065 }
1066 return target->type->read_phys_memory(target, address, size, count, buffer);
1067 }
1068
1069 int target_write_memory(struct target *target,
1070 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1071 {
1072 if (!target_was_examined(target)) {
1073 LOG_ERROR("Target not examined yet");
1074 return ERROR_FAIL;
1075 }
1076 if (!target->type->write_memory) {
1077 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1078 return ERROR_FAIL;
1079 }
1080 return target->type->write_memory(target, address, size, count, buffer);
1081 }
1082
1083 int target_write_phys_memory(struct target *target,
1084 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1085 {
1086 if (!target_was_examined(target)) {
1087 LOG_ERROR("Target not examined yet");
1088 return ERROR_FAIL;
1089 }
1090 if (!target->type->write_phys_memory) {
1091 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1092 return ERROR_FAIL;
1093 }
1094 return target->type->write_phys_memory(target, address, size, count, buffer);
1095 }
1096
1097 int target_add_breakpoint(struct target *target,
1098 struct breakpoint *breakpoint)
1099 {
1100 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1101 LOG_WARNING("target %s is not halted", target_name(target));
1102 return ERROR_TARGET_NOT_HALTED;
1103 }
1104 return target->type->add_breakpoint(target, breakpoint);
1105 }
1106
1107 int target_add_context_breakpoint(struct target *target,
1108 struct breakpoint *breakpoint)
1109 {
1110 if (target->state != TARGET_HALTED) {
1111 LOG_WARNING("target %s is not halted", target_name(target));
1112 return ERROR_TARGET_NOT_HALTED;
1113 }
1114 return target->type->add_context_breakpoint(target, breakpoint);
1115 }
1116
1117 int target_add_hybrid_breakpoint(struct target *target,
1118 struct breakpoint *breakpoint)
1119 {
1120 if (target->state != TARGET_HALTED) {
1121 LOG_WARNING("target %s is not halted", target_name(target));
1122 return ERROR_TARGET_NOT_HALTED;
1123 }
1124 return target->type->add_hybrid_breakpoint(target, breakpoint);
1125 }
1126
1127 int target_remove_breakpoint(struct target *target,
1128 struct breakpoint *breakpoint)
1129 {
1130 return target->type->remove_breakpoint(target, breakpoint);
1131 }
1132
1133 int target_add_watchpoint(struct target *target,
1134 struct watchpoint *watchpoint)
1135 {
1136 if (target->state != TARGET_HALTED) {
1137 LOG_WARNING("target %s is not halted", target_name(target));
1138 return ERROR_TARGET_NOT_HALTED;
1139 }
1140 return target->type->add_watchpoint(target, watchpoint);
1141 }
1142 int target_remove_watchpoint(struct target *target,
1143 struct watchpoint *watchpoint)
1144 {
1145 return target->type->remove_watchpoint(target, watchpoint);
1146 }
1147 int target_hit_watchpoint(struct target *target,
1148 struct watchpoint **hit_watchpoint)
1149 {
1150 if (target->state != TARGET_HALTED) {
1151 LOG_WARNING("target %s is not halted", target->cmd_name);
1152 return ERROR_TARGET_NOT_HALTED;
1153 }
1154
1155 if (target->type->hit_watchpoint == NULL) {
1156 /* For backward compatible, if hit_watchpoint is not implemented,
1157 * return ERROR_FAIL such that gdb_server will not take the nonsense
1158 * information. */
1159 return ERROR_FAIL;
1160 }
1161
1162 return target->type->hit_watchpoint(target, hit_watchpoint);
1163 }
1164
1165 int target_get_gdb_reg_list(struct target *target,
1166 struct reg **reg_list[], int *reg_list_size,
1167 enum target_register_class reg_class)
1168 {
1169 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1170 }
1171 int target_step(struct target *target,
1172 int current, target_addr_t address, int handle_breakpoints)
1173 {
1174 return target->type->step(target, current, address, handle_breakpoints);
1175 }
1176
1177 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1178 {
1179 if (target->state != TARGET_HALTED) {
1180 LOG_WARNING("target %s is not halted", target->cmd_name);
1181 return ERROR_TARGET_NOT_HALTED;
1182 }
1183 return target->type->get_gdb_fileio_info(target, fileio_info);
1184 }
1185
1186 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1187 {
1188 if (target->state != TARGET_HALTED) {
1189 LOG_WARNING("target %s is not halted", target->cmd_name);
1190 return ERROR_TARGET_NOT_HALTED;
1191 }
1192 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1193 }
1194
1195 int target_profiling(struct target *target, uint32_t *samples,
1196 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1197 {
1198 if (target->state != TARGET_HALTED) {
1199 LOG_WARNING("target %s is not halted", target->cmd_name);
1200 return ERROR_TARGET_NOT_HALTED;
1201 }
1202 return target->type->profiling(target, samples, max_num_samples,
1203 num_samples, seconds);
1204 }
1205
1206 /**
1207 * Reset the @c examined flag for the given target.
1208 * Pure paranoia -- targets are zeroed on allocation.
1209 */
1210 static void target_reset_examined(struct target *target)
1211 {
1212 target->examined = false;
1213 }
1214
1215 static int handle_target(void *priv);
1216
1217 static int target_init_one(struct command_context *cmd_ctx,
1218 struct target *target)
1219 {
1220 target_reset_examined(target);
1221
1222 struct target_type *type = target->type;
1223 if (type->examine == NULL)
1224 type->examine = default_examine;
1225
1226 if (type->check_reset == NULL)
1227 type->check_reset = default_check_reset;
1228
1229 assert(type->init_target != NULL);
1230
1231 int retval = type->init_target(cmd_ctx, target);
1232 if (ERROR_OK != retval) {
1233 LOG_ERROR("target '%s' init failed", target_name(target));
1234 return retval;
1235 }
1236
1237 /* Sanity-check MMU support ... stub in what we must, to help
1238 * implement it in stages, but warn if we need to do so.
1239 */
1240 if (type->mmu) {
1241 if (type->virt2phys == NULL) {
1242 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1243 type->virt2phys = identity_virt2phys;
1244 }
1245 } else {
1246 /* Make sure no-MMU targets all behave the same: make no
1247 * distinction between physical and virtual addresses, and
1248 * ensure that virt2phys() is always an identity mapping.
1249 */
1250 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1251 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1252
1253 type->mmu = no_mmu;
1254 type->write_phys_memory = type->write_memory;
1255 type->read_phys_memory = type->read_memory;
1256 type->virt2phys = identity_virt2phys;
1257 }
1258
1259 if (target->type->read_buffer == NULL)
1260 target->type->read_buffer = target_read_buffer_default;
1261
1262 if (target->type->write_buffer == NULL)
1263 target->type->write_buffer = target_write_buffer_default;
1264
1265 if (target->type->get_gdb_fileio_info == NULL)
1266 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1267
1268 if (target->type->gdb_fileio_end == NULL)
1269 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1270
1271 if (target->type->profiling == NULL)
1272 target->type->profiling = target_profiling_default;
1273
1274 return ERROR_OK;
1275 }
1276
1277 static int target_init(struct command_context *cmd_ctx)
1278 {
1279 struct target *target;
1280 int retval;
1281
1282 for (target = all_targets; target; target = target->next) {
1283 retval = target_init_one(cmd_ctx, target);
1284 if (ERROR_OK != retval)
1285 return retval;
1286 }
1287
1288 if (!all_targets)
1289 return ERROR_OK;
1290
1291 retval = target_register_user_commands(cmd_ctx);
1292 if (ERROR_OK != retval)
1293 return retval;
1294
1295 retval = target_register_timer_callback(&handle_target,
1296 polling_interval, 1, cmd_ctx->interp);
1297 if (ERROR_OK != retval)
1298 return retval;
1299
1300 return ERROR_OK;
1301 }
1302
1303 COMMAND_HANDLER(handle_target_init_command)
1304 {
1305 int retval;
1306
1307 if (CMD_ARGC != 0)
1308 return ERROR_COMMAND_SYNTAX_ERROR;
1309
1310 static bool target_initialized;
1311 if (target_initialized) {
1312 LOG_INFO("'target init' has already been called");
1313 return ERROR_OK;
1314 }
1315 target_initialized = true;
1316
1317 retval = command_run_line(CMD_CTX, "init_targets");
1318 if (ERROR_OK != retval)
1319 return retval;
1320
1321 retval = command_run_line(CMD_CTX, "init_target_events");
1322 if (ERROR_OK != retval)
1323 return retval;
1324
1325 retval = command_run_line(CMD_CTX, "init_board");
1326 if (ERROR_OK != retval)
1327 return retval;
1328
1329 LOG_DEBUG("Initializing targets...");
1330 return target_init(CMD_CTX);
1331 }
1332
1333 int target_register_event_callback(int (*callback)(struct target *target,
1334 enum target_event event, void *priv), void *priv)
1335 {
1336 struct target_event_callback **callbacks_p = &target_event_callbacks;
1337
1338 if (callback == NULL)
1339 return ERROR_COMMAND_SYNTAX_ERROR;
1340
1341 if (*callbacks_p) {
1342 while ((*callbacks_p)->next)
1343 callbacks_p = &((*callbacks_p)->next);
1344 callbacks_p = &((*callbacks_p)->next);
1345 }
1346
1347 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1348 (*callbacks_p)->callback = callback;
1349 (*callbacks_p)->priv = priv;
1350 (*callbacks_p)->next = NULL;
1351
1352 return ERROR_OK;
1353 }
1354
1355 int target_register_reset_callback(int (*callback)(struct target *target,
1356 enum target_reset_mode reset_mode, void *priv), void *priv)
1357 {
1358 struct target_reset_callback *entry;
1359
1360 if (callback == NULL)
1361 return ERROR_COMMAND_SYNTAX_ERROR;
1362
1363 entry = malloc(sizeof(struct target_reset_callback));
1364 if (entry == NULL) {
1365 LOG_ERROR("error allocating buffer for reset callback entry");
1366 return ERROR_COMMAND_SYNTAX_ERROR;
1367 }
1368
1369 entry->callback = callback;
1370 entry->priv = priv;
1371 list_add(&entry->list, &target_reset_callback_list);
1372
1373
1374 return ERROR_OK;
1375 }
1376
1377 int target_register_trace_callback(int (*callback)(struct target *target,
1378 size_t len, uint8_t *data, void *priv), void *priv)
1379 {
1380 struct target_trace_callback *entry;
1381
1382 if (callback == NULL)
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1384
1385 entry = malloc(sizeof(struct target_trace_callback));
1386 if (entry == NULL) {
1387 LOG_ERROR("error allocating buffer for trace callback entry");
1388 return ERROR_COMMAND_SYNTAX_ERROR;
1389 }
1390
1391 entry->callback = callback;
1392 entry->priv = priv;
1393 list_add(&entry->list, &target_trace_callback_list);
1394
1395
1396 return ERROR_OK;
1397 }
1398
1399 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1400 {
1401 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1402 struct timeval now;
1403
1404 if (callback == NULL)
1405 return ERROR_COMMAND_SYNTAX_ERROR;
1406
1407 if (*callbacks_p) {
1408 while ((*callbacks_p)->next)
1409 callbacks_p = &((*callbacks_p)->next);
1410 callbacks_p = &((*callbacks_p)->next);
1411 }
1412
1413 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1414 (*callbacks_p)->callback = callback;
1415 (*callbacks_p)->periodic = periodic;
1416 (*callbacks_p)->time_ms = time_ms;
1417 (*callbacks_p)->removed = false;
1418
1419 gettimeofday(&now, NULL);
1420 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1421 time_ms -= (time_ms % 1000);
1422 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1423 if ((*callbacks_p)->when.tv_usec > 1000000) {
1424 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1425 (*callbacks_p)->when.tv_sec += 1;
1426 }
1427
1428 (*callbacks_p)->priv = priv;
1429 (*callbacks_p)->next = NULL;
1430
1431 return ERROR_OK;
1432 }
1433
1434 int target_unregister_event_callback(int (*callback)(struct target *target,
1435 enum target_event event, void *priv), void *priv)
1436 {
1437 struct target_event_callback **p = &target_event_callbacks;
1438 struct target_event_callback *c = target_event_callbacks;
1439
1440 if (callback == NULL)
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1442
1443 while (c) {
1444 struct target_event_callback *next = c->next;
1445 if ((c->callback == callback) && (c->priv == priv)) {
1446 *p = next;
1447 free(c);
1448 return ERROR_OK;
1449 } else
1450 p = &(c->next);
1451 c = next;
1452 }
1453
1454 return ERROR_OK;
1455 }
1456
1457 int target_unregister_reset_callback(int (*callback)(struct target *target,
1458 enum target_reset_mode reset_mode, void *priv), void *priv)
1459 {
1460 struct target_reset_callback *entry;
1461
1462 if (callback == NULL)
1463 return ERROR_COMMAND_SYNTAX_ERROR;
1464
1465 list_for_each_entry(entry, &target_reset_callback_list, list) {
1466 if (entry->callback == callback && entry->priv == priv) {
1467 list_del(&entry->list);
1468 free(entry);
1469 break;
1470 }
1471 }
1472
1473 return ERROR_OK;
1474 }
1475
1476 int target_unregister_trace_callback(int (*callback)(struct target *target,
1477 size_t len, uint8_t *data, void *priv), void *priv)
1478 {
1479 struct target_trace_callback *entry;
1480
1481 if (callback == NULL)
1482 return ERROR_COMMAND_SYNTAX_ERROR;
1483
1484 list_for_each_entry(entry, &target_trace_callback_list, list) {
1485 if (entry->callback == callback && entry->priv == priv) {
1486 list_del(&entry->list);
1487 free(entry);
1488 break;
1489 }
1490 }
1491
1492 return ERROR_OK;
1493 }
1494
1495 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1496 {
1497 if (callback == NULL)
1498 return ERROR_COMMAND_SYNTAX_ERROR;
1499
1500 for (struct target_timer_callback *c = target_timer_callbacks;
1501 c; c = c->next) {
1502 if ((c->callback == callback) && (c->priv == priv)) {
1503 c->removed = true;
1504 return ERROR_OK;
1505 }
1506 }
1507
1508 return ERROR_FAIL;
1509 }
1510
1511 int target_call_event_callbacks(struct target *target, enum target_event event)
1512 {
1513 struct target_event_callback *callback = target_event_callbacks;
1514 struct target_event_callback *next_callback;
1515
1516 if (event == TARGET_EVENT_HALTED) {
1517 /* execute early halted first */
1518 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1519 }
1520
1521 LOG_DEBUG("target event %i (%s)", event,
1522 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1523
1524 target_handle_event(target, event);
1525
1526 while (callback) {
1527 next_callback = callback->next;
1528 callback->callback(target, event, callback->priv);
1529 callback = next_callback;
1530 }
1531
1532 return ERROR_OK;
1533 }
1534
1535 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1536 {
1537 struct target_reset_callback *callback;
1538
1539 LOG_DEBUG("target reset %i (%s)", reset_mode,
1540 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1541
1542 list_for_each_entry(callback, &target_reset_callback_list, list)
1543 callback->callback(target, reset_mode, callback->priv);
1544
1545 return ERROR_OK;
1546 }
1547
1548 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1549 {
1550 struct target_trace_callback *callback;
1551
1552 list_for_each_entry(callback, &target_trace_callback_list, list)
1553 callback->callback(target, len, data, callback->priv);
1554
1555 return ERROR_OK;
1556 }
1557
1558 static int target_timer_callback_periodic_restart(
1559 struct target_timer_callback *cb, struct timeval *now)
1560 {
1561 int time_ms = cb->time_ms;
1562 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1563 time_ms -= (time_ms % 1000);
1564 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1565 if (cb->when.tv_usec > 1000000) {
1566 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1567 cb->when.tv_sec += 1;
1568 }
1569 return ERROR_OK;
1570 }
1571
1572 static int target_call_timer_callback(struct target_timer_callback *cb,
1573 struct timeval *now)
1574 {
1575 cb->callback(cb->priv);
1576
1577 if (cb->periodic)
1578 return target_timer_callback_periodic_restart(cb, now);
1579
1580 return target_unregister_timer_callback(cb->callback, cb->priv);
1581 }
1582
1583 static int target_call_timer_callbacks_check_time(int checktime)
1584 {
1585 static bool callback_processing;
1586
1587 /* Do not allow nesting */
1588 if (callback_processing)
1589 return ERROR_OK;
1590
1591 callback_processing = true;
1592
1593 keep_alive();
1594
1595 struct timeval now;
1596 gettimeofday(&now, NULL);
1597
1598 /* Store an address of the place containing a pointer to the
1599 * next item; initially, that's a standalone "root of the
1600 * list" variable. */
1601 struct target_timer_callback **callback = &target_timer_callbacks;
1602 while (*callback) {
1603 if ((*callback)->removed) {
1604 struct target_timer_callback *p = *callback;
1605 *callback = (*callback)->next;
1606 free(p);
1607 continue;
1608 }
1609
1610 bool call_it = (*callback)->callback &&
1611 ((!checktime && (*callback)->periodic) ||
1612 now.tv_sec > (*callback)->when.tv_sec ||
1613 (now.tv_sec == (*callback)->when.tv_sec &&
1614 now.tv_usec >= (*callback)->when.tv_usec));
1615
1616 if (call_it)
1617 target_call_timer_callback(*callback, &now);
1618
1619 callback = &(*callback)->next;
1620 }
1621
1622 callback_processing = false;
1623 return ERROR_OK;
1624 }
1625
1626 int target_call_timer_callbacks(void)
1627 {
1628 return target_call_timer_callbacks_check_time(1);
1629 }
1630
1631 /* invoke periodic callbacks immediately */
1632 int target_call_timer_callbacks_now(void)
1633 {
1634 return target_call_timer_callbacks_check_time(0);
1635 }
1636
1637 /* Prints the working area layout for debug purposes */
1638 static void print_wa_layout(struct target *target)
1639 {
1640 struct working_area *c = target->working_areas;
1641
1642 while (c) {
1643 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1644 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1645 c->address, c->address + c->size - 1, c->size);
1646 c = c->next;
1647 }
1648 }
1649
1650 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1651 static void target_split_working_area(struct working_area *area, uint32_t size)
1652 {
1653 assert(area->free); /* Shouldn't split an allocated area */
1654 assert(size <= area->size); /* Caller should guarantee this */
1655
1656 /* Split only if not already the right size */
1657 if (size < area->size) {
1658 struct working_area *new_wa = malloc(sizeof(*new_wa));
1659
1660 if (new_wa == NULL)
1661 return;
1662
1663 new_wa->next = area->next;
1664 new_wa->size = area->size - size;
1665 new_wa->address = area->address + size;
1666 new_wa->backup = NULL;
1667 new_wa->user = NULL;
1668 new_wa->free = true;
1669
1670 area->next = new_wa;
1671 area->size = size;
1672
1673 /* If backup memory was allocated to this area, it has the wrong size
1674 * now so free it and it will be reallocated if/when needed */
1675 if (area->backup) {
1676 free(area->backup);
1677 area->backup = NULL;
1678 }
1679 }
1680 }
1681
1682 /* Merge all adjacent free areas into one */
1683 static void target_merge_working_areas(struct target *target)
1684 {
1685 struct working_area *c = target->working_areas;
1686
1687 while (c && c->next) {
1688 assert(c->next->address == c->address + c->size); /* This is an invariant */
1689
1690 /* Find two adjacent free areas */
1691 if (c->free && c->next->free) {
1692 /* Merge the last into the first */
1693 c->size += c->next->size;
1694
1695 /* Remove the last */
1696 struct working_area *to_be_freed = c->next;
1697 c->next = c->next->next;
1698 if (to_be_freed->backup)
1699 free(to_be_freed->backup);
1700 free(to_be_freed);
1701
1702 /* If backup memory was allocated to the remaining area, it's has
1703 * the wrong size now */
1704 if (c->backup) {
1705 free(c->backup);
1706 c->backup = NULL;
1707 }
1708 } else {
1709 c = c->next;
1710 }
1711 }
1712 }
1713
1714 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1715 {
1716 /* Reevaluate working area address based on MMU state*/
1717 if (target->working_areas == NULL) {
1718 int retval;
1719 int enabled;
1720
1721 retval = target->type->mmu(target, &enabled);
1722 if (retval != ERROR_OK)
1723 return retval;
1724
1725 if (!enabled) {
1726 if (target->working_area_phys_spec) {
1727 LOG_DEBUG("MMU disabled, using physical "
1728 "address for working memory " TARGET_ADDR_FMT,
1729 target->working_area_phys);
1730 target->working_area = target->working_area_phys;
1731 } else {
1732 LOG_ERROR("No working memory available. "
1733 "Specify -work-area-phys to target.");
1734 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1735 }
1736 } else {
1737 if (target->working_area_virt_spec) {
1738 LOG_DEBUG("MMU enabled, using virtual "
1739 "address for working memory " TARGET_ADDR_FMT,
1740 target->working_area_virt);
1741 target->working_area = target->working_area_virt;
1742 } else {
1743 LOG_ERROR("No working memory available. "
1744 "Specify -work-area-virt to target.");
1745 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1746 }
1747 }
1748
1749 /* Set up initial working area on first call */
1750 struct working_area *new_wa = malloc(sizeof(*new_wa));
1751 if (new_wa) {
1752 new_wa->next = NULL;
1753 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1754 new_wa->address = target->working_area;
1755 new_wa->backup = NULL;
1756 new_wa->user = NULL;
1757 new_wa->free = true;
1758 }
1759
1760 target->working_areas = new_wa;
1761 }
1762
1763 /* only allocate multiples of 4 byte */
1764 if (size % 4)
1765 size = (size + 3) & (~3UL);
1766
1767 struct working_area *c = target->working_areas;
1768
1769 /* Find the first large enough working area */
1770 while (c) {
1771 if (c->free && c->size >= size)
1772 break;
1773 c = c->next;
1774 }
1775
1776 if (c == NULL)
1777 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1778
1779 /* Split the working area into the requested size */
1780 target_split_working_area(c, size);
1781
1782 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1783 size, c->address);
1784
1785 if (target->backup_working_area) {
1786 if (c->backup == NULL) {
1787 c->backup = malloc(c->size);
1788 if (c->backup == NULL)
1789 return ERROR_FAIL;
1790 }
1791
1792 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1793 if (retval != ERROR_OK)
1794 return retval;
1795 }
1796
1797 /* mark as used, and return the new (reused) area */
1798 c->free = false;
1799 *area = c;
1800
1801 /* user pointer */
1802 c->user = area;
1803
1804 print_wa_layout(target);
1805
1806 return ERROR_OK;
1807 }
1808
1809 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1810 {
1811 int retval;
1812
1813 retval = target_alloc_working_area_try(target, size, area);
1814 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1815 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1816 return retval;
1817
1818 }
1819
1820 static int target_restore_working_area(struct target *target, struct working_area *area)
1821 {
1822 int retval = ERROR_OK;
1823
1824 if (target->backup_working_area && area->backup != NULL) {
1825 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1826 if (retval != ERROR_OK)
1827 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1828 area->size, area->address);
1829 }
1830
1831 return retval;
1832 }
1833
1834 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1835 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1836 {
1837 int retval = ERROR_OK;
1838
1839 if (area->free)
1840 return retval;
1841
1842 if (restore) {
1843 retval = target_restore_working_area(target, area);
1844 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1845 if (retval != ERROR_OK)
1846 return retval;
1847 }
1848
1849 area->free = true;
1850
1851 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1852 area->size, area->address);
1853
1854 /* mark user pointer invalid */
1855 /* TODO: Is this really safe? It points to some previous caller's memory.
1856 * How could we know that the area pointer is still in that place and not
1857 * some other vital data? What's the purpose of this, anyway? */
1858 *area->user = NULL;
1859 area->user = NULL;
1860
1861 target_merge_working_areas(target);
1862
1863 print_wa_layout(target);
1864
1865 return retval;
1866 }
1867
1868 int target_free_working_area(struct target *target, struct working_area *area)
1869 {
1870 return target_free_working_area_restore(target, area, 1);
1871 }
1872
1873 void target_quit(void)
1874 {
1875 struct target_event_callback *pe = target_event_callbacks;
1876 while (pe) {
1877 struct target_event_callback *t = pe->next;
1878 free(pe);
1879 pe = t;
1880 }
1881 target_event_callbacks = NULL;
1882
1883 struct target_timer_callback *pt = target_timer_callbacks;
1884 while (pt) {
1885 struct target_timer_callback *t = pt->next;
1886 free(pt);
1887 pt = t;
1888 }
1889 target_timer_callbacks = NULL;
1890
1891 for (struct target *target = all_targets;
1892 target; target = target->next) {
1893 if (target->type->deinit_target)
1894 target->type->deinit_target(target);
1895 }
1896 }
1897
1898 /* free resources and restore memory, if restoring memory fails,
1899 * free up resources anyway
1900 */
1901 static void target_free_all_working_areas_restore(struct target *target, int restore)
1902 {
1903 struct working_area *c = target->working_areas;
1904
1905 LOG_DEBUG("freeing all working areas");
1906
1907 /* Loop through all areas, restoring the allocated ones and marking them as free */
1908 while (c) {
1909 if (!c->free) {
1910 if (restore)
1911 target_restore_working_area(target, c);
1912 c->free = true;
1913 *c->user = NULL; /* Same as above */
1914 c->user = NULL;
1915 }
1916 c = c->next;
1917 }
1918
1919 /* Run a merge pass to combine all areas into one */
1920 target_merge_working_areas(target);
1921
1922 print_wa_layout(target);
1923 }
1924
1925 void target_free_all_working_areas(struct target *target)
1926 {
1927 target_free_all_working_areas_restore(target, 1);
1928 }
1929
1930 /* Find the largest number of bytes that can be allocated */
1931 uint32_t target_get_working_area_avail(struct target *target)
1932 {
1933 struct working_area *c = target->working_areas;
1934 uint32_t max_size = 0;
1935
1936 if (c == NULL)
1937 return target->working_area_size;
1938
1939 while (c) {
1940 if (c->free && max_size < c->size)
1941 max_size = c->size;
1942
1943 c = c->next;
1944 }
1945
1946 return max_size;
1947 }
1948
1949 int target_arch_state(struct target *target)
1950 {
1951 int retval;
1952 if (target == NULL) {
1953 LOG_WARNING("No target has been configured");
1954 return ERROR_OK;
1955 }
1956
1957 if (target->state != TARGET_HALTED)
1958 return ERROR_OK;
1959
1960 retval = target->type->arch_state(target);
1961 return retval;
1962 }
1963
1964 static int target_get_gdb_fileio_info_default(struct target *target,
1965 struct gdb_fileio_info *fileio_info)
1966 {
1967 /* If target does not support semi-hosting function, target
1968 has no need to provide .get_gdb_fileio_info callback.
1969 It just return ERROR_FAIL and gdb_server will return "Txx"
1970 as target halted every time. */
1971 return ERROR_FAIL;
1972 }
1973
1974 static int target_gdb_fileio_end_default(struct target *target,
1975 int retcode, int fileio_errno, bool ctrl_c)
1976 {
1977 return ERROR_OK;
1978 }
1979
1980 static int target_profiling_default(struct target *target, uint32_t *samples,
1981 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1982 {
1983 struct timeval timeout, now;
1984
1985 gettimeofday(&timeout, NULL);
1986 timeval_add_time(&timeout, seconds, 0);
1987
1988 LOG_INFO("Starting profiling. Halting and resuming the"
1989 " target as often as we can...");
1990
1991 uint32_t sample_count = 0;
1992 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1993 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1994
1995 int retval = ERROR_OK;
1996 for (;;) {
1997 target_poll(target);
1998 if (target->state == TARGET_HALTED) {
1999 uint32_t t = buf_get_u32(reg->value, 0, 32);
2000 samples[sample_count++] = t;
2001 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2002 retval = target_resume(target, 1, 0, 0, 0);
2003 target_poll(target);
2004 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2005 } else if (target->state == TARGET_RUNNING) {
2006 /* We want to quickly sample the PC. */
2007 retval = target_halt(target);
2008 } else {
2009 LOG_INFO("Target not halted or running");
2010 retval = ERROR_OK;
2011 break;
2012 }
2013
2014 if (retval != ERROR_OK)
2015 break;
2016
2017 gettimeofday(&now, NULL);
2018 if ((sample_count >= max_num_samples) ||
2019 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
2020 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2021 break;
2022 }
2023 }
2024
2025 *num_samples = sample_count;
2026 return retval;
2027 }
2028
2029 /* Single aligned words are guaranteed to use 16 or 32 bit access
2030 * mode respectively, otherwise data is handled as quickly as
2031 * possible
2032 */
2033 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2034 {
2035 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2036 size, address);
2037
2038 if (!target_was_examined(target)) {
2039 LOG_ERROR("Target not examined yet");
2040 return ERROR_FAIL;
2041 }
2042
2043 if (size == 0)
2044 return ERROR_OK;
2045
2046 if ((address + size - 1) < address) {
2047 /* GDB can request this when e.g. PC is 0xfffffffc */
2048 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2049 address,
2050 size);
2051 return ERROR_FAIL;
2052 }
2053
2054 return target->type->write_buffer(target, address, size, buffer);
2055 }
2056
2057 static int target_write_buffer_default(struct target *target,
2058 target_addr_t address, uint32_t count, const uint8_t *buffer)
2059 {
2060 uint32_t size;
2061
2062 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2063 * will have something to do with the size we leave to it. */
2064 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2065 if (address & size) {
2066 int retval = target_write_memory(target, address, size, 1, buffer);
2067 if (retval != ERROR_OK)
2068 return retval;
2069 address += size;
2070 count -= size;
2071 buffer += size;
2072 }
2073 }
2074
2075 /* Write the data with as large access size as possible. */
2076 for (; size > 0; size /= 2) {
2077 uint32_t aligned = count - count % size;
2078 if (aligned > 0) {
2079 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2080 if (retval != ERROR_OK)
2081 return retval;
2082 address += aligned;
2083 count -= aligned;
2084 buffer += aligned;
2085 }
2086 }
2087
2088 return ERROR_OK;
2089 }
2090
2091 /* Single aligned words are guaranteed to use 16 or 32 bit access
2092 * mode respectively, otherwise data is handled as quickly as
2093 * possible
2094 */
2095 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2096 {
2097 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2098 size, address);
2099
2100 if (!target_was_examined(target)) {
2101 LOG_ERROR("Target not examined yet");
2102 return ERROR_FAIL;
2103 }
2104
2105 if (size == 0)
2106 return ERROR_OK;
2107
2108 if ((address + size - 1) < address) {
2109 /* GDB can request this when e.g. PC is 0xfffffffc */
2110 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2111 address,
2112 size);
2113 return ERROR_FAIL;
2114 }
2115
2116 return target->type->read_buffer(target, address, size, buffer);
2117 }
2118
2119 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2120 {
2121 uint32_t size;
2122
2123 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2124 * will have something to do with the size we leave to it. */
2125 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2126 if (address & size) {
2127 int retval = target_read_memory(target, address, size, 1, buffer);
2128 if (retval != ERROR_OK)
2129 return retval;
2130 address += size;
2131 count -= size;
2132 buffer += size;
2133 }
2134 }
2135
2136 /* Read the data with as large access size as possible. */
2137 for (; size > 0; size /= 2) {
2138 uint32_t aligned = count - count % size;
2139 if (aligned > 0) {
2140 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2141 if (retval != ERROR_OK)
2142 return retval;
2143 address += aligned;
2144 count -= aligned;
2145 buffer += aligned;
2146 }
2147 }
2148
2149 return ERROR_OK;
2150 }
2151
2152 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2153 {
2154 uint8_t *buffer;
2155 int retval;
2156 uint32_t i;
2157 uint32_t checksum = 0;
2158 if (!target_was_examined(target)) {
2159 LOG_ERROR("Target not examined yet");
2160 return ERROR_FAIL;
2161 }
2162
2163 retval = target->type->checksum_memory(target, address, size, &checksum);
2164 if (retval != ERROR_OK) {
2165 buffer = malloc(size);
2166 if (buffer == NULL) {
2167 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2168 return ERROR_COMMAND_SYNTAX_ERROR;
2169 }
2170 retval = target_read_buffer(target, address, size, buffer);
2171 if (retval != ERROR_OK) {
2172 free(buffer);
2173 return retval;
2174 }
2175
2176 /* convert to target endianness */
2177 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2178 uint32_t target_data;
2179 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2180 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2181 }
2182
2183 retval = image_calculate_checksum(buffer, size, &checksum);
2184 free(buffer);
2185 }
2186
2187 *crc = checksum;
2188
2189 return retval;
2190 }
2191
2192 int target_blank_check_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* blank,
2193 uint8_t erased_value)
2194 {
2195 int retval;
2196 if (!target_was_examined(target)) {
2197 LOG_ERROR("Target not examined yet");
2198 return ERROR_FAIL;
2199 }
2200
2201 if (target->type->blank_check_memory == 0)
2202 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2203
2204 retval = target->type->blank_check_memory(target, address, size, blank, erased_value);
2205
2206 return retval;
2207 }
2208
2209 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2210 {
2211 uint8_t value_buf[8];
2212 if (!target_was_examined(target)) {
2213 LOG_ERROR("Target not examined yet");
2214 return ERROR_FAIL;
2215 }
2216
2217 int retval = target_read_memory(target, address, 8, 1, value_buf);
2218
2219 if (retval == ERROR_OK) {
2220 *value = target_buffer_get_u64(target, value_buf);
2221 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2222 address,
2223 *value);
2224 } else {
2225 *value = 0x0;
2226 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2227 address);
2228 }
2229
2230 return retval;
2231 }
2232
2233 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2234 {
2235 uint8_t value_buf[4];
2236 if (!target_was_examined(target)) {
2237 LOG_ERROR("Target not examined yet");
2238 return ERROR_FAIL;
2239 }
2240
2241 int retval = target_read_memory(target, address, 4, 1, value_buf);
2242
2243 if (retval == ERROR_OK) {
2244 *value = target_buffer_get_u32(target, value_buf);
2245 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2246 address,
2247 *value);
2248 } else {
2249 *value = 0x0;
2250 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2251 address);
2252 }
2253
2254 return retval;
2255 }
2256
2257 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2258 {
2259 uint8_t value_buf[2];
2260 if (!target_was_examined(target)) {
2261 LOG_ERROR("Target not examined yet");
2262 return ERROR_FAIL;
2263 }
2264
2265 int retval = target_read_memory(target, address, 2, 1, value_buf);
2266
2267 if (retval == ERROR_OK) {
2268 *value = target_buffer_get_u16(target, value_buf);
2269 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2270 address,
2271 *value);
2272 } else {
2273 *value = 0x0;
2274 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2275 address);
2276 }
2277
2278 return retval;
2279 }
2280
2281 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2282 {
2283 if (!target_was_examined(target)) {
2284 LOG_ERROR("Target not examined yet");
2285 return ERROR_FAIL;
2286 }
2287
2288 int retval = target_read_memory(target, address, 1, 1, value);
2289
2290 if (retval == ERROR_OK) {
2291 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2292 address,
2293 *value);
2294 } else {
2295 *value = 0x0;
2296 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2297 address);
2298 }
2299
2300 return retval;
2301 }
2302
2303 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2304 {
2305 int retval;
2306 uint8_t value_buf[8];
2307 if (!target_was_examined(target)) {
2308 LOG_ERROR("Target not examined yet");
2309 return ERROR_FAIL;
2310 }
2311
2312 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2313 address,
2314 value);
2315
2316 target_buffer_set_u64(target, value_buf, value);
2317 retval = target_write_memory(target, address, 8, 1, value_buf);
2318 if (retval != ERROR_OK)
2319 LOG_DEBUG("failed: %i", retval);
2320
2321 return retval;
2322 }
2323
2324 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2325 {
2326 int retval;
2327 uint8_t value_buf[4];
2328 if (!target_was_examined(target)) {
2329 LOG_ERROR("Target not examined yet");
2330 return ERROR_FAIL;
2331 }
2332
2333 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2334 address,
2335 value);
2336
2337 target_buffer_set_u32(target, value_buf, value);
2338 retval = target_write_memory(target, address, 4, 1, value_buf);
2339 if (retval != ERROR_OK)
2340 LOG_DEBUG("failed: %i", retval);
2341
2342 return retval;
2343 }
2344
2345 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2346 {
2347 int retval;
2348 uint8_t value_buf[2];
2349 if (!target_was_examined(target)) {
2350 LOG_ERROR("Target not examined yet");
2351 return ERROR_FAIL;
2352 }
2353
2354 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2355 address,
2356 value);
2357
2358 target_buffer_set_u16(target, value_buf, value);
2359 retval = target_write_memory(target, address, 2, 1, value_buf);
2360 if (retval != ERROR_OK)
2361 LOG_DEBUG("failed: %i", retval);
2362
2363 return retval;
2364 }
2365
2366 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2367 {
2368 int retval;
2369 if (!target_was_examined(target)) {
2370 LOG_ERROR("Target not examined yet");
2371 return ERROR_FAIL;
2372 }
2373
2374 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2375 address, value);
2376
2377 retval = target_write_memory(target, address, 1, 1, &value);
2378 if (retval != ERROR_OK)
2379 LOG_DEBUG("failed: %i", retval);
2380
2381 return retval;
2382 }
2383
2384 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2385 {
2386 int retval;
2387 uint8_t value_buf[8];
2388 if (!target_was_examined(target)) {
2389 LOG_ERROR("Target not examined yet");
2390 return ERROR_FAIL;
2391 }
2392
2393 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2394 address,
2395 value);
2396
2397 target_buffer_set_u64(target, value_buf, value);
2398 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2399 if (retval != ERROR_OK)
2400 LOG_DEBUG("failed: %i", retval);
2401
2402 return retval;
2403 }
2404
2405 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2406 {
2407 int retval;
2408 uint8_t value_buf[4];
2409 if (!target_was_examined(target)) {
2410 LOG_ERROR("Target not examined yet");
2411 return ERROR_FAIL;
2412 }
2413
2414 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2415 address,
2416 value);
2417
2418 target_buffer_set_u32(target, value_buf, value);
2419 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2420 if (retval != ERROR_OK)
2421 LOG_DEBUG("failed: %i", retval);
2422
2423 return retval;
2424 }
2425
2426 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2427 {
2428 int retval;
2429 uint8_t value_buf[2];
2430 if (!target_was_examined(target)) {
2431 LOG_ERROR("Target not examined yet");
2432 return ERROR_FAIL;
2433 }
2434
2435 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2436 address,
2437 value);
2438
2439 target_buffer_set_u16(target, value_buf, value);
2440 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2441 if (retval != ERROR_OK)
2442 LOG_DEBUG("failed: %i", retval);
2443
2444 return retval;
2445 }
2446
2447 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2448 {
2449 int retval;
2450 if (!target_was_examined(target)) {
2451 LOG_ERROR("Target not examined yet");
2452 return ERROR_FAIL;
2453 }
2454
2455 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2456 address, value);
2457
2458 retval = target_write_phys_memory(target, address, 1, 1, &value);
2459 if (retval != ERROR_OK)
2460 LOG_DEBUG("failed: %i", retval);
2461
2462 return retval;
2463 }
2464
2465 static int find_target(struct command_context *cmd_ctx, const char *name)
2466 {
2467 struct target *target = get_target(name);
2468 if (target == NULL) {
2469 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2470 return ERROR_FAIL;
2471 }
2472 if (!target->tap->enabled) {
2473 LOG_USER("Target: TAP %s is disabled, "
2474 "can't be the current target\n",
2475 target->tap->dotted_name);
2476 return ERROR_FAIL;
2477 }
2478
2479 cmd_ctx->current_target = target->target_number;
2480 return ERROR_OK;
2481 }
2482
2483
2484 COMMAND_HANDLER(handle_targets_command)
2485 {
2486 int retval = ERROR_OK;
2487 if (CMD_ARGC == 1) {
2488 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2489 if (retval == ERROR_OK) {
2490 /* we're done! */
2491 return retval;
2492 }
2493 }
2494
2495 struct target *target = all_targets;
2496 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2497 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2498 while (target) {
2499 const char *state;
2500 char marker = ' ';
2501
2502 if (target->tap->enabled)
2503 state = target_state_name(target);
2504 else
2505 state = "tap-disabled";
2506
2507 if (CMD_CTX->current_target == target->target_number)
2508 marker = '*';
2509
2510 /* keep columns lined up to match the headers above */
2511 command_print(CMD_CTX,
2512 "%2d%c %-18s %-10s %-6s %-18s %s",
2513 target->target_number,
2514 marker,
2515 target_name(target),
2516 target_type_name(target),
2517 Jim_Nvp_value2name_simple(nvp_target_endian,
2518 target->endianness)->name,
2519 target->tap->dotted_name,
2520 state);
2521 target = target->next;
2522 }
2523
2524 return retval;
2525 }
2526
2527 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2528
2529 static int powerDropout;
2530 static int srstAsserted;
2531
2532 static int runPowerRestore;
2533 static int runPowerDropout;
2534 static int runSrstAsserted;
2535 static int runSrstDeasserted;
2536
2537 static int sense_handler(void)
2538 {
2539 static int prevSrstAsserted;
2540 static int prevPowerdropout;
2541
2542 int retval = jtag_power_dropout(&powerDropout);
2543 if (retval != ERROR_OK)
2544 return retval;
2545
2546 int powerRestored;
2547 powerRestored = prevPowerdropout && !powerDropout;
2548 if (powerRestored)
2549 runPowerRestore = 1;
2550
2551 int64_t current = timeval_ms();
2552 static int64_t lastPower;
2553 bool waitMore = lastPower + 2000 > current;
2554 if (powerDropout && !waitMore) {
2555 runPowerDropout = 1;
2556 lastPower = current;
2557 }
2558
2559 retval = jtag_srst_asserted(&srstAsserted);
2560 if (retval != ERROR_OK)
2561 return retval;
2562
2563 int srstDeasserted;
2564 srstDeasserted = prevSrstAsserted && !srstAsserted;
2565
2566 static int64_t lastSrst;
2567 waitMore = lastSrst + 2000 > current;
2568 if (srstDeasserted && !waitMore) {
2569 runSrstDeasserted = 1;
2570 lastSrst = current;
2571 }
2572
2573 if (!prevSrstAsserted && srstAsserted)
2574 runSrstAsserted = 1;
2575
2576 prevSrstAsserted = srstAsserted;
2577 prevPowerdropout = powerDropout;
2578
2579 if (srstDeasserted || powerRestored) {
2580 /* Other than logging the event we can't do anything here.
2581 * Issuing a reset is a particularly bad idea as we might
2582 * be inside a reset already.
2583 */
2584 }
2585
2586 return ERROR_OK;
2587 }
2588
2589 /* process target state changes */
2590 static int handle_target(void *priv)
2591 {
2592 Jim_Interp *interp = (Jim_Interp *)priv;
2593 int retval = ERROR_OK;
2594
2595 if (!is_jtag_poll_safe()) {
2596 /* polling is disabled currently */
2597 return ERROR_OK;
2598 }
2599
2600 /* we do not want to recurse here... */
2601 static int recursive;
2602 if (!recursive) {
2603 recursive = 1;
2604 sense_handler();
2605 /* danger! running these procedures can trigger srst assertions and power dropouts.
2606 * We need to avoid an infinite loop/recursion here and we do that by
2607 * clearing the flags after running these events.
2608 */
2609 int did_something = 0;
2610 if (runSrstAsserted) {
2611 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2612 Jim_Eval(interp, "srst_asserted");
2613 did_something = 1;
2614 }
2615 if (runSrstDeasserted) {
2616 Jim_Eval(interp, "srst_deasserted");
2617 did_something = 1;
2618 }
2619 if (runPowerDropout) {
2620 LOG_INFO("Power dropout detected, running power_dropout proc.");
2621 Jim_Eval(interp, "power_dropout");
2622 did_something = 1;
2623 }
2624 if (runPowerRestore) {
2625 Jim_Eval(interp, "power_restore");
2626 did_something = 1;
2627 }
2628
2629 if (did_something) {
2630 /* clear detect flags */
2631 sense_handler();
2632 }
2633
2634 /* clear action flags */
2635
2636 runSrstAsserted = 0;
2637 runSrstDeasserted = 0;
2638 runPowerRestore = 0;
2639 runPowerDropout = 0;
2640
2641 recursive = 0;
2642 }
2643
2644 /* Poll targets for state changes unless that's globally disabled.
2645 * Skip targets that are currently disabled.
2646 */
2647 for (struct target *target = all_targets;
2648 is_jtag_poll_safe() && target;
2649 target = target->next) {
2650
2651 if (!target_was_examined(target))
2652 continue;
2653
2654 if (!target->tap->enabled)
2655 continue;
2656
2657 if (target->backoff.times > target->backoff.count) {
2658 /* do not poll this time as we failed previously */
2659 target->backoff.count++;
2660 continue;
2661 }
2662 target->backoff.count = 0;
2663
2664 /* only poll target if we've got power and srst isn't asserted */
2665 if (!powerDropout && !srstAsserted) {
2666 /* polling may fail silently until the target has been examined */
2667 retval = target_poll(target);
2668 if (retval != ERROR_OK) {
2669 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2670 if (target->backoff.times * polling_interval < 5000) {
2671 target->backoff.times *= 2;
2672 target->backoff.times++;
2673 }
2674
2675 /* Tell GDB to halt the debugger. This allows the user to
2676 * run monitor commands to handle the situation.
2677 */
2678 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2679 }
2680 if (target->backoff.times > 0) {
2681 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2682 target_reset_examined(target);
2683 retval = target_examine_one(target);
2684 /* Target examination could have failed due to unstable connection,
2685 * but we set the examined flag anyway to repoll it later */
2686 if (retval != ERROR_OK) {
2687 target->examined = true;
2688 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2689 target->backoff.times * polling_interval);
2690 return retval;
2691 }
2692 }
2693
2694 /* Since we succeeded, we reset backoff count */
2695 target->backoff.times = 0;
2696 }
2697 }
2698
2699 return retval;
2700 }
2701
2702 COMMAND_HANDLER(handle_reg_command)
2703 {
2704 struct target *target;
2705 struct reg *reg = NULL;
2706 unsigned count = 0;
2707 char *value;
2708
2709 LOG_DEBUG("-");
2710
2711 target = get_current_target(CMD_CTX);
2712
2713 /* list all available registers for the current target */
2714 if (CMD_ARGC == 0) {
2715 struct reg_cache *cache = target->reg_cache;
2716
2717 count = 0;
2718 while (cache) {
2719 unsigned i;
2720
2721 command_print(CMD_CTX, "===== %s", cache->name);
2722
2723 for (i = 0, reg = cache->reg_list;
2724 i < cache->num_regs;
2725 i++, reg++, count++) {
2726 /* only print cached values if they are valid */
2727 if (reg->valid) {
2728 value = buf_to_str(reg->value,
2729 reg->size, 16);
2730 command_print(CMD_CTX,
2731 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2732 count, reg->name,
2733 reg->size, value,
2734 reg->dirty
2735 ? " (dirty)"
2736 : "");
2737 free(value);
2738 } else {
2739 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2740 count, reg->name,
2741 reg->size) ;
2742 }
2743 }
2744 cache = cache->next;
2745 }
2746
2747 return ERROR_OK;
2748 }
2749
2750 /* access a single register by its ordinal number */
2751 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2752 unsigned num;
2753 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2754
2755 struct reg_cache *cache = target->reg_cache;
2756 count = 0;
2757 while (cache) {
2758 unsigned i;
2759 for (i = 0; i < cache->num_regs; i++) {
2760 if (count++ == num) {
2761 reg = &cache->reg_list[i];
2762 break;
2763 }
2764 }
2765 if (reg)
2766 break;
2767 cache = cache->next;
2768 }
2769
2770 if (!reg) {
2771 command_print(CMD_CTX, "%i is out of bounds, the current target "
2772 "has only %i registers (0 - %i)", num, count, count - 1);
2773 return ERROR_OK;
2774 }
2775 } else {
2776 /* access a single register by its name */
2777 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2778
2779 if (!reg) {
2780 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2781 return ERROR_OK;
2782 }
2783 }
2784
2785 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2786
2787 /* display a register */
2788 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2789 && (CMD_ARGV[1][0] <= '9')))) {
2790 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2791 reg->valid = 0;
2792
2793 if (reg->valid == 0)
2794 reg->type->get(reg);
2795 value = buf_to_str(reg->value, reg->size, 16);
2796 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2797 free(value);
2798 return ERROR_OK;
2799 }
2800
2801 /* set register value */
2802 if (CMD_ARGC == 2) {
2803 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2804 if (buf == NULL)
2805 return ERROR_FAIL;
2806 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2807
2808 reg->type->set(reg, buf);
2809
2810 value = buf_to_str(reg->value, reg->size, 16);
2811 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2812 free(value);
2813
2814 free(buf);
2815
2816 return ERROR_OK;
2817 }
2818
2819 return ERROR_COMMAND_SYNTAX_ERROR;
2820 }
2821
2822 COMMAND_HANDLER(handle_poll_command)
2823 {
2824 int retval = ERROR_OK;
2825 struct target *target = get_current_target(CMD_CTX);
2826
2827 if (CMD_ARGC == 0) {
2828 command_print(CMD_CTX, "background polling: %s",
2829 jtag_poll_get_enabled() ? "on" : "off");
2830 command_print(CMD_CTX, "TAP: %s (%s)",
2831 target->tap->dotted_name,
2832 target->tap->enabled ? "enabled" : "disabled");
2833 if (!target->tap->enabled)
2834 return ERROR_OK;
2835 retval = target_poll(target);
2836 if (retval != ERROR_OK)
2837 return retval;
2838 retval = target_arch_state(target);
2839 if (retval != ERROR_OK)
2840 return retval;
2841 } else if (CMD_ARGC == 1) {
2842 bool enable;
2843 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2844 jtag_poll_set_enabled(enable);
2845 } else
2846 return ERROR_COMMAND_SYNTAX_ERROR;
2847
2848 return retval;
2849 }
2850
2851 COMMAND_HANDLER(handle_wait_halt_command)
2852 {
2853 if (CMD_ARGC > 1)
2854 return ERROR_COMMAND_SYNTAX_ERROR;
2855
2856 unsigned ms = DEFAULT_HALT_TIMEOUT;
2857 if (1 == CMD_ARGC) {
2858 int retval = parse_uint(CMD_ARGV[0], &ms);
2859 if (ERROR_OK != retval)
2860 return ERROR_COMMAND_SYNTAX_ERROR;
2861 }
2862
2863 struct target *target = get_current_target(CMD_CTX);
2864 return target_wait_state(target, TARGET_HALTED, ms);
2865 }
2866
2867 /* wait for target state to change. The trick here is to have a low
2868 * latency for short waits and not to suck up all the CPU time
2869 * on longer waits.
2870 *
2871 * After 500ms, keep_alive() is invoked
2872 */
2873 int target_wait_state(struct target *target, enum target_state state, int ms)
2874 {
2875 int retval;
2876 int64_t then = 0, cur;
2877 bool once = true;
2878
2879 for (;;) {
2880 retval = target_poll(target);
2881 if (retval != ERROR_OK)
2882 return retval;
2883 if (target->state == state)
2884 break;
2885 cur = timeval_ms();
2886 if (once) {
2887 once = false;
2888 then = timeval_ms();
2889 LOG_DEBUG("waiting for target %s...",
2890 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2891 }
2892
2893 if (cur-then > 500)
2894 keep_alive();
2895
2896 if ((cur-then) > ms) {
2897 LOG_ERROR("timed out while waiting for target %s",
2898 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2899 return ERROR_FAIL;
2900 }
2901 }
2902
2903 return ERROR_OK;
2904 }
2905
2906 COMMAND_HANDLER(handle_halt_command)
2907 {
2908 LOG_DEBUG("-");
2909
2910 struct target *target = get_current_target(CMD_CTX);
2911 int retval = target_halt(target);
2912 if (ERROR_OK != retval)
2913 return retval;
2914
2915 if (CMD_ARGC == 1) {
2916 unsigned wait_local;
2917 retval = parse_uint(CMD_ARGV[0], &wait_local);
2918 if (ERROR_OK != retval)
2919 return ERROR_COMMAND_SYNTAX_ERROR;
2920 if (!wait_local)
2921 return ERROR_OK;
2922 }
2923
2924 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2925 }
2926
2927 COMMAND_HANDLER(handle_soft_reset_halt_command)
2928 {
2929 struct target *target = get_current_target(CMD_CTX);
2930
2931 LOG_USER("requesting target halt and executing a soft reset");
2932
2933 target_soft_reset_halt(target);
2934
2935 return ERROR_OK;
2936 }
2937
2938 COMMAND_HANDLER(handle_reset_command)
2939 {
2940 if (CMD_ARGC > 1)
2941 return ERROR_COMMAND_SYNTAX_ERROR;
2942
2943 enum target_reset_mode reset_mode = RESET_RUN;
2944 if (CMD_ARGC == 1) {
2945 const Jim_Nvp *n;
2946 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2947 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2948 return ERROR_COMMAND_SYNTAX_ERROR;
2949 reset_mode = n->value;
2950 }
2951
2952 /* reset *all* targets */
2953 return target_process_reset(CMD_CTX, reset_mode);
2954 }
2955
2956
2957 COMMAND_HANDLER(handle_resume_command)
2958 {
2959 int current = 1;
2960 if (CMD_ARGC > 1)
2961 return ERROR_COMMAND_SYNTAX_ERROR;
2962
2963 struct target *target = get_current_target(CMD_CTX);
2964
2965 /* with no CMD_ARGV, resume from current pc, addr = 0,
2966 * with one arguments, addr = CMD_ARGV[0],
2967 * handle breakpoints, not debugging */
2968 target_addr_t addr = 0;
2969 if (CMD_ARGC == 1) {
2970 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2971 current = 0;
2972 }
2973
2974 return target_resume(target, current, addr, 1, 0);
2975 }
2976
2977 COMMAND_HANDLER(handle_step_command)
2978 {
2979 if (CMD_ARGC > 1)
2980 return ERROR_COMMAND_SYNTAX_ERROR;
2981
2982 LOG_DEBUG("-");
2983
2984 /* with no CMD_ARGV, step from current pc, addr = 0,
2985 * with one argument addr = CMD_ARGV[0],
2986 * handle breakpoints, debugging */
2987 target_addr_t addr = 0;
2988 int current_pc = 1;
2989 if (CMD_ARGC == 1) {
2990 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
2991 current_pc = 0;
2992 }
2993
2994 struct target *target = get_current_target(CMD_CTX);
2995
2996 return target->type->step(target, current_pc, addr, 1);
2997 }
2998
2999 static void handle_md_output(struct command_context *cmd_ctx,
3000 struct target *target, target_addr_t address, unsigned size,
3001 unsigned count, const uint8_t *buffer)
3002 {
3003 const unsigned line_bytecnt = 32;
3004 unsigned line_modulo = line_bytecnt / size;
3005
3006 char output[line_bytecnt * 4 + 1];
3007 unsigned output_len = 0;
3008
3009 const char *value_fmt;
3010 switch (size) {
3011 case 8:
3012 value_fmt = "%16.16llx ";
3013 break;
3014 case 4:
3015 value_fmt = "%8.8x ";
3016 break;
3017 case 2:
3018 value_fmt = "%4.4x ";
3019 break;
3020 case 1:
3021 value_fmt = "%2.2x ";
3022 break;
3023 default:
3024 /* "can't happen", caller checked */
3025 LOG_ERROR("invalid memory read size: %u", size);
3026 return;
3027 }
3028
3029 for (unsigned i = 0; i < count; i++) {
3030 if (i % line_modulo == 0) {
3031 output_len += snprintf(output + output_len,
3032 sizeof(output) - output_len,
3033 TARGET_ADDR_FMT ": ",
3034 (address + (i * size)));
3035 }
3036
3037 uint64_t value = 0;
3038 const uint8_t *value_ptr = buffer + i * size;
3039 switch (size) {
3040 case 8:
3041 value = target_buffer_get_u64(target, value_ptr);
3042 break;
3043 case 4:
3044 value = target_buffer_get_u32(target, value_ptr);
3045 break;
3046 case 2:
3047 value = target_buffer_get_u16(target, value_ptr);
3048 break;
3049 case 1:
3050 value = *value_ptr;
3051 }
3052 output_len += snprintf(output + output_len,
3053 sizeof(output) - output_len,
3054 value_fmt, value);
3055
3056 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3057 command_print(cmd_ctx, "%s", output);
3058 output_len = 0;
3059 }
3060 }
3061 }
3062
3063 COMMAND_HANDLER(handle_md_command)
3064 {
3065 if (CMD_ARGC < 1)
3066 return ERROR_COMMAND_SYNTAX_ERROR;
3067
3068 unsigned size = 0;
3069 switch (CMD_NAME[2]) {
3070 case 'd':
3071 size = 8;
3072 break;
3073 case 'w':
3074 size = 4;
3075 break;
3076 case 'h':
3077 size = 2;
3078 break;
3079 case 'b':
3080 size = 1;
3081 break;
3082 default:
3083 return ERROR_COMMAND_SYNTAX_ERROR;
3084 }
3085
3086 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3087 int (*fn)(struct target *target,
3088 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3089 if (physical) {
3090 CMD_ARGC--;
3091 CMD_ARGV++;
3092 fn = target_read_phys_memory;
3093 } else
3094 fn = target_read_memory;
3095 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3096 return ERROR_COMMAND_SYNTAX_ERROR;
3097
3098 target_addr_t address;
3099 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3100
3101 unsigned count = 1;
3102 if (CMD_ARGC == 2)
3103 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3104
3105 uint8_t *buffer = calloc(count, size);
3106
3107 struct target *target = get_current_target(CMD_CTX);
3108 int retval = fn(target, address, size, count, buffer);
3109 if (ERROR_OK == retval)
3110 handle_md_output(CMD_CTX, target, address, size, count, buffer);
3111
3112 free(buffer);
3113
3114 return retval;
3115 }
3116
3117 typedef int (*target_write_fn)(struct target *target,
3118 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3119
3120 static int target_fill_mem(struct target *target,
3121 target_addr_t address,
3122 target_write_fn fn,
3123 unsigned data_size,
3124 /* value */
3125 uint64_t b,
3126 /* count */
3127 unsigned c)
3128 {
3129 /* We have to write in reasonably large chunks to be able
3130 * to fill large memory areas with any sane speed */
3131 const unsigned chunk_size = 16384;
3132 uint8_t *target_buf = malloc(chunk_size * data_size);
3133 if (target_buf == NULL) {
3134 LOG_ERROR("Out of memory");
3135 return ERROR_FAIL;
3136 }
3137
3138 for (unsigned i = 0; i < chunk_size; i++) {
3139 switch (data_size) {
3140 case 8:
3141 target_buffer_set_u64(target, target_buf + i * data_size, b);
3142 break;
3143 case 4:
3144 target_buffer_set_u32(target, target_buf + i * data_size, b);
3145 break;
3146 case 2:
3147 target_buffer_set_u16(target, target_buf + i * data_size, b);
3148 break;
3149 case 1:
3150 target_buffer_set_u8(target, target_buf + i * data_size, b);
3151 break;
3152 default:
3153 exit(-1);
3154 }
3155 }
3156
3157 int retval = ERROR_OK;
3158
3159 for (unsigned x = 0; x < c; x += chunk_size) {
3160 unsigned current;
3161 current = c - x;
3162 if (current > chunk_size)
3163 current = chunk_size;
3164 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3165 if (retval != ERROR_OK)
3166 break;
3167 /* avoid GDB timeouts */
3168 keep_alive();
3169 }
3170 free(target_buf);
3171
3172 return retval;
3173 }
3174
3175
3176 COMMAND_HANDLER(handle_mw_command)
3177 {
3178 if (CMD_ARGC < 2)
3179 return ERROR_COMMAND_SYNTAX_ERROR;
3180 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3181 target_write_fn fn;
3182 if (physical) {
3183 CMD_ARGC--;
3184 CMD_ARGV++;
3185 fn = target_write_phys_memory;
3186 } else
3187 fn = target_write_memory;
3188 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3189 return ERROR_COMMAND_SYNTAX_ERROR;
3190
3191 target_addr_t address;
3192 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3193
3194 target_addr_t value;
3195 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], value);
3196
3197 unsigned count = 1;
3198 if (CMD_ARGC == 3)
3199 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3200
3201 struct target *target = get_current_target(CMD_CTX);
3202 unsigned wordsize;
3203 switch (CMD_NAME[2]) {
3204 case 'd':
3205 wordsize = 8;
3206 break;
3207 case 'w':
3208 wordsize = 4;
3209 break;
3210 case 'h':
3211 wordsize = 2;
3212 break;
3213 case 'b':
3214 wordsize = 1;
3215 break;
3216 default:
3217 return ERROR_COMMAND_SYNTAX_ERROR;
3218 }
3219
3220 return target_fill_mem(target, address, fn, wordsize, value, count);
3221 }
3222
3223 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3224 target_addr_t *min_address, target_addr_t *max_address)
3225 {
3226 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3227 return ERROR_COMMAND_SYNTAX_ERROR;
3228
3229 /* a base address isn't always necessary,
3230 * default to 0x0 (i.e. don't relocate) */
3231 if (CMD_ARGC >= 2) {
3232 target_addr_t addr;
3233 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3234 image->base_address = addr;
3235 image->base_address_set = 1;
3236 } else
3237 image->base_address_set = 0;
3238
3239 image->start_address_set = 0;
3240
3241 if (CMD_ARGC >= 4)
3242 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3243 if (CMD_ARGC == 5) {
3244 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3245 /* use size (given) to find max (required) */
3246 *max_address += *min_address;
3247 }
3248
3249 if (*min_address > *max_address)
3250 return ERROR_COMMAND_SYNTAX_ERROR;
3251
3252 return ERROR_OK;
3253 }
3254
3255 COMMAND_HANDLER(handle_load_image_command)
3256 {
3257 uint8_t *buffer;
3258 size_t buf_cnt;
3259 uint32_t image_size;
3260 target_addr_t min_address = 0;
3261 target_addr_t max_address = -1;
3262 int i;
3263 struct image image;
3264
3265 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3266 &image, &min_address, &max_address);
3267 if (ERROR_OK != retval)
3268 return retval;
3269
3270 struct target *target = get_current_target(CMD_CTX);
3271
3272 struct duration bench;
3273 duration_start(&bench);
3274
3275 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3276 return ERROR_FAIL;
3277
3278 image_size = 0x0;
3279 retval = ERROR_OK;
3280 for (i = 0; i < image.num_sections; i++) {
3281 buffer = malloc(image.sections[i].size);
3282 if (buffer == NULL) {
3283 command_print(CMD_CTX,
3284 "error allocating buffer for section (%d bytes)",
3285 (int)(image.sections[i].size));
3286 retval = ERROR_FAIL;
3287 break;
3288 }
3289
3290 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3291 if (retval != ERROR_OK) {
3292 free(buffer);
3293 break;
3294 }
3295
3296 uint32_t offset = 0;
3297 uint32_t length = buf_cnt;
3298
3299 /* DANGER!!! beware of unsigned comparision here!!! */
3300
3301 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3302 (image.sections[i].base_address < max_address)) {
3303
3304 if (image.sections[i].base_address < min_address) {
3305 /* clip addresses below */
3306 offset += min_address-image.sections[i].base_address;
3307 length -= offset;
3308 }
3309
3310 if (image.sections[i].base_address + buf_cnt > max_address)
3311 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3312
3313 retval = target_write_buffer(target,
3314 image.sections[i].base_address + offset, length, buffer + offset);
3315 if (retval != ERROR_OK) {
3316 free(buffer);
3317 break;
3318 }
3319 image_size += length;
3320 command_print(CMD_CTX, "%u bytes written at address " TARGET_ADDR_FMT "",
3321 (unsigned int)length,
3322 image.sections[i].base_address + offset);
3323 }
3324
3325 free(buffer);
3326 }
3327
3328 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3329 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3330 "in %fs (%0.3f KiB/s)", image_size,
3331 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3332 }
3333
3334 image_close(&image);
3335
3336 return retval;
3337
3338 }
3339
3340 COMMAND_HANDLER(handle_dump_image_command)
3341 {
3342 struct fileio *fileio;
3343 uint8_t *buffer;
3344 int retval, retvaltemp;
3345 target_addr_t address, size;
3346 struct duration bench;
3347 struct target *target = get_current_target(CMD_CTX);
3348
3349 if (CMD_ARGC != 3)
3350 return ERROR_COMMAND_SYNTAX_ERROR;
3351
3352 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3353 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3354
3355 uint32_t buf_size = (size > 4096) ? 4096 : size;
3356 buffer = malloc(buf_size);
3357 if (!buffer)
3358 return ERROR_FAIL;
3359
3360 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3361 if (retval != ERROR_OK) {
3362 free(buffer);
3363 return retval;
3364 }
3365
3366 duration_start(&bench);
3367
3368 while (size > 0) {
3369 size_t size_written;
3370 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3371 retval = target_read_buffer(target, address, this_run_size, buffer);
3372 if (retval != ERROR_OK)
3373 break;
3374
3375 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3376 if (retval != ERROR_OK)
3377 break;
3378
3379 size -= this_run_size;
3380 address += this_run_size;
3381 }
3382
3383 free(buffer);
3384
3385 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3386 size_t filesize;
3387 retval = fileio_size(fileio, &filesize);
3388 if (retval != ERROR_OK)
3389 return retval;
3390 command_print(CMD_CTX,
3391 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3392 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3393 }
3394
3395 retvaltemp = fileio_close(fileio);
3396 if (retvaltemp != ERROR_OK)
3397 return retvaltemp;
3398
3399 return retval;
3400 }
3401
3402 enum verify_mode {
3403 IMAGE_TEST = 0,
3404 IMAGE_VERIFY = 1,
3405 IMAGE_CHECKSUM_ONLY = 2
3406 };
3407
3408 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3409 {
3410 uint8_t *buffer;
3411 size_t buf_cnt;
3412 uint32_t image_size;
3413 int i;
3414 int retval;
3415 uint32_t checksum = 0;
3416 uint32_t mem_checksum = 0;
3417
3418 struct image image;
3419
3420 struct target *target = get_current_target(CMD_CTX);
3421
3422 if (CMD_ARGC < 1)
3423 return ERROR_COMMAND_SYNTAX_ERROR;
3424
3425 if (!target) {
3426 LOG_ERROR("no target selected");
3427 return ERROR_FAIL;
3428 }
3429
3430 struct duration bench;
3431 duration_start(&bench);
3432
3433 if (CMD_ARGC >= 2) {
3434 target_addr_t addr;
3435 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3436 image.base_address = addr;
3437 image.base_address_set = 1;
3438 } else {
3439 image.base_address_set = 0;
3440 image.base_address = 0x0;
3441 }
3442
3443 image.start_address_set = 0;
3444
3445 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3446 if (retval != ERROR_OK)
3447 return retval;
3448
3449 image_size = 0x0;
3450 int diffs = 0;
3451 retval = ERROR_OK;
3452 for (i = 0; i < image.num_sections; i++) {
3453 buffer = malloc(image.sections[i].size);
3454 if (buffer == NULL) {
3455 command_print(CMD_CTX,
3456 "error allocating buffer for section (%d bytes)",
3457 (int)(image.sections[i].size));
3458 break;
3459 }
3460 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3461 if (retval != ERROR_OK) {
3462 free(buffer);
3463 break;
3464 }
3465
3466 if (verify >= IMAGE_VERIFY) {
3467 /* calculate checksum of image */
3468 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3469 if (retval != ERROR_OK) {
3470 free(buffer);
3471 break;
3472 }
3473
3474 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3475 if (retval != ERROR_OK) {
3476 free(buffer);
3477 break;
3478 }
3479 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3480 LOG_ERROR("checksum mismatch");
3481 free(buffer);
3482 retval = ERROR_FAIL;
3483 goto done;
3484 }
3485 if (checksum != mem_checksum) {
3486 /* failed crc checksum, fall back to a binary compare */
3487 uint8_t *data;
3488
3489 if (diffs == 0)
3490 LOG_ERROR("checksum mismatch - attempting binary compare");
3491
3492 data = malloc(buf_cnt);
3493
3494 /* Can we use 32bit word accesses? */
3495 int size = 1;
3496 int count = buf_cnt;
3497 if ((count % 4) == 0) {
3498 size *= 4;
3499 count /= 4;
3500 }
3501 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3502 if (retval == ERROR_OK) {
3503 uint32_t t;
3504 for (t = 0; t < buf_cnt; t++) {
3505 if (data[t] != buffer[t]) {
3506 command_print(CMD_CTX,
3507 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3508 diffs,
3509 (unsigned)(t + image.sections[i].base_address),
3510 data[t],
3511 buffer[t]);
3512 if (diffs++ >= 127) {
3513 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3514 free(data);
3515 free(buffer);
3516 goto done;
3517 }
3518 }
3519 keep_alive();
3520 }
3521 }
3522 free(data);
3523 }
3524 } else {
3525 command_print(CMD_CTX, "address " TARGET_ADDR_FMT " length 0x%08zx",
3526 image.sections[i].base_address,
3527 buf_cnt);
3528 }
3529
3530 free(buffer);
3531 image_size += buf_cnt;
3532 }
3533 if (diffs > 0)
3534 command_print(CMD_CTX, "No more differences found.");
3535 done:
3536 if (diffs > 0)
3537 retval = ERROR_FAIL;
3538 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3539 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3540 "in %fs (%0.3f KiB/s)", image_size,
3541 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3542 }
3543
3544 image_close(&image);
3545
3546 return retval;
3547 }
3548
3549 COMMAND_HANDLER(handle_verify_image_checksum_command)
3550 {
3551 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3552 }
3553
3554 COMMAND_HANDLER(handle_verify_image_command)
3555 {
3556 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3557 }
3558
3559 COMMAND_HANDLER(handle_test_image_command)
3560 {
3561 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3562 }
3563
3564 static int handle_bp_command_list(struct command_context *cmd_ctx)
3565 {
3566 struct target *target = get_current_target(cmd_ctx);
3567 struct breakpoint *breakpoint = target->breakpoints;
3568 while (breakpoint) {
3569 if (breakpoint->type == BKPT_SOFT) {
3570 char *buf = buf_to_str(breakpoint->orig_instr,
3571 breakpoint->length, 16);
3572 command_print(cmd_ctx, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3573 breakpoint->address,
3574 breakpoint->length,
3575 breakpoint->set, buf);
3576 free(buf);
3577 } else {
3578 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3579 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3580 breakpoint->asid,
3581 breakpoint->length, breakpoint->set);
3582 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3583 command_print(cmd_ctx, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3584 breakpoint->address,
3585 breakpoint->length, breakpoint->set);
3586 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3587 breakpoint->asid);
3588 } else
3589 command_print(cmd_ctx, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3590 breakpoint->address,
3591 breakpoint->length, breakpoint->set);
3592 }
3593
3594 breakpoint = breakpoint->next;
3595 }
3596 return ERROR_OK;
3597 }
3598
3599 static int handle_bp_command_set(struct command_context *cmd_ctx,
3600 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3601 {
3602 struct target *target = get_current_target(cmd_ctx);
3603 int retval;
3604
3605 if (asid == 0) {
3606 retval = breakpoint_add(target, addr, length, hw);
3607 if (ERROR_OK == retval)
3608 command_print(cmd_ctx, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3609 else {
3610 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3611 return retval;
3612 }
3613 } else if (addr == 0) {
3614 if (target->type->add_context_breakpoint == NULL) {
3615 LOG_WARNING("Context breakpoint not available");
3616 return ERROR_OK;
3617 }
3618 retval = context_breakpoint_add(target, asid, length, hw);
3619 if (ERROR_OK == retval)
3620 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3621 else {
3622 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3623 return retval;
3624 }
3625 } else {
3626 if (target->type->add_hybrid_breakpoint == NULL) {
3627 LOG_WARNING("Hybrid breakpoint not available");
3628 return ERROR_OK;
3629 }
3630 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3631 if (ERROR_OK == retval)
3632 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3633 else {
3634 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3635 return retval;
3636 }
3637 }
3638 return ERROR_OK;
3639 }
3640
3641 COMMAND_HANDLER(handle_bp_command)
3642 {
3643 target_addr_t addr;
3644 uint32_t asid;
3645 uint32_t length;
3646 int hw = BKPT_SOFT;
3647
3648 switch (CMD_ARGC) {
3649 case 0:
3650 return handle_bp_command_list(CMD_CTX);
3651
3652 case 2:
3653 asid = 0;
3654 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3655 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3656 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3657
3658 case 3:
3659 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3660 hw = BKPT_HARD;
3661 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3662 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3663 asid = 0;<