target: add async algorithm entries to the target type
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * This program is free software; you can redistribute it and/or modify *
24 * it under the terms of the GNU General Public License as published by *
25 * the Free Software Foundation; either version 2 of the License, or *
26 * (at your option) any later version. *
27 * *
28 * This program is distributed in the hope that it will be useful, *
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
31 * GNU General Public License for more details. *
32 * *
33 * You should have received a copy of the GNU General Public License *
34 * along with this program; if not, write to the *
35 * Free Software Foundation, Inc., *
36 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
37 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
45
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
54
55
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
65
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87
88 static struct target_type *target_types[] =
89 {
90 &arm7tdmi_target,
91 &arm9tdmi_target,
92 &arm920t_target,
93 &arm720t_target,
94 &arm966e_target,
95 &arm946e_target,
96 &arm926ejs_target,
97 &fa526_target,
98 &feroceon_target,
99 &dragonite_target,
100 &xscale_target,
101 &cortexm3_target,
102 &cortexa8_target,
103 &arm11_target,
104 &mips_m4k_target,
105 &avr_target,
106 &dsp563xx_target,
107 &dsp5680xx_target,
108 &testee_target,
109 &avr32_ap7k_target,
110 NULL,
111 };
112
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
117
118 static const Jim_Nvp nvp_assert[] = {
119 { .name = "assert", NVP_ASSERT },
120 { .name = "deassert", NVP_DEASSERT },
121 { .name = "T", NVP_ASSERT },
122 { .name = "F", NVP_DEASSERT },
123 { .name = "t", NVP_ASSERT },
124 { .name = "f", NVP_DEASSERT },
125 { .name = NULL, .value = -1 }
126 };
127
128 static const Jim_Nvp nvp_error_target[] = {
129 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
135 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
138 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140 { .value = -1, .name = NULL }
141 };
142
143 static const char *target_strerror_safe(int err)
144 {
145 const Jim_Nvp *n;
146
147 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148 if (n->name == NULL) {
149 return "unknown";
150 } else {
151 return n->name;
152 }
153 }
154
155 static const Jim_Nvp nvp_target_event[] = {
156 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
158
159 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160 { .value = TARGET_EVENT_HALTED, .name = "halted" },
161 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
164
165 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
167
168 /* historical name */
169
170 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
171
172 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
173 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
174 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
175 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
176 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
178 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
179 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
180 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
181 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
182 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
183
184 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
195
196 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
198
199 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
201 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
202
203 { .name = NULL, .value = -1 }
204 };
205
206 static const Jim_Nvp nvp_target_state[] = {
207 { .name = "unknown", .value = TARGET_UNKNOWN },
208 { .name = "running", .value = TARGET_RUNNING },
209 { .name = "halted", .value = TARGET_HALTED },
210 { .name = "reset", .value = TARGET_RESET },
211 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212 { .name = NULL, .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
217 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
218 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
219 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
221 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
222 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
223 { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_endian[] = {
227 { .name = "big", .value = TARGET_BIG_ENDIAN },
228 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229 { .name = "be", .value = TARGET_BIG_ENDIAN },
230 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
231 { .name = NULL, .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_reset_modes[] = {
235 { .name = "unknown", .value = RESET_UNKNOWN },
236 { .name = "run" , .value = RESET_RUN },
237 { .name = "halt" , .value = RESET_HALT },
238 { .name = "init" , .value = RESET_INIT },
239 { .name = NULL , .value = -1 },
240 };
241
242 const char *debug_reason_name(struct target *t)
243 {
244 const char *cp;
245
246 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247 t->debug_reason)->name;
248 if (!cp) {
249 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250 cp = "(*BUG*unknown*BUG*)";
251 }
252 return cp;
253 }
254
255 const char *
256 target_state_name( struct target *t )
257 {
258 const char *cp;
259 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260 if( !cp ){
261 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262 cp = "(*BUG*unknown*BUG*)";
263 }
264 return cp;
265 }
266
267 /* determine the number of the new target */
268 static int new_target_number(void)
269 {
270 struct target *t;
271 int x;
272
273 /* number is 0 based */
274 x = -1;
275 t = all_targets;
276 while (t) {
277 if (x < t->target_number) {
278 x = t->target_number;
279 }
280 t = t->next;
281 }
282 return x + 1;
283 }
284
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
287 {
288 if (target->endianness == TARGET_LITTLE_ENDIAN)
289 return le_to_h_u32(buffer);
290 else
291 return be_to_h_u32(buffer);
292 }
293
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
296 {
297 if (target->endianness == TARGET_LITTLE_ENDIAN)
298 return le_to_h_u24(buffer);
299 else
300 return be_to_h_u24(buffer);
301 }
302
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
305 {
306 if (target->endianness == TARGET_LITTLE_ENDIAN)
307 return le_to_h_u16(buffer);
308 else
309 return be_to_h_u16(buffer);
310 }
311
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
314 {
315 return *buffer & 0x0ff;
316 }
317
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
320 {
321 if (target->endianness == TARGET_LITTLE_ENDIAN)
322 h_u32_to_le(buffer, value);
323 else
324 h_u32_to_be(buffer, value);
325 }
326
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
329 {
330 if (target->endianness == TARGET_LITTLE_ENDIAN)
331 h_u24_to_le(buffer, value);
332 else
333 h_u24_to_be(buffer, value);
334 }
335
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
338 {
339 if (target->endianness == TARGET_LITTLE_ENDIAN)
340 h_u16_to_le(buffer, value);
341 else
342 h_u16_to_be(buffer, value);
343 }
344
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
347 {
348 *buffer = value;
349 }
350
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
353 {
354 uint32_t i;
355 for(i = 0; i < count; i ++)
356 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
357 }
358
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
361 {
362 uint32_t i;
363 for(i = 0; i < count; i ++)
364 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
365 }
366
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
369 {
370 uint32_t i;
371 for(i = 0; i < count; i ++)
372 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
373 }
374
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
377 {
378 uint32_t i;
379 for(i = 0; i < count; i ++)
380 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
381 }
382
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
385 {
386 struct target *target;
387
388 /* try as tcltarget name */
389 for (target = all_targets; target; target = target->next) {
390 if (target->cmd_name == NULL)
391 continue;
392 if (strcmp(id, target->cmd_name) == 0)
393 return target;
394 }
395
396 /* It's OK to remove this fallback sometime after August 2010 or so */
397
398 /* no match, try as number */
399 unsigned num;
400 if (parse_uint(id, &num) != ERROR_OK)
401 return NULL;
402
403 for (target = all_targets; target; target = target->next) {
404 if (target->target_number == (int)num) {
405 LOG_WARNING("use '%s' as target identifier, not '%u'",
406 target->cmd_name, num);
407 return target;
408 }
409 }
410
411 return NULL;
412 }
413
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
416 {
417 struct target *target = all_targets;
418
419 while (target) {
420 if (target->target_number == num) {
421 return target;
422 }
423 target = target->next;
424 }
425
426 return NULL;
427 }
428
429 struct target* get_current_target(struct command_context *cmd_ctx)
430 {
431 struct target *target = get_target_by_num(cmd_ctx->current_target);
432
433 if (target == NULL)
434 {
435 LOG_ERROR("BUG: current_target out of bounds");
436 exit(-1);
437 }
438
439 return target;
440 }
441
442 int target_poll(struct target *target)
443 {
444 int retval;
445
446 /* We can't poll until after examine */
447 if (!target_was_examined(target))
448 {
449 /* Fail silently lest we pollute the log */
450 return ERROR_FAIL;
451 }
452
453 retval = target->type->poll(target);
454 if (retval != ERROR_OK)
455 return retval;
456
457 if (target->halt_issued)
458 {
459 if (target->state == TARGET_HALTED)
460 {
461 target->halt_issued = false;
462 } else
463 {
464 long long t = timeval_ms() - target->halt_issued_time;
465 if (t>1000)
466 {
467 target->halt_issued = false;
468 LOG_INFO("Halt timed out, wake up GDB.");
469 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470 }
471 }
472 }
473
474 return ERROR_OK;
475 }
476
477 int target_halt(struct target *target)
478 {
479 int retval;
480 /* We can't poll until after examine */
481 if (!target_was_examined(target))
482 {
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
485 }
486
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
490
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
493
494 return ERROR_OK;
495 }
496
497 /**
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
500 *
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
514 *
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
526 */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529 int retval;
530
531 /* We can't poll until after examine */
532 if (!target_was_examined(target))
533 {
534 LOG_ERROR("Target not examined yet");
535 return ERROR_FAIL;
536 }
537
538 /* note that resume *must* be asynchronous. The CPU can halt before
539 * we poll. The CPU can even halt at the current PC as a result of
540 * a software breakpoint being inserted by (a bug?) the application.
541 */
542 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543 return retval;
544
545 return retval;
546 }
547
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
549 {
550 char buf[100];
551 int retval;
552 Jim_Nvp *n;
553 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554 if (n->name == NULL) {
555 LOG_ERROR("invalid reset mode");
556 return ERROR_FAIL;
557 }
558
559 /* disable polling during reset to make reset event scripts
560 * more predictable, i.e. dr/irscan & pathmove in events will
561 * not have JTAG operations injected into the middle of a sequence.
562 */
563 bool save_poll = jtag_poll_get_enabled();
564
565 jtag_poll_set_enabled(false);
566
567 sprintf(buf, "ocd_process_reset %s", n->name);
568 retval = Jim_Eval(cmd_ctx->interp, buf);
569
570 jtag_poll_set_enabled(save_poll);
571
572 if (retval != JIM_OK) {
573 Jim_MakeErrorMessage(cmd_ctx->interp);
574 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575 return ERROR_FAIL;
576 }
577
578 /* We want any events to be processed before the prompt */
579 retval = target_call_timer_callbacks_now();
580
581 struct target *target;
582 for (target = all_targets; target; target = target->next) {
583 target->type->check_reset(target);
584 }
585
586 return retval;
587 }
588
589 static int identity_virt2phys(struct target *target,
590 uint32_t virtual, uint32_t *physical)
591 {
592 *physical = virtual;
593 return ERROR_OK;
594 }
595
596 static int no_mmu(struct target *target, int *enabled)
597 {
598 *enabled = 0;
599 return ERROR_OK;
600 }
601
602 static int default_examine(struct target *target)
603 {
604 target_set_examined(target);
605 return ERROR_OK;
606 }
607
608 /* no check by default */
609 static int default_check_reset(struct target *target)
610 {
611 return ERROR_OK;
612 }
613
614 int target_examine_one(struct target *target)
615 {
616 return target->type->examine(target);
617 }
618
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
620 {
621 struct target *target = priv;
622
623 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624 return ERROR_OK;
625
626 jtag_unregister_event_callback(jtag_enable_callback, target);
627 return target_examine_one(target);
628 }
629
630
631 /* Targets that correctly implement init + examine, i.e.
632 * no communication with target during init:
633 *
634 * XScale
635 */
636 int target_examine(void)
637 {
638 int retval = ERROR_OK;
639 struct target *target;
640
641 for (target = all_targets; target; target = target->next)
642 {
643 /* defer examination, but don't skip it */
644 if (!target->tap->enabled) {
645 jtag_register_event_callback(jtag_enable_callback,
646 target);
647 continue;
648 }
649 if ((retval = target_examine_one(target)) != ERROR_OK)
650 return retval;
651 }
652 return retval;
653 }
654 const char *target_type_name(struct target *target)
655 {
656 return target->type->name;
657 }
658
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
660 {
661 if (!target_was_examined(target))
662 {
663 LOG_ERROR("Target not examined yet");
664 return ERROR_FAIL;
665 }
666 return target->type->write_memory_imp(target, address, size, count, buffer);
667 }
668
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
670 {
671 if (!target_was_examined(target))
672 {
673 LOG_ERROR("Target not examined yet");
674 return ERROR_FAIL;
675 }
676 return target->type->read_memory_imp(target, address, size, count, buffer);
677 }
678
679 static int target_soft_reset_halt_imp(struct target *target)
680 {
681 if (!target_was_examined(target))
682 {
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
685 }
686 if (!target->type->soft_reset_halt_imp) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
690 }
691 return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
701 *
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
704 */
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
710 {
711 int retval = ERROR_FAIL;
712
713 if (!target_was_examined(target))
714 {
715 LOG_ERROR("Target not examined yet");
716 goto done;
717 }
718 if (!target->type->run_algorithm) {
719 LOG_ERROR("Target type '%s' does not support %s",
720 target_type_name(target), __func__);
721 goto done;
722 }
723
724 target->running_alg = true;
725 retval = target->type->run_algorithm(target,
726 num_mem_params, mem_params,
727 num_reg_params, reg_param,
728 entry_point, exit_point, timeout_ms, arch_info);
729 target->running_alg = false;
730
731 done:
732 return retval;
733 }
734
735 /**
736 * Downloads a target-specific native code algorithm to the target,
737 * executes and leaves it running.
738 *
739 * @param target used to run the algorithm
740 * @param arch_info target-specific description of the algorithm.
741 */
742 int target_start_algorithm(struct target *target,
743 int num_mem_params, struct mem_param *mem_params,
744 int num_reg_params, struct reg_param *reg_params,
745 uint32_t entry_point, uint32_t exit_point,
746 void *arch_info)
747 {
748 int retval = ERROR_FAIL;
749
750 if (!target_was_examined(target))
751 {
752 LOG_ERROR("Target not examined yet");
753 goto done;
754 }
755 if (!target->type->start_algorithm) {
756 LOG_ERROR("Target type '%s' does not support %s",
757 target_type_name(target), __func__);
758 goto done;
759 }
760 if (target->running_alg) {
761 LOG_ERROR("Target is already running an algorithm");
762 goto done;
763 }
764
765 target->running_alg = true;
766 retval = target->type->start_algorithm(target,
767 num_mem_params, mem_params,
768 num_reg_params, reg_params,
769 entry_point, exit_point, arch_info);
770
771 done:
772 return retval;
773 }
774
775 /**
776 * Waits for an algorithm started with target_start_algorithm() to complete.
777 *
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
780 */
781 int target_wait_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_params,
784 uint32_t exit_point, int timeout_ms,
785 void *arch_info)
786 {
787 int retval = ERROR_FAIL;
788
789 if (!target->type->wait_algorithm) {
790 LOG_ERROR("Target type '%s' does not support %s",
791 target_type_name(target), __func__);
792 goto done;
793 }
794 if (!target->running_alg) {
795 LOG_ERROR("Target is not running an algorithm");
796 goto done;
797 }
798
799 retval = target->type->wait_algorithm(target,
800 num_mem_params, mem_params,
801 num_reg_params, reg_params,
802 exit_point, timeout_ms, arch_info);
803 if (retval != ERROR_TARGET_TIMEOUT)
804 target->running_alg = false;
805
806 done:
807 return retval;
808 }
809
810
811 int target_read_memory(struct target *target,
812 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
813 {
814 return target->type->read_memory(target, address, size, count, buffer);
815 }
816
817 static int target_read_phys_memory(struct target *target,
818 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
819 {
820 return target->type->read_phys_memory(target, address, size, count, buffer);
821 }
822
823 int target_write_memory(struct target *target,
824 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
825 {
826 return target->type->write_memory(target, address, size, count, buffer);
827 }
828
829 static int target_write_phys_memory(struct target *target,
830 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
831 {
832 return target->type->write_phys_memory(target, address, size, count, buffer);
833 }
834
835 int target_bulk_write_memory(struct target *target,
836 uint32_t address, uint32_t count, const uint8_t *buffer)
837 {
838 return target->type->bulk_write_memory(target, address, count, buffer);
839 }
840
841 int target_add_breakpoint(struct target *target,
842 struct breakpoint *breakpoint)
843 {
844 if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
845 LOG_WARNING("target %s is not halted", target->cmd_name);
846 return ERROR_TARGET_NOT_HALTED;
847 }
848 return target->type->add_breakpoint(target, breakpoint);
849 }
850
851 int target_add_context_breakpoint(struct target *target,
852 struct breakpoint *breakpoint)
853 {
854 if (target->state != TARGET_HALTED) {
855 LOG_WARNING("target %s is not halted", target->cmd_name);
856 return ERROR_TARGET_NOT_HALTED;
857 }
858 return target->type->add_context_breakpoint(target, breakpoint);
859 }
860
861 int target_add_hybrid_breakpoint(struct target *target,
862 struct breakpoint *breakpoint)
863 {
864 if (target->state != TARGET_HALTED) {
865 LOG_WARNING("target %s is not halted", target->cmd_name);
866 return ERROR_TARGET_NOT_HALTED;
867 }
868 return target->type->add_hybrid_breakpoint(target, breakpoint);
869 }
870
871 int target_remove_breakpoint(struct target *target,
872 struct breakpoint *breakpoint)
873 {
874 return target->type->remove_breakpoint(target, breakpoint);
875 }
876
877 int target_add_watchpoint(struct target *target,
878 struct watchpoint *watchpoint)
879 {
880 if (target->state != TARGET_HALTED) {
881 LOG_WARNING("target %s is not halted", target->cmd_name);
882 return ERROR_TARGET_NOT_HALTED;
883 }
884 return target->type->add_watchpoint(target, watchpoint);
885 }
886 int target_remove_watchpoint(struct target *target,
887 struct watchpoint *watchpoint)
888 {
889 return target->type->remove_watchpoint(target, watchpoint);
890 }
891
892 int target_get_gdb_reg_list(struct target *target,
893 struct reg **reg_list[], int *reg_list_size)
894 {
895 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
896 }
897 int target_step(struct target *target,
898 int current, uint32_t address, int handle_breakpoints)
899 {
900 return target->type->step(target, current, address, handle_breakpoints);
901 }
902
903
904 /**
905 * Reset the @c examined flag for the given target.
906 * Pure paranoia -- targets are zeroed on allocation.
907 */
908 static void target_reset_examined(struct target *target)
909 {
910 target->examined = false;
911 }
912
913 static int
914 err_read_phys_memory(struct target *target, uint32_t address,
915 uint32_t size, uint32_t count, uint8_t *buffer)
916 {
917 LOG_ERROR("Not implemented: %s", __func__);
918 return ERROR_FAIL;
919 }
920
921 static int
922 err_write_phys_memory(struct target *target, uint32_t address,
923 uint32_t size, uint32_t count, const uint8_t *buffer)
924 {
925 LOG_ERROR("Not implemented: %s", __func__);
926 return ERROR_FAIL;
927 }
928
929 static int handle_target(void *priv);
930
931 static int target_init_one(struct command_context *cmd_ctx,
932 struct target *target)
933 {
934 target_reset_examined(target);
935
936 struct target_type *type = target->type;
937 if (type->examine == NULL)
938 type->examine = default_examine;
939
940 if (type->check_reset== NULL)
941 type->check_reset = default_check_reset;
942
943 int retval = type->init_target(cmd_ctx, target);
944 if (ERROR_OK != retval)
945 {
946 LOG_ERROR("target '%s' init failed", target_name(target));
947 return retval;
948 }
949
950 /**
951 * @todo get rid of those *memory_imp() methods, now that all
952 * callers are using target_*_memory() accessors ... and make
953 * sure the "physical" paths handle the same issues.
954 */
955 /* a non-invasive way(in terms of patches) to add some code that
956 * runs before the type->write/read_memory implementation
957 */
958 type->write_memory_imp = target->type->write_memory;
959 type->write_memory = target_write_memory_imp;
960
961 type->read_memory_imp = target->type->read_memory;
962 type->read_memory = target_read_memory_imp;
963
964 type->soft_reset_halt_imp = target->type->soft_reset_halt;
965 type->soft_reset_halt = target_soft_reset_halt_imp;
966
967 /* Sanity-check MMU support ... stub in what we must, to help
968 * implement it in stages, but warn if we need to do so.
969 */
970 if (type->mmu)
971 {
972 if (type->write_phys_memory == NULL)
973 {
974 LOG_ERROR("type '%s' is missing write_phys_memory",
975 type->name);
976 type->write_phys_memory = err_write_phys_memory;
977 }
978 if (type->read_phys_memory == NULL)
979 {
980 LOG_ERROR("type '%s' is missing read_phys_memory",
981 type->name);
982 type->read_phys_memory = err_read_phys_memory;
983 }
984 if (type->virt2phys == NULL)
985 {
986 LOG_ERROR("type '%s' is missing virt2phys", type->name);
987 type->virt2phys = identity_virt2phys;
988 }
989 }
990 else
991 {
992 /* Make sure no-MMU targets all behave the same: make no
993 * distinction between physical and virtual addresses, and
994 * ensure that virt2phys() is always an identity mapping.
995 */
996 if (type->write_phys_memory || type->read_phys_memory
997 || type->virt2phys)
998 {
999 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1000 }
1001
1002 type->mmu = no_mmu;
1003 type->write_phys_memory = type->write_memory;
1004 type->read_phys_memory = type->read_memory;
1005 type->virt2phys = identity_virt2phys;
1006 }
1007
1008 if (target->type->read_buffer == NULL)
1009 target->type->read_buffer = target_read_buffer_default;
1010
1011 if (target->type->write_buffer == NULL)
1012 target->type->write_buffer = target_write_buffer_default;
1013
1014 return ERROR_OK;
1015 }
1016
1017 static int target_init(struct command_context *cmd_ctx)
1018 {
1019 struct target *target;
1020 int retval;
1021
1022 for (target = all_targets; target; target = target->next)
1023 {
1024 retval = target_init_one(cmd_ctx, target);
1025 if (ERROR_OK != retval)
1026 return retval;
1027 }
1028
1029 if (!all_targets)
1030 return ERROR_OK;
1031
1032 retval = target_register_user_commands(cmd_ctx);
1033 if (ERROR_OK != retval)
1034 return retval;
1035
1036 retval = target_register_timer_callback(&handle_target,
1037 polling_interval, 1, cmd_ctx->interp);
1038 if (ERROR_OK != retval)
1039 return retval;
1040
1041 return ERROR_OK;
1042 }
1043
1044 COMMAND_HANDLER(handle_target_init_command)
1045 {
1046 if (CMD_ARGC != 0)
1047 return ERROR_COMMAND_SYNTAX_ERROR;
1048
1049 static bool target_initialized = false;
1050 if (target_initialized)
1051 {
1052 LOG_INFO("'target init' has already been called");
1053 return ERROR_OK;
1054 }
1055 target_initialized = true;
1056
1057 LOG_DEBUG("Initializing targets...");
1058 return target_init(CMD_CTX);
1059 }
1060
1061 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1062 {
1063 struct target_event_callback **callbacks_p = &target_event_callbacks;
1064
1065 if (callback == NULL)
1066 {
1067 return ERROR_INVALID_ARGUMENTS;
1068 }
1069
1070 if (*callbacks_p)
1071 {
1072 while ((*callbacks_p)->next)
1073 callbacks_p = &((*callbacks_p)->next);
1074 callbacks_p = &((*callbacks_p)->next);
1075 }
1076
1077 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1078 (*callbacks_p)->callback = callback;
1079 (*callbacks_p)->priv = priv;
1080 (*callbacks_p)->next = NULL;
1081
1082 return ERROR_OK;
1083 }
1084
1085 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1086 {
1087 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1088 struct timeval now;
1089
1090 if (callback == NULL)
1091 {
1092 return ERROR_INVALID_ARGUMENTS;
1093 }
1094
1095 if (*callbacks_p)
1096 {
1097 while ((*callbacks_p)->next)
1098 callbacks_p = &((*callbacks_p)->next);
1099 callbacks_p = &((*callbacks_p)->next);
1100 }
1101
1102 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1103 (*callbacks_p)->callback = callback;
1104 (*callbacks_p)->periodic = periodic;
1105 (*callbacks_p)->time_ms = time_ms;
1106
1107 gettimeofday(&now, NULL);
1108 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1109 time_ms -= (time_ms % 1000);
1110 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1111 if ((*callbacks_p)->when.tv_usec > 1000000)
1112 {
1113 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1114 (*callbacks_p)->when.tv_sec += 1;
1115 }
1116
1117 (*callbacks_p)->priv = priv;
1118 (*callbacks_p)->next = NULL;
1119
1120 return ERROR_OK;
1121 }
1122
1123 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1124 {
1125 struct target_event_callback **p = &target_event_callbacks;
1126 struct target_event_callback *c = target_event_callbacks;
1127
1128 if (callback == NULL)
1129 {
1130 return ERROR_INVALID_ARGUMENTS;
1131 }
1132
1133 while (c)
1134 {
1135 struct target_event_callback *next = c->next;
1136 if ((c->callback == callback) && (c->priv == priv))
1137 {
1138 *p = next;
1139 free(c);
1140 return ERROR_OK;
1141 }
1142 else
1143 p = &(c->next);
1144 c = next;
1145 }
1146
1147 return ERROR_OK;
1148 }
1149
1150 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1151 {
1152 struct target_timer_callback **p = &target_timer_callbacks;
1153 struct target_timer_callback *c = target_timer_callbacks;
1154
1155 if (callback == NULL)
1156 {
1157 return ERROR_INVALID_ARGUMENTS;
1158 }
1159
1160 while (c)
1161 {
1162 struct target_timer_callback *next = c->next;
1163 if ((c->callback == callback) && (c->priv == priv))
1164 {
1165 *p = next;
1166 free(c);
1167 return ERROR_OK;
1168 }
1169 else
1170 p = &(c->next);
1171 c = next;
1172 }
1173
1174 return ERROR_OK;
1175 }
1176
1177 int target_call_event_callbacks(struct target *target, enum target_event event)
1178 {
1179 struct target_event_callback *callback = target_event_callbacks;
1180 struct target_event_callback *next_callback;
1181
1182 if (event == TARGET_EVENT_HALTED)
1183 {
1184 /* execute early halted first */
1185 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1186 }
1187
1188 LOG_DEBUG("target event %i (%s)",
1189 event,
1190 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1191
1192 target_handle_event(target, event);
1193
1194 while (callback)
1195 {
1196 next_callback = callback->next;
1197 callback->callback(target, event, callback->priv);
1198 callback = next_callback;
1199 }
1200
1201 return ERROR_OK;
1202 }
1203
1204 static int target_timer_callback_periodic_restart(
1205 struct target_timer_callback *cb, struct timeval *now)
1206 {
1207 int time_ms = cb->time_ms;
1208 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1209 time_ms -= (time_ms % 1000);
1210 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1211 if (cb->when.tv_usec > 1000000)
1212 {
1213 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1214 cb->when.tv_sec += 1;
1215 }
1216 return ERROR_OK;
1217 }
1218
1219 static int target_call_timer_callback(struct target_timer_callback *cb,
1220 struct timeval *now)
1221 {
1222 cb->callback(cb->priv);
1223
1224 if (cb->periodic)
1225 return target_timer_callback_periodic_restart(cb, now);
1226
1227 return target_unregister_timer_callback(cb->callback, cb->priv);
1228 }
1229
1230 static int target_call_timer_callbacks_check_time(int checktime)
1231 {
1232 keep_alive();
1233
1234 struct timeval now;
1235 gettimeofday(&now, NULL);
1236
1237 struct target_timer_callback *callback = target_timer_callbacks;
1238 while (callback)
1239 {
1240 // cleaning up may unregister and free this callback
1241 struct target_timer_callback *next_callback = callback->next;
1242
1243 bool call_it = callback->callback &&
1244 ((!checktime && callback->periodic) ||
1245 now.tv_sec > callback->when.tv_sec ||
1246 (now.tv_sec == callback->when.tv_sec &&
1247 now.tv_usec >= callback->when.tv_usec));
1248
1249 if (call_it)
1250 {
1251 int retval = target_call_timer_callback(callback, &now);
1252 if (retval != ERROR_OK)
1253 return retval;
1254 }
1255
1256 callback = next_callback;
1257 }
1258
1259 return ERROR_OK;
1260 }
1261
1262 int target_call_timer_callbacks(void)
1263 {
1264 return target_call_timer_callbacks_check_time(1);
1265 }
1266
1267 /* invoke periodic callbacks immediately */
1268 int target_call_timer_callbacks_now(void)
1269 {
1270 return target_call_timer_callbacks_check_time(0);
1271 }
1272
1273 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1274 {
1275 struct working_area *c = target->working_areas;
1276 struct working_area *new_wa = NULL;
1277
1278 /* Reevaluate working area address based on MMU state*/
1279 if (target->working_areas == NULL)
1280 {
1281 int retval;
1282 int enabled;
1283
1284 retval = target->type->mmu(target, &enabled);
1285 if (retval != ERROR_OK)
1286 {
1287 return retval;
1288 }
1289
1290 if (!enabled) {
1291 if (target->working_area_phys_spec) {
1292 LOG_DEBUG("MMU disabled, using physical "
1293 "address for working memory 0x%08x",
1294 (unsigned)target->working_area_phys);
1295 target->working_area = target->working_area_phys;
1296 } else {
1297 LOG_ERROR("No working memory available. "
1298 "Specify -work-area-phys to target.");
1299 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300 }
1301 } else {
1302 if (target->working_area_virt_spec) {
1303 LOG_DEBUG("MMU enabled, using virtual "
1304 "address for working memory 0x%08x",
1305 (unsigned)target->working_area_virt);
1306 target->working_area = target->working_area_virt;
1307 } else {
1308 LOG_ERROR("No working memory available. "
1309 "Specify -work-area-virt to target.");
1310 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311 }
1312 }
1313 }
1314
1315 /* only allocate multiples of 4 byte */
1316 if (size % 4)
1317 {
1318 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1319 size = (size + 3) & (~3);
1320 }
1321
1322 /* see if there's already a matching working area */
1323 while (c)
1324 {
1325 if ((c->free) && (c->size == size))
1326 {
1327 new_wa = c;
1328 break;
1329 }
1330 c = c->next;
1331 }
1332
1333 /* if not, allocate a new one */
1334 if (!new_wa)
1335 {
1336 struct working_area **p = &target->working_areas;
1337 uint32_t first_free = target->working_area;
1338 uint32_t free_size = target->working_area_size;
1339
1340 c = target->working_areas;
1341 while (c)
1342 {
1343 first_free += c->size;
1344 free_size -= c->size;
1345 p = &c->next;
1346 c = c->next;
1347 }
1348
1349 if (free_size < size)
1350 {
1351 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1352 }
1353
1354 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1355
1356 new_wa = malloc(sizeof(struct working_area));
1357 new_wa->next = NULL;
1358 new_wa->size = size;
1359 new_wa->address = first_free;
1360
1361 if (target->backup_working_area)
1362 {
1363 int retval;
1364 new_wa->backup = malloc(new_wa->size);
1365 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1366 {
1367 free(new_wa->backup);
1368 free(new_wa);
1369 return retval;
1370 }
1371 }
1372 else
1373 {
1374 new_wa->backup = NULL;
1375 }
1376
1377 /* put new entry in list */
1378 *p = new_wa;
1379 }
1380
1381 /* mark as used, and return the new (reused) area */
1382 new_wa->free = false;
1383 *area = new_wa;
1384
1385 /* user pointer */
1386 new_wa->user = area;
1387
1388 return ERROR_OK;
1389 }
1390
1391 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1392 {
1393 int retval;
1394
1395 retval = target_alloc_working_area_try(target, size, area);
1396 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1397 {
1398 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1399 }
1400 return retval;
1401
1402 }
1403
1404 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1405 {
1406 if (area->free)
1407 return ERROR_OK;
1408
1409 if (restore && target->backup_working_area)
1410 {
1411 int retval;
1412 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1413 return retval;
1414 }
1415
1416 area->free = true;
1417
1418 /* mark user pointer invalid */
1419 *area->user = NULL;
1420 area->user = NULL;
1421
1422 return ERROR_OK;
1423 }
1424
1425 int target_free_working_area(struct target *target, struct working_area *area)
1426 {
1427 return target_free_working_area_restore(target, area, 1);
1428 }
1429
1430 /* free resources and restore memory, if restoring memory fails,
1431 * free up resources anyway
1432 */
1433 static void target_free_all_working_areas_restore(struct target *target, int restore)
1434 {
1435 struct working_area *c = target->working_areas;
1436
1437 while (c)
1438 {
1439 struct working_area *next = c->next;
1440 target_free_working_area_restore(target, c, restore);
1441
1442 if (c->backup)
1443 free(c->backup);
1444
1445 free(c);
1446
1447 c = next;
1448 }
1449
1450 target->working_areas = NULL;
1451 }
1452
1453 void target_free_all_working_areas(struct target *target)
1454 {
1455 target_free_all_working_areas_restore(target, 1);
1456 }
1457
1458 int target_arch_state(struct target *target)
1459 {
1460 int retval;
1461 if (target == NULL)
1462 {
1463 LOG_USER("No target has been configured");
1464 return ERROR_OK;
1465 }
1466
1467 LOG_USER("target state: %s", target_state_name( target ));
1468
1469 if (target->state != TARGET_HALTED)
1470 return ERROR_OK;
1471
1472 retval = target->type->arch_state(target);
1473 return retval;
1474 }
1475
1476 /* Single aligned words are guaranteed to use 16 or 32 bit access
1477 * mode respectively, otherwise data is handled as quickly as
1478 * possible
1479 */
1480 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1481 {
1482 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1483 (int)size, (unsigned)address);
1484
1485 if (!target_was_examined(target))
1486 {
1487 LOG_ERROR("Target not examined yet");
1488 return ERROR_FAIL;
1489 }
1490
1491 if (size == 0) {
1492 return ERROR_OK;
1493 }
1494
1495 if ((address + size - 1) < address)
1496 {
1497 /* GDB can request this when e.g. PC is 0xfffffffc*/
1498 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1499 (unsigned)address,
1500 (unsigned)size);
1501 return ERROR_FAIL;
1502 }
1503
1504 return target->type->write_buffer(target, address, size, buffer);
1505 }
1506
1507 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1508 {
1509 int retval = ERROR_OK;
1510
1511 if (((address % 2) == 0) && (size == 2))
1512 {
1513 return target_write_memory(target, address, 2, 1, buffer);
1514 }
1515
1516 /* handle unaligned head bytes */
1517 if (address % 4)
1518 {
1519 uint32_t unaligned = 4 - (address % 4);
1520
1521 if (unaligned > size)
1522 unaligned = size;
1523
1524 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1525 return retval;
1526
1527 buffer += unaligned;
1528 address += unaligned;
1529 size -= unaligned;
1530 }
1531
1532 /* handle aligned words */
1533 if (size >= 4)
1534 {
1535 int aligned = size - (size % 4);
1536
1537 /* use bulk writes above a certain limit. This may have to be changed */
1538 if (aligned > 128)
1539 {
1540 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1541 return retval;
1542 }
1543 else
1544 {
1545 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1546 return retval;
1547 }
1548
1549 buffer += aligned;
1550 address += aligned;
1551 size -= aligned;
1552 }
1553
1554 /* handle tail writes of less than 4 bytes */
1555 if (size > 0)
1556 {
1557 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1558 return retval;
1559 }
1560
1561 return retval;
1562 }
1563
1564 /* Single aligned words are guaranteed to use 16 or 32 bit access
1565 * mode respectively, otherwise data is handled as quickly as
1566 * possible
1567 */
1568 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1569 {
1570 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1571 (int)size, (unsigned)address);
1572
1573 if (!target_was_examined(target))
1574 {
1575 LOG_ERROR("Target not examined yet");
1576 return ERROR_FAIL;
1577 }
1578
1579 if (size == 0) {
1580 return ERROR_OK;
1581 }
1582
1583 if ((address + size - 1) < address)
1584 {
1585 /* GDB can request this when e.g. PC is 0xfffffffc*/
1586 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1587 address,
1588 size);
1589 return ERROR_FAIL;
1590 }
1591
1592 return target->type->read_buffer(target, address, size, buffer);
1593 }
1594
1595 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1596 {
1597 int retval = ERROR_OK;
1598
1599 if (((address % 2) == 0) && (size == 2))
1600 {
1601 return target_read_memory(target, address, 2, 1, buffer);
1602 }
1603
1604 /* handle unaligned head bytes */
1605 if (address % 4)
1606 {
1607 uint32_t unaligned = 4 - (address % 4);
1608
1609 if (unaligned > size)
1610 unaligned = size;
1611
1612 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1613 return retval;
1614
1615 buffer += unaligned;
1616 address += unaligned;
1617 size -= unaligned;
1618 }
1619
1620 /* handle aligned words */
1621 if (size >= 4)
1622 {
1623 int aligned = size - (size % 4);
1624
1625 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1626 return retval;
1627
1628 buffer += aligned;
1629 address += aligned;
1630 size -= aligned;
1631 }
1632
1633 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1634 if(size >=2)
1635 {
1636 int aligned = size - (size%2);
1637 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1638 if (retval != ERROR_OK)
1639 return retval;
1640
1641 buffer += aligned;
1642 address += aligned;
1643 size -= aligned;
1644 }
1645 /* handle tail writes of less than 4 bytes */
1646 if (size > 0)
1647 {
1648 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1649 return retval;
1650 }
1651
1652 return ERROR_OK;
1653 }
1654
1655 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1656 {
1657 uint8_t *buffer;
1658 int retval;
1659 uint32_t i;
1660 uint32_t checksum = 0;
1661 if (!target_was_examined(target))
1662 {
1663 LOG_ERROR("Target not examined yet");
1664 return ERROR_FAIL;
1665 }
1666
1667 if ((retval = target->type->checksum_memory(target, address,
1668 size, &checksum)) != ERROR_OK)
1669 {
1670 buffer = malloc(size);
1671 if (buffer == NULL)
1672 {
1673 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1674 return ERROR_INVALID_ARGUMENTS;
1675 }
1676 retval = target_read_buffer(target, address, size, buffer);
1677 if (retval != ERROR_OK)
1678 {
1679 free(buffer);
1680 return retval;
1681 }
1682
1683 /* convert to target endianness */
1684 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1685 {
1686 uint32_t target_data;
1687 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1688 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1689 }
1690
1691 retval = image_calculate_checksum(buffer, size, &checksum);
1692 free(buffer);
1693 }
1694
1695 *crc = checksum;
1696
1697 return retval;
1698 }
1699
1700 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1701 {
1702 int retval;
1703 if (!target_was_examined(target))
1704 {
1705 LOG_ERROR("Target not examined yet");
1706 return ERROR_FAIL;
1707 }
1708
1709 if (target->type->blank_check_memory == 0)
1710 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711
1712 retval = target->type->blank_check_memory(target, address, size, blank);
1713
1714 return retval;
1715 }
1716
1717 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1718 {
1719 uint8_t value_buf[4];
1720 if (!target_was_examined(target))
1721 {
1722 LOG_ERROR("Target not examined yet");
1723 return ERROR_FAIL;
1724 }
1725
1726 int retval = target_read_memory(target, address, 4, 1, value_buf);
1727
1728 if (retval == ERROR_OK)
1729 {
1730 *value = target_buffer_get_u32(target, value_buf);
1731 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1732 address,
1733 *value);
1734 }
1735 else
1736 {
1737 *value = 0x0;
1738 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1739 address);
1740 }
1741
1742 return retval;
1743 }
1744
1745 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1746 {
1747 uint8_t value_buf[2];
1748 if (!target_was_examined(target))
1749 {
1750 LOG_ERROR("Target not examined yet");
1751 return ERROR_FAIL;
1752 }
1753
1754 int retval = target_read_memory(target, address, 2, 1, value_buf);
1755
1756 if (retval == ERROR_OK)
1757 {
1758 *value = target_buffer_get_u16(target, value_buf);
1759 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1760 address,
1761 *value);
1762 }
1763 else
1764 {
1765 *value = 0x0;
1766 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1767 address);
1768 }
1769
1770 return retval;
1771 }
1772
1773 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1774 {
1775 int retval = target_read_memory(target, address, 1, 1, value);
1776 if (!target_was_examined(target))
1777 {
1778 LOG_ERROR("Target not examined yet");
1779 return ERROR_FAIL;
1780 }
1781
1782 if (retval == ERROR_OK)
1783 {
1784 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1785 address,
1786 *value);
1787 }
1788 else
1789 {
1790 *value = 0x0;
1791 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1792 address);
1793 }
1794
1795 return retval;
1796 }
1797
1798 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1799 {
1800 int retval;
1801 uint8_t value_buf[4];
1802 if (!target_was_examined(target))
1803 {
1804 LOG_ERROR("Target not examined yet");
1805 return ERROR_FAIL;
1806 }
1807
1808 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1809 address,
1810 value);
1811
1812 target_buffer_set_u32(target, value_buf, value);
1813 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1814 {
1815 LOG_DEBUG("failed: %i", retval);
1816 }
1817
1818 return retval;
1819 }
1820
1821 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1822 {
1823 int retval;
1824 uint8_t value_buf[2];
1825 if (!target_was_examined(target))
1826 {
1827 LOG_ERROR("Target not examined yet");
1828 return ERROR_FAIL;
1829 }
1830
1831 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1832 address,
1833 value);
1834
1835 target_buffer_set_u16(target, value_buf, value);
1836 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1837 {
1838 LOG_DEBUG("failed: %i", retval);
1839 }
1840
1841 return retval;
1842 }
1843
1844 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1845 {
1846 int retval;
1847 if (!target_was_examined(target))
1848 {
1849 LOG_ERROR("Target not examined yet");
1850 return ERROR_FAIL;
1851 }
1852
1853 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1854 address, value);
1855
1856 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1857 {
1858 LOG_DEBUG("failed: %i", retval);
1859 }
1860
1861 return retval;
1862 }
1863
1864 COMMAND_HANDLER(handle_targets_command)
1865 {
1866 struct target *target = all_targets;
1867
1868 if (CMD_ARGC == 1)
1869 {
1870 target = get_target(CMD_ARGV[0]);
1871 if (target == NULL) {
1872 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1873 goto DumpTargets;
1874 }
1875 if (!target->tap->enabled) {
1876 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1877 "can't be the current target\n",
1878 target->tap->dotted_name);
1879 return ERROR_FAIL;
1880 }
1881
1882 CMD_CTX->current_target = target->target_number;
1883 return ERROR_OK;
1884 }
1885 DumpTargets:
1886
1887 target = all_targets;
1888 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1889 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1890 while (target)
1891 {
1892 const char *state;
1893 char marker = ' ';
1894
1895 if (target->tap->enabled)
1896 state = target_state_name( target );
1897 else
1898 state = "tap-disabled";
1899
1900 if (CMD_CTX->current_target == target->target_number)
1901 marker = '*';
1902
1903 /* keep columns lined up to match the headers above */
1904 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1905 target->target_number,
1906 marker,
1907 target_name(target),
1908 target_type_name(target),
1909 Jim_Nvp_value2name_simple(nvp_target_endian,
1910 target->endianness)->name,
1911 target->tap->dotted_name,
1912 state);
1913 target = target->next;
1914 }
1915
1916 return ERROR_OK;
1917 }
1918
1919 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1920
1921 static int powerDropout;
1922 static int srstAsserted;
1923
1924 static int runPowerRestore;
1925 static int runPowerDropout;
1926 static int runSrstAsserted;
1927 static int runSrstDeasserted;
1928
1929 static int sense_handler(void)
1930 {
1931 static int prevSrstAsserted = 0;
1932 static int prevPowerdropout = 0;
1933
1934 int retval;
1935 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1936 return retval;
1937
1938 int powerRestored;
1939 powerRestored = prevPowerdropout && !powerDropout;
1940 if (powerRestored)
1941 {
1942 runPowerRestore = 1;
1943 }
1944
1945 long long current = timeval_ms();
1946 static long long lastPower = 0;
1947 int waitMore = lastPower + 2000 > current;
1948 if (powerDropout && !waitMore)
1949 {
1950 runPowerDropout = 1;
1951 lastPower = current;
1952 }
1953
1954 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1955 return retval;
1956
1957 int srstDeasserted;
1958 srstDeasserted = prevSrstAsserted && !srstAsserted;
1959
1960 static long long lastSrst = 0;
1961 waitMore = lastSrst + 2000 > current;
1962 if (srstDeasserted && !waitMore)
1963 {
1964 runSrstDeasserted = 1;
1965 lastSrst = current;
1966 }
1967
1968 if (!prevSrstAsserted && srstAsserted)
1969 {
1970 runSrstAsserted = 1;
1971 }
1972
1973 prevSrstAsserted = srstAsserted;
1974 prevPowerdropout = powerDropout;
1975
1976 if (srstDeasserted || powerRestored)
1977 {
1978 /* Other than logging the event we can't do anything here.
1979 * Issuing a reset is a particularly bad idea as we might
1980 * be inside a reset already.
1981 */
1982 }
1983
1984 return ERROR_OK;
1985 }
1986
1987 static int backoff_times = 0;
1988 static int backoff_count = 0;
1989
1990 /* process target state changes */
1991 static int handle_target(void *priv)
1992 {
1993 Jim_Interp *interp = (Jim_Interp *)priv;
1994 int retval = ERROR_OK;
1995
1996 if (!is_jtag_poll_safe())
1997 {
1998 /* polling is disabled currently */
1999 return ERROR_OK;
2000 }
2001
2002 /* we do not want to recurse here... */
2003 static int recursive = 0;
2004 if (! recursive)
2005 {
2006 recursive = 1;
2007 sense_handler();
2008 /* danger! running these procedures can trigger srst assertions and power dropouts.
2009 * We need to avoid an infinite loop/recursion here and we do that by
2010 * clearing the flags after running these events.
2011 */
2012 int did_something = 0;
2013 if (runSrstAsserted)
2014 {
2015 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2016 Jim_Eval(interp, "srst_asserted");
2017 did_something = 1;
2018 }
2019 if (runSrstDeasserted)
2020 {
2021 Jim_Eval(interp, "srst_deasserted");
2022 did_something = 1;
2023 }
2024 if (runPowerDropout)
2025 {
2026 LOG_INFO("Power dropout detected, running power_dropout proc.");
2027 Jim_Eval(interp, "power_dropout");
2028 did_something = 1;
2029 }
2030 if (runPowerRestore)
2031 {
2032 Jim_Eval(interp, "power_restore");
2033 did_something = 1;
2034 }
2035
2036 if (did_something)
2037 {
2038 /* clear detect flags */
2039 sense_handler();
2040 }
2041
2042 /* clear action flags */
2043
2044 runSrstAsserted = 0;
2045 runSrstDeasserted = 0;
2046 runPowerRestore = 0;
2047 runPowerDropout = 0;
2048
2049 recursive = 0;
2050 }
2051
2052 if (backoff_times > backoff_count)
2053 {
2054 /* do not poll this time as we failed previously */
2055 backoff_count++;
2056 return ERROR_OK;
2057 }
2058 backoff_count = 0;
2059
2060 /* Poll targets for state changes unless that's globally disabled.
2061 * Skip targets that are currently disabled.
2062 */
2063 for (struct target *target = all_targets;
2064 is_jtag_poll_safe() && target;
2065 target = target->next)
2066 {
2067 if (!target->tap->enabled)
2068 continue;
2069
2070 /* only poll target if we've got power and srst isn't asserted */
2071 if (!powerDropout && !srstAsserted)
2072 {
2073 /* polling may fail silently until the target has been examined */
2074 if ((retval = target_poll(target)) != ERROR_OK)
2075 {
2076 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2077 if (backoff_times * polling_interval < 5000)
2078 {
2079 backoff_times *= 2;
2080 backoff_times++;
2081 }
2082 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2083
2084 /* Tell GDB to halt the debugger. This allows the user to
2085 * run monitor commands to handle the situation.
2086 */
2087 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2088 return retval;
2089 }
2090 /* Since we succeeded, we reset backoff count */
2091 if (backoff_times > 0)
2092 {
2093 LOG_USER("Polling succeeded again");
2094 }
2095 backoff_times = 0;
2096 }
2097 }
2098
2099 return retval;
2100 }
2101
2102 COMMAND_HANDLER(handle_reg_command)
2103 {
2104 struct target *target;
2105 struct reg *reg = NULL;
2106 unsigned count = 0;
2107 char *value;
2108
2109 LOG_DEBUG("-");
2110
2111 target = get_current_target(CMD_CTX);
2112
2113 /* list all available registers for the current target */
2114 if (CMD_ARGC == 0)
2115 {
2116 struct reg_cache *cache = target->reg_cache;
2117
2118 count = 0;
2119 while (cache)
2120 {
2121 unsigned i;
2122
2123 command_print(CMD_CTX, "===== %s", cache->name);
2124
2125 for (i = 0, reg = cache->reg_list;
2126 i < cache->num_regs;
2127 i++, reg++, count++)
2128 {
2129 /* only print cached values if they are valid */
2130 if (reg->valid) {
2131 value = buf_to_str(reg->value,
2132 reg->size, 16);
2133 command_print(CMD_CTX,
2134 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2135 count, reg->name,
2136 reg->size, value,
2137 reg->dirty
2138 ? " (dirty)"
2139 : "");
2140 free(value);
2141 } else {
2142 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2143 count, reg->name,
2144 reg->size) ;
2145 }
2146 }
2147 cache = cache->next;
2148 }
2149
2150 return ERROR_OK;
2151 }
2152
2153 /* access a single register by its ordinal number */
2154 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2155 {
2156 unsigned num;
2157 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2158
2159 struct reg_cache *cache = target->reg_cache;
2160 count = 0;
2161 while (cache)
2162 {
2163 unsigned i;
2164 for (i = 0; i < cache->num_regs; i++)
2165 {
2166 if (count++ == num)
2167 {
2168 reg = &cache->reg_list[i];
2169 break;
2170 }
2171 }
2172 if (reg)
2173 break;
2174 cache = cache->next;
2175 }
2176
2177 if (!reg)
2178 {
2179 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2180 return ERROR_OK;
2181 }
2182 } else /* access a single register by its name */
2183 {
2184 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2185
2186 if (!reg)
2187 {
2188 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2189 return ERROR_OK;
2190 }
2191 }
2192
2193 /* display a register */
2194 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2195 {
2196 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2197 reg->valid = 0;
2198
2199 if (reg->valid == 0)
2200 {
2201 reg->type->get(reg);
2202 }
2203 value = buf_to_str(reg->value, reg->size, 16);
2204 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2205 free(value);
2206 return ERROR_OK;
2207 }
2208
2209 /* set register value */
2210 if (CMD_ARGC == 2)
2211 {
2212 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2213 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2214
2215 reg->type->set(reg, buf);
2216
2217 value = buf_to_str(reg->value, reg->size, 16);
2218 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2219 free(value);
2220
2221 free(buf);
2222
2223 return ERROR_OK;
2224 }
2225
2226 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2227
2228 return ERROR_OK;
2229 }
2230
2231 COMMAND_HANDLER(handle_poll_command)
2232 {
2233 int retval = ERROR_OK;
2234 struct target *target = get_current_target(CMD_CTX);
2235
2236 if (CMD_ARGC == 0)
2237 {
2238 command_print(CMD_CTX, "background polling: %s",
2239 jtag_poll_get_enabled() ? "on" : "off");
2240 command_print(CMD_CTX, "TAP: %s (%s)",
2241 target->tap->dotted_name,
2242 target->tap->enabled ? "enabled" : "disabled");
2243 if (!target->tap->enabled)
2244 return ERROR_OK;
2245 if ((retval = target_poll(target)) != ERROR_OK)
2246 return retval;
2247 if ((retval = target_arch_state(target)) != ERROR_OK)
2248 return retval;
2249 }
2250 else if (CMD_ARGC == 1)
2251 {
2252 bool enable;
2253 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2254 jtag_poll_set_enabled(enable);
2255 }
2256 else
2257 {
2258 return ERROR_COMMAND_SYNTAX_ERROR;
2259 }
2260
2261 return retval;
2262 }
2263
2264 COMMAND_HANDLER(handle_wait_halt_command)
2265 {
2266 if (CMD_ARGC > 1)
2267 return ERROR_COMMAND_SYNTAX_ERROR;
2268
2269 unsigned ms = 5000;
2270 if (1 == CMD_ARGC)
2271 {
2272 int retval = parse_uint(CMD_ARGV[0], &ms);
2273 if (ERROR_OK != retval)
2274 {
2275 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2276 return ERROR_COMMAND_SYNTAX_ERROR;
2277 }
2278 // convert seconds (given) to milliseconds (needed)
2279 ms *= 1000;
2280 }
2281
2282 struct target *target = get_current_target(CMD_CTX);
2283 return target_wait_state(target, TARGET_HALTED, ms);
2284 }
2285
2286 /* wait for target state to change. The trick here is to have a low
2287 * latency for short waits and not to suck up all the CPU time
2288 * on longer waits.
2289 *
2290 * After 500ms, keep_alive() is invoked
2291 */
2292 int target_wait_state(struct target *target, enum target_state state, int ms)
2293 {
2294 int retval;
2295 long long then = 0, cur;
2296 int once = 1;
2297
2298 for (;;)
2299 {
2300 if ((retval = target_poll(target)) != ERROR_OK)
2301 return retval;
2302 if (target->state == state)
2303 {
2304 break;
2305 }
2306 cur = timeval_ms();
2307 if (once)
2308 {
2309 once = 0;
2310 then = timeval_ms();
2311 LOG_DEBUG("waiting for target %s...",
2312 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2313 }
2314
2315 if (cur-then > 500)
2316 {
2317 keep_alive();
2318 }
2319
2320 if ((cur-then) > ms)
2321 {
2322 LOG_ERROR("timed out while waiting for target %s",
2323 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2324 return ERROR_FAIL;
2325 }
2326 }
2327
2328 return ERROR_OK;
2329 }
2330
2331 COMMAND_HANDLER(handle_halt_command)
2332 {
2333 LOG_DEBUG("-");
2334
2335 struct target *target = get_current_target(CMD_CTX);
2336 int retval = target_halt(target);
2337 if (ERROR_OK != retval)
2338 return retval;
2339
2340 if (CMD_ARGC == 1)
2341 {
2342 unsigned wait_local;
2343 retval = parse_uint(CMD_ARGV[0], &wait_local);
2344 if (ERROR_OK != retval)
2345 return ERROR_COMMAND_SYNTAX_ERROR;
2346 if (!wait_local)
2347 return ERROR_OK;
2348 }
2349
2350 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2351 }
2352
2353 COMMAND_HANDLER(handle_soft_reset_halt_command)
2354 {
2355 struct target *target = get_current_target(CMD_CTX);
2356
2357 LOG_USER("requesting target halt and executing a soft reset");
2358
2359 target->type->soft_reset_halt(target);
2360
2361 return ERROR_OK;
2362 }
2363
2364 COMMAND_HANDLER(handle_reset_command)
2365 {
2366 if (CMD_ARGC > 1)
2367 return ERROR_COMMAND_SYNTAX_ERROR;
2368
2369 enum target_reset_mode reset_mode = RESET_RUN;
2370 if (CMD_ARGC == 1)
2371 {
2372 const Jim_Nvp *n;
2373 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2374 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2375 return ERROR_COMMAND_SYNTAX_ERROR;
2376 }
2377 reset_mode = n->value;
2378 }
2379
2380 /* reset *all* targets */
2381 return target_process_reset(CMD_CTX, reset_mode);
2382 }
2383
2384
2385 COMMAND_HANDLER(handle_resume_command)
2386 {
2387 int current = 1;
2388 if (CMD_ARGC > 1)
2389 return ERROR_COMMAND_SYNTAX_ERROR;
2390
2391 struct target *target = get_current_target(CMD_CTX);
2392 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2393
2394 /* with no CMD_ARGV, resume from current pc, addr = 0,
2395 * with one arguments, addr = CMD_ARGV[0],
2396 * handle breakpoints, not debugging */
2397 uint32_t addr = 0;
2398 if (CMD_ARGC == 1)
2399 {
2400 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2401 current = 0;
2402 }
2403
2404 return target_resume(target, current, addr, 1, 0);
2405 }
2406
2407 COMMAND_HANDLER(handle_step_command)
2408 {
2409 if (CMD_ARGC > 1)
2410 return ERROR_COMMAND_SYNTAX_ERROR;
2411
2412 LOG_DEBUG("-");
2413
2414 /* with no CMD_ARGV, step from current pc, addr = 0,
2415 * with one argument addr = CMD_ARGV[0],
2416 * handle breakpoints, debugging */
2417 uint32_t addr = 0;
2418 int current_pc = 1;
2419 if (CMD_ARGC == 1)
2420 {
2421 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2422 current_pc = 0;
2423 }
2424
2425 struct target *target = get_current_target(CMD_CTX);
2426
2427 return target->type->step(target, current_pc, addr, 1);
2428 }
2429
2430 static void handle_md_output(struct command_context *cmd_ctx,
2431 struct target *target, uint32_t address, unsigned size,
2432 unsigned count, const uint8_t *buffer)
2433 {
2434 const unsigned line_bytecnt = 32;
2435 unsigned line_modulo = line_bytecnt / size;
2436
2437 char output[line_bytecnt * 4 + 1];
2438 unsigned output_len = 0;
2439
2440 const char *value_fmt;
2441 switch (size) {
2442 case 4: value_fmt = "%8.8x "; break;
2443 case 2: value_fmt = "%4.4x "; break;
2444 case 1: value_fmt = "%2.2x "; break;
2445 default:
2446 /* "can't happen", caller checked */
2447 LOG_ERROR("invalid memory read size: %u", size);
2448 return;
2449 }
2450
2451 for (unsigned i = 0; i < count; i++)
2452 {
2453 if (i % line_modulo == 0)
2454 {
2455 output_len += snprintf(output + output_len,
2456 sizeof(output) - output_len,
2457 "0x%8.8x: ",
2458 (unsigned)(address + (i*size)));
2459 }
2460
2461 uint32_t value = 0;
2462 const uint8_t *value_ptr = buffer + i * size;
2463 switch (size) {
2464 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2465 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2466 case 1: value = *value_ptr;
2467 }
2468 output_len += snprintf(output + output_len,
2469 sizeof(output) - output_len,
2470 value_fmt, value);
2471
2472 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2473 {
2474 command_print(cmd_ctx, "%s", output);
2475 output_len = 0;
2476 }
2477 }
2478 }
2479
2480 COMMAND_HANDLER(handle_md_command)
2481 {
2482 if (CMD_ARGC < 1)
2483 return ERROR_COMMAND_SYNTAX_ERROR;
2484
2485 unsigned size = 0;
2486 switch (CMD_NAME[2]) {
2487 case 'w': size = 4; break;
2488 case 'h': size = 2; break;
2489 case 'b': size = 1; break;
2490 default: return ERROR_COMMAND_SYNTAX_ERROR;
2491 }
2492
2493 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2494 int (*fn)(struct target *target,
2495 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2496 if (physical)
2497 {
2498 CMD_ARGC--;
2499 CMD_ARGV++;
2500 fn=target_read_phys_memory;
2501 } else
2502 {
2503 fn=target_read_memory;
2504 }
2505 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2506 {
2507 return ERROR_COMMAND_SYNTAX_ERROR;
2508 }
2509
2510 uint32_t address;
2511 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2512
2513 unsigned count = 1;
2514 if (CMD_ARGC == 2)
2515 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2516
2517 uint8_t *buffer = calloc(count, size);
2518
2519 struct target *target = get_current_target(CMD_CTX);
2520 int retval = fn(target, address, size, count, buffer);
2521 if (ERROR_OK == retval)
2522 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2523
2524 free(buffer);
2525
2526 return retval;
2527 }
2528
2529 typedef int (*target_write_fn)(struct target *target,
2530 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2531
2532 static int target_write_memory_fast(struct target *target,
2533 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2534 {
2535 return target_write_buffer(target, address, size * count, buffer);
2536 }
2537
2538 static int target_fill_mem(struct target *target,
2539 uint32_t address,
2540 target_write_fn fn,
2541 unsigned data_size,
2542 /* value */
2543 uint32_t b,
2544 /* count */
2545 unsigned c)
2546 {
2547 /* We have to write in reasonably large chunks to be able
2548 * to fill large memory areas with any sane speed */
2549 const unsigned chunk_size = 16384;
2550 uint8_t *target_buf = malloc(chunk_size * data_size);
2551 if (target_buf == NULL)
2552 {
2553 LOG_ERROR("Out of memory");
2554 return ERROR_FAIL;
2555 }
2556
2557 for (unsigned i = 0; i < chunk_size; i ++)
2558 {
2559 switch (data_size)
2560 {
2561 case 4:
2562 target_buffer_set_u32(target, target_buf + i*data_size, b);
2563 break;
2564 case 2:
2565 target_buffer_set_u16(target, target_buf + i*data_size, b);
2566 break;
2567 case 1:
2568 target_buffer_set_u8(target, target_buf + i*data_size, b);
2569 break;
2570 default:
2571 exit(-1);
2572 }
2573 }
2574
2575 int retval = ERROR_OK;
2576
2577 for (unsigned x = 0; x < c; x += chunk_size)
2578 {
2579 unsigned current;
2580 current = c - x;
2581 if (current > chunk_size)
2582 {
2583 current = chunk_size;
2584 }
2585 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2586 if (retval != ERROR_OK)
2587 {
2588 break;
2589 }
2590 /* avoid GDB timeouts */
2591 keep_alive();
2592 }
2593 free(target_buf);
2594
2595 return retval;
2596 }
2597
2598
2599 COMMAND_HANDLER(handle_mw_command)
2600 {
2601 if (CMD_ARGC < 2)
2602 {
2603 return ERROR_COMMAND_SYNTAX_ERROR;
2604 }
2605 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2606 target_write_fn fn;
2607 if (physical)
2608 {
2609 CMD_ARGC--;
2610 CMD_ARGV++;
2611 fn=target_write_phys_memory;
2612 } else
2613 {
2614 fn = target_write_memory_fast;
2615 }
2616 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2617 return ERROR_COMMAND_SYNTAX_ERROR;
2618
2619 uint32_t address;
2620 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2621
2622 uint32_t value;
2623 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2624
2625 unsigned count = 1;
2626 if (CMD_ARGC == 3)
2627 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2628
2629 struct target *target = get_current_target(CMD_CTX);
2630 unsigned wordsize;
2631 switch (CMD_NAME[2])
2632 {
2633 case 'w':
2634 wordsize = 4;
2635 break;
2636 case 'h':
2637 wordsize = 2;
2638 break;
2639 case 'b':
2640 wordsize = 1;
2641 break;
2642 default:
2643 return ERROR_COMMAND_SYNTAX_ERROR;
2644 }
2645
2646 return target_fill_mem(target, address, fn, wordsize, value, count);
2647 }
2648
2649 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2650 uint32_t *min_address, uint32_t *max_address)
2651 {
2652 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2653 return ERROR_COMMAND_SYNTAX_ERROR;
2654
2655 /* a base address isn't always necessary,
2656 * default to 0x0 (i.e. don't relocate) */
2657 if (CMD_ARGC >= 2)
2658 {
2659 uint32_t addr;
2660 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2661 image->base_address = addr;
2662 image->base_address_set = 1;
2663 }
2664 else
2665 image->base_address_set = 0;
2666
2667 image->start_address_set = 0;
2668
2669 if (CMD_ARGC >= 4)
2670 {
2671 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2672 }
2673 if (CMD_ARGC == 5)
2674 {
2675 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2676 // use size (given) to find max (required)
2677 *max_address += *min_address;
2678 }
2679
2680 if (*min_address > *max_address)
2681 return ERROR_COMMAND_SYNTAX_ERROR;
2682
2683 return ERROR_OK;
2684 }
2685
2686 COMMAND_HANDLER(handle_load_image_command)
2687 {
2688 uint8_t *buffer;
2689 size_t buf_cnt;
2690 uint32_t image_size;
2691 uint32_t min_address = 0;
2692 uint32_t max_address = 0xffffffff;
2693 int i;
2694 struct image image;
2695
2696 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2697 &image, &min_address, &max_address);
2698 if (ERROR_OK != retval)
2699 return retval;
2700
2701 struct target *target = get_current_target(CMD_CTX);
2702
2703 struct duration bench;
2704 duration_start(&bench);
2705
2706 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2707 {
2708 return ERROR_OK;
2709 }
2710
2711 image_size = 0x0;
2712 retval = ERROR_OK;
2713 for (i = 0; i < image.num_sections; i++)
2714 {
2715 buffer = malloc(image.sections[i].size);
2716 if (buffer == NULL)
2717 {
2718 command_print(CMD_CTX,
2719 "error allocating buffer for section (%d bytes)",
2720 (int)(image.sections[i].size));
2721 break;
2722 }
2723
2724 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2725 {
2726 free(buffer);
2727 break;
2728 }
2729
2730 uint32_t offset = 0;
2731 uint32_t length = buf_cnt;
2732
2733 /* DANGER!!! beware of unsigned comparision here!!! */
2734
2735 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2736 (image.sections[i].base_address < max_address))
2737 {
2738 if (image.sections[i].base_address < min_address)
2739 {
2740 /* clip addresses below */
2741 offset += min_address-image.sections[i].base_address;
2742 length -= offset;
2743 }
2744
2745 if (image.sections[i].base_address + buf_cnt > max_address)
2746 {
2747 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2748 }
2749
2750 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2751 {
2752 free(buffer);
2753 break;
2754 }
2755 image_size += length;
2756 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2757 (unsigned int)length,
2758 image.sections[i].base_address + offset);
2759 }
2760
2761 free(buffer);
2762 }
2763
2764 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2765 {
2766 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2767 "in %fs (%0.3f KiB/s)", image_size,
2768 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2769 }
2770
2771 image_close(&image);
2772
2773 return retval;
2774
2775 }
2776
2777 COMMAND_HANDLER(handle_dump_image_command)
2778 {
2779 struct fileio fileio;
2780 uint8_t buffer[560];
2781 int retval, retvaltemp;
2782 uint32_t address, size;
2783 struct duration bench;
2784 struct target *target = get_current_target(CMD_CTX);
2785
2786 if (CMD_ARGC != 3)
2787 return ERROR_COMMAND_SYNTAX_ERROR;
2788
2789 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2790 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2791
2792 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2793 if (retval != ERROR_OK)
2794 return retval;
2795
2796 duration_start(&bench);
2797
2798 retval = ERROR_OK;
2799 while (size > 0)
2800 {
2801 size_t size_written;
2802 uint32_t this_run_size = (size > 560) ? 560 : size;
2803 retval = target_read_buffer(target, address, this_run_size, buffer);
2804 if (retval != ERROR_OK)
2805 {
2806 break;
2807 }
2808
2809 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2810 if (retval != ERROR_OK)
2811 {
2812 break;
2813 }
2814
2815 size -= this_run_size;
2816 address += this_run_size;
2817 }
2818
2819 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2820 {
2821 int filesize;
2822 retval = fileio_size(&fileio, &filesize);
2823 if (retval != ERROR_OK)
2824 return retval;
2825 command_print(CMD_CTX,
2826 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2827 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2828 }
2829
2830 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2831 return retvaltemp;
2832
2833 return retval;
2834 }
2835
2836 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2837 {
2838 uint8_t *buffer;
2839 size_t buf_cnt;
2840 uint32_t image_size;
2841 int i;
2842 int retval;
2843 uint32_t checksum = 0;
2844 uint32_t mem_checksum = 0;
2845
2846 struct image image;
2847
2848 struct target *target = get_current_target(CMD_CTX);
2849
2850 if (CMD_ARGC < 1)
2851 {
2852 return ERROR_COMMAND_SYNTAX_ERROR;
2853 }
2854
2855 if (!target)
2856 {
2857 LOG_ERROR("no target selected");
2858 return ERROR_FAIL;
2859 }
2860
2861 struct duration bench;
2862 duration_start(&bench);
2863
2864 if (CMD_ARGC >= 2)
2865 {
2866 uint32_t addr;
2867 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2868 image.base_address = addr;
2869 image.base_address_set = 1;
2870 }
2871 else
2872 {
2873 image.base_address_set = 0;
2874 image.base_address = 0x0;
2875 }
2876
2877 image.start_address_set = 0;
2878
2879 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2880 {
2881 return retval;
2882 }
2883
2884 image_size = 0x0;
2885 int diffs = 0;
2886 retval = ERROR_OK;
2887 for (i = 0; i < image.num_sections; i++)
2888 {
2889 buffer = malloc(image.sections[i].size);
2890 if (buffer == NULL)
2891 {
2892 command_print(CMD_CTX,
2893 "error allocating buffer for section (%d bytes)",
2894 (int)(image.sections[i].size));
2895 break;
2896 }
2897 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2898 {
2899 free(buffer);
2900 break;
2901 }
2902
2903 if (verify)
2904 {
2905 /* calculate checksum of image */
2906 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2907 if (retval != ERROR_OK)
2908 {
2909 free(buffer);
2910 break;
2911 }
2912
2913 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2914 if (retval != ERROR_OK)
2915 {
2916 free(buffer);
2917 break;
2918 }
2919
2920 if (checksum != mem_checksum)
2921 {
2922 /* failed crc checksum, fall back to a binary compare */
2923 uint8_t *data;
2924
2925 if (diffs == 0)
2926 {
2927 LOG_ERROR("checksum mismatch - attempting binary compare");
2928 }
2929
2930 data = (uint8_t*)malloc(buf_cnt);
2931
2932 /* Can we use 32bit word accesses? */
2933 int size = 1;
2934 int count = buf_cnt;
2935 if ((count % 4) == 0)
2936 {
2937 size *= 4;
2938 count /= 4;
2939 }
2940 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2941 if (retval == ERROR_OK)
2942 {
2943 uint32_t t;
2944 for (t = 0; t < buf_cnt; t++)
2945 {
2946 if (data[t] != buffer[t])
2947 {
2948 command_print(CMD_CTX,
2949 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2950 diffs,
2951 (unsigned)(t + image.sections[i].base_address),
2952 data[t],
2953 buffer[t]);
2954 if (diffs++ >= 127)
2955 {
2956 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2957 free(data);
2958 free(buffer);
2959 goto done;
2960 }
2961 }
2962 keep_alive();
2963 }
2964 }
2965 free(data);
2966 }
2967 } else
2968 {
2969 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2970 image.sections[i].base_address,
2971 buf_cnt);
2972 }
2973
2974 free(buffer);
2975 image_size += buf_cnt;
2976 }
2977 if (diffs > 0)
2978 {
2979 command_print(CMD_CTX, "No more differences found.");
2980 }
2981 done:
2982 if (diffs > 0)
2983 {
2984 retval = ERROR_FAIL;
2985 }
2986 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2987 {
2988 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2989 "in %fs (%0.3f KiB/s)", image_size,
2990 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2991 }
2992
2993 image_close(&image);
2994
2995 return retval;
2996 }
2997
2998 COMMAND_HANDLER(handle_verify_image_command)
2999 {
3000 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3001 }
3002
3003 COMMAND_HANDLER(handle_test_image_command)
3004 {
3005 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3006 }
3007
3008 static int handle_bp_command_list(struct command_context *cmd_ctx)
3009 {
3010 struct target *target = get_current_target(cmd_ctx);
3011 struct breakpoint *breakpoint = target->breakpoints;
3012 while (breakpoint)
3013 {
3014 if (breakpoint->type == BKPT_SOFT)
3015 {
3016 char* buf = buf_to_str(breakpoint->orig_instr,
3017 breakpoint->length, 16);
3018 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3019 breakpoint->address,
3020 breakpoint->length,
3021 breakpoint->set, buf);
3022 free(buf);
3023 }
3024 else
3025 {
3026 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3027 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3028 breakpoint->asid,
3029 breakpoint->length, breakpoint->set);
3030 else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3031 {
3032 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3033 breakpoint->address,
3034 breakpoint->length, breakpoint->set);
3035 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3036 breakpoint->asid);
3037 }
3038 else
3039 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3040 breakpoint->address,
3041 breakpoint->length, breakpoint->set);
3042 }
3043
3044 breakpoint = breakpoint->next;
3045 }
3046 return ERROR_OK;
3047 }
3048
3049 static int handle_bp_command_set(struct command_context *cmd_ctx,
3050 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3051 {
3052 struct target *target = get_current_target(cmd_ctx);
3053
3054 if (asid == 0)
3055 { int retval = breakpoint_add(target, addr, length, hw);
3056 if (ERROR_OK == retval)
3057 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3058 else
3059 {
3060 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3061 return retval;
3062 }
3063 }
3064 else if (addr == 0)
3065 {
3066 int retval = context_breakpoint_add(target, asid, length, hw);
3067 if (ERROR_OK == retval)
3068 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3069 else
3070 {
3071 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3072 return retval;
3073 }
3074 }
3075 else
3076 {
3077 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3078 if(ERROR_OK == retval)
3079 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3080 else
3081 {
3082 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3083 return retval;
3084 }
3085 }
3086 return ERROR_OK;
3087
3088
3089 }
3090
3091 COMMAND_HANDLER(handle_bp_command)
3092 {
3093 uint32_t addr;
3094 uint32_t asid;
3095 uint32_t length;
3096 int hw = BKPT_SOFT;
3097 switch(CMD_ARGC)
3098 {
3099 case 0:
3100 return handle_bp_command_list(CMD_CTX);
3101 case 3:
3102
3103 if(strcmp(CMD_ARGV[2], "hw") == 0)
3104 {
3105 hw = BKPT_HARD;
3106 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3107
3108 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3109
3110 asid = 0;
3111 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3112 }
3113 else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3114 {
3115 hw = BKPT_HARD;
3116 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3117 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3118 addr = 0;
3119 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3120 }
3121
3122 case 4:
3123 hw = BKPT_HARD;
3124 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3125 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3126 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3127 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3128 default:
3129 command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3130 return ERROR_COMMAND_SYNTAX_ERROR;
3131 }
3132
3133
3134 }
3135
3136 COMMAND_HANDLER(handle_rbp_command)
3137 {
3138 if (CMD_ARGC != 1)
3139 return ERROR_COMMAND_SYNTAX_ERROR;
3140
3141 uint32_t addr;
3142 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3143
3144 struct target *target = get_current_target(CMD_CTX);
3145 breakpoint_remove(target, addr);
3146
3147 return ERROR_OK;
3148 }
3149
3150 COMMAND_HANDLER(handle_wp_command)
3151 {
3152 struct target *target = get_current_target(CMD_CTX);
3153
3154 if (CMD_ARGC == 0)
3155 {
3156 struct watchpoint *watchpoint = target->watchpoints;
3157
3158 while (watchpoint)
3159 {
3160 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3161 ", len: 0x%8.8" PRIx32
3162 ", r/w/a: %i, value: 0x%8.8" PRIx32
3163 ", mask: 0x%8.8" PRIx32,
3164 watchpoint->address,
3165 watchpoint->length,
3166 (int)watchpoint->rw,
3167 watchpoint->value,
3168 watchpoint->mask);
3169 watchpoint = watchpoint->next;
3170 }
3171 return ERROR_OK;
3172 }
3173
3174 enum watchpoint_rw type = WPT_ACCESS;
3175 uint32_t addr = 0;
3176 uint32_t length = 0;
3177 uint32_t data_value = 0x0;
3178 uint32_t data_mask = 0xffffffff;
3179
3180 switch (CMD_ARGC)
3181 {
3182 case 5:
3183 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3184 // fall through
3185 case 4:
3186 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3187 // fall through
3188 case 3:
3189 switch (CMD_ARGV[2][0])
3190 {
3191 case 'r':
3192 type = WPT_READ;
3193 break;
3194 case 'w':
3195 type = WPT_WRITE;
3196 break;
3197 case 'a':
3198 type = WPT_ACCESS;
3199 break;
3200 default:
3201 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3202 return ERROR_COMMAND_SYNTAX_ERROR;
3203 }
3204 // fall through
3205 case 2:
3206 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3207 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3208 break;
3209
3210 default:
3211 command_print(CMD_CTX, "usage: wp [address length "
3212 "[(r|w|a) [value [mask]]]]");
3213 return ERROR_COMMAND_SYNTAX_ERROR;
3214 }
3215
3216 int retval = watchpoint_add(target, addr, length, type,
3217 data_value, data_mask);
3218 if (ERROR_OK != retval)
3219 LOG_ERROR("Failure setting watchpoints");
3220
3221 return retval;
3222 }
3223
3224 COMMAND_HANDLER(handle_rwp_command)
3225 {
3226 if (CMD_ARGC != 1)
3227 return ERROR_COMMAND_SYNTAX_ERROR;
3228
3229 uint32_t addr;
3230 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3231
3232 struct target *target = get_current_target(CMD_CTX);
3233 watchpoint_remove(target, addr);
3234
3235 return ERROR_OK;
3236 }
3237
3238
3239 /**
3240 * Translate a virtual address to a physical address.
3241 *
3242 * The low-level target implementation must have logged a detailed error
3243 * which is forwarded to telnet/GDB session.
3244 */
3245 COMMAND_HANDLER(handle_virt2phys_command)
3246 {
3247 if (CMD_ARGC != 1)
3248 return ERROR_COMMAND_SYNTAX_ERROR;
3249
3250 uint32_t va;
3251 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3252 uint32_t pa;
3253
3254 struct target *target = get_current_target(CMD_CTX);
3255 int retval = target->type->virt2phys(target, va, &pa);
3256 if (retval == ERROR_OK)
3257 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3258
3259 return retval;
3260 }
3261
3262 static void writeData(FILE *f, const void *data, size_t len)
3263 {
3264 size_t written = fwrite(data, 1, len, f);
3265 if (written != len)
3266 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3267 }
3268
3269 static void writeLong(FILE *f, int l)
3270 {
3271 int i;
3272 for (i = 0; i < 4; i++)
3273 {
3274 char c = (l >> (i*8))&0xff;
3275 writeData(f, &c, 1);
3276 }
3277
3278 }
3279
3280 static void writeString(FILE *f, char *s)
3281 {
3282 writeData(f, s, strlen(s));
3283 }
3284
3285 /* Dump a gmon.out histogram file. */
3286 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3287 {
3288 uint32_t i;
3289 FILE *f = fopen(filename, "w");
3290 if (f == NULL)
3291 return;
3292 writeString(f, "gmon");
3293 writeLong(f, 0x00000001); /* Version */
3294 writeLong(f, 0); /* padding */
3295 writeLong(f, 0); /* padding */
3296 writeLong(f, 0); /* padding */
3297
3298 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3299 writeData(f, &zero, 1);
3300
3301 /* figure out bucket size */
3302 uint32_t min = samples[0];
3303 uint32_t max = samples[0];
3304 for (i = 0; i < sampleNum; i++)
3305 {
3306 if (min > samples[i])
3307 {
3308 min = samples[i];
3309 }
3310 if (max < samples[i])
3311 {
3312 max = samples[i];
3313 }
3314 }
3315
3316 int addressSpace = (max-min + 1);
3317
3318 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3319 uint32_t length = addressSpace;
3320 if (length > maxBuckets)
3321 {
3322 length = maxBuckets;
3323 }
3324 int *buckets = malloc(sizeof(int)*length);
3325 if (buckets == NULL)
3326 {
3327 fclose(f);
3328 return;
3329 }
3330 memset(buckets, 0, sizeof(int)*length);
3331 for (i = 0; i < sampleNum;i++)
3332 {
3333 uint32_t address = samples[i];
3334 long long a = address-min;
3335 long long b = length-1;
3336 long long c = addressSpace-1;
3337 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3338 buckets[index_t]++;
3339 }
3340
3341 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3342 writeLong(f, min); /* low_pc */
3343 writeLong(f, max); /* high_pc */
3344 writeLong(f, length); /* # of samples */
3345 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3346 writeString(f, "seconds");
3347 for (i = 0; i < (15-strlen("seconds")); i++)
3348 writeData(f, &zero, 1);
3349 writeString(f, "s");
3350
3351 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3352
3353 char *data = malloc(2*length);
3354 if (data != NULL)
3355 {
3356 for (i = 0; i < length;i++)
3357 {
3358 int val;
3359 val = buckets[i];
3360 if (val > 65535)
3361 {
3362 val = 65535;
3363 }
3364 data[i*2]=val&0xff;
3365 data[i*2 + 1]=(val >> 8)&0xff;
3366 }
3367 free(buckets);
3368 writeData(f, data, length * 2);
3369 free(data);
3370 } else
3371 {
3372 free(buckets);
3373 }
3374
3375 fclose(f);
3376 }
3377
3378 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3379 * which will be used as a random sampling of PC */
3380 COMMAND_HANDLER(handle_profile_command)
3381 {
3382 struct target *target = get_current_target(CMD_CTX);
3383 struct timeval timeout, now;
3384
3385 gettimeofday(&timeout, NULL);
3386 if (CMD_ARGC != 2)
3387 {
3388 return ERROR_COMMAND_SYNTAX_ERROR;
3389 }
3390 unsigned offset;
3391 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3392
3393 timeval_add_time(&timeout, offset, 0);
3394
3395 /**
3396 * @todo: Some cores let us sample the PC without the
3397 * annoying halt/resume step; for example, ARMv7 PCSR.
3398 * Provide a way to use that more efficient mechanism.
3399 */
3400
3401 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3402
3403 static const int maxSample = 10000;
3404 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3405 if (samples == NULL)
3406 return ERROR_OK;
3407
3408 int numSamples = 0;
3409 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3410 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3411
3412 for (;;)
3413 {
3414 int retval;
3415 target_poll(target);
3416 if (target->state == TARGET_HALTED)
3417 {
3418 uint32_t t=*((uint32_t *)reg->value);
3419 samples[numSamples++]=t;
3420 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3421 target_poll(target);
3422 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3423 } else if (target->state == TARGET_RUNNING)
3424 {
3425 /* We want to quickly sample the PC. */
3426 if ((retval = target_halt(target)) != ERROR_OK)
3427 {
3428 free(samples);
3429 return retval;
3430 }
3431 } else
3432 {
3433 command_print(CMD_CTX, "Target not halted or running");
3434 retval = ERROR_OK;
3435 break;
3436 }
3437 if (retval != ERROR_OK)
3438 {
3439 break;
3440 }
3441
3442 gettimeofday(&now, NULL);
3443 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3444 {
3445 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3446 if ((retval = target_poll(target)) != ERROR_OK)
3447 {
3448 free(samples);
3449 return retval;
3450 }
3451 if (target->state == TARGET_HALTED)
3452 {
3453 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3454 }
3455 if ((retval = target_poll(target)) != ERROR_OK)
3456 {
3457 free(samples);
3458 return retval;
3459 }
3460 writeGmon(samples, numSamples, CMD_ARGV[1]);
3461 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3462 break;
3463 }
3464 }
3465 free(samples);
3466
3467 return ERROR_OK;
3468 }
3469
3470 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3471 {
3472 char *namebuf;
3473 Jim_Obj *nameObjPtr, *valObjPtr;
3474 int result;
3475
3476 namebuf = alloc_printf("%s(%d)", varname, idx);
3477 if (!namebuf)
3478 return JIM_ERR;
3479
3480 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3481 valObjPtr = Jim_NewIntObj(interp, val);
3482 if (!nameObjPtr || !valObjPtr)
3483 {
3484 free(namebuf);
3485 return JIM_ERR;
3486 }
3487
3488 Jim_IncrRefCount(nameObjPtr);
3489 Jim_IncrRefCount(valObjPtr);
3490 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3491 Jim_DecrRefCount(interp, nameObjPtr);
3492 Jim_DecrRefCount(interp, valObjPtr);
3493 free(namebuf);
3494 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3495 return result;
3496 }
3497
3498 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3499 {
3500 struct command_context *context;
3501 struct target *target;
3502
3503 context = current_command_context(interp);
3504 assert (context != NULL);
3505
3506 target = get_current_target(context);
3507 if (target == NULL)
3508 {
3509 LOG_ERROR("mem2array: no current target");
3510 return JIM_ERR;
3511 }
3512
3513 return target_mem2array(interp, target, argc-1, argv + 1);
3514 }
3515
3516 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3517 {
3518 long l;
3519 uint32_t width;
3520 int len;
3521 uint32_t addr;
3522 uint32_t count;
3523 uint32_t v;
3524 const char *varname;
3525 int n, e, retval;
3526 uint32_t i;
3527
3528 /* argv[1] = name of array to receive the data
3529 * argv[2] = desired width
3530 * argv[3] = memory address
3531 * argv[4] = count of times to read
3532 */
3533 if (argc != 4) {
3534 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3535 return JIM_ERR;
3536 }
3537 varname = Jim_GetString(argv[0], &len);
3538 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3539
3540 e = Jim_GetLong(interp, argv[1], &l);
3541 width = l;
3542 if (e != JIM_OK) {
3543 return e;
3544 }
3545
3546 e = Jim_GetLong(interp, argv[2], &l);
3547 addr = l;
3548 if (e != JIM_OK) {
3549 return e;
3550 }
3551 e = Jim_GetLong(interp, argv[3], &l);
3552 len = l;
3553 if (e != JIM_OK) {
3554 return e;
3555 }
3556 switch (width) {
3557 case 8:
3558 width = 1;
3559 break;
3560 case 16:
3561 width = 2;
3562 break;
3563 case 32:
3564 width = 4;
3565 break;
3566 default:
3567 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3568 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3569 return JIM_ERR;
3570 }
3571 if (len == 0) {
3572 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3573 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3574 return JIM_ERR;
3575 }
3576 if ((addr + (len * width)) < addr) {
3577 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3578 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3579 return JIM_ERR;
3580 }
3581 /* absurd transfer size? */
3582 if (len > 65536) {
3583 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3584 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3585 return JIM_ERR;
3586 }
3587
3588 if ((width == 1) ||
3589 ((width == 2) && ((addr & 1) == 0)) ||
3590 ((width == 4) && ((addr & 3) == 0))) {
3591 /* all is well */
3592 } else {
3593 char buf[100];
3594 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3595 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3596 addr,
3597 width);
3598 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3599 return JIM_ERR;
3600 }
3601
3602 /* Transfer loop */
3603
3604 /* index counter */
3605 n = 0;
3606
3607 size_t buffersize = 4096;
3608 uint8_t *buffer = malloc(buffersize);
3609 if (buffer == NULL)
3610 return JIM_ERR;
3611
3612 /* assume ok */
3613 e = JIM_OK;
3614 while (len) {
3615 /* Slurp... in buffer size chunks */
3616
3617 count = len; /* in objects.. */
3618 if (count > (buffersize/width)) {
3619 count = (buffersize/width);
3620 }
3621
3622 retval = target_read_memory(target, addr, width, count, buffer);
3623 if (retval != ERROR_OK) {
3624 /* BOO !*/
3625 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3626 (unsigned int)addr,
3627 (int)width,
3628 (int)count);
3629 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3630 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3631 e = JIM_ERR;
3632 len = 0;
3633 } else {
3634 v = 0; /* shut up gcc */
3635 for (i = 0 ;i < count ;i++, n++) {
3636 switch (width) {
3637 case 4:
3638 v = target_buffer_get_u32(target, &buffer[i*width]);
3639 break;
3640 case 2:
3641 v = target_buffer_get_u16(target, &buffer[i*width]);
3642 break;
3643 case 1:
3644 v = buffer[i] & 0x0ff;
3645 break;
3646 }
3647 new_int_array_element(interp, varname, n, v);
3648 }
3649 len -= count;
3650 }
3651 }
3652
3653 free(buffer);
3654
3655 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3656
3657 return JIM_OK;
3658 }
3659
3660 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3661 {
3662 char *namebuf;
3663 Jim_Obj *nameObjPtr, *valObjPtr;
3664 int result;
3665 long l;
3666
3667 namebuf = alloc_printf("%s(%d)", varname, idx);
3668 if (!namebuf)
3669 return JIM_ERR;
3670
3671 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3672 if (!nameObjPtr)
3673 {
3674 free(namebuf);
3675 return JIM_ERR;
3676 }
3677
3678 Jim_IncrRefCount(nameObjPtr);
3679 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3680 Jim_DecrRefCount(interp, nameObjPtr);
3681 free(namebuf);
3682 if (valObjPtr == NULL)
3683 return JIM_ERR;
3684
3685 result = Jim_GetLong(interp, valObjPtr, &l);
3686 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3687 *val = l;
3688 return result;
3689 }
3690
3691 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3692 {
3693 struct command_context *context;
3694 struct target *target;
3695
3696 context = current_command_context(interp);
3697 assert (context != NULL);
3698
3699 target = get_current_target(context);
3700 if (target == NULL) {
3701 LOG_ERROR("array2mem: no current target");
3702 return JIM_ERR;
3703 }
3704
3705 return target_array2mem(interp,target, argc-1, argv + 1);
3706 }
3707
3708 static int target_array2mem(Jim_Interp *interp, struct target *target,
3709 int argc, Jim_Obj *const *argv)
3710 {
3711 long l;
3712 uint32_t width;
3713 int len;
3714 uint32_t addr;
3715 uint32_t count;
3716 uint32_t v;
3717 const char *varname;
3718 int n, e, retval;
3719 uint32_t i;
3720
3721 /* argv[1] = name of array to get the data
3722 * argv[2] = desired width
3723 * argv[3] = memory address
3724 * argv[4] = count to write
3725 */
3726 if (argc != 4) {
3727 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3728 return JIM_ERR;
3729 }
3730 varname = Jim_GetString(argv[0], &len);
3731 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3732
3733 e = Jim_GetLong(interp, argv[1], &l);
3734 width = l;
3735 if (e != JIM_OK) {
3736 return e;
3737 }
3738
3739 e = Jim_GetLong(interp, argv[2], &l);
3740 addr = l;
3741 if (e != JIM_OK) {
3742 return e;
3743 }
3744 e = Jim_GetLong(interp, argv[3], &l);
3745 len = l;
3746 if (e != JIM_OK) {
3747 return e;
3748 }
3749 switch (width) {
3750 case 8:
3751 width = 1;
3752 break;
3753 case 16:
3754 width = 2;
3755 break;
3756 case 32:
3757 width = 4;
3758 break;
3759 default:
3760 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3761 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3762 return JIM_ERR;
3763 }
3764 if (len == 0) {
3765 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3766 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3767 return JIM_ERR;
3768 }
3769 if ((addr + (len * width)) < addr) {
3770 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3771 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3772 return JIM_ERR;
3773 }
3774 /* absurd transfer size? */
3775 if (len > 65536) {
3776 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3777 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3778 return JIM_ERR;
3779 }
3780
3781 if ((width == 1) ||
3782 ((width == 2) && ((addr & 1) == 0)) ||
3783 ((width == 4) && ((addr & 3) == 0))) {
3784 /* all is well */
3785 } else {
3786 char buf[100];
3787 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3788 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3789 (unsigned int)addr,
3790 (int)width);
3791 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3792 return JIM_ERR;
3793 }
3794
3795 /* Transfer loop */
3796
3797 /* index counter */
3798 n = 0;
3799 /* assume ok */
3800 e = JIM_OK;
3801
3802 size_t buffersize = 4096;
3803 uint8_t *buffer = malloc(buffersize);
3804 if (buffer == NULL)
3805 return JIM_ERR;
3806
3807 while (len) {
3808 /* Slurp... in buffer size chunks */
3809
3810 count = len; /* in objects.. */
3811 if (count > (buffersize/width)) {
3812 count = (buffersize/width);
3813 }
3814
3815 v = 0; /* shut up gcc */
3816 for (i = 0 ;i < count ;i++, n++) {
3817 get_int_array_element(interp, varname, n, &v);
3818 switch (width) {
3819 case 4:
3820 target_buffer_set_u32(target, &buffer[i*width], v);
3821 break;
3822 case 2:
3823 target_buffer_set_u16(target, &buffer[i*width], v);
3824 break;
3825 case 1:
3826 buffer[i] = v & 0x0ff;
3827 break;
3828 }
3829 }
3830 len -= count;
3831
3832 retval = target_write_memory(target, addr, width, count, buffer);
3833 if (retval != ERROR_OK) {
3834 /* BOO !*/
3835 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3836 (unsigned int)addr,
3837 (int)width,
3838 (int)count);
3839 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3840 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3841 e = JIM_ERR;
3842 len = 0;
3843 }
3844 }
3845
3846 free(buffer);
3847
3848 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3849
3850 return JIM_OK;
3851 }
3852
3853 /* FIX? should we propagate errors here rather than printing them
3854 * and continuing?
3855 */
3856 void target_handle_event(struct target *target, enum target_event e)
3857 {
3858 struct target_event_action *teap;
3859
3860 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3861 if (teap->event == e) {
3862 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3863 target->target_number,
3864 target_name(target),
3865 target_type_name(target),
3866 e,
3867 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3868 Jim_GetString(teap->body, NULL));
3869 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3870 {
3871 Jim_MakeErrorMessage(teap->interp);
3872 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3873 }
3874 }
3875 }
3876 }
3877
3878 /**
3879 * Returns true only if the target has a handler for the specified event.
3880 */
3881 bool target_has_event_action(struct target *target, enum target_event event)
3882 {
3883 struct target_event_action *teap;
3884
3885 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3886 if (teap->event == event)
3887 return true;
3888 }
3889 return false;
3890 }
3891
3892 enum target_cfg_param {
3893 TCFG_TYPE,
3894 TCFG_EVENT,
3895 TCFG_WORK_AREA_VIRT,
3896 TCFG_WORK_AREA_PHYS,
3897 TCFG_WORK_AREA_SIZE,
3898 TCFG_WORK_AREA_BACKUP,
3899 TCFG_ENDIAN,
3900 TCFG_VARIANT,
3901 TCFG_COREID,
3902 TCFG_CHAIN_POSITION,
3903 TCFG_DBGBASE,
3904 TCFG_RTOS,
3905 };
3906
3907 static Jim_Nvp nvp_config_opts[] = {
3908 { .name = "-type", .value = TCFG_TYPE },
3909 { .name = "-event", .value = TCFG_EVENT },
3910 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3911 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3912 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3913 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3914 { .name = "-endian" , .value = TCFG_ENDIAN },
3915 { .name = "-variant", .value = TCFG_VARIANT },
3916 { .name = "-coreid", .value = TCFG_COREID },
3917 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3918 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3919 { .name = "-rtos", .value = TCFG_RTOS },
3920 { .name = NULL, .value = -1 }
3921 };
3922
3923 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3924 {
3925 Jim_Nvp *n;
3926 Jim_Obj *o;
3927 jim_wide w;
3928 char *cp;
3929 int e;
3930
3931 /* parse config or cget options ... */
3932 while (goi->argc > 0) {
3933 Jim_SetEmptyResult(goi->interp);
3934 /* Jim_GetOpt_Debug(goi); */
3935
3936 if (target->type->target_jim_configure) {
3937 /* target defines a configure function */
3938 /* target gets first dibs on parameters */
3939 e = (*(target->type->target_jim_configure))(target, goi);
3940 if (e == JIM_OK) {
3941 /* more? */
3942 continue;
3943 }
3944 if (e == JIM_ERR) {
3945 /* An error */
3946 return e;
3947 }
3948 /* otherwise we 'continue' below */
3949 }
3950 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3951 if (e != JIM_OK) {
3952 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3953 return e;
3954 }
3955 switch (n->value) {
3956 case TCFG_TYPE:
3957 /* not setable */
3958 if (goi->isconfigure) {
3959 Jim_SetResultFormatted(goi->interp,
3960 "not settable: %s", n->name);
3961 return JIM_ERR;
3962 } else {
3963 no_params:
3964 if (goi->argc != 0) {
3965 Jim_WrongNumArgs(goi->interp,
3966 goi->argc, goi->argv,
3967 "NO PARAMS");
3968 return JIM_ERR;
3969 }
3970 }
3971 Jim_SetResultString(goi->interp,
3972 target_type_name(target), -1);
3973 /* loop for more */
3974 break;
3975 case TCFG_EVENT:
3976 if (goi->argc == 0) {
3977 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3978 return JIM_ERR;
3979 }
3980
3981 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3982 if (e != JIM_OK) {
3983 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3984 return e;
3985 }
3986
3987 if (goi->isconfigure) {
3988 if (goi->argc != 1) {
3989 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3990 return JIM_ERR;
3991 }
3992 } else {
3993 if (goi->argc != 0) {
3994 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3995 return JIM_ERR;
3996 }
3997 }
3998
3999 {
4000 struct target_event_action *teap;
4001
4002 teap = target->event_action;
4003 /* replace existing? */
4004 while (teap) {
4005 if (teap->event == (enum target_event)n->value) {
4006 break;
4007 }
4008 teap = teap->next;
4009 }
4010
4011 if (goi->isconfigure) {
4012 bool replace = true;
4013 if (teap == NULL) {
4014 /* create new */
4015 teap = calloc(1, sizeof(*teap));
4016 replace = false;
4017 }
4018 teap->event = n->value;
4019 teap->interp = goi->interp;
4020 Jim_GetOpt_Obj(goi, &o);
4021 if (teap->body) {
4022 Jim_DecrRefCount(teap->interp, teap->body);
4023 }
4024 teap->body = Jim_DuplicateObj(goi->interp, o);
4025 /*
4026 * FIXME:
4027 * Tcl/TK - "tk events" have a nice feature.
4028 * See the "BIND" command.
4029 * We should support that here.
4030 * You can specify %X and %Y in the event code.
4031 * The idea is: %T - target name.
4032 * The idea is: %N - target number
4033 * The idea is: %E - event name.
4034 */
4035 Jim_IncrRefCount(teap->body);
4036
4037 if (!replace)
4038 {
4039 /* add to head of event list */
4040 teap->next = target->event_action;
4041 target->event_action = teap;
4042 }
4043 Jim_SetEmptyResult(goi->interp);
4044 } else {
4045 /* get */
4046 if (teap == NULL) {
4047 Jim_SetEmptyResult(goi->interp);
4048 } else {
4049 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4050 }
4051 }
4052 }
4053 /* loop for more */
4054 break;
4055
4056 case TCFG_WORK_AREA_VIRT:
4057 if (goi->isconfigure) {
4058 target_free_all_working_areas(target);
4059 e = Jim_GetOpt_Wide(goi, &w);
4060 if (e != JIM_OK) {
4061 return e;
4062 }
4063 target->working_area_virt = w;
4064 target->working_area_virt_spec = true;
4065 } else {
4066 if (goi->argc != 0) {
4067 goto no_params;
4068 }
4069 }
4070 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4071 /* loop for more */
4072 break;
4073
4074 case TCFG_WORK_AREA_PHYS:
4075 if (goi->isconfigure) {
4076 target_free_all_working_areas(target);
4077 e = Jim_GetOpt_Wide(goi, &w);
4078 if (e != JIM_OK) {
4079 return e;
4080 }
4081 target->working_area_phys = w;
4082 target->working_area_phys_spec = true;
4083 } else {
4084 if (goi->argc != 0) {
4085 goto no_params;
4086 }
4087 }
4088 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4089 /* loop for more */
4090 break;
4091
4092 case TCFG_WORK_AREA_SIZE:
4093 if (goi->isconfigure) {
4094 target_free_all_working_areas(target);
4095 e = Jim_GetOpt_Wide(goi, &w);
4096 if (e != JIM_OK) {
4097 return e;
4098 }
4099 target->working_area_size = w;
4100 } else {
4101 if (goi->argc != 0) {
4102 goto no_params;
4103 }
4104 }
4105 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4106 /* loop for more */
4107 break;
4108
4109 case TCFG_WORK_AREA_BACKUP:
4110 if (goi->isconfigure) {
4111 target_free_all_working_areas(target);
4112 e = Jim_GetOpt_Wide(goi, &w);
4113 if (e != JIM_OK) {
4114 return e;
4115 }
4116 /* make this exactly 1 or 0 */
4117 target->backup_working_area = (!!w);
4118 } else {
4119 if (goi->argc != 0) {
4120 goto no_params;
4121 }
4122 }
4123 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4124 /* loop for more e*/
4125 break;
4126
4127
4128 case TCFG_ENDIAN:
4129 if (goi->isconfigure) {
4130 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4131 if (e != JIM_OK) {
4132 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4133 return e;
4134 }
4135 target->endianness = n->value;
4136 } else {
4137 if (goi->argc != 0) {
4138 goto no_params;
4139 }
4140 }
4141 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4142 if (n->name == NULL) {
4143 target->endianness = TARGET_LITTLE_ENDIAN;
4144 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4145 }
4146 Jim_SetResultString(goi->interp, n->name, -1);
4147 /* loop for more */
4148 break;
4149
4150 case TCFG_VARIANT:
4151 if (goi->isconfigure) {
4152 if (goi->argc < 1) {
4153 Jim_SetResultFormatted(goi->interp,
4154 "%s ?STRING?",
4155 n->name);
4156 return JIM_ERR;
4157 }
4158 if (target->variant) {
4159 free((void *)(target->variant));
4160 }
4161 e = Jim_GetOpt_String(goi, &cp, NULL);
4162 target->variant = strdup(cp);
4163 } else {
4164 if (goi->argc != 0) {
4165 goto no_params;
4166 }
4167 }
4168 Jim_SetResultString(goi->interp, target->variant,-1);
4169 /* loop for more */
4170 break;
4171
4172 case TCFG_COREID:
4173 if (goi->isconfigure) {
4174 e = Jim_GetOpt_Wide(goi, &w);
4175 if (e != JIM_OK) {
4176 return e;
4177 }
4178 target->coreid = (int32_t)w;
4179 } else {
4180 if (goi->argc != 0) {
4181 goto no_params;
4182 }
4183 }
4184 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4185 /* loop for more */
4186 break;
4187
4188 case TCFG_CHAIN_POSITION:
4189 if (goi->isconfigure) {
4190 Jim_Obj *o_t;
4191 struct jtag_tap *tap;
4192 target_free_all_working_areas(target);
4193 e = Jim_GetOpt_Obj(goi, &o_t);
4194 if (e != JIM_OK) {
4195 return e;
4196 }
4197 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4198 if (tap == NULL) {
4199 return JIM_ERR;
4200 }
4201 /* make this exactly 1 or 0 */
4202 target->tap = tap;
4203 } else {
4204 if (goi->argc != 0) {
4205 goto no_params;
4206 }
4207 }
4208 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4209 /* loop for more e*/
4210 break;
4211 case TCFG_DBGBASE:
4212 if (goi->isconfigure) {
4213 e = Jim_GetOpt_Wide(goi, &w);
4214 if (e != JIM_OK) {
4215 return e;
4216 }
4217 target->dbgbase = (uint32_t)w;
4218 target->dbgbase_set = true;
4219 } else {
4220 if (goi->argc != 0) {
4221 goto no_params;
4222 }
4223 }
4224 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4225 /* loop for more */
4226 break;
4227
4228 case TCFG_RTOS:
4229 /* RTOS */
4230 {
4231 int result = rtos_create( goi, target );
4232 if ( result != JIM_OK )
4233 {
4234 return result;
4235 }
4236 }
4237 /* loop for more */
4238 break;
4239 }
4240 } /* while (goi->argc) */
4241
4242
4243 /* done - we return */
4244 return JIM_OK;
4245 }
4246
4247 static int
4248 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4249 {
4250 Jim_GetOptInfo goi;
4251
4252 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4253 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4254 int need_args = 1 + goi.isconfigure;
4255 if (goi.argc < need_args)
4256 {
4257 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4258 goi.isconfigure
4259 ? "missing: -option VALUE ..."
4260 : "missing: -option ...");
4261 return JIM_ERR;
4262 }
4263 struct target *target = Jim_CmdPrivData(goi.interp);
4264 return target_configure(&goi, target);
4265 }
4266
4267 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4268 {
4269 const char *cmd_name = Jim_GetString(argv[0], NULL);
4270
4271 Jim_GetOptInfo goi;
4272 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4273
4274 if (goi.argc < 2 || goi.argc > 4)
4275 {
4276 Jim_SetResultFormatted(goi.interp,
4277 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4278 return JIM_ERR;
4279 }
4280
4281 target_write_fn fn;
4282 fn = target_write_memory_fast;
4283
4284 int e;
4285 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4286 {
4287 /* consume it */
4288 struct Jim_Obj *obj;
4289 e = Jim_GetOpt_Obj(&goi, &obj);
4290 if (e != JIM_OK)
4291 return e;
4292
4293 fn = target_write_phys_memory;
4294 }
4295
4296 jim_wide a;
4297 e = Jim_GetOpt_Wide(&goi, &a);
4298 if (e != JIM_OK)
4299 return e;
4300
4301 jim_wide b;
4302 e = Jim_GetOpt_Wide(&goi, &b);
4303 if (e != JIM_OK)
4304 return e;
4305
4306 jim_wide c = 1;
4307 if (goi.argc == 1)
4308 {
4309 e = Jim_GetOpt_Wide(&goi, &c);
4310 if (e != JIM_OK)
4311 return e;
4312 }
4313
4314 /* all args must be consumed */
4315 if (goi.argc != 0)
4316 {
4317 return JIM_ERR;
4318 }
4319
4320 struct target *target = Jim_CmdPrivData(goi.interp);
4321 unsigned data_size;
4322 if (strcasecmp(cmd_name, "mww") == 0) {
4323 data_size = 4;
4324 }
4325 else if (strcasecmp(cmd_name, "mwh") == 0) {
4326 data_size = 2;
4327 }
4328 else if (strcasecmp(cmd_name, "mwb") == 0) {
4329 data_size = 1;
4330 } else {
4331 LOG_ERROR("command '%s' unknown: ", cmd_name);
4332 return JIM_ERR;
4333 }
4334
4335 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4336 }
4337
4338 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4339 {
4340 const char *cmd_name = Jim_GetString(argv[0], NULL);
4341
4342 Jim_GetOptInfo goi;
4343 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4344
4345 if ((goi.argc < 1) || (goi.argc > 3))
4346 {
4347 Jim_SetResultFormatted(goi.interp,
4348 "usage: %s [phys] <address> [<count>]", cmd_name);
4349 return JIM_ERR;
4350 }
4351
4352 int (*fn)(struct target *target,
4353 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4354 fn=target_read_memory;
4355
4356 int e;
4357 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4358 {
4359 /* consume it */
4360 struct Jim_Obj *obj;
4361 e = Jim_GetOpt_Obj(&goi, &obj);
4362 if (e != JIM_OK)
4363 return e;
4364
4365 fn=target_read_phys_memory;
4366 }
4367
4368 jim_wide a;
4369 e = Jim_GetOpt_Wide(&goi, &a);
4370 if (e != JIM_OK) {
4371 return JIM_ERR;
4372 }
4373 jim_wide c;
4374 if (goi.argc == 1) {
4375 e = Jim_GetOpt_Wide(&goi, &c);
4376 if (e != JIM_OK) {
4377 return JIM_ERR;
4378 }
4379 } else {
4380 c = 1;
4381 }
4382
4383 /* all args must be consumed */
4384 if (goi.argc != 0)
4385 {
4386 return JIM_ERR;
4387 }
4388
4389 jim_wide b = 1; /* shut up gcc */
4390 if (strcasecmp(cmd_name, "mdw") == 0)
4391 b = 4;
4392 else if (strcasecmp(cmd_name, "mdh") == 0)
4393 b = 2;
4394 else if (strcasecmp(cmd_name, "mdb") == 0)
4395 b = 1;
4396 else {
4397 LOG_ERROR("command '%s' unknown: ", cmd_name);
4398 return JIM_ERR;
4399 }
4400
4401 /* convert count to "bytes" */
4402 c = c * b;
4403
4404 struct target *target = Jim_CmdPrivData(goi.interp);
4405 uint8_t target_buf[32];
4406 jim_wide x, y, z;
4407 while (c > 0) {
4408 y = c;
4409 if (y > 16) {
4410 y = 16;
4411 }
4412 e = fn(target, a, b, y / b, target_buf);
4413 if (e != ERROR_OK) {
4414 char tmp[10];
4415 snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4416 Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4417 return JIM_ERR;
4418 }
4419
4420 command_print(NULL, "0x%08x ", (int)(a));
4421 switch (b) {
4422 case 4:
4423 for (x = 0; x < 16 && x < y; x += 4)
4424 {
4425 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4426 command_print(NULL, "%08x ", (int)(z));
4427 }
4428 for (; (x < 16) ; x += 4) {
4429 command_print(NULL, " ");
4430 }
4431 break;
4432 case 2:
4433 for (x = 0; x < 16 && x < y; x += 2)
4434 {
4435 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4436 command_print(NULL, "%04x ", (int)(z));
4437 }
4438 for (; (x < 16) ; x += 2) {
4439 command_print(NULL, " ");
4440 }
4441 break;
4442 case 1:
4443 default:
4444 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4445 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4446 command_print(NULL, "%02x ", (int)(z));
4447 }
4448 for (; (x < 16) ; x += 1) {
4449 command_print(NULL, " ");
4450 }
4451 break;
4452 }
4453 /* ascii-ify the bytes */
4454 for (x = 0 ; x < y ; x++) {
4455 if ((target_buf[x] >= 0x20) &&
4456 (target_buf[x] <= 0x7e)) {
4457 /* good */
4458 } else {
4459 /* smack it */
4460 target_buf[x] = '.';
4461 }
4462 }
4463 /* space pad */
4464 while (x < 16) {
4465 target_buf[x] = ' ';
4466 x++;
4467 }
4468 /* terminate */
4469 target_buf[16] = 0;
4470 /* print - with a newline */
4471 command_print(NULL, "%s\n", target_buf);
4472 /* NEXT... */
4473 c -= 16;
4474 a += 16;
4475 }
4476 return JIM_OK;
4477 }
4478
4479 static int jim_target_mem2array(Jim_Interp *interp,
4480 int argc, Jim_Obj *const *argv)
4481 {
4482 struct target *target = Jim_CmdPrivData(interp);
4483 return target_mem2array(interp, target, argc - 1, argv + 1);
4484 }
4485
4486 static int jim_target_array2mem(Jim_Interp *interp,
4487 int argc, Jim_Obj *const *argv)
4488 {
4489 struct target *target = Jim_CmdPrivData(interp);
4490 return target_array2mem(interp, target, argc - 1, argv + 1);
4491 }
4492
4493 static int jim_target_tap_disabled(Jim_Interp *interp)
4494 {
4495 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4496 return JIM_ERR;
4497 }
4498
4499 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4500 {
4501 if (argc != 1)
4502 {
4503 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4504 return JIM_ERR;
4505 }
4506 struct target *target = Jim_CmdPrivData(interp);
4507 if (!target->tap->enabled)
4508 return jim_target_tap_disabled(interp);
4509
4510 int e = target->type->examine(target);
4511 if (e != ERROR_OK)
4512 {
4513 return JIM_ERR;
4514 }
4515 return JIM_OK;
4516 }
4517
4518 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4519 {
4520 if (argc != 1)
4521 {
4522 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4523 return JIM_ERR;
4524 }
4525 struct target *target = Jim_CmdPrivData(interp);
4526
4527 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4528 return JIM_ERR;
4529
4530 return JIM_OK;
4531 }
4532
4533 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4534 {
4535 if (argc != 1)
4536 {
4537 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4538 return JIM_ERR;
4539 }
4540 struct target *target = Jim_CmdPrivData(interp);
4541 if (!target->tap->enabled)
4542 return jim_target_tap_disabled(interp);
4543
4544 int e;
4545 if (!(target_was_examined(target))) {
4546 e = ERROR_TARGET_NOT_EXAMINED;
4547 } else {
4548 e = target->type->poll(target);
4549 }
4550 if (e != ERROR_OK)
4551 {
4552 return JIM_ERR;
4553 }
4554 return JIM_OK;
4555 }
4556
4557 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4558 {
4559 Jim_GetOptInfo goi;
4560 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4561
4562 if (goi.argc != 2)
4563 {
4564 Jim_WrongNumArgs(interp, 0, argv,
4565 "([tT]|[fF]|assert|deassert) BOOL");
4566 return JIM_ERR;
4567 }
4568
4569 Jim_Nvp *n;
4570 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4571 if (e != JIM_OK)
4572 {
4573 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4574 return e;
4575 }
4576 /* the halt or not param */
4577 jim_wide a;
4578 e = Jim_GetOpt_Wide(&goi, &a);
4579 if (e != JIM_OK)
4580 return e;
4581
4582 struct target *target = Jim_CmdPrivData(goi.interp);
4583 if (!target->tap->enabled)
4584 return jim_target_tap_disabled(interp);
4585 if (!(target_was_examined(target)))
4586 {
4587 LOG_ERROR("Target not examined yet");
4588 return ERROR_TARGET_NOT_EXAMINED;
4589 }
4590 if (!target->type->assert_reset || !target->type->deassert_reset)
4591 {
4592 Jim_SetResultFormatted(interp,
4593 "No target-specific reset for %s",
4594 target_name(target));
4595 return JIM_ERR;
4596 }
4597 /* determine if we should halt or not. */
4598 target->reset_halt = !!a;
4599 /* When this happens - all workareas are invalid. */
4600 target_free_all_working_areas_restore(target, 0);
4601
4602 /* do the assert */
4603 if (n->value == NVP_ASSERT) {
4604 e = target->type->assert_reset(target);
4605 } else {
4606 e = target->type->deassert_reset(target);
4607 }
4608 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4609 }
4610
4611 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4612 {
4613 if (argc != 1) {
4614 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4615 return JIM_ERR;
4616 }
4617 struct target *target = Jim_CmdPrivData(interp);
4618 if (!target->tap->enabled)
4619 return jim_target_tap_disabled(interp);
4620 int e = target->type->halt(target);
4621 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4622 }
4623
4624 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4625 {
4626 Jim_GetOptInfo goi;
4627 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4628
4629 /* params: <name> statename timeoutmsecs */
4630 if (goi.argc != 2)
4631 {
4632 const char *cmd_name = Jim_GetString(argv[0], NULL);
4633 Jim_SetResultFormatted(goi.interp,
4634 "%s <state_name> <timeout_in_msec>", cmd_name);
4635 return JIM_ERR;
4636 }
4637
4638 Jim_Nvp *n;
4639 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4640 if (e != JIM_OK) {
4641 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4642 return e;
4643 }
4644 jim_wide a;
4645 e = Jim_GetOpt_Wide(&goi, &a);
4646 if (e != JIM_OK) {
4647 return e;
4648 }
4649 struct target *target = Jim_CmdPrivData(interp);
4650 if (!target->tap->enabled)
4651 return jim_target_tap_disabled(interp);
4652
4653 e = target_wait_state(target, n->value, a);
4654 if (e != ERROR_OK)
4655 {
4656 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4657 Jim_SetResultFormatted(goi.interp,
4658 "target: %s wait %s fails (%#s) %s",
4659 target_name(target), n->name,
4660 eObj, target_strerror_safe(e));
4661 Jim_FreeNewObj(interp, eObj);
4662 return JIM_ERR;
4663 }
4664 return JIM_OK;
4665 }
4666 /* List for human, Events defined for this target.
4667 * scripts/programs should use 'name cget -event NAME'
4668 */
4669 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4670 {
4671 struct command_context *cmd_ctx = current_command_context(interp);
4672 assert (cmd_ctx != NULL);
4673
4674 struct target *target = Jim_CmdPrivData(interp);
4675 struct target_event_action *teap = target->event_action;
4676 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4677 target->target_number,
4678 target_name(target));
4679 command_print(cmd_ctx, "%-25s | Body", "Event");
4680 command_print(cmd_ctx, "------------------------- | "
4681 "----------------------------------------");
4682 while (teap)
4683 {
4684 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4685 command_print(cmd_ctx, "%-25s | %s",
4686 opt->name, Jim_GetString(teap->body, NULL));
4687 teap = teap->next;
4688 }
4689 command_print(cmd_ctx, "***END***");
4690 return JIM_OK;
4691 }
4692 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4693 {
4694 if (argc != 1)
4695 {
4696 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4697 return JIM_ERR;
4698 }
4699 struct target *target = Jim_CmdPrivData(interp);
4700 Jim_SetResultString(interp, target_state_name(target), -1);
4701 return JIM_OK;
4702 }
4703 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4704 {
4705 Jim_GetOptInfo goi;
4706 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4707 if (goi.argc != 1)
4708 {
4709 const char *cmd_name = Jim_GetString(argv[0], NULL);
4710 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4711 return JIM_ERR;
4712 }
4713 Jim_Nvp *n;
4714 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4715 if (e != JIM_OK)
4716 {
4717 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4718 return e;
4719 }
4720 struct target *target = Jim_CmdPrivData(interp);
4721 target_handle_event(target, n->value);
4722 return JIM_OK;
4723 }
4724
4725 static const struct command_registration target_instance_command_handlers[] = {
4726 {
4727 .name = "configure",
4728 .mode = COMMAND_CONFIG,
4729 .jim_handler = jim_target_configure,
4730 .help = "configure a new target for use",
4731 .usage = "[target_attribute ...]",
4732 },
4733 {
4734 .name = "cget",
4735 .mode = COMMAND_ANY,
4736 .jim_handler = jim_target_configure,
4737 .help = "returns the specified target attribute",
4738 .usage = "target_attribute",
4739 },
4740 {
4741 .name = "mww",
4742 .mode = COMMAND_EXEC,
4743 .jim_handler = jim_target_mw,
4744 .help = "Write 32-bit word(s) to target memory",
4745 .usage = "address data [count]",
4746 },
4747 {
4748 .name = "mwh",
4749 .mode = COMMAND_EXEC,
4750 .jim_handler = jim_target_mw,
4751 .help = "Write 16-bit half-word(s) to target memory",
4752 .usage = "address data [count]",
4753 },
4754 {
4755 .name = "mwb",
4756 .mode = COMMAND_EXEC,
4757 .jim_handler = jim_target_mw,
4758 .help = "Write byte(s) to target memory",
4759 .usage = "address data [count]",
4760 },
4761 {
4762 .name = "mdw",
4763 .mode = COMMAND_EXEC,
4764 .jim_handler = jim_target_md,
4765 .help = "Display target memory as 32-bit words",
4766 .usage = "address [count]",
4767 },
4768 {
4769 .name = "mdh",
4770 .mode = COMMAND_EXEC,
4771 .jim_handler = jim_target_md,
4772 .help = "Display target memory as 16-bit half-words",
4773 .usage = "address [count]",
4774 },
4775 {
4776 .name = "mdb",
4777 .mode = COMMAND_EXEC,
4778 .jim_handler = jim_target_md,
4779 .help = "Display target memory as 8-bit bytes",
4780 .usage = "address [count]",
4781 },
4782 {
4783 .name = "array2mem",
4784 .mode = COMMAND_EXEC,
4785 .jim_handler = jim_target_array2mem,
4786 .help = "Writes Tcl array of 8/16/32 bit numbers "
4787 "to target memory",
4788 .usage = "arrayname bitwidth address count",
4789 },
4790 {
4791 .name = "mem2array",
4792 .mode = COMMAND_EXEC,
4793 .jim_handler = jim_target_mem2array,
4794 .help = "Loads Tcl array of 8/16/32 bit numbers "
4795 "from target memory",
4796 .usage = "arrayname bitwidth address count",
4797 },
4798 {
4799 .name = "eventlist",
4800 .mode = COMMAND_EXEC,
4801 .jim_handler = jim_target_event_list,
4802 .help = "displays a table of events defined for this target",
4803 },
4804 {
4805 .name = "curstate",
4806 .mode = COMMAND_EXEC,
4807 .jim_handler = jim_target_current_state,
4808 .help = "displays the current state of this target",
4809 },
4810 {
4811 .name = "arp_examine",
4812 .mode = COMMAND_EXEC,
4813 .jim_handler = jim_target_examine,
4814 .help = "used internally for reset processing",
4815 },
4816 {
4817 .name = "arp_halt_gdb",
4818 .mode = COMMAND_EXEC,
4819 .jim_handler = jim_target_halt_gdb,
4820 .help = "used internally for reset processing to halt GDB",
4821 },
4822 {
4823 .name = "arp_poll",
4824 .mode = COMMAND_EXEC,
4825 .jim_handler = jim_target_poll,
4826 .help = "used internally for reset processing",
4827 },
4828 {
4829 .name = "arp_reset",
4830 .mode = COMMAND_EXEC,
4831 .jim_handler = jim_target_reset,
4832 .help = "used internally for reset processing",
4833 },
4834 {
4835 .name = "arp_halt",
4836 .mode = COMMAND_EXEC,
4837 .jim_handler = jim_target_halt,
4838 .help = "used internally for reset processing",
4839 },
4840 {
4841 .name = "arp_waitstate",
4842 .mode = COMMAND_EXEC,
4843 .jim_handler = jim_target_wait_state,
4844 .help = "used internally for reset processing",
4845 },
4846 {
4847 .name = "invoke-event",
4848 .mode = COMMAND_EXEC,
4849 .jim_handler = jim_target_invoke_event,
4850 .help = "invoke handler for specified event",
4851 .usage = "event_name",
4852 },
4853 COMMAND_REGISTRATION_DONE
4854 };
4855
4856 static int target_create(Jim_GetOptInfo *goi)
4857 {
4858 Jim_Obj *new_cmd;
4859 Jim_Cmd *cmd;
4860 const char *cp;
4861 char *cp2;
4862 int e;
4863 int x;
4864 struct target *target;
4865 struct command_context *cmd_ctx;
4866
4867 cmd_ctx = current_command_context(goi->interp);
4868 assert (cmd_ctx != NULL);
4869
4870 if (goi->argc < 3) {
4871 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4872 return JIM_ERR;
4873 }
4874
4875 /* COMMAND */
4876 Jim_GetOpt_Obj(goi, &new_cmd);
4877 /* does this command exist? */
4878 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4879 if (cmd) {
4880 cp = Jim_GetString(new_cmd, NULL);
4881 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4882 return JIM_ERR;
4883 }
4884
4885 /* TYPE */
4886 e = Jim_GetOpt_String(goi, &cp2, NULL);
4887 cp = cp2;
4888 /* now does target type exist */
4889 for (x = 0 ; target_types[x] ; x++) {
4890 if (0 == strcmp(cp, target_types[x]->name)) {
4891 /* found */
4892 break;
4893 }
4894 }
4895 if (target_types[x] == NULL) {
4896 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4897 for (x = 0 ; target_types[x] ; x++) {
4898 if (target_types[x + 1]) {
4899 Jim_AppendStrings(goi->interp,
4900 Jim_GetResult(goi->interp),
4901 target_types[x]->name,
4902 ", ", NULL);
4903 } else {
4904 Jim_AppendStrings(goi->interp,
4905 Jim_GetResult(goi->interp),
4906 " or ",
4907 target_types[x]->name,NULL);
4908 }
4909 }
4910 return JIM_ERR;
4911 }
4912
4913 /* Create it */
4914 target = calloc(1,sizeof(struct target));
4915 /* set target number */
4916 target->target_number = new_target_number();
4917
4918 /* allocate memory for each unique target type */
4919 target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4920
4921 memcpy(target->type, target_types[x], sizeof(struct target_type));
4922
4923 /* will be set by "-endian" */
4924 target->endianness = TARGET_ENDIAN_UNKNOWN;
4925
4926 /* default to first core, override with -coreid */
4927 target->coreid = 0;
4928
4929 target->working_area = 0x0;
4930 target->working_area_size = 0x0;
4931 target->working_areas = NULL;
4932 target->backup_working_area = 0;
4933
4934 target->state = TARGET_UNKNOWN;
4935 target->debug_reason = DBG_REASON_UNDEFINED;
4936 target->reg_cache = NULL;
4937 target->breakpoints = NULL;
4938 target->watchpoints = NULL;
4939 target->next = NULL;
4940 target->arch_info = NULL;
4941
4942 target->display = 1;
4943
4944 target->halt_issued = false;
4945
4946 /* initialize trace information */
4947 target->trace_info = malloc(sizeof(struct trace));
4948 target->trace_info->num_trace_points = 0;
4949 target->trace_info->trace_points_size = 0;
4950 target->trace_info->trace_points = NULL;
4951 target->trace_info->trace_history_size = 0;
4952 target->trace_info->trace_history = NULL;
4953 target->trace_info->trace_history_pos = 0;
4954 target->trace_info->trace_history_overflowed = 0;
4955
4956 target->dbgmsg = NULL;
4957 target->dbg_msg_enabled = 0;
4958
4959 target->endianness = TARGET_ENDIAN_UNKNOWN;
4960
4961 target->rtos = NULL;
4962 target->rtos_auto_detect = false;
4963
4964 /* Do the rest as "configure" options */
4965 goi->isconfigure = 1;
4966 e = target_configure(goi, target);
4967
4968 if (target->tap == NULL)
4969 {
4970 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4971 e = JIM_ERR;
4972 }
4973
4974 if (e != JIM_OK) {
4975 free(target->type);
4976 free(target);
4977 return e;
4978 }
4979
4980 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4981 /* default endian to little if not specified */
4982 target->endianness = TARGET_LITTLE_ENDIAN;
4983 }
4984
4985 /* incase variant is not set */
4986 if (!target->variant)
4987 target->variant = strdup("");
4988
4989 cp = Jim_GetString(new_cmd, NULL);
4990 target->cmd_name = strdup(cp);
4991
4992 /* create the target specific commands */
4993 if (target->type->commands) {
4994 e = register_commands(cmd_ctx, NULL, target->type->commands);
4995 if (ERROR_OK != e)
4996 LOG_ERROR("unable to register '%s' commands", cp);
4997 }
4998 if (target->type->target_create) {
4999 (*(target->type->target_create))(target, goi->interp);
5000 }
5001
5002 /* append to end of list */
5003 {
5004 struct target **tpp;
5005 tpp = &(all_targets);
5006 while (*tpp) {
5007 tpp = &((*tpp)->next);
5008 }
5009 *tpp = target;
5010 }
5011
5012 /* now - create the new target name command */
5013 const const struct command_registration target_subcommands[] = {
5014 {
5015 .chain = target_instance_command_handlers,
5016 },
5017 {
5018 .chain = target->type->commands,
5019 },
5020 COMMAND_REGISTRATION_DONE
5021 };
5022 const const struct command_registration target_commands[] = {
5023 {
5024 .name = cp,
5025 .mode = COMMAND_ANY,
5026 .help = "target command group",
5027 .chain = target_subcommands,
5028 },
5029 COMMAND_REGISTRATION_DONE
5030 };
5031 e = register_commands(cmd_ctx, NULL, target_commands);
5032 if (ERROR_OK != e)
5033 return JIM_ERR;
5034
5035 struct command *c = command_find_in_context(cmd_ctx, cp);
5036 assert(c);
5037 command_set_handler_data(c, target);
5038
5039 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5040 }
5041
5042 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5043 {
5044 if (argc != 1)
5045 {
5046 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5047 return JIM_ERR;
5048 }
5049 struct command_context *cmd_ctx = current_command_context(interp);
5050 assert (cmd_ctx != NULL);
5051
5052 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5053 return JIM_OK;
5054 }
5055
5056 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5057 {
5058 if (argc != 1)
5059 {
5060 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5061 return JIM_ERR;
5062 }
5063 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5064 for (unsigned x = 0; NULL != target_types[x]; x++)
5065 {
5066 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5067 Jim_NewStringObj(interp, target_types[x]->name, -1));
5068 }
5069 return JIM_OK;
5070 }
5071
5072 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5073 {
5074 if (argc != 1)
5075 {
5076 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5077 return JIM_ERR;
5078 }
5079 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5080 struct target *target = all_targets;
5081 while (target)
5082 {
5083 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5084 Jim_NewStringObj(interp, target_name(target), -1));
5085 target = target->next;
5086 }
5087 return JIM_OK;
5088 }
5089
5090 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5091 {
5092 int i;
5093 const char *targetname;
5094 int retval,len;
5095 struct target *target;
5096 struct target_list *head, *curr, *new;
5097 curr = (struct target_list*) NULL;
5098 head = (struct target_list*) NULL;
5099 new = (struct target_list*) NULL;
5100
5101 retval = 0;
5102 LOG_DEBUG("%d",argc);
5103 /* argv[1] = target to associate in smp
5104 * argv[2] = target to assoicate in smp
5105 * argv[3] ...
5106 */
5107
5108 for(i=1;i<argc;i++)
5109 {
5110
5111 targetname = Jim_GetString(argv[i], &len);
5112 target = get_target(targetname);
5113 LOG_DEBUG("%s ",targetname);
5114 if (target)
5115 {
5116 new=malloc(sizeof(struct target_list));
5117 new->target = target;
5118 new->next = (struct target_list*)NULL;
5119 if (head == (struct target_list*)NULL)
5120 {
5121 head = new;
5122 curr = head;
5123 }
5124 else
5125 {
5126 curr->next = new;
5127 curr = new;
5128 }
5129 }
5130 }
5131 /* now parse the list of cpu and put the target in smp mode*/
5132 curr=head;
5133
5134 while(curr!=(struct target_list *)NULL)
5135 {
5136 target=curr->target;
5137 target->smp = 1;
5138 target->head = head;
5139 curr=curr->next;
5140 }
5141 return retval;
5142 }
5143
5144
5145 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5146 {
5147 Jim_GetOptInfo goi;
5148 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5149 if (goi.argc < 3)
5150 {
5151 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5152 "<name> <target_type> [<target_options> ...]");
5153 return JIM_ERR;
5154 }
5155 return target_create(&goi);
5156 }
5157
5158 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5159 {
5160 Jim_GetOptInfo goi;
5161 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5162
5163 /* It's OK to remove this mechanism sometime after August 2010 or so */
5164 LOG_WARNING("don't use numbers as target identifiers; use names");
5165 if (goi.argc != 1)
5166 {
5167 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5168 return JIM_ERR;
5169 }
5170 jim_wide w;
5171 int e = Jim_GetOpt_Wide(&goi, &w);
5172 if (e != JIM_OK)
5173 return JIM_ERR;
5174
5175 struct target *target;
5176 for (target = all_targets; NULL != target; target = target->next)
5177 {
5178 if (target->target_number != w)
5179 continue;
5180
5181 Jim_SetResultString(goi.interp, target_name(target), -1);
5182 return JIM_OK;
5183 }
5184 {
5185 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5186 Jim_SetResultFormatted(goi.interp,
5187 "Target: number %#s does not exist", wObj);
5188 Jim_FreeNewObj(interp, wObj);
5189 }
5190 return JIM_ERR;
5191 }
5192
5193 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5194 {
5195 if (argc != 1)
5196 {
5197 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5198 return JIM_ERR;
5199 }
5200 unsigned count = 0;
5201 struct target *target = all_targets;
5202 while (NULL != target)
5203 {
5204 target = target->next;
5205 count++;
5206 }
5207 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5208 return JIM_OK;
5209 }
5210
5211 static const struct command_registration target_subcommand_handlers[] = {
5212 {
5213 .name = "init",
5214 .mode = COMMAND_CONFIG,
5215 .handler = handle_target_init_command,
5216 .help = "initialize targets",
5217 },
5218 {
5219 .name = "create",
5220 /* REVISIT this should be COMMAND_CONFIG ... */
5221 .mode = COMMAND_ANY,
5222 .jim_handler = jim_target_create,
5223 .usage = "name type '-chain-position' name [options ...]",
5224 .help = "Creates and selects a new target",
5225 },
5226 {
5227 .name = "current",
5228 .mode = COMMAND_ANY,
5229 .jim_handler = jim_target_current,
5230 .help = "Returns the currently selected target",
5231 },
5232 {
5233 .name = "types",
5234 .mode = COMMAND_ANY,
5235 .jim_handler = jim_target_types,
5236 .help = "Returns the available target types as "
5237 "a list of strings",
5238 },
5239 {
5240 .name = "names",
5241 .mode = COMMAND_ANY,
5242 .jim_handler = jim_target_names,
5243 .help = "Returns the names of all targets as a list of strings",
5244 },
5245 {
5246 .name = "number",
5247 .mode = COMMAND_ANY,
5248 .jim_handler = jim_target_number,
5249 .usage = "number",
5250 .help = "Returns the name of the numbered target "
5251 "(DEPRECATED)",
5252 },
5253 {
5254 .name = "count",
5255 .mode = COMMAND_ANY,
5256 .jim_handler = jim_target_count,
5257 .help = "Returns the number of targets as an integer "
5258 "(DEPRECATED)",
5259 },
5260 {
5261 .name = "smp",
5262 .mode = COMMAND_ANY,
5263 .jim_handler = jim_target_smp,
5264 .usage = "targetname1 targetname2 ...",
5265 .help = "gather several target in a smp list"
5266 },
5267
5268 COMMAND_REGISTRATION_DONE
5269 };
5270
5271 struct FastLoad
5272 {
5273 uint32_t address;
5274 uint8_t *data;
5275 int length;
5276
5277 };
5278
5279 static int fastload_num;
5280 static struct FastLoad *fastload;
5281
5282 static void free_fastload(void)
5283 {
5284 if (fastload != NULL)
5285 {
5286 int i;
5287 for (i = 0; i < fastload_num; i++)
5288 {
5289 if (fastload[i].data)
5290 free(fastload[i].data);
5291 }
5292 free(fastload);
5293 fastload = NULL;
5294 }
5295 }
5296
5297
5298
5299
5300 COMMAND_HANDLER(handle_fast_load_image_command)
5301 {
5302 uint8_t *buffer;
5303 size_t buf_cnt;
5304 uint32_t image_size;
5305 uint32_t min_address = 0;
5306 uint32_t max_address = 0xffffffff;
5307 int i;
5308
5309 struct image image;
5310
5311 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5312 &image, &min_address, &max_address);
5313 if (ERROR_OK != retval)
5314 return retval;
5315
5316 struct duration bench;
5317 duration_start(&bench);
5318
5319 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5320 if (retval != ERROR_OK)
5321 {
5322 return retval;
5323 }
5324
5325 image_size = 0x0;
5326 retval = ERROR_OK;
5327 fastload_num = image.num_sections;
5328 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5329 if (fastload == NULL)
5330 {
5331 command_print(CMD_CTX, "out of memory");
5332 image_close(&image);
5333 return ERROR_FAIL;
5334 }
5335 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5336 for (i = 0; i < image.num_sections; i++)
5337 {
5338 buffer = malloc(image.sections[i].size);
5339 if (buffer == NULL)
5340 {
5341 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5342 (int)(image.sections[i].size));
5343 retval = ERROR_FAIL;
5344 break;
5345 }
5346
5347 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5348 {
5349 free(buffer);
5350 break;
5351 }
5352
5353 uint32_t offset = 0;
5354 uint32_t length = buf_cnt;
5355
5356
5357 /* DANGER!!! beware of unsigned comparision here!!! */
5358
5359 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5360 (image.sections[i].base_address < max_address))
5361 {
5362 if (image.sections[i].base_address < min_address)
5363 {
5364 /* clip addresses below */
5365 offset += min_address-image.sections[i].base_address;
5366 length -= offset;
5367 }
5368
5369 if (image.sections[i].base_address + buf_cnt > max_address)
5370 {
5371 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5372 }
5373
5374 fastload[i].address = image.sections[i].base_address + offset;
5375 fastload[i].data = malloc(length);
5376 if (fastload[i].data == NULL)
5377 {
5378 free(buffer);
5379 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5380 length);
5381 retval = ERROR_FAIL;
5382 break;
5383 }
5384 memcpy(fastload[i].data, buffer + offset, length);
5385 fastload[i].length = length;
5386
5387 image_size += length;
5388 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5389 (unsigned int)length,
5390 ((unsigned int)(image.sections[i].base_address + offset)));
5391 }
5392
5393 free(buffer);
5394 }
5395
5396 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5397 {
5398 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5399 "in %fs (%0.3f KiB/s)", image_size,
5400 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5401
5402 command_print(CMD_CTX,
5403 "WARNING: image has not been loaded to target!"
5404 "You can issue a 'fast_load' to finish loading.");
5405 }
5406
5407 image_close(&image);
5408
5409 if (retval != ERROR_OK)
5410 {
5411 free_fastload();
5412 }
5413
5414 return retval;
5415 }
5416
5417 COMMAND_HANDLER(handle_fast_load_command)
5418 {
5419 if (CMD_ARGC > 0)
5420 return ERROR_COMMAND_SYNTAX_ERROR;
5421 if (fastload == NULL)
5422 {
5423 LOG_ERROR("No image in memory");
5424 return ERROR_FAIL;
5425 }
5426 int i;
5427 int ms = timeval_ms();
5428 int size = 0;
5429 int retval = ERROR_OK;
5430 for (i = 0; i < fastload_num;i++)
5431 {
5432 struct target *target = get_current_target(CMD_CTX);
5433 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5434 (unsigned int)(fastload[i].address),
5435 (unsigned int)(fastload[i].length));
5436 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5437 if (retval != ERROR_OK)
5438 {
5439 break;
5440 }
5441 size += fastload[i].length;
5442 }
5443 if (retval == ERROR_OK)
5444 {
5445 int after = timeval_ms();
5446 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5447 }
5448 return retval;
5449 }
5450
5451 static const struct command_registration target_command_handlers[] = {
5452 {
5453 .name = "targets",
5454 .handler = handle_targets_command,
5455 .mode = COMMAND_ANY,
5456 .help = "change current default target (one parameter) "
5457 "or prints table of all targets (no parameters)",
5458 .usage = "[target]",
5459 },
5460 {
5461 .name = "target",
5462 .mode = COMMAND_CONFIG,
5463 .help = "configure target",
5464
5465 .chain = target_subcommand_handlers,
5466 },
5467 COMMAND_REGISTRATION_DONE
5468 };
5469
5470 int target_register_commands(struct command_context *cmd_ctx)
5471 {
5472 return register_commands(cmd_ctx, NULL, target_command_handlers);
5473 }
5474
5475 static bool target_reset_nag = true;
5476
5477 bool get_target_reset_nag(void)
5478 {
5479 return target_reset_nag;
5480 }
5481
5482 COMMAND_HANDLER(handle_target_reset_nag)
5483 {
5484 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5485 &target_reset_nag, "Nag after each reset about options to improve "
5486 "performance");
5487 }
5488
5489 static const struct command_registration target_exec_command_handlers[] = {
5490 {
5491 .name = "fast_load_image",
5492 .handler = handle_fast_load_image_command,
5493 .mode = COMMAND_ANY,
5494 .help = "Load image into server memory for later use by "
5495 "fast_load; primarily for profiling",
5496 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5497 "[min_address [max_length]]",
5498 },
5499 {
5500 .name = "fast_load",
5501 .handler = handle_fast_load_command,
5502 .mode = COMMAND_EXEC,
5503 .help = "loads active fast load image to current target "
5504 "- mainly for profiling purposes",
5505 },
5506 {
5507 .name = "profile",
5508 .handler = handle_profile_command,
5509 .mode = COMMAND_EXEC,
5510 .help = "profiling samples the CPU PC",
5511 },
5512 /** @todo don't register virt2phys() unless target supports it */
5513 {
5514 .name = "virt2phys",
5515 .handler = handle_virt2phys_command,
5516 .mode = COMMAND_ANY,
5517 .help = "translate a virtual address into a physical address",
5518 .usage = "virtual_address",
5519 },
5520 {
5521 .name = "reg",
5522 .handler = handle_reg_command,
5523 .mode = COMMAND_EXEC,
5524 .help = "display or set a register; with no arguments, "
5525 "displays all registers and their values",
5526 .usage = "[(register_name|register_number) [value]]",
5527 },
5528 {
5529 .name = "poll",
5530 .handler = handle_poll_command,
5531 .mode = COMMAND_EXEC,
5532 .help = "poll target state; or reconfigure background polling",
5533 .usage = "['on'|'off']",
5534 },
5535 {
5536 .name = "wait_halt",
5537 .handler = handle_wait_halt_command,
5538 .mode = COMMAND_EXEC,
5539 .help = "wait up to the specified number of milliseconds "
5540 "(default 5) for a previously requested halt",
5541 .usage = "[milliseconds]",
5542 },
5543 {
5544 .name = "halt",
5545 .handler = handle_halt_command,
5546 .mode = COMMAND_EXEC,
5547 .help = "request target to halt, then wait up to the specified"
5548 "number of milliseconds (default 5) for it to complete",
5549 .usage = "[milliseconds]",
5550 },
5551 {
5552 .name = "resume",
5553 .handler = handle_resume_command,
5554 .mode = COMMAND_EXEC,
5555 .help = "resume target execution from current PC or address",
5556 .usage = "[address]",
5557 },
5558 {
5559 .name = "reset",
5560 .handler = handle_reset_command,
5561 .mode = COMMAND_EXEC,
5562 .usage = "[run|halt|init]",
5563 .help = "Reset all targets into the specified mode."
5564 "Default reset mode is run, if not given.",
5565 },
5566 {
5567 .name = "soft_reset_halt",
5568 .handler = handle_soft_reset_halt_command,
5569 .mode = COMMAND_EXEC,
5570 .help = "halt the target and do a soft reset",
5571 },
5572 {
5573 .name = "step",
5574 .handler = handle_step_command,
5575 .mode = COMMAND_EXEC,
5576 .help = "step one instruction from current PC or address",
5577 .usage = "[address]",
5578 },
5579 {
5580 .name = "mdw",
5581 .handler = handle_md_command,
5582 .mode = COMMAND_EXEC,
5583 .help = "display memory words",
5584 .usage = "['phys'] address [count]",
5585 },
5586 {
5587 .name = "mdh",
5588 .handler = handle_md_command,
5589 .mode = COMMAND_EXEC,
5590 .help = "display memory half-words",
5591 .usage = "['phys'] address [count]",
5592 },
5593 {
5594 .name = "mdb",
5595 .handler = handle_md_command,
5596 .mode = COMMAND_EXEC,
5597 .help = "display memory bytes",
5598 .usage = "['phys'] address [count]",
5599 },
5600 {
5601 .name = "mww",
5602 .handler = handle_mw_command,
5603 .mode = COMMAND_EXEC,
5604 .help = "write memory word",
5605 .usage = "['phys'] address value [count]",
5606 },
5607 {
5608 .name = "mwh",
5609 .handler = handle_mw_command,
5610 .mode = COMMAND_EXEC,
5611 .help = "write memory half-word",
5612 .usage = "['phys'] address value [count]",
5613 },
5614 {
5615 .name = "mwb",
5616 .handler = handle_mw_command,
5617 .mode = COMMAND_EXEC,
5618 .help = "write memory byte",
5619 .usage = "['phys'] address value [count]",
5620 },
5621 {
5622 .name = "bp",
5623 .handler = handle_bp_command,
5624 .mode = COMMAND_EXEC,
5625 .help = "list or set hardware or software breakpoint",
5626 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5627 },
5628 {
5629 .name = "rbp",
5630 .handler = handle_rbp_command,
5631 .mode = COMMAND_EXEC,
5632 .help = "remove breakpoint",
5633 .usage = "address",
5634 },
5635 {
5636 .name = "wp",
5637 .handler = handle_wp_command,
5638 .mode = COMMAND_EXEC,
5639 .help = "list (no params) or create watchpoints",
5640 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5641 },
5642 {
5643 .name = "rwp",
5644 .handler = handle_rwp_command,
5645 .mode = COMMAND_EXEC,
5646 .help = "remove watchpoint",
5647 .usage = "address",
5648 },
5649 {
5650 .name = "load_image",
5651 .handler = handle_load_image_command,
5652 .mode = COMMAND_EXEC,
5653 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5654 "[min_address] [max_length]",
5655 },
5656 {
5657 .name = "dump_image",
5658 .handler = handle_dump_image_command,
5659 .mode = COMMAND_EXEC,
5660 .usage = "filename address size",
5661 },
5662 {
5663 .name = "verify_image",
5664 .handler = handle_verify_image_command,
5665 .mode = COMMAND_EXEC,
5666 .usage = "filename [offset [type]]",
5667 },
5668 {
5669 .name = "test_image",
5670 .handler = handle_test_image_command,
5671 .mode = COMMAND_EXEC,
5672 .usage = "filename [offset [type]]",
5673 },
5674 {
5675 .name = "mem2array",
5676 .mode = COMMAND_EXEC,
5677 .jim_handler = jim_mem2array,
5678 .help = "read 8/16/32 bit memory and return as a TCL array "
5679 "for script processing",
5680 .usage = "arrayname bitwidth address count",
5681 },
5682 {
5683 .name = "array2mem",
5684 .mode = COMMAND_EXEC,
5685 .jim_handler = jim_array2mem,
5686 .help = "convert a TCL array to memory locations "
5687 "and write the 8/16/32 bit values",
5688 .usage = "arrayname bitwidth address count",
5689 },
5690 {
5691 .name = "reset_nag",
5692 .handler = handle_target_reset_nag,
5693 .mode = COMMAND_ANY,
5694 .help = "Nag after each reset about options that could have been "
5695 "enabled to improve performance. ",
5696 .usage = "['enable'|'disable']",
5697 },
5698 COMMAND_REGISTRATION_DONE
5699 };
5700 static int target_register_user_commands(struct command_context *cmd_ctx)
5701 {
5702 int retval = ERROR_OK;
5703 if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5704 return retval;
5705
5706 if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5707 return retval;
5708
5709
5710 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5711 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)