ef4568564694e7bffa701deeac68ad60fd1643a0
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58 #include "transport/transport.h"
59
60 /* default halt wait timeout (ms) */
61 #define DEFAULT_HALT_TIMEOUT 5000
62
63 static int target_read_buffer_default(struct target *target, uint32_t address,
64 uint32_t count, uint8_t *buffer);
65 static int target_write_buffer_default(struct target *target, uint32_t address,
66 uint32_t count, const uint8_t *buffer);
67 static int target_array2mem(Jim_Interp *interp, struct target *target,
68 int argc, Jim_Obj * const *argv);
69 static int target_mem2array(Jim_Interp *interp, struct target *target,
70 int argc, Jim_Obj * const *argv);
71 static int target_register_user_commands(struct command_context *cmd_ctx);
72 static int target_get_gdb_fileio_info_default(struct target *target,
73 struct gdb_fileio_info *fileio_info);
74 static int target_gdb_fileio_end_default(struct target *target, int retcode,
75 int fileio_errno, bool ctrl_c);
76 static int target_profiling_default(struct target *target, uint32_t *samples,
77 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
78
79 /* targets */
80 extern struct target_type arm7tdmi_target;
81 extern struct target_type arm720t_target;
82 extern struct target_type arm9tdmi_target;
83 extern struct target_type arm920t_target;
84 extern struct target_type arm966e_target;
85 extern struct target_type arm946e_target;
86 extern struct target_type arm926ejs_target;
87 extern struct target_type fa526_target;
88 extern struct target_type feroceon_target;
89 extern struct target_type dragonite_target;
90 extern struct target_type xscale_target;
91 extern struct target_type cortexm_target;
92 extern struct target_type cortexa_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type mips_m4k_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107
108 static struct target_type *target_types[] = {
109 &arm7tdmi_target,
110 &arm9tdmi_target,
111 &arm920t_target,
112 &arm720t_target,
113 &arm966e_target,
114 &arm946e_target,
115 &arm926ejs_target,
116 &fa526_target,
117 &feroceon_target,
118 &dragonite_target,
119 &xscale_target,
120 &cortexm_target,
121 &cortexa_target,
122 &cortexr4_target,
123 &arm11_target,
124 &mips_m4k_target,
125 &avr_target,
126 &dsp563xx_target,
127 &dsp5680xx_target,
128 &testee_target,
129 &avr32_ap7k_target,
130 &hla_target,
131 &nds32_v2_target,
132 &nds32_v3_target,
133 &nds32_v3m_target,
134 &or1k_target,
135 &quark_x10xx_target,
136 NULL,
137 };
138
139 struct target *all_targets;
140 static struct target_event_callback *target_event_callbacks;
141 static struct target_timer_callback *target_timer_callbacks;
142 LIST_HEAD(target_reset_callback_list);
143 static const int polling_interval = 100;
144
145 static const Jim_Nvp nvp_assert[] = {
146 { .name = "assert", NVP_ASSERT },
147 { .name = "deassert", NVP_DEASSERT },
148 { .name = "T", NVP_ASSERT },
149 { .name = "F", NVP_DEASSERT },
150 { .name = "t", NVP_ASSERT },
151 { .name = "f", NVP_DEASSERT },
152 { .name = NULL, .value = -1 }
153 };
154
155 static const Jim_Nvp nvp_error_target[] = {
156 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
157 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
158 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
159 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
160 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
161 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
162 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
163 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
164 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
165 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
166 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
167 { .value = -1, .name = NULL }
168 };
169
170 static const char *target_strerror_safe(int err)
171 {
172 const Jim_Nvp *n;
173
174 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
175 if (n->name == NULL)
176 return "unknown";
177 else
178 return n->name;
179 }
180
181 static const Jim_Nvp nvp_target_event[] = {
182
183 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
184 { .value = TARGET_EVENT_HALTED, .name = "halted" },
185 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
186 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
187 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
188
189 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
190 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
191
192 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
193 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
194 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
195 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
196 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
197 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
198 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
199 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
200 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
201 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
202 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
203 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
204
205 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
206 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
207
208 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
209 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
210
211 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
212 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
213
214 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
215 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
216
217 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
218 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
219
220 { .name = NULL, .value = -1 }
221 };
222
223 static const Jim_Nvp nvp_target_state[] = {
224 { .name = "unknown", .value = TARGET_UNKNOWN },
225 { .name = "running", .value = TARGET_RUNNING },
226 { .name = "halted", .value = TARGET_HALTED },
227 { .name = "reset", .value = TARGET_RESET },
228 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
229 { .name = NULL, .value = -1 },
230 };
231
232 static const Jim_Nvp nvp_target_debug_reason[] = {
233 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
234 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
235 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
236 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
237 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
238 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
239 { .name = "program-exit" , .value = DBG_REASON_EXIT },
240 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
241 { .name = NULL, .value = -1 },
242 };
243
244 static const Jim_Nvp nvp_target_endian[] = {
245 { .name = "big", .value = TARGET_BIG_ENDIAN },
246 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
247 { .name = "be", .value = TARGET_BIG_ENDIAN },
248 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
249 { .name = NULL, .value = -1 },
250 };
251
252 static const Jim_Nvp nvp_reset_modes[] = {
253 { .name = "unknown", .value = RESET_UNKNOWN },
254 { .name = "run" , .value = RESET_RUN },
255 { .name = "halt" , .value = RESET_HALT },
256 { .name = "init" , .value = RESET_INIT },
257 { .name = NULL , .value = -1 },
258 };
259
260 const char *debug_reason_name(struct target *t)
261 {
262 const char *cp;
263
264 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
265 t->debug_reason)->name;
266 if (!cp) {
267 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
268 cp = "(*BUG*unknown*BUG*)";
269 }
270 return cp;
271 }
272
273 const char *target_state_name(struct target *t)
274 {
275 const char *cp;
276 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
277 if (!cp) {
278 LOG_ERROR("Invalid target state: %d", (int)(t->state));
279 cp = "(*BUG*unknown*BUG*)";
280 }
281 return cp;
282 }
283
284 const char *target_event_name(enum target_event event)
285 {
286 const char *cp;
287 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
288 if (!cp) {
289 LOG_ERROR("Invalid target event: %d", (int)(event));
290 cp = "(*BUG*unknown*BUG*)";
291 }
292 return cp;
293 }
294
295 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
296 {
297 const char *cp;
298 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
299 if (!cp) {
300 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
301 cp = "(*BUG*unknown*BUG*)";
302 }
303 return cp;
304 }
305
306 /* determine the number of the new target */
307 static int new_target_number(void)
308 {
309 struct target *t;
310 int x;
311
312 /* number is 0 based */
313 x = -1;
314 t = all_targets;
315 while (t) {
316 if (x < t->target_number)
317 x = t->target_number;
318 t = t->next;
319 }
320 return x + 1;
321 }
322
323 /* read a uint64_t from a buffer in target memory endianness */
324 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
325 {
326 if (target->endianness == TARGET_LITTLE_ENDIAN)
327 return le_to_h_u64(buffer);
328 else
329 return be_to_h_u64(buffer);
330 }
331
332 /* read a uint32_t from a buffer in target memory endianness */
333 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
334 {
335 if (target->endianness == TARGET_LITTLE_ENDIAN)
336 return le_to_h_u32(buffer);
337 else
338 return be_to_h_u32(buffer);
339 }
340
341 /* read a uint24_t from a buffer in target memory endianness */
342 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
343 {
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 return le_to_h_u24(buffer);
346 else
347 return be_to_h_u24(buffer);
348 }
349
350 /* read a uint16_t from a buffer in target memory endianness */
351 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
352 {
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 return le_to_h_u16(buffer);
355 else
356 return be_to_h_u16(buffer);
357 }
358
359 /* read a uint8_t from a buffer in target memory endianness */
360 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
361 {
362 return *buffer & 0x0ff;
363 }
364
365 /* write a uint64_t to a buffer in target memory endianness */
366 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
367 {
368 if (target->endianness == TARGET_LITTLE_ENDIAN)
369 h_u64_to_le(buffer, value);
370 else
371 h_u64_to_be(buffer, value);
372 }
373
374 /* write a uint32_t to a buffer in target memory endianness */
375 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
376 {
377 if (target->endianness == TARGET_LITTLE_ENDIAN)
378 h_u32_to_le(buffer, value);
379 else
380 h_u32_to_be(buffer, value);
381 }
382
383 /* write a uint24_t to a buffer in target memory endianness */
384 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
385 {
386 if (target->endianness == TARGET_LITTLE_ENDIAN)
387 h_u24_to_le(buffer, value);
388 else
389 h_u24_to_be(buffer, value);
390 }
391
392 /* write a uint16_t to a buffer in target memory endianness */
393 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
394 {
395 if (target->endianness == TARGET_LITTLE_ENDIAN)
396 h_u16_to_le(buffer, value);
397 else
398 h_u16_to_be(buffer, value);
399 }
400
401 /* write a uint8_t to a buffer in target memory endianness */
402 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
403 {
404 *buffer = value;
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
409 {
410 uint32_t i;
411 for (i = 0; i < count; i++)
412 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
417 {
418 uint32_t i;
419 for (i = 0; i < count; i++)
420 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
425 {
426 uint32_t i;
427 for (i = 0; i < count; i++)
428 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
429 }
430
431 /* write a uint64_t array to a buffer in target memory endianness */
432 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
433 {
434 uint32_t i;
435 for (i = 0; i < count; i++)
436 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
437 }
438
439 /* write a uint32_t array to a buffer in target memory endianness */
440 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
441 {
442 uint32_t i;
443 for (i = 0; i < count; i++)
444 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
445 }
446
447 /* write a uint16_t array to a buffer in target memory endianness */
448 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
449 {
450 uint32_t i;
451 for (i = 0; i < count; i++)
452 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
453 }
454
455 /* return a pointer to a configured target; id is name or number */
456 struct target *get_target(const char *id)
457 {
458 struct target *target;
459
460 /* try as tcltarget name */
461 for (target = all_targets; target; target = target->next) {
462 if (target_name(target) == NULL)
463 continue;
464 if (strcmp(id, target_name(target)) == 0)
465 return target;
466 }
467
468 /* It's OK to remove this fallback sometime after August 2010 or so */
469
470 /* no match, try as number */
471 unsigned num;
472 if (parse_uint(id, &num) != ERROR_OK)
473 return NULL;
474
475 for (target = all_targets; target; target = target->next) {
476 if (target->target_number == (int)num) {
477 LOG_WARNING("use '%s' as target identifier, not '%u'",
478 target_name(target), num);
479 return target;
480 }
481 }
482
483 return NULL;
484 }
485
486 /* returns a pointer to the n-th configured target */
487 static struct target *get_target_by_num(int num)
488 {
489 struct target *target = all_targets;
490
491 while (target) {
492 if (target->target_number == num)
493 return target;
494 target = target->next;
495 }
496
497 return NULL;
498 }
499
500 struct target *get_current_target(struct command_context *cmd_ctx)
501 {
502 struct target *target = get_target_by_num(cmd_ctx->current_target);
503
504 if (target == NULL) {
505 LOG_ERROR("BUG: current_target out of bounds");
506 exit(-1);
507 }
508
509 return target;
510 }
511
512 int target_poll(struct target *target)
513 {
514 int retval;
515
516 /* We can't poll until after examine */
517 if (!target_was_examined(target)) {
518 /* Fail silently lest we pollute the log */
519 return ERROR_FAIL;
520 }
521
522 retval = target->type->poll(target);
523 if (retval != ERROR_OK)
524 return retval;
525
526 if (target->halt_issued) {
527 if (target->state == TARGET_HALTED)
528 target->halt_issued = false;
529 else {
530 long long t = timeval_ms() - target->halt_issued_time;
531 if (t > DEFAULT_HALT_TIMEOUT) {
532 target->halt_issued = false;
533 LOG_INFO("Halt timed out, wake up GDB.");
534 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
535 }
536 }
537 }
538
539 return ERROR_OK;
540 }
541
542 int target_halt(struct target *target)
543 {
544 int retval;
545 /* We can't poll until after examine */
546 if (!target_was_examined(target)) {
547 LOG_ERROR("Target not examined yet");
548 return ERROR_FAIL;
549 }
550
551 retval = target->type->halt(target);
552 if (retval != ERROR_OK)
553 return retval;
554
555 target->halt_issued = true;
556 target->halt_issued_time = timeval_ms();
557
558 return ERROR_OK;
559 }
560
561 /**
562 * Make the target (re)start executing using its saved execution
563 * context (possibly with some modifications).
564 *
565 * @param target Which target should start executing.
566 * @param current True to use the target's saved program counter instead
567 * of the address parameter
568 * @param address Optionally used as the program counter.
569 * @param handle_breakpoints True iff breakpoints at the resumption PC
570 * should be skipped. (For example, maybe execution was stopped by
571 * such a breakpoint, in which case it would be counterprodutive to
572 * let it re-trigger.
573 * @param debug_execution False if all working areas allocated by OpenOCD
574 * should be released and/or restored to their original contents.
575 * (This would for example be true to run some downloaded "helper"
576 * algorithm code, which resides in one such working buffer and uses
577 * another for data storage.)
578 *
579 * @todo Resolve the ambiguity about what the "debug_execution" flag
580 * signifies. For example, Target implementations don't agree on how
581 * it relates to invalidation of the register cache, or to whether
582 * breakpoints and watchpoints should be enabled. (It would seem wrong
583 * to enable breakpoints when running downloaded "helper" algorithms
584 * (debug_execution true), since the breakpoints would be set to match
585 * target firmware being debugged, not the helper algorithm.... and
586 * enabling them could cause such helpers to malfunction (for example,
587 * by overwriting data with a breakpoint instruction. On the other
588 * hand the infrastructure for running such helpers might use this
589 * procedure but rely on hardware breakpoint to detect termination.)
590 */
591 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
592 {
593 int retval;
594
595 /* We can't poll until after examine */
596 if (!target_was_examined(target)) {
597 LOG_ERROR("Target not examined yet");
598 return ERROR_FAIL;
599 }
600
601 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
602
603 /* note that resume *must* be asynchronous. The CPU can halt before
604 * we poll. The CPU can even halt at the current PC as a result of
605 * a software breakpoint being inserted by (a bug?) the application.
606 */
607 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
608 if (retval != ERROR_OK)
609 return retval;
610
611 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
612
613 return retval;
614 }
615
616 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
617 {
618 char buf[100];
619 int retval;
620 Jim_Nvp *n;
621 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
622 if (n->name == NULL) {
623 LOG_ERROR("invalid reset mode");
624 return ERROR_FAIL;
625 }
626
627 struct target *target;
628 for (target = all_targets; target; target = target->next)
629 target_call_reset_callbacks(target, reset_mode);
630
631 /* disable polling during reset to make reset event scripts
632 * more predictable, i.e. dr/irscan & pathmove in events will
633 * not have JTAG operations injected into the middle of a sequence.
634 */
635 bool save_poll = jtag_poll_get_enabled();
636
637 jtag_poll_set_enabled(false);
638
639 sprintf(buf, "ocd_process_reset %s", n->name);
640 retval = Jim_Eval(cmd_ctx->interp, buf);
641
642 jtag_poll_set_enabled(save_poll);
643
644 if (retval != JIM_OK) {
645 Jim_MakeErrorMessage(cmd_ctx->interp);
646 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
647 return ERROR_FAIL;
648 }
649
650 /* We want any events to be processed before the prompt */
651 retval = target_call_timer_callbacks_now();
652
653 for (target = all_targets; target; target = target->next) {
654 target->type->check_reset(target);
655 target->running_alg = false;
656 }
657
658 return retval;
659 }
660
661 static int identity_virt2phys(struct target *target,
662 uint32_t virtual, uint32_t *physical)
663 {
664 *physical = virtual;
665 return ERROR_OK;
666 }
667
668 static int no_mmu(struct target *target, int *enabled)
669 {
670 *enabled = 0;
671 return ERROR_OK;
672 }
673
674 static int default_examine(struct target *target)
675 {
676 target_set_examined(target);
677 return ERROR_OK;
678 }
679
680 /* no check by default */
681 static int default_check_reset(struct target *target)
682 {
683 return ERROR_OK;
684 }
685
686 int target_examine_one(struct target *target)
687 {
688 return target->type->examine(target);
689 }
690
691 static int jtag_enable_callback(enum jtag_event event, void *priv)
692 {
693 struct target *target = priv;
694
695 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
696 return ERROR_OK;
697
698 jtag_unregister_event_callback(jtag_enable_callback, target);
699
700 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
701
702 int retval = target_examine_one(target);
703 if (retval != ERROR_OK)
704 return retval;
705
706 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
707
708 return retval;
709 }
710
711 /* Targets that correctly implement init + examine, i.e.
712 * no communication with target during init:
713 *
714 * XScale
715 */
716 int target_examine(void)
717 {
718 int retval = ERROR_OK;
719 struct target *target;
720
721 for (target = all_targets; target; target = target->next) {
722 /* defer examination, but don't skip it */
723 if (!target->tap->enabled) {
724 jtag_register_event_callback(jtag_enable_callback,
725 target);
726 continue;
727 }
728
729 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
730
731 retval = target_examine_one(target);
732 if (retval != ERROR_OK)
733 return retval;
734
735 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
736 }
737 return retval;
738 }
739
740 const char *target_type_name(struct target *target)
741 {
742 return target->type->name;
743 }
744
745 static int target_soft_reset_halt(struct target *target)
746 {
747 if (!target_was_examined(target)) {
748 LOG_ERROR("Target not examined yet");
749 return ERROR_FAIL;
750 }
751 if (!target->type->soft_reset_halt) {
752 LOG_ERROR("Target %s does not support soft_reset_halt",
753 target_name(target));
754 return ERROR_FAIL;
755 }
756 return target->type->soft_reset_halt(target);
757 }
758
759 /**
760 * Downloads a target-specific native code algorithm to the target,
761 * and executes it. * Note that some targets may need to set up, enable,
762 * and tear down a breakpoint (hard or * soft) to detect algorithm
763 * termination, while others may support lower overhead schemes where
764 * soft breakpoints embedded in the algorithm automatically terminate the
765 * algorithm.
766 *
767 * @param target used to run the algorithm
768 * @param arch_info target-specific description of the algorithm.
769 */
770 int target_run_algorithm(struct target *target,
771 int num_mem_params, struct mem_param *mem_params,
772 int num_reg_params, struct reg_param *reg_param,
773 uint32_t entry_point, uint32_t exit_point,
774 int timeout_ms, void *arch_info)
775 {
776 int retval = ERROR_FAIL;
777
778 if (!target_was_examined(target)) {
779 LOG_ERROR("Target not examined yet");
780 goto done;
781 }
782 if (!target->type->run_algorithm) {
783 LOG_ERROR("Target type '%s' does not support %s",
784 target_type_name(target), __func__);
785 goto done;
786 }
787
788 target->running_alg = true;
789 retval = target->type->run_algorithm(target,
790 num_mem_params, mem_params,
791 num_reg_params, reg_param,
792 entry_point, exit_point, timeout_ms, arch_info);
793 target->running_alg = false;
794
795 done:
796 return retval;
797 }
798
799 /**
800 * Downloads a target-specific native code algorithm to the target,
801 * executes and leaves it running.
802 *
803 * @param target used to run the algorithm
804 * @param arch_info target-specific description of the algorithm.
805 */
806 int target_start_algorithm(struct target *target,
807 int num_mem_params, struct mem_param *mem_params,
808 int num_reg_params, struct reg_param *reg_params,
809 uint32_t entry_point, uint32_t exit_point,
810 void *arch_info)
811 {
812 int retval = ERROR_FAIL;
813
814 if (!target_was_examined(target)) {
815 LOG_ERROR("Target not examined yet");
816 goto done;
817 }
818 if (!target->type->start_algorithm) {
819 LOG_ERROR("Target type '%s' does not support %s",
820 target_type_name(target), __func__);
821 goto done;
822 }
823 if (target->running_alg) {
824 LOG_ERROR("Target is already running an algorithm");
825 goto done;
826 }
827
828 target->running_alg = true;
829 retval = target->type->start_algorithm(target,
830 num_mem_params, mem_params,
831 num_reg_params, reg_params,
832 entry_point, exit_point, arch_info);
833
834 done:
835 return retval;
836 }
837
838 /**
839 * Waits for an algorithm started with target_start_algorithm() to complete.
840 *
841 * @param target used to run the algorithm
842 * @param arch_info target-specific description of the algorithm.
843 */
844 int target_wait_algorithm(struct target *target,
845 int num_mem_params, struct mem_param *mem_params,
846 int num_reg_params, struct reg_param *reg_params,
847 uint32_t exit_point, int timeout_ms,
848 void *arch_info)
849 {
850 int retval = ERROR_FAIL;
851
852 if (!target->type->wait_algorithm) {
853 LOG_ERROR("Target type '%s' does not support %s",
854 target_type_name(target), __func__);
855 goto done;
856 }
857 if (!target->running_alg) {
858 LOG_ERROR("Target is not running an algorithm");
859 goto done;
860 }
861
862 retval = target->type->wait_algorithm(target,
863 num_mem_params, mem_params,
864 num_reg_params, reg_params,
865 exit_point, timeout_ms, arch_info);
866 if (retval != ERROR_TARGET_TIMEOUT)
867 target->running_alg = false;
868
869 done:
870 return retval;
871 }
872
873 /**
874 * Executes a target-specific native code algorithm in the target.
875 * It differs from target_run_algorithm in that the algorithm is asynchronous.
876 * Because of this it requires an compliant algorithm:
877 * see contrib/loaders/flash/stm32f1x.S for example.
878 *
879 * @param target used to run the algorithm
880 */
881
882 int target_run_flash_async_algorithm(struct target *target,
883 const uint8_t *buffer, uint32_t count, int block_size,
884 int num_mem_params, struct mem_param *mem_params,
885 int num_reg_params, struct reg_param *reg_params,
886 uint32_t buffer_start, uint32_t buffer_size,
887 uint32_t entry_point, uint32_t exit_point, void *arch_info)
888 {
889 int retval;
890 int timeout = 0;
891
892 const uint8_t *buffer_orig = buffer;
893
894 /* Set up working area. First word is write pointer, second word is read pointer,
895 * rest is fifo data area. */
896 uint32_t wp_addr = buffer_start;
897 uint32_t rp_addr = buffer_start + 4;
898 uint32_t fifo_start_addr = buffer_start + 8;
899 uint32_t fifo_end_addr = buffer_start + buffer_size;
900
901 uint32_t wp = fifo_start_addr;
902 uint32_t rp = fifo_start_addr;
903
904 /* validate block_size is 2^n */
905 assert(!block_size || !(block_size & (block_size - 1)));
906
907 retval = target_write_u32(target, wp_addr, wp);
908 if (retval != ERROR_OK)
909 return retval;
910 retval = target_write_u32(target, rp_addr, rp);
911 if (retval != ERROR_OK)
912 return retval;
913
914 /* Start up algorithm on target and let it idle while writing the first chunk */
915 retval = target_start_algorithm(target, num_mem_params, mem_params,
916 num_reg_params, reg_params,
917 entry_point,
918 exit_point,
919 arch_info);
920
921 if (retval != ERROR_OK) {
922 LOG_ERROR("error starting target flash write algorithm");
923 return retval;
924 }
925
926 while (count > 0) {
927
928 retval = target_read_u32(target, rp_addr, &rp);
929 if (retval != ERROR_OK) {
930 LOG_ERROR("failed to get read pointer");
931 break;
932 }
933
934 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
935 (size_t) (buffer - buffer_orig), count, wp, rp);
936
937 if (rp == 0) {
938 LOG_ERROR("flash write algorithm aborted by target");
939 retval = ERROR_FLASH_OPERATION_FAILED;
940 break;
941 }
942
943 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
944 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
945 break;
946 }
947
948 /* Count the number of bytes available in the fifo without
949 * crossing the wrap around. Make sure to not fill it completely,
950 * because that would make wp == rp and that's the empty condition. */
951 uint32_t thisrun_bytes;
952 if (rp > wp)
953 thisrun_bytes = rp - wp - block_size;
954 else if (rp > fifo_start_addr)
955 thisrun_bytes = fifo_end_addr - wp;
956 else
957 thisrun_bytes = fifo_end_addr - wp - block_size;
958
959 if (thisrun_bytes == 0) {
960 /* Throttle polling a bit if transfer is (much) faster than flash
961 * programming. The exact delay shouldn't matter as long as it's
962 * less than buffer size / flash speed. This is very unlikely to
963 * run when using high latency connections such as USB. */
964 alive_sleep(10);
965
966 /* to stop an infinite loop on some targets check and increment a timeout
967 * this issue was observed on a stellaris using the new ICDI interface */
968 if (timeout++ >= 500) {
969 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
970 return ERROR_FLASH_OPERATION_FAILED;
971 }
972 continue;
973 }
974
975 /* reset our timeout */
976 timeout = 0;
977
978 /* Limit to the amount of data we actually want to write */
979 if (thisrun_bytes > count * block_size)
980 thisrun_bytes = count * block_size;
981
982 /* Write data to fifo */
983 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
984 if (retval != ERROR_OK)
985 break;
986
987 /* Update counters and wrap write pointer */
988 buffer += thisrun_bytes;
989 count -= thisrun_bytes / block_size;
990 wp += thisrun_bytes;
991 if (wp >= fifo_end_addr)
992 wp = fifo_start_addr;
993
994 /* Store updated write pointer to target */
995 retval = target_write_u32(target, wp_addr, wp);
996 if (retval != ERROR_OK)
997 break;
998 }
999
1000 if (retval != ERROR_OK) {
1001 /* abort flash write algorithm on target */
1002 target_write_u32(target, wp_addr, 0);
1003 }
1004
1005 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1006 num_reg_params, reg_params,
1007 exit_point,
1008 10000,
1009 arch_info);
1010
1011 if (retval2 != ERROR_OK) {
1012 LOG_ERROR("error waiting for target flash write algorithm");
1013 retval = retval2;
1014 }
1015
1016 return retval;
1017 }
1018
1019 int target_read_memory(struct target *target,
1020 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1021 {
1022 if (!target_was_examined(target)) {
1023 LOG_ERROR("Target not examined yet");
1024 return ERROR_FAIL;
1025 }
1026 return target->type->read_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_read_phys_memory(struct target *target,
1030 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1031 {
1032 if (!target_was_examined(target)) {
1033 LOG_ERROR("Target not examined yet");
1034 return ERROR_FAIL;
1035 }
1036 return target->type->read_phys_memory(target, address, size, count, buffer);
1037 }
1038
1039 int target_write_memory(struct target *target,
1040 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1041 {
1042 if (!target_was_examined(target)) {
1043 LOG_ERROR("Target not examined yet");
1044 return ERROR_FAIL;
1045 }
1046 return target->type->write_memory(target, address, size, count, buffer);
1047 }
1048
1049 int target_write_phys_memory(struct target *target,
1050 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1051 {
1052 if (!target_was_examined(target)) {
1053 LOG_ERROR("Target not examined yet");
1054 return ERROR_FAIL;
1055 }
1056 return target->type->write_phys_memory(target, address, size, count, buffer);
1057 }
1058
1059 int target_add_breakpoint(struct target *target,
1060 struct breakpoint *breakpoint)
1061 {
1062 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1063 LOG_WARNING("target %s is not halted", target_name(target));
1064 return ERROR_TARGET_NOT_HALTED;
1065 }
1066 return target->type->add_breakpoint(target, breakpoint);
1067 }
1068
1069 int target_add_context_breakpoint(struct target *target,
1070 struct breakpoint *breakpoint)
1071 {
1072 if (target->state != TARGET_HALTED) {
1073 LOG_WARNING("target %s is not halted", target_name(target));
1074 return ERROR_TARGET_NOT_HALTED;
1075 }
1076 return target->type->add_context_breakpoint(target, breakpoint);
1077 }
1078
1079 int target_add_hybrid_breakpoint(struct target *target,
1080 struct breakpoint *breakpoint)
1081 {
1082 if (target->state != TARGET_HALTED) {
1083 LOG_WARNING("target %s is not halted", target_name(target));
1084 return ERROR_TARGET_NOT_HALTED;
1085 }
1086 return target->type->add_hybrid_breakpoint(target, breakpoint);
1087 }
1088
1089 int target_remove_breakpoint(struct target *target,
1090 struct breakpoint *breakpoint)
1091 {
1092 return target->type->remove_breakpoint(target, breakpoint);
1093 }
1094
1095 int target_add_watchpoint(struct target *target,
1096 struct watchpoint *watchpoint)
1097 {
1098 if (target->state != TARGET_HALTED) {
1099 LOG_WARNING("target %s is not halted", target_name(target));
1100 return ERROR_TARGET_NOT_HALTED;
1101 }
1102 return target->type->add_watchpoint(target, watchpoint);
1103 }
1104 int target_remove_watchpoint(struct target *target,
1105 struct watchpoint *watchpoint)
1106 {
1107 return target->type->remove_watchpoint(target, watchpoint);
1108 }
1109 int target_hit_watchpoint(struct target *target,
1110 struct watchpoint **hit_watchpoint)
1111 {
1112 if (target->state != TARGET_HALTED) {
1113 LOG_WARNING("target %s is not halted", target->cmd_name);
1114 return ERROR_TARGET_NOT_HALTED;
1115 }
1116
1117 if (target->type->hit_watchpoint == NULL) {
1118 /* For backward compatible, if hit_watchpoint is not implemented,
1119 * return ERROR_FAIL such that gdb_server will not take the nonsense
1120 * information. */
1121 return ERROR_FAIL;
1122 }
1123
1124 return target->type->hit_watchpoint(target, hit_watchpoint);
1125 }
1126
1127 int target_get_gdb_reg_list(struct target *target,
1128 struct reg **reg_list[], int *reg_list_size,
1129 enum target_register_class reg_class)
1130 {
1131 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1132 }
1133 int target_step(struct target *target,
1134 int current, uint32_t address, int handle_breakpoints)
1135 {
1136 return target->type->step(target, current, address, handle_breakpoints);
1137 }
1138
1139 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1140 {
1141 if (target->state != TARGET_HALTED) {
1142 LOG_WARNING("target %s is not halted", target->cmd_name);
1143 return ERROR_TARGET_NOT_HALTED;
1144 }
1145 return target->type->get_gdb_fileio_info(target, fileio_info);
1146 }
1147
1148 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1149 {
1150 if (target->state != TARGET_HALTED) {
1151 LOG_WARNING("target %s is not halted", target->cmd_name);
1152 return ERROR_TARGET_NOT_HALTED;
1153 }
1154 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1155 }
1156
1157 int target_profiling(struct target *target, uint32_t *samples,
1158 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1159 {
1160 if (target->state != TARGET_HALTED) {
1161 LOG_WARNING("target %s is not halted", target->cmd_name);
1162 return ERROR_TARGET_NOT_HALTED;
1163 }
1164 return target->type->profiling(target, samples, max_num_samples,
1165 num_samples, seconds);
1166 }
1167
1168 /**
1169 * Reset the @c examined flag for the given target.
1170 * Pure paranoia -- targets are zeroed on allocation.
1171 */
1172 static void target_reset_examined(struct target *target)
1173 {
1174 target->examined = false;
1175 }
1176
1177 static int err_read_phys_memory(struct target *target, uint32_t address,
1178 uint32_t size, uint32_t count, uint8_t *buffer)
1179 {
1180 LOG_ERROR("Not implemented: %s", __func__);
1181 return ERROR_FAIL;
1182 }
1183
1184 static int err_write_phys_memory(struct target *target, uint32_t address,
1185 uint32_t size, uint32_t count, const uint8_t *buffer)
1186 {
1187 LOG_ERROR("Not implemented: %s", __func__);
1188 return ERROR_FAIL;
1189 }
1190
1191 static int handle_target(void *priv);
1192
1193 static int target_init_one(struct command_context *cmd_ctx,
1194 struct target *target)
1195 {
1196 target_reset_examined(target);
1197
1198 struct target_type *type = target->type;
1199 if (type->examine == NULL)
1200 type->examine = default_examine;
1201
1202 if (type->check_reset == NULL)
1203 type->check_reset = default_check_reset;
1204
1205 assert(type->init_target != NULL);
1206
1207 int retval = type->init_target(cmd_ctx, target);
1208 if (ERROR_OK != retval) {
1209 LOG_ERROR("target '%s' init failed", target_name(target));
1210 return retval;
1211 }
1212
1213 /* Sanity-check MMU support ... stub in what we must, to help
1214 * implement it in stages, but warn if we need to do so.
1215 */
1216 if (type->mmu) {
1217 if (type->write_phys_memory == NULL) {
1218 LOG_ERROR("type '%s' is missing write_phys_memory",
1219 type->name);
1220 type->write_phys_memory = err_write_phys_memory;
1221 }
1222 if (type->read_phys_memory == NULL) {
1223 LOG_ERROR("type '%s' is missing read_phys_memory",
1224 type->name);
1225 type->read_phys_memory = err_read_phys_memory;
1226 }
1227 if (type->virt2phys == NULL) {
1228 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1229 type->virt2phys = identity_virt2phys;
1230 }
1231 } else {
1232 /* Make sure no-MMU targets all behave the same: make no
1233 * distinction between physical and virtual addresses, and
1234 * ensure that virt2phys() is always an identity mapping.
1235 */
1236 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1237 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1238
1239 type->mmu = no_mmu;
1240 type->write_phys_memory = type->write_memory;
1241 type->read_phys_memory = type->read_memory;
1242 type->virt2phys = identity_virt2phys;
1243 }
1244
1245 if (target->type->read_buffer == NULL)
1246 target->type->read_buffer = target_read_buffer_default;
1247
1248 if (target->type->write_buffer == NULL)
1249 target->type->write_buffer = target_write_buffer_default;
1250
1251 if (target->type->get_gdb_fileio_info == NULL)
1252 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1253
1254 if (target->type->gdb_fileio_end == NULL)
1255 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1256
1257 if (target->type->profiling == NULL)
1258 target->type->profiling = target_profiling_default;
1259
1260 return ERROR_OK;
1261 }
1262
1263 static int target_init(struct command_context *cmd_ctx)
1264 {
1265 struct target *target;
1266 int retval;
1267
1268 for (target = all_targets; target; target = target->next) {
1269 retval = target_init_one(cmd_ctx, target);
1270 if (ERROR_OK != retval)
1271 return retval;
1272 }
1273
1274 if (!all_targets)
1275 return ERROR_OK;
1276
1277 retval = target_register_user_commands(cmd_ctx);
1278 if (ERROR_OK != retval)
1279 return retval;
1280
1281 retval = target_register_timer_callback(&handle_target,
1282 polling_interval, 1, cmd_ctx->interp);
1283 if (ERROR_OK != retval)
1284 return retval;
1285
1286 return ERROR_OK;
1287 }
1288
1289 COMMAND_HANDLER(handle_target_init_command)
1290 {
1291 int retval;
1292
1293 if (CMD_ARGC != 0)
1294 return ERROR_COMMAND_SYNTAX_ERROR;
1295
1296 static bool target_initialized;
1297 if (target_initialized) {
1298 LOG_INFO("'target init' has already been called");
1299 return ERROR_OK;
1300 }
1301 target_initialized = true;
1302
1303 retval = command_run_line(CMD_CTX, "init_targets");
1304 if (ERROR_OK != retval)
1305 return retval;
1306
1307 retval = command_run_line(CMD_CTX, "init_target_events");
1308 if (ERROR_OK != retval)
1309 return retval;
1310
1311 retval = command_run_line(CMD_CTX, "init_board");
1312 if (ERROR_OK != retval)
1313 return retval;
1314
1315 LOG_DEBUG("Initializing targets...");
1316 return target_init(CMD_CTX);
1317 }
1318
1319 int target_register_event_callback(int (*callback)(struct target *target,
1320 enum target_event event, void *priv), void *priv)
1321 {
1322 struct target_event_callback **callbacks_p = &target_event_callbacks;
1323
1324 if (callback == NULL)
1325 return ERROR_COMMAND_SYNTAX_ERROR;
1326
1327 if (*callbacks_p) {
1328 while ((*callbacks_p)->next)
1329 callbacks_p = &((*callbacks_p)->next);
1330 callbacks_p = &((*callbacks_p)->next);
1331 }
1332
1333 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1334 (*callbacks_p)->callback = callback;
1335 (*callbacks_p)->priv = priv;
1336 (*callbacks_p)->next = NULL;
1337
1338 return ERROR_OK;
1339 }
1340
1341 int target_register_reset_callback(int (*callback)(struct target *target,
1342 enum target_reset_mode reset_mode, void *priv), void *priv)
1343 {
1344 struct target_reset_callback *entry;
1345
1346 if (callback == NULL)
1347 return ERROR_COMMAND_SYNTAX_ERROR;
1348
1349 entry = malloc(sizeof(struct target_reset_callback));
1350 if (entry == NULL) {
1351 LOG_ERROR("error allocating buffer for reset callback entry");
1352 return ERROR_COMMAND_SYNTAX_ERROR;
1353 }
1354
1355 entry->callback = callback;
1356 entry->priv = priv;
1357 list_add(&entry->list, &target_reset_callback_list);
1358
1359
1360 return ERROR_OK;
1361 }
1362
1363 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1364 {
1365 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1366 struct timeval now;
1367
1368 if (callback == NULL)
1369 return ERROR_COMMAND_SYNTAX_ERROR;
1370
1371 if (*callbacks_p) {
1372 while ((*callbacks_p)->next)
1373 callbacks_p = &((*callbacks_p)->next);
1374 callbacks_p = &((*callbacks_p)->next);
1375 }
1376
1377 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1378 (*callbacks_p)->callback = callback;
1379 (*callbacks_p)->periodic = periodic;
1380 (*callbacks_p)->time_ms = time_ms;
1381 (*callbacks_p)->removed = false;
1382
1383 gettimeofday(&now, NULL);
1384 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1385 time_ms -= (time_ms % 1000);
1386 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1387 if ((*callbacks_p)->when.tv_usec > 1000000) {
1388 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1389 (*callbacks_p)->when.tv_sec += 1;
1390 }
1391
1392 (*callbacks_p)->priv = priv;
1393 (*callbacks_p)->next = NULL;
1394
1395 return ERROR_OK;
1396 }
1397
1398 int target_unregister_event_callback(int (*callback)(struct target *target,
1399 enum target_event event, void *priv), void *priv)
1400 {
1401 struct target_event_callback **p = &target_event_callbacks;
1402 struct target_event_callback *c = target_event_callbacks;
1403
1404 if (callback == NULL)
1405 return ERROR_COMMAND_SYNTAX_ERROR;
1406
1407 while (c) {
1408 struct target_event_callback *next = c->next;
1409 if ((c->callback == callback) && (c->priv == priv)) {
1410 *p = next;
1411 free(c);
1412 return ERROR_OK;
1413 } else
1414 p = &(c->next);
1415 c = next;
1416 }
1417
1418 return ERROR_OK;
1419 }
1420
1421 int target_unregister_reset_callback(int (*callback)(struct target *target,
1422 enum target_reset_mode reset_mode, void *priv), void *priv)
1423 {
1424 struct target_reset_callback *entry;
1425
1426 if (callback == NULL)
1427 return ERROR_COMMAND_SYNTAX_ERROR;
1428
1429 list_for_each_entry(entry, &target_reset_callback_list, list) {
1430 if (entry->callback == callback && entry->priv == priv) {
1431 list_del(&entry->list);
1432 free(entry);
1433 break;
1434 }
1435 }
1436
1437 return ERROR_OK;
1438 }
1439
1440 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1441 {
1442 if (callback == NULL)
1443 return ERROR_COMMAND_SYNTAX_ERROR;
1444
1445 for (struct target_timer_callback *c = target_timer_callbacks;
1446 c; c = c->next) {
1447 if ((c->callback == callback) && (c->priv == priv)) {
1448 c->removed = true;
1449 return ERROR_OK;
1450 }
1451 }
1452
1453 return ERROR_FAIL;
1454 }
1455
1456 int target_call_event_callbacks(struct target *target, enum target_event event)
1457 {
1458 struct target_event_callback *callback = target_event_callbacks;
1459 struct target_event_callback *next_callback;
1460
1461 if (event == TARGET_EVENT_HALTED) {
1462 /* execute early halted first */
1463 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1464 }
1465
1466 LOG_DEBUG("target event %i (%s)", event,
1467 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1468
1469 target_handle_event(target, event);
1470
1471 while (callback) {
1472 next_callback = callback->next;
1473 callback->callback(target, event, callback->priv);
1474 callback = next_callback;
1475 }
1476
1477 return ERROR_OK;
1478 }
1479
1480 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1481 {
1482 struct target_reset_callback *callback;
1483
1484 LOG_DEBUG("target reset %i (%s)", reset_mode,
1485 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1486
1487 list_for_each_entry(callback, &target_reset_callback_list, list)
1488 callback->callback(target, reset_mode, callback->priv);
1489
1490 return ERROR_OK;
1491 }
1492
1493 static int target_timer_callback_periodic_restart(
1494 struct target_timer_callback *cb, struct timeval *now)
1495 {
1496 int time_ms = cb->time_ms;
1497 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1498 time_ms -= (time_ms % 1000);
1499 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1500 if (cb->when.tv_usec > 1000000) {
1501 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1502 cb->when.tv_sec += 1;
1503 }
1504 return ERROR_OK;
1505 }
1506
1507 static int target_call_timer_callback(struct target_timer_callback *cb,
1508 struct timeval *now)
1509 {
1510 cb->callback(cb->priv);
1511
1512 if (cb->periodic)
1513 return target_timer_callback_periodic_restart(cb, now);
1514
1515 return target_unregister_timer_callback(cb->callback, cb->priv);
1516 }
1517
1518 static int target_call_timer_callbacks_check_time(int checktime)
1519 {
1520 static bool callback_processing;
1521
1522 /* Do not allow nesting */
1523 if (callback_processing)
1524 return ERROR_OK;
1525
1526 callback_processing = true;
1527
1528 keep_alive();
1529
1530 struct timeval now;
1531 gettimeofday(&now, NULL);
1532
1533 /* Store an address of the place containing a pointer to the
1534 * next item; initially, that's a standalone "root of the
1535 * list" variable. */
1536 struct target_timer_callback **callback = &target_timer_callbacks;
1537 while (*callback) {
1538 if ((*callback)->removed) {
1539 struct target_timer_callback *p = *callback;
1540 *callback = (*callback)->next;
1541 free(p);
1542 continue;
1543 }
1544
1545 bool call_it = (*callback)->callback &&
1546 ((!checktime && (*callback)->periodic) ||
1547 now.tv_sec > (*callback)->when.tv_sec ||
1548 (now.tv_sec == (*callback)->when.tv_sec &&
1549 now.tv_usec >= (*callback)->when.tv_usec));
1550
1551 if (call_it)
1552 target_call_timer_callback(*callback, &now);
1553
1554 callback = &(*callback)->next;
1555 }
1556
1557 callback_processing = false;
1558 return ERROR_OK;
1559 }
1560
1561 int target_call_timer_callbacks(void)
1562 {
1563 return target_call_timer_callbacks_check_time(1);
1564 }
1565
1566 /* invoke periodic callbacks immediately */
1567 int target_call_timer_callbacks_now(void)
1568 {
1569 return target_call_timer_callbacks_check_time(0);
1570 }
1571
1572 /* Prints the working area layout for debug purposes */
1573 static void print_wa_layout(struct target *target)
1574 {
1575 struct working_area *c = target->working_areas;
1576
1577 while (c) {
1578 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1579 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1580 c->address, c->address + c->size - 1, c->size);
1581 c = c->next;
1582 }
1583 }
1584
1585 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1586 static void target_split_working_area(struct working_area *area, uint32_t size)
1587 {
1588 assert(area->free); /* Shouldn't split an allocated area */
1589 assert(size <= area->size); /* Caller should guarantee this */
1590
1591 /* Split only if not already the right size */
1592 if (size < area->size) {
1593 struct working_area *new_wa = malloc(sizeof(*new_wa));
1594
1595 if (new_wa == NULL)
1596 return;
1597
1598 new_wa->next = area->next;
1599 new_wa->size = area->size - size;
1600 new_wa->address = area->address + size;
1601 new_wa->backup = NULL;
1602 new_wa->user = NULL;
1603 new_wa->free = true;
1604
1605 area->next = new_wa;
1606 area->size = size;
1607
1608 /* If backup memory was allocated to this area, it has the wrong size
1609 * now so free it and it will be reallocated if/when needed */
1610 if (area->backup) {
1611 free(area->backup);
1612 area->backup = NULL;
1613 }
1614 }
1615 }
1616
1617 /* Merge all adjacent free areas into one */
1618 static void target_merge_working_areas(struct target *target)
1619 {
1620 struct working_area *c = target->working_areas;
1621
1622 while (c && c->next) {
1623 assert(c->next->address == c->address + c->size); /* This is an invariant */
1624
1625 /* Find two adjacent free areas */
1626 if (c->free && c->next->free) {
1627 /* Merge the last into the first */
1628 c->size += c->next->size;
1629
1630 /* Remove the last */
1631 struct working_area *to_be_freed = c->next;
1632 c->next = c->next->next;
1633 if (to_be_freed->backup)
1634 free(to_be_freed->backup);
1635 free(to_be_freed);
1636
1637 /* If backup memory was allocated to the remaining area, it's has
1638 * the wrong size now */
1639 if (c->backup) {
1640 free(c->backup);
1641 c->backup = NULL;
1642 }
1643 } else {
1644 c = c->next;
1645 }
1646 }
1647 }
1648
1649 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1650 {
1651 /* Reevaluate working area address based on MMU state*/
1652 if (target->working_areas == NULL) {
1653 int retval;
1654 int enabled;
1655
1656 retval = target->type->mmu(target, &enabled);
1657 if (retval != ERROR_OK)
1658 return retval;
1659
1660 if (!enabled) {
1661 if (target->working_area_phys_spec) {
1662 LOG_DEBUG("MMU disabled, using physical "
1663 "address for working memory 0x%08"PRIx32,
1664 target->working_area_phys);
1665 target->working_area = target->working_area_phys;
1666 } else {
1667 LOG_ERROR("No working memory available. "
1668 "Specify -work-area-phys to target.");
1669 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1670 }
1671 } else {
1672 if (target->working_area_virt_spec) {
1673 LOG_DEBUG("MMU enabled, using virtual "
1674 "address for working memory 0x%08"PRIx32,
1675 target->working_area_virt);
1676 target->working_area = target->working_area_virt;
1677 } else {
1678 LOG_ERROR("No working memory available. "
1679 "Specify -work-area-virt to target.");
1680 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1681 }
1682 }
1683
1684 /* Set up initial working area on first call */
1685 struct working_area *new_wa = malloc(sizeof(*new_wa));
1686 if (new_wa) {
1687 new_wa->next = NULL;
1688 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1689 new_wa->address = target->working_area;
1690 new_wa->backup = NULL;
1691 new_wa->user = NULL;
1692 new_wa->free = true;
1693 }
1694
1695 target->working_areas = new_wa;
1696 }
1697
1698 /* only allocate multiples of 4 byte */
1699 if (size % 4)
1700 size = (size + 3) & (~3UL);
1701
1702 struct working_area *c = target->working_areas;
1703
1704 /* Find the first large enough working area */
1705 while (c) {
1706 if (c->free && c->size >= size)
1707 break;
1708 c = c->next;
1709 }
1710
1711 if (c == NULL)
1712 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1713
1714 /* Split the working area into the requested size */
1715 target_split_working_area(c, size);
1716
1717 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1718
1719 if (target->backup_working_area) {
1720 if (c->backup == NULL) {
1721 c->backup = malloc(c->size);
1722 if (c->backup == NULL)
1723 return ERROR_FAIL;
1724 }
1725
1726 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1727 if (retval != ERROR_OK)
1728 return retval;
1729 }
1730
1731 /* mark as used, and return the new (reused) area */
1732 c->free = false;
1733 *area = c;
1734
1735 /* user pointer */
1736 c->user = area;
1737
1738 print_wa_layout(target);
1739
1740 return ERROR_OK;
1741 }
1742
1743 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1744 {
1745 int retval;
1746
1747 retval = target_alloc_working_area_try(target, size, area);
1748 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1749 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1750 return retval;
1751
1752 }
1753
1754 static int target_restore_working_area(struct target *target, struct working_area *area)
1755 {
1756 int retval = ERROR_OK;
1757
1758 if (target->backup_working_area && area->backup != NULL) {
1759 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1760 if (retval != ERROR_OK)
1761 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1762 area->size, area->address);
1763 }
1764
1765 return retval;
1766 }
1767
1768 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1769 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1770 {
1771 int retval = ERROR_OK;
1772
1773 if (area->free)
1774 return retval;
1775
1776 if (restore) {
1777 retval = target_restore_working_area(target, area);
1778 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1779 if (retval != ERROR_OK)
1780 return retval;
1781 }
1782
1783 area->free = true;
1784
1785 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1786 area->size, area->address);
1787
1788 /* mark user pointer invalid */
1789 /* TODO: Is this really safe? It points to some previous caller's memory.
1790 * How could we know that the area pointer is still in that place and not
1791 * some other vital data? What's the purpose of this, anyway? */
1792 *area->user = NULL;
1793 area->user = NULL;
1794
1795 target_merge_working_areas(target);
1796
1797 print_wa_layout(target);
1798
1799 return retval;
1800 }
1801
1802 int target_free_working_area(struct target *target, struct working_area *area)
1803 {
1804 return target_free_working_area_restore(target, area, 1);
1805 }
1806
1807 /* free resources and restore memory, if restoring memory fails,
1808 * free up resources anyway
1809 */
1810 static void target_free_all_working_areas_restore(struct target *target, int restore)
1811 {
1812 struct working_area *c = target->working_areas;
1813
1814 LOG_DEBUG("freeing all working areas");
1815
1816 /* Loop through all areas, restoring the allocated ones and marking them as free */
1817 while (c) {
1818 if (!c->free) {
1819 if (restore)
1820 target_restore_working_area(target, c);
1821 c->free = true;
1822 *c->user = NULL; /* Same as above */
1823 c->user = NULL;
1824 }
1825 c = c->next;
1826 }
1827
1828 /* Run a merge pass to combine all areas into one */
1829 target_merge_working_areas(target);
1830
1831 print_wa_layout(target);
1832 }
1833
1834 void target_free_all_working_areas(struct target *target)
1835 {
1836 target_free_all_working_areas_restore(target, 1);
1837 }
1838
1839 /* Find the largest number of bytes that can be allocated */
1840 uint32_t target_get_working_area_avail(struct target *target)
1841 {
1842 struct working_area *c = target->working_areas;
1843 uint32_t max_size = 0;
1844
1845 if (c == NULL)
1846 return target->working_area_size;
1847
1848 while (c) {
1849 if (c->free && max_size < c->size)
1850 max_size = c->size;
1851
1852 c = c->next;
1853 }
1854
1855 return max_size;
1856 }
1857
1858 int target_arch_state(struct target *target)
1859 {
1860 int retval;
1861 if (target == NULL) {
1862 LOG_USER("No target has been configured");
1863 return ERROR_OK;
1864 }
1865
1866 LOG_USER("target state: %s", target_state_name(target));
1867
1868 if (target->state != TARGET_HALTED)
1869 return ERROR_OK;
1870
1871 retval = target->type->arch_state(target);
1872 return retval;
1873 }
1874
1875 static int target_get_gdb_fileio_info_default(struct target *target,
1876 struct gdb_fileio_info *fileio_info)
1877 {
1878 /* If target does not support semi-hosting function, target
1879 has no need to provide .get_gdb_fileio_info callback.
1880 It just return ERROR_FAIL and gdb_server will return "Txx"
1881 as target halted every time. */
1882 return ERROR_FAIL;
1883 }
1884
1885 static int target_gdb_fileio_end_default(struct target *target,
1886 int retcode, int fileio_errno, bool ctrl_c)
1887 {
1888 return ERROR_OK;
1889 }
1890
1891 static int target_profiling_default(struct target *target, uint32_t *samples,
1892 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1893 {
1894 struct timeval timeout, now;
1895
1896 gettimeofday(&timeout, NULL);
1897 timeval_add_time(&timeout, seconds, 0);
1898
1899 LOG_INFO("Starting profiling. Halting and resuming the"
1900 " target as often as we can...");
1901
1902 uint32_t sample_count = 0;
1903 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1904 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1905
1906 int retval = ERROR_OK;
1907 for (;;) {
1908 target_poll(target);
1909 if (target->state == TARGET_HALTED) {
1910 uint32_t t = buf_get_u32(reg->value, 0, 32);
1911 samples[sample_count++] = t;
1912 /* current pc, addr = 0, do not handle breakpoints, not debugging */
1913 retval = target_resume(target, 1, 0, 0, 0);
1914 target_poll(target);
1915 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1916 } else if (target->state == TARGET_RUNNING) {
1917 /* We want to quickly sample the PC. */
1918 retval = target_halt(target);
1919 } else {
1920 LOG_INFO("Target not halted or running");
1921 retval = ERROR_OK;
1922 break;
1923 }
1924
1925 if (retval != ERROR_OK)
1926 break;
1927
1928 gettimeofday(&now, NULL);
1929 if ((sample_count >= max_num_samples) ||
1930 ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1931 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1932 break;
1933 }
1934 }
1935
1936 *num_samples = sample_count;
1937 return retval;
1938 }
1939
1940 /* Single aligned words are guaranteed to use 16 or 32 bit access
1941 * mode respectively, otherwise data is handled as quickly as
1942 * possible
1943 */
1944 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1945 {
1946 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1947 (int)size, (unsigned)address);
1948
1949 if (!target_was_examined(target)) {
1950 LOG_ERROR("Target not examined yet");
1951 return ERROR_FAIL;
1952 }
1953
1954 if (size == 0)
1955 return ERROR_OK;
1956
1957 if ((address + size - 1) < address) {
1958 /* GDB can request this when e.g. PC is 0xfffffffc*/
1959 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1960 (unsigned)address,
1961 (unsigned)size);
1962 return ERROR_FAIL;
1963 }
1964
1965 return target->type->write_buffer(target, address, size, buffer);
1966 }
1967
1968 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1969 {
1970 uint32_t size;
1971
1972 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1973 * will have something to do with the size we leave to it. */
1974 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1975 if (address & size) {
1976 int retval = target_write_memory(target, address, size, 1, buffer);
1977 if (retval != ERROR_OK)
1978 return retval;
1979 address += size;
1980 count -= size;
1981 buffer += size;
1982 }
1983 }
1984
1985 /* Write the data with as large access size as possible. */
1986 for (; size > 0; size /= 2) {
1987 uint32_t aligned = count - count % size;
1988 if (aligned > 0) {
1989 int retval = target_write_memory(target, address, size, aligned / size, buffer);
1990 if (retval != ERROR_OK)
1991 return retval;
1992 address += aligned;
1993 count -= aligned;
1994 buffer += aligned;
1995 }
1996 }
1997
1998 return ERROR_OK;
1999 }
2000
2001 /* Single aligned words are guaranteed to use 16 or 32 bit access
2002 * mode respectively, otherwise data is handled as quickly as
2003 * possible
2004 */
2005 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
2006 {
2007 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2008 (int)size, (unsigned)address);
2009
2010 if (!target_was_examined(target)) {
2011 LOG_ERROR("Target not examined yet");
2012 return ERROR_FAIL;
2013 }
2014
2015 if (size == 0)
2016 return ERROR_OK;
2017
2018 if ((address + size - 1) < address) {
2019 /* GDB can request this when e.g. PC is 0xfffffffc*/
2020 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
2021 address,
2022 size);
2023 return ERROR_FAIL;
2024 }
2025
2026 return target->type->read_buffer(target, address, size, buffer);
2027 }
2028
2029 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2030 {
2031 uint32_t size;
2032
2033 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2034 * will have something to do with the size we leave to it. */
2035 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2036 if (address & size) {
2037 int retval = target_read_memory(target, address, size, 1, buffer);
2038 if (retval != ERROR_OK)
2039 return retval;
2040 address += size;
2041 count -= size;
2042 buffer += size;
2043 }
2044 }
2045
2046 /* Read the data with as large access size as possible. */
2047 for (; size > 0; size /= 2) {
2048 uint32_t aligned = count - count % size;
2049 if (aligned > 0) {
2050 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2051 if (retval != ERROR_OK)
2052 return retval;
2053 address += aligned;
2054 count -= aligned;
2055 buffer += aligned;
2056 }
2057 }
2058
2059 return ERROR_OK;
2060 }
2061
2062 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
2063 {
2064 uint8_t *buffer;
2065 int retval;
2066 uint32_t i;
2067 uint32_t checksum = 0;
2068 if (!target_was_examined(target)) {
2069 LOG_ERROR("Target not examined yet");
2070 return ERROR_FAIL;
2071 }
2072
2073 retval = target->type->checksum_memory(target, address, size, &checksum);
2074 if (retval != ERROR_OK) {
2075 buffer = malloc(size);
2076 if (buffer == NULL) {
2077 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
2078 return ERROR_COMMAND_SYNTAX_ERROR;
2079 }
2080 retval = target_read_buffer(target, address, size, buffer);
2081 if (retval != ERROR_OK) {
2082 free(buffer);
2083 return retval;
2084 }
2085
2086 /* convert to target endianness */
2087 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2088 uint32_t target_data;
2089 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2090 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2091 }
2092
2093 retval = image_calculate_checksum(buffer, size, &checksum);
2094 free(buffer);
2095 }
2096
2097 *crc = checksum;
2098
2099 return retval;
2100 }
2101
2102 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2103 {
2104 int retval;
2105 if (!target_was_examined(target)) {
2106 LOG_ERROR("Target not examined yet");
2107 return ERROR_FAIL;
2108 }
2109
2110 if (target->type->blank_check_memory == 0)
2111 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2112
2113 retval = target->type->blank_check_memory(target, address, size, blank);
2114
2115 return retval;
2116 }
2117
2118 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2119 {
2120 uint8_t value_buf[8];
2121 if (!target_was_examined(target)) {
2122 LOG_ERROR("Target not examined yet");
2123 return ERROR_FAIL;
2124 }
2125
2126 int retval = target_read_memory(target, address, 8, 1, value_buf);
2127
2128 if (retval == ERROR_OK) {
2129 *value = target_buffer_get_u64(target, value_buf);
2130 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2131 address,
2132 *value);
2133 } else {
2134 *value = 0x0;
2135 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2136 address);
2137 }
2138
2139 return retval;
2140 }
2141
2142 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2143 {
2144 uint8_t value_buf[4];
2145 if (!target_was_examined(target)) {
2146 LOG_ERROR("Target not examined yet");
2147 return ERROR_FAIL;
2148 }
2149
2150 int retval = target_read_memory(target, address, 4, 1, value_buf);
2151
2152 if (retval == ERROR_OK) {
2153 *value = target_buffer_get_u32(target, value_buf);
2154 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2155 address,
2156 *value);
2157 } else {
2158 *value = 0x0;
2159 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2160 address);
2161 }
2162
2163 return retval;
2164 }
2165
2166 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2167 {
2168 uint8_t value_buf[2];
2169 if (!target_was_examined(target)) {
2170 LOG_ERROR("Target not examined yet");
2171 return ERROR_FAIL;
2172 }
2173
2174 int retval = target_read_memory(target, address, 2, 1, value_buf);
2175
2176 if (retval == ERROR_OK) {
2177 *value = target_buffer_get_u16(target, value_buf);
2178 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2179 address,
2180 *value);
2181 } else {
2182 *value = 0x0;
2183 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2184 address);
2185 }
2186
2187 return retval;
2188 }
2189
2190 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2191 {
2192 if (!target_was_examined(target)) {
2193 LOG_ERROR("Target not examined yet");
2194 return ERROR_FAIL;
2195 }
2196
2197 int retval = target_read_memory(target, address, 1, 1, value);
2198
2199 if (retval == ERROR_OK) {
2200 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2201 address,
2202 *value);
2203 } else {
2204 *value = 0x0;
2205 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2206 address);
2207 }
2208
2209 return retval;
2210 }
2211
2212 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2213 {
2214 int retval;
2215 uint8_t value_buf[8];
2216 if (!target_was_examined(target)) {
2217 LOG_ERROR("Target not examined yet");
2218 return ERROR_FAIL;
2219 }
2220
2221 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2222 address,
2223 value);
2224
2225 target_buffer_set_u64(target, value_buf, value);
2226 retval = target_write_memory(target, address, 8, 1, value_buf);
2227 if (retval != ERROR_OK)
2228 LOG_DEBUG("failed: %i", retval);
2229
2230 return retval;
2231 }
2232
2233 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2234 {
2235 int retval;
2236 uint8_t value_buf[4];
2237 if (!target_was_examined(target)) {
2238 LOG_ERROR("Target not examined yet");
2239 return ERROR_FAIL;
2240 }
2241
2242 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2243 address,
2244 value);
2245
2246 target_buffer_set_u32(target, value_buf, value);
2247 retval = target_write_memory(target, address, 4, 1, value_buf);
2248 if (retval != ERROR_OK)
2249 LOG_DEBUG("failed: %i", retval);
2250
2251 return retval;
2252 }
2253
2254 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2255 {
2256 int retval;
2257 uint8_t value_buf[2];
2258 if (!target_was_examined(target)) {
2259 LOG_ERROR("Target not examined yet");
2260 return ERROR_FAIL;
2261 }
2262
2263 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2264 address,
2265 value);
2266
2267 target_buffer_set_u16(target, value_buf, value);
2268 retval = target_write_memory(target, address, 2, 1, value_buf);
2269 if (retval != ERROR_OK)
2270 LOG_DEBUG("failed: %i", retval);
2271
2272 return retval;
2273 }
2274
2275 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2276 {
2277 int retval;
2278 if (!target_was_examined(target)) {
2279 LOG_ERROR("Target not examined yet");
2280 return ERROR_FAIL;
2281 }
2282
2283 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2284 address, value);
2285
2286 retval = target_write_memory(target, address, 1, 1, &value);
2287 if (retval != ERROR_OK)
2288 LOG_DEBUG("failed: %i", retval);
2289
2290 return retval;
2291 }
2292
2293 static int find_target(struct command_context *cmd_ctx, const char *name)
2294 {
2295 struct target *target = get_target(name);
2296 if (target == NULL) {
2297 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2298 return ERROR_FAIL;
2299 }
2300 if (!target->tap->enabled) {
2301 LOG_USER("Target: TAP %s is disabled, "
2302 "can't be the current target\n",
2303 target->tap->dotted_name);
2304 return ERROR_FAIL;
2305 }
2306
2307 cmd_ctx->current_target = target->target_number;
2308 return ERROR_OK;
2309 }
2310
2311
2312 COMMAND_HANDLER(handle_targets_command)
2313 {
2314 int retval = ERROR_OK;
2315 if (CMD_ARGC == 1) {
2316 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2317 if (retval == ERROR_OK) {
2318 /* we're done! */
2319 return retval;
2320 }
2321 }
2322
2323 struct target *target = all_targets;
2324 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2325 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2326 while (target) {
2327 const char *state;
2328 char marker = ' ';
2329
2330 if (target->tap->enabled)
2331 state = target_state_name(target);
2332 else
2333 state = "tap-disabled";
2334
2335 if (CMD_CTX->current_target == target->target_number)
2336 marker = '*';
2337
2338 /* keep columns lined up to match the headers above */
2339 command_print(CMD_CTX,
2340 "%2d%c %-18s %-10s %-6s %-18s %s",
2341 target->target_number,
2342 marker,
2343 target_name(target),
2344 target_type_name(target),
2345 Jim_Nvp_value2name_simple(nvp_target_endian,
2346 target->endianness)->name,
2347 target->tap->dotted_name,
2348 state);
2349 target = target->next;
2350 }
2351
2352 return retval;
2353 }
2354
2355 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2356
2357 static int powerDropout;
2358 static int srstAsserted;
2359
2360 static int runPowerRestore;
2361 static int runPowerDropout;
2362 static int runSrstAsserted;
2363 static int runSrstDeasserted;
2364
2365 static int sense_handler(void)
2366 {
2367 static int prevSrstAsserted;
2368 static int prevPowerdropout;
2369
2370 int retval = jtag_power_dropout(&powerDropout);
2371 if (retval != ERROR_OK)
2372 return retval;
2373
2374 int powerRestored;
2375 powerRestored = prevPowerdropout && !powerDropout;
2376 if (powerRestored)
2377 runPowerRestore = 1;
2378
2379 long long current = timeval_ms();
2380 static long long lastPower;
2381 int waitMore = lastPower + 2000 > current;
2382 if (powerDropout && !waitMore) {
2383 runPowerDropout = 1;
2384 lastPower = current;
2385 }
2386
2387 retval = jtag_srst_asserted(&srstAsserted);
2388 if (retval != ERROR_OK)
2389 return retval;
2390
2391 int srstDeasserted;
2392 srstDeasserted = prevSrstAsserted && !srstAsserted;
2393
2394 static long long lastSrst;
2395 waitMore = lastSrst + 2000 > current;
2396 if (srstDeasserted && !waitMore) {
2397 runSrstDeasserted = 1;
2398 lastSrst = current;
2399 }
2400
2401 if (!prevSrstAsserted && srstAsserted)
2402 runSrstAsserted = 1;
2403
2404 prevSrstAsserted = srstAsserted;
2405 prevPowerdropout = powerDropout;
2406
2407 if (srstDeasserted || powerRestored) {
2408 /* Other than logging the event we can't do anything here.
2409 * Issuing a reset is a particularly bad idea as we might
2410 * be inside a reset already.
2411 */
2412 }
2413
2414 return ERROR_OK;
2415 }
2416
2417 /* process target state changes */
2418 static int handle_target(void *priv)
2419 {
2420 Jim_Interp *interp = (Jim_Interp *)priv;
2421 int retval = ERROR_OK;
2422
2423 if (!is_jtag_poll_safe()) {
2424 /* polling is disabled currently */
2425 return ERROR_OK;
2426 }
2427
2428 /* we do not want to recurse here... */
2429 static int recursive;
2430 if (!recursive) {
2431 recursive = 1;
2432 sense_handler();
2433 /* danger! running these procedures can trigger srst assertions and power dropouts.
2434 * We need to avoid an infinite loop/recursion here and we do that by
2435 * clearing the flags after running these events.
2436 */
2437 int did_something = 0;
2438 if (runSrstAsserted) {
2439 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2440 Jim_Eval(interp, "srst_asserted");
2441 did_something = 1;
2442 }
2443 if (runSrstDeasserted) {
2444 Jim_Eval(interp, "srst_deasserted");
2445 did_something = 1;
2446 }
2447 if (runPowerDropout) {
2448 LOG_INFO("Power dropout detected, running power_dropout proc.");
2449 Jim_Eval(interp, "power_dropout");
2450 did_something = 1;
2451 }
2452 if (runPowerRestore) {
2453 Jim_Eval(interp, "power_restore");
2454 did_something = 1;
2455 }
2456
2457 if (did_something) {
2458 /* clear detect flags */
2459 sense_handler();
2460 }
2461
2462 /* clear action flags */
2463
2464 runSrstAsserted = 0;
2465 runSrstDeasserted = 0;
2466 runPowerRestore = 0;
2467 runPowerDropout = 0;
2468
2469 recursive = 0;
2470 }
2471
2472 /* Poll targets for state changes unless that's globally disabled.
2473 * Skip targets that are currently disabled.
2474 */
2475 for (struct target *target = all_targets;
2476 is_jtag_poll_safe() && target;
2477 target = target->next) {
2478
2479 if (!target_was_examined(target))
2480 continue;
2481
2482 if (!target->tap->enabled)
2483 continue;
2484
2485 if (target->backoff.times > target->backoff.count) {
2486 /* do not poll this time as we failed previously */
2487 target->backoff.count++;
2488 continue;
2489 }
2490 target->backoff.count = 0;
2491
2492 /* only poll target if we've got power and srst isn't asserted */
2493 if (!powerDropout && !srstAsserted) {
2494 /* polling may fail silently until the target has been examined */
2495 retval = target_poll(target);
2496 if (retval != ERROR_OK) {
2497 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2498 if (target->backoff.times * polling_interval < 5000) {
2499 target->backoff.times *= 2;
2500 target->backoff.times++;
2501 }
2502 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2503 target_name(target),
2504 target->backoff.times * polling_interval);
2505
2506 /* Tell GDB to halt the debugger. This allows the user to
2507 * run monitor commands to handle the situation.
2508 */
2509 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2510 return retval;
2511 }
2512 /* Since we succeeded, we reset backoff count */
2513 if (target->backoff.times > 0) {
2514 LOG_USER("Polling target %s succeeded again, trying to reexamine", target_name(target));
2515 target_reset_examined(target);
2516 retval = target_examine_one(target);
2517 /* Target examination could have failed due to unstable connection,
2518 * but we set the examined flag anyway to repoll it later */
2519 if (retval != ERROR_OK) {
2520 target->examined = true;
2521 return retval;
2522 }
2523 }
2524
2525 target->backoff.times = 0;
2526 }
2527 }
2528
2529 return retval;
2530 }
2531
2532 COMMAND_HANDLER(handle_reg_command)
2533 {
2534 struct target *target;
2535 struct reg *reg = NULL;
2536 unsigned count = 0;
2537 char *value;
2538
2539 LOG_DEBUG("-");
2540
2541 target = get_current_target(CMD_CTX);
2542
2543 /* list all available registers for the current target */
2544 if (CMD_ARGC == 0) {
2545 struct reg_cache *cache = target->reg_cache;
2546
2547 count = 0;
2548 while (cache) {
2549 unsigned i;
2550
2551 command_print(CMD_CTX, "===== %s", cache->name);
2552
2553 for (i = 0, reg = cache->reg_list;
2554 i < cache->num_regs;
2555 i++, reg++, count++) {
2556 /* only print cached values if they are valid */
2557 if (reg->valid) {
2558 value = buf_to_str(reg->value,
2559 reg->size, 16);
2560 command_print(CMD_CTX,
2561 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2562 count, reg->name,
2563 reg->size, value,
2564 reg->dirty
2565 ? " (dirty)"
2566 : "");
2567 free(value);
2568 } else {
2569 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2570 count, reg->name,
2571 reg->size) ;
2572 }
2573 }
2574 cache = cache->next;
2575 }
2576
2577 return ERROR_OK;
2578 }
2579
2580 /* access a single register by its ordinal number */
2581 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2582 unsigned num;
2583 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2584
2585 struct reg_cache *cache = target->reg_cache;
2586 count = 0;
2587 while (cache) {
2588 unsigned i;
2589 for (i = 0; i < cache->num_regs; i++) {
2590 if (count++ == num) {
2591 reg = &cache->reg_list[i];
2592 break;
2593 }
2594 }
2595 if (reg)
2596 break;
2597 cache = cache->next;
2598 }
2599
2600 if (!reg) {
2601 command_print(CMD_CTX, "%i is out of bounds, the current target "
2602 "has only %i registers (0 - %i)", num, count, count - 1);
2603 return ERROR_OK;
2604 }
2605 } else {
2606 /* access a single register by its name */
2607 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2608
2609 if (!reg) {
2610 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2611 return ERROR_OK;
2612 }
2613 }
2614
2615 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2616
2617 /* display a register */
2618 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2619 && (CMD_ARGV[1][0] <= '9')))) {
2620 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2621 reg->valid = 0;
2622
2623 if (reg->valid == 0)
2624 reg->type->get(reg);
2625 value = buf_to_str(reg->value, reg->size, 16);
2626 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2627 free(value);
2628 return ERROR_OK;
2629 }
2630
2631 /* set register value */
2632 if (CMD_ARGC == 2) {
2633 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2634 if (buf == NULL)
2635 return ERROR_FAIL;
2636 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2637
2638 reg->type->set(reg, buf);
2639
2640 value = buf_to_str(reg->value, reg->size, 16);
2641 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2642 free(value);
2643
2644 free(buf);
2645
2646 return ERROR_OK;
2647 }
2648
2649 return ERROR_COMMAND_SYNTAX_ERROR;
2650 }
2651
2652 COMMAND_HANDLER(handle_poll_command)
2653 {
2654 int retval = ERROR_OK;
2655 struct target *target = get_current_target(CMD_CTX);
2656
2657 if (CMD_ARGC == 0) {
2658 command_print(CMD_CTX, "background polling: %s",
2659 jtag_poll_get_enabled() ? "on" : "off");
2660 command_print(CMD_CTX, "TAP: %s (%s)",
2661 target->tap->dotted_name,
2662 target->tap->enabled ? "enabled" : "disabled");
2663 if (!target->tap->enabled)
2664 return ERROR_OK;
2665 retval = target_poll(target);
2666 if (retval != ERROR_OK)
2667 return retval;
2668 retval = target_arch_state(target);
2669 if (retval != ERROR_OK)
2670 return retval;
2671 } else if (CMD_ARGC == 1) {
2672 bool enable;
2673 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2674 jtag_poll_set_enabled(enable);
2675 } else
2676 return ERROR_COMMAND_SYNTAX_ERROR;
2677
2678 return retval;
2679 }
2680
2681 COMMAND_HANDLER(handle_wait_halt_command)
2682 {
2683 if (CMD_ARGC > 1)
2684 return ERROR_COMMAND_SYNTAX_ERROR;
2685
2686 unsigned ms = DEFAULT_HALT_TIMEOUT;
2687 if (1 == CMD_ARGC) {
2688 int retval = parse_uint(CMD_ARGV[0], &ms);
2689 if (ERROR_OK != retval)
2690 return ERROR_COMMAND_SYNTAX_ERROR;
2691 }
2692
2693 struct target *target = get_current_target(CMD_CTX);
2694 return target_wait_state(target, TARGET_HALTED, ms);
2695 }
2696
2697 /* wait for target state to change. The trick here is to have a low
2698 * latency for short waits and not to suck up all the CPU time
2699 * on longer waits.
2700 *
2701 * After 500ms, keep_alive() is invoked
2702 */
2703 int target_wait_state(struct target *target, enum target_state state, int ms)
2704 {
2705 int retval;
2706 long long then = 0, cur;
2707 int once = 1;
2708
2709 for (;;) {
2710 retval = target_poll(target);
2711 if (retval != ERROR_OK)
2712 return retval;
2713 if (target->state == state)
2714 break;
2715 cur = timeval_ms();
2716 if (once) {
2717 once = 0;
2718 then = timeval_ms();
2719 LOG_DEBUG("waiting for target %s...",
2720 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2721 }
2722
2723 if (cur-then > 500)
2724 keep_alive();
2725
2726 if ((cur-then) > ms) {
2727 LOG_ERROR("timed out while waiting for target %s",
2728 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2729 return ERROR_FAIL;
2730 }
2731 }
2732
2733 return ERROR_OK;
2734 }
2735
2736 COMMAND_HANDLER(handle_halt_command)
2737 {
2738 LOG_DEBUG("-");
2739
2740 struct target *target = get_current_target(CMD_CTX);
2741 int retval = target_halt(target);
2742 if (ERROR_OK != retval)
2743 return retval;
2744
2745 if (CMD_ARGC == 1) {
2746 unsigned wait_local;
2747 retval = parse_uint(CMD_ARGV[0], &wait_local);
2748 if (ERROR_OK != retval)
2749 return ERROR_COMMAND_SYNTAX_ERROR;
2750 if (!wait_local)
2751 return ERROR_OK;
2752 }
2753
2754 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2755 }
2756
2757 COMMAND_HANDLER(handle_soft_reset_halt_command)
2758 {
2759 struct target *target = get_current_target(CMD_CTX);
2760
2761 LOG_USER("requesting target halt and executing a soft reset");
2762
2763 target_soft_reset_halt(target);
2764
2765 return ERROR_OK;
2766 }
2767
2768 COMMAND_HANDLER(handle_reset_command)
2769 {
2770 if (CMD_ARGC > 1)
2771 return ERROR_COMMAND_SYNTAX_ERROR;
2772
2773 enum target_reset_mode reset_mode = RESET_RUN;
2774 if (CMD_ARGC == 1) {
2775 const Jim_Nvp *n;
2776 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2777 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2778 return ERROR_COMMAND_SYNTAX_ERROR;
2779 reset_mode = n->value;
2780 }
2781
2782 /* reset *all* targets */
2783 return target_process_reset(CMD_CTX, reset_mode);
2784 }
2785
2786
2787 COMMAND_HANDLER(handle_resume_command)
2788 {
2789 int current = 1;
2790 if (CMD_ARGC > 1)
2791 return ERROR_COMMAND_SYNTAX_ERROR;
2792
2793 struct target *target = get_current_target(CMD_CTX);
2794
2795 /* with no CMD_ARGV, resume from current pc, addr = 0,
2796 * with one arguments, addr = CMD_ARGV[0],
2797 * handle breakpoints, not debugging */
2798 uint32_t addr = 0;
2799 if (CMD_ARGC == 1) {
2800 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2801 current = 0;
2802 }
2803
2804 return target_resume(target, current, addr, 1, 0);
2805 }
2806
2807 COMMAND_HANDLER(handle_step_command)
2808 {
2809 if (CMD_ARGC > 1)
2810 return ERROR_COMMAND_SYNTAX_ERROR;
2811
2812 LOG_DEBUG("-");
2813
2814 /* with no CMD_ARGV, step from current pc, addr = 0,
2815 * with one argument addr = CMD_ARGV[0],
2816 * handle breakpoints, debugging */
2817 uint32_t addr = 0;
2818 int current_pc = 1;
2819 if (CMD_ARGC == 1) {
2820 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2821 current_pc = 0;
2822 }
2823
2824 struct target *target = get_current_target(CMD_CTX);
2825
2826 return target->type->step(target, current_pc, addr, 1);
2827 }
2828
2829 static void handle_md_output(struct command_context *cmd_ctx,
2830 struct target *target, uint32_t address, unsigned size,
2831 unsigned count, const uint8_t *buffer)
2832 {
2833 const unsigned line_bytecnt = 32;
2834 unsigned line_modulo = line_bytecnt / size;
2835
2836 char output[line_bytecnt * 4 + 1];
2837 unsigned output_len = 0;
2838
2839 const char *value_fmt;
2840 switch (size) {
2841 case 4:
2842 value_fmt = "%8.8x ";
2843 break;
2844 case 2:
2845 value_fmt = "%4.4x ";
2846 break;
2847 case 1:
2848 value_fmt = "%2.2x ";
2849 break;
2850 default:
2851 /* "can't happen", caller checked */
2852 LOG_ERROR("invalid memory read size: %u", size);
2853 return;
2854 }
2855
2856 for (unsigned i = 0; i < count; i++) {
2857 if (i % line_modulo == 0) {
2858 output_len += snprintf(output + output_len,
2859 sizeof(output) - output_len,
2860 "0x%8.8x: ",
2861 (unsigned)(address + (i*size)));
2862 }
2863
2864 uint32_t value = 0;
2865 const uint8_t *value_ptr = buffer + i * size;
2866 switch (size) {
2867 case 4:
2868 value = target_buffer_get_u32(target, value_ptr);
2869 break;
2870 case 2:
2871 value = target_buffer_get_u16(target, value_ptr);
2872 break;
2873 case 1:
2874 value = *value_ptr;
2875 }
2876 output_len += snprintf(output + output_len,
2877 sizeof(output) - output_len,
2878 value_fmt, value);
2879
2880 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2881 command_print(cmd_ctx, "%s", output);
2882 output_len = 0;
2883 }
2884 }
2885 }
2886
2887 COMMAND_HANDLER(handle_md_command)
2888 {
2889 if (CMD_ARGC < 1)
2890 return ERROR_COMMAND_SYNTAX_ERROR;
2891
2892 unsigned size = 0;
2893 switch (CMD_NAME[2]) {
2894 case 'w':
2895 size = 4;
2896 break;
2897 case 'h':
2898 size = 2;
2899 break;
2900 case 'b':
2901 size = 1;
2902 break;
2903 default:
2904 return ERROR_COMMAND_SYNTAX_ERROR;
2905 }
2906
2907 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2908 int (*fn)(struct target *target,
2909 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2910 if (physical) {
2911 CMD_ARGC--;
2912 CMD_ARGV++;
2913 fn = target_read_phys_memory;
2914 } else
2915 fn = target_read_memory;
2916 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2917 return ERROR_COMMAND_SYNTAX_ERROR;
2918
2919 uint32_t address;
2920 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2921
2922 unsigned count = 1;
2923 if (CMD_ARGC == 2)
2924 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2925
2926 uint8_t *buffer = calloc(count, size);
2927
2928 struct target *target = get_current_target(CMD_CTX);
2929 int retval = fn(target, address, size, count, buffer);
2930 if (ERROR_OK == retval)
2931 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2932
2933 free(buffer);
2934
2935 return retval;
2936 }
2937
2938 typedef int (*target_write_fn)(struct target *target,
2939 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2940
2941 static int target_fill_mem(struct target *target,
2942 uint32_t address,
2943 target_write_fn fn,
2944 unsigned data_size,
2945 /* value */
2946 uint32_t b,
2947 /* count */
2948 unsigned c)
2949 {
2950 /* We have to write in reasonably large chunks to be able
2951 * to fill large memory areas with any sane speed */
2952 const unsigned chunk_size = 16384;
2953 uint8_t *target_buf = malloc(chunk_size * data_size);
2954 if (target_buf == NULL) {
2955 LOG_ERROR("Out of memory");
2956 return ERROR_FAIL;
2957 }
2958
2959 for (unsigned i = 0; i < chunk_size; i++) {
2960 switch (data_size) {
2961 case 4:
2962 target_buffer_set_u32(target, target_buf + i * data_size, b);
2963 break;
2964 case 2:
2965 target_buffer_set_u16(target, target_buf + i * data_size, b);
2966 break;
2967 case 1:
2968 target_buffer_set_u8(target, target_buf + i * data_size, b);
2969 break;
2970 default:
2971 exit(-1);
2972 }
2973 }
2974
2975 int retval = ERROR_OK;
2976
2977 for (unsigned x = 0; x < c; x += chunk_size) {
2978 unsigned current;
2979 current = c - x;
2980 if (current > chunk_size)
2981 current = chunk_size;
2982 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2983 if (retval != ERROR_OK)
2984 break;
2985 /* avoid GDB timeouts */
2986 keep_alive();
2987 }
2988 free(target_buf);
2989
2990 return retval;
2991 }
2992
2993
2994 COMMAND_HANDLER(handle_mw_command)
2995 {
2996 if (CMD_ARGC < 2)
2997 return ERROR_COMMAND_SYNTAX_ERROR;
2998 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2999 target_write_fn fn;
3000 if (physical) {
3001 CMD_ARGC--;
3002 CMD_ARGV++;
3003 fn = target_write_phys_memory;
3004 } else
3005 fn = target_write_memory;
3006 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3007 return ERROR_COMMAND_SYNTAX_ERROR;
3008
3009 uint32_t address;
3010 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
3011
3012 uint32_t value;
3013 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
3014
3015 unsigned count = 1;
3016 if (CMD_ARGC == 3)
3017 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3018
3019 struct target *target = get_current_target(CMD_CTX);
3020 unsigned wordsize;
3021 switch (CMD_NAME[2]) {
3022 case 'w':
3023 wordsize = 4;
3024 break;
3025 case 'h':
3026 wordsize = 2;
3027 break;
3028 case 'b':
3029 wordsize = 1;
3030 break;
3031 default:
3032 return ERROR_COMMAND_SYNTAX_ERROR;
3033 }
3034
3035 return target_fill_mem(target, address, fn, wordsize, value, count);
3036 }
3037
3038 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3039 uint32_t *min_address, uint32_t *max_address)
3040 {
3041 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3042 return ERROR_COMMAND_SYNTAX_ERROR;
3043
3044 /* a base address isn't always necessary,
3045 * default to 0x0 (i.e. don't relocate) */
3046 if (CMD_ARGC >= 2) {
3047 uint32_t addr;
3048 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3049 image->base_address = addr;
3050 image->base_address_set = 1;
3051 } else
3052 image->base_address_set = 0;
3053
3054 image->start_address_set = 0;
3055
3056 if (CMD_ARGC >= 4)
3057 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
3058 if (CMD_ARGC == 5) {
3059 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
3060 /* use size (given) to find max (required) */
3061 *max_address += *min_address;
3062 }
3063
3064 if (*min_address > *max_address)
3065 return ERROR_COMMAND_SYNTAX_ERROR;
3066
3067 return ERROR_OK;
3068 }
3069
3070 COMMAND_HANDLER(handle_load_image_command)
3071 {
3072 uint8_t *buffer;
3073 size_t buf_cnt;
3074 uint32_t image_size;
3075 uint32_t min_address = 0;
3076 uint32_t max_address = 0xffffffff;
3077 int i;
3078 struct image image;
3079
3080 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3081 &image, &min_address, &max_address);
3082 if (ERROR_OK != retval)
3083 return retval;
3084
3085 struct target *target = get_current_target(CMD_CTX);
3086
3087 struct duration bench;
3088 duration_start(&bench);
3089
3090 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3091 return ERROR_OK;
3092
3093 image_size = 0x0;
3094 retval = ERROR_OK;
3095 for (i = 0; i < image.num_sections; i++) {
3096 buffer = malloc(image.sections[i].size);
3097 if (buffer == NULL) {
3098 command_print(CMD_CTX,
3099 "error allocating buffer for section (%d bytes)",
3100 (int)(image.sections[i].size));
3101 break;
3102 }
3103
3104 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3105 if (retval != ERROR_OK) {
3106 free(buffer);
3107 break;
3108 }
3109
3110 uint32_t offset = 0;
3111 uint32_t length = buf_cnt;
3112
3113 /* DANGER!!! beware of unsigned comparision here!!! */
3114
3115 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3116 (image.sections[i].base_address < max_address)) {
3117
3118 if (image.sections[i].base_address < min_address) {
3119 /* clip addresses below */
3120 offset += min_address-image.sections[i].base_address;
3121 length -= offset;
3122 }
3123
3124 if (image.sections[i].base_address + buf_cnt > max_address)
3125 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3126
3127 retval = target_write_buffer(target,
3128 image.sections[i].base_address + offset, length, buffer + offset);
3129 if (retval != ERROR_OK) {
3130 free(buffer);
3131 break;
3132 }
3133 image_size += length;
3134 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3135 (unsigned int)length,
3136 image.sections[i].base_address + offset);
3137 }
3138
3139 free(buffer);
3140 }
3141
3142 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3143 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3144 "in %fs (%0.3f KiB/s)", image_size,
3145 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3146 }
3147
3148 image_close(&image);
3149
3150 return retval;
3151
3152 }
3153
3154 COMMAND_HANDLER(handle_dump_image_command)
3155 {
3156 struct fileio fileio;
3157 uint8_t *buffer;
3158 int retval, retvaltemp;
3159 uint32_t address, size;
3160 struct duration bench;
3161 struct target *target = get_current_target(CMD_CTX);
3162
3163 if (CMD_ARGC != 3)
3164 return ERROR_COMMAND_SYNTAX_ERROR;
3165
3166 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3167 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3168
3169 uint32_t buf_size = (size > 4096) ? 4096 : size;
3170 buffer = malloc(buf_size);
3171 if (!buffer)
3172 return ERROR_FAIL;
3173
3174 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3175 if (retval != ERROR_OK) {
3176 free(buffer);
3177 return retval;
3178 }
3179
3180 duration_start