target: declare local symbols as static
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm_target;
89 extern struct target_type cortexa_target;
90 extern struct target_type aarch64_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type mips_mips64_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109 extern struct target_type riscv_target;
110 extern struct target_type mem_ap_target;
111 extern struct target_type esirisc_target;
112 extern struct target_type arcv2_target;
113
114 static struct target_type *target_types[] = {
115 &arm7tdmi_target,
116 &arm9tdmi_target,
117 &arm920t_target,
118 &arm720t_target,
119 &arm966e_target,
120 &arm946e_target,
121 &arm926ejs_target,
122 &fa526_target,
123 &feroceon_target,
124 &dragonite_target,
125 &xscale_target,
126 &cortexm_target,
127 &cortexa_target,
128 &cortexr4_target,
129 &arm11_target,
130 &ls1_sap_target,
131 &mips_m4k_target,
132 &avr_target,
133 &dsp563xx_target,
134 &dsp5680xx_target,
135 &testee_target,
136 &avr32_ap7k_target,
137 &hla_target,
138 &nds32_v2_target,
139 &nds32_v3_target,
140 &nds32_v3m_target,
141 &or1k_target,
142 &quark_x10xx_target,
143 &quark_d20xx_target,
144 &stm8_target,
145 &riscv_target,
146 &mem_ap_target,
147 &esirisc_target,
148 &arcv2_target,
149 &aarch64_target,
150 &mips_mips64_target,
151 NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 static LIST_HEAD(target_reset_callback_list);
158 static LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const Jim_Nvp nvp_assert[] = {
162 { .name = "assert", NVP_ASSERT },
163 { .name = "deassert", NVP_DEASSERT },
164 { .name = "T", NVP_ASSERT },
165 { .name = "F", NVP_DEASSERT },
166 { .name = "t", NVP_ASSERT },
167 { .name = "f", NVP_DEASSERT },
168 { .name = NULL, .value = -1 }
169 };
170
171 static const Jim_Nvp nvp_error_target[] = {
172 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177 { .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
178 { .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
179 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
180 { .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
181 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183 { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188 const Jim_Nvp *n;
189
190 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191 if (n->name == NULL)
192 return "unknown";
193 else
194 return n->name;
195 }
196
197 static const Jim_Nvp nvp_target_event[] = {
198
199 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200 { .value = TARGET_EVENT_HALTED, .name = "halted" },
201 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204 { .value = TARGET_EVENT_STEP_START, .name = "step-start" },
205 { .value = TARGET_EVENT_STEP_END, .name = "step-end" },
206
207 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
208 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
209
210 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
211 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
212 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
213 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
214 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
215 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
216 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
217 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
218
219 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
220 { .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
221 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
222
223 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
224 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
225
226 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
227 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
228
229 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
230 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END, .name = "gdb-flash-write-end" },
231
232 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
233 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END, .name = "gdb-flash-erase-end" },
234
235 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
236
237 { .name = NULL, .value = -1 }
238 };
239
240 static const Jim_Nvp nvp_target_state[] = {
241 { .name = "unknown", .value = TARGET_UNKNOWN },
242 { .name = "running", .value = TARGET_RUNNING },
243 { .name = "halted", .value = TARGET_HALTED },
244 { .name = "reset", .value = TARGET_RESET },
245 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
246 { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_debug_reason[] = {
250 { .name = "debug-request", .value = DBG_REASON_DBGRQ },
251 { .name = "breakpoint", .value = DBG_REASON_BREAKPOINT },
252 { .name = "watchpoint", .value = DBG_REASON_WATCHPOINT },
253 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
254 { .name = "single-step", .value = DBG_REASON_SINGLESTEP },
255 { .name = "target-not-halted", .value = DBG_REASON_NOTHALTED },
256 { .name = "program-exit", .value = DBG_REASON_EXIT },
257 { .name = "exception-catch", .value = DBG_REASON_EXC_CATCH },
258 { .name = "undefined", .value = DBG_REASON_UNDEFINED },
259 { .name = NULL, .value = -1 },
260 };
261
262 static const Jim_Nvp nvp_target_endian[] = {
263 { .name = "big", .value = TARGET_BIG_ENDIAN },
264 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
265 { .name = "be", .value = TARGET_BIG_ENDIAN },
266 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
267 { .name = NULL, .value = -1 },
268 };
269
270 static const Jim_Nvp nvp_reset_modes[] = {
271 { .name = "unknown", .value = RESET_UNKNOWN },
272 { .name = "run", .value = RESET_RUN },
273 { .name = "halt", .value = RESET_HALT },
274 { .name = "init", .value = RESET_INIT },
275 { .name = NULL, .value = -1 },
276 };
277
278 const char *debug_reason_name(struct target *t)
279 {
280 const char *cp;
281
282 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
283 t->debug_reason)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
286 cp = "(*BUG*unknown*BUG*)";
287 }
288 return cp;
289 }
290
291 const char *target_state_name(struct target *t)
292 {
293 const char *cp;
294 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
295 if (!cp) {
296 LOG_ERROR("Invalid target state: %d", (int)(t->state));
297 cp = "(*BUG*unknown*BUG*)";
298 }
299
300 if (!target_was_examined(t) && t->defer_examine)
301 cp = "examine deferred";
302
303 return cp;
304 }
305
306 const char *target_event_name(enum target_event event)
307 {
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target event: %d", (int)(event));
312 cp = "(*BUG*unknown*BUG*)";
313 }
314 return cp;
315 }
316
317 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
318 {
319 const char *cp;
320 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
321 if (!cp) {
322 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
323 cp = "(*BUG*unknown*BUG*)";
324 }
325 return cp;
326 }
327
328 /* determine the number of the new target */
329 static int new_target_number(void)
330 {
331 struct target *t;
332 int x;
333
334 /* number is 0 based */
335 x = -1;
336 t = all_targets;
337 while (t) {
338 if (x < t->target_number)
339 x = t->target_number;
340 t = t->next;
341 }
342 return x + 1;
343 }
344
345 static void append_to_list_all_targets(struct target *target)
346 {
347 struct target **t = &all_targets;
348
349 while (*t)
350 t = &((*t)->next);
351 *t = target;
352 }
353
354 /* read a uint64_t from a buffer in target memory endianness */
355 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
356 {
357 if (target->endianness == TARGET_LITTLE_ENDIAN)
358 return le_to_h_u64(buffer);
359 else
360 return be_to_h_u64(buffer);
361 }
362
363 /* read a uint32_t from a buffer in target memory endianness */
364 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
365 {
366 if (target->endianness == TARGET_LITTLE_ENDIAN)
367 return le_to_h_u32(buffer);
368 else
369 return be_to_h_u32(buffer);
370 }
371
372 /* read a uint24_t from a buffer in target memory endianness */
373 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
374 {
375 if (target->endianness == TARGET_LITTLE_ENDIAN)
376 return le_to_h_u24(buffer);
377 else
378 return be_to_h_u24(buffer);
379 }
380
381 /* read a uint16_t from a buffer in target memory endianness */
382 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
383 {
384 if (target->endianness == TARGET_LITTLE_ENDIAN)
385 return le_to_h_u16(buffer);
386 else
387 return be_to_h_u16(buffer);
388 }
389
390 /* write a uint64_t to a buffer in target memory endianness */
391 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
392 {
393 if (target->endianness == TARGET_LITTLE_ENDIAN)
394 h_u64_to_le(buffer, value);
395 else
396 h_u64_to_be(buffer, value);
397 }
398
399 /* write a uint32_t to a buffer in target memory endianness */
400 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
401 {
402 if (target->endianness == TARGET_LITTLE_ENDIAN)
403 h_u32_to_le(buffer, value);
404 else
405 h_u32_to_be(buffer, value);
406 }
407
408 /* write a uint24_t to a buffer in target memory endianness */
409 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
410 {
411 if (target->endianness == TARGET_LITTLE_ENDIAN)
412 h_u24_to_le(buffer, value);
413 else
414 h_u24_to_be(buffer, value);
415 }
416
417 /* write a uint16_t to a buffer in target memory endianness */
418 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
419 {
420 if (target->endianness == TARGET_LITTLE_ENDIAN)
421 h_u16_to_le(buffer, value);
422 else
423 h_u16_to_be(buffer, value);
424 }
425
426 /* write a uint8_t to a buffer in target memory endianness */
427 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
428 {
429 *buffer = value;
430 }
431
432 /* write a uint64_t array to a buffer in target memory endianness */
433 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
434 {
435 uint32_t i;
436 for (i = 0; i < count; i++)
437 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
438 }
439
440 /* write a uint32_t array to a buffer in target memory endianness */
441 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
442 {
443 uint32_t i;
444 for (i = 0; i < count; i++)
445 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
446 }
447
448 /* write a uint16_t array to a buffer in target memory endianness */
449 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
450 {
451 uint32_t i;
452 for (i = 0; i < count; i++)
453 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
454 }
455
456 /* write a uint64_t array to a buffer in target memory endianness */
457 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
458 {
459 uint32_t i;
460 for (i = 0; i < count; i++)
461 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
462 }
463
464 /* write a uint32_t array to a buffer in target memory endianness */
465 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
466 {
467 uint32_t i;
468 for (i = 0; i < count; i++)
469 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
470 }
471
472 /* write a uint16_t array to a buffer in target memory endianness */
473 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
474 {
475 uint32_t i;
476 for (i = 0; i < count; i++)
477 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
478 }
479
480 /* return a pointer to a configured target; id is name or number */
481 struct target *get_target(const char *id)
482 {
483 struct target *target;
484
485 /* try as tcltarget name */
486 for (target = all_targets; target; target = target->next) {
487 if (target_name(target) == NULL)
488 continue;
489 if (strcmp(id, target_name(target)) == 0)
490 return target;
491 }
492
493 /* It's OK to remove this fallback sometime after August 2010 or so */
494
495 /* no match, try as number */
496 unsigned num;
497 if (parse_uint(id, &num) != ERROR_OK)
498 return NULL;
499
500 for (target = all_targets; target; target = target->next) {
501 if (target->target_number == (int)num) {
502 LOG_WARNING("use '%s' as target identifier, not '%u'",
503 target_name(target), num);
504 return target;
505 }
506 }
507
508 return NULL;
509 }
510
511 /* returns a pointer to the n-th configured target */
512 struct target *get_target_by_num(int num)
513 {
514 struct target *target = all_targets;
515
516 while (target) {
517 if (target->target_number == num)
518 return target;
519 target = target->next;
520 }
521
522 return NULL;
523 }
524
525 struct target *get_current_target(struct command_context *cmd_ctx)
526 {
527 struct target *target = get_current_target_or_null(cmd_ctx);
528
529 if (target == NULL) {
530 LOG_ERROR("BUG: current_target out of bounds");
531 exit(-1);
532 }
533
534 return target;
535 }
536
537 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
538 {
539 return cmd_ctx->current_target_override
540 ? cmd_ctx->current_target_override
541 : cmd_ctx->current_target;
542 }
543
544 int target_poll(struct target *target)
545 {
546 int retval;
547
548 /* We can't poll until after examine */
549 if (!target_was_examined(target)) {
550 /* Fail silently lest we pollute the log */
551 return ERROR_FAIL;
552 }
553
554 retval = target->type->poll(target);
555 if (retval != ERROR_OK)
556 return retval;
557
558 if (target->halt_issued) {
559 if (target->state == TARGET_HALTED)
560 target->halt_issued = false;
561 else {
562 int64_t t = timeval_ms() - target->halt_issued_time;
563 if (t > DEFAULT_HALT_TIMEOUT) {
564 target->halt_issued = false;
565 LOG_INFO("Halt timed out, wake up GDB.");
566 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
567 }
568 }
569 }
570
571 return ERROR_OK;
572 }
573
574 int target_halt(struct target *target)
575 {
576 int retval;
577 /* We can't poll until after examine */
578 if (!target_was_examined(target)) {
579 LOG_ERROR("Target not examined yet");
580 return ERROR_FAIL;
581 }
582
583 retval = target->type->halt(target);
584 if (retval != ERROR_OK)
585 return retval;
586
587 target->halt_issued = true;
588 target->halt_issued_time = timeval_ms();
589
590 return ERROR_OK;
591 }
592
593 /**
594 * Make the target (re)start executing using its saved execution
595 * context (possibly with some modifications).
596 *
597 * @param target Which target should start executing.
598 * @param current True to use the target's saved program counter instead
599 * of the address parameter
600 * @param address Optionally used as the program counter.
601 * @param handle_breakpoints True iff breakpoints at the resumption PC
602 * should be skipped. (For example, maybe execution was stopped by
603 * such a breakpoint, in which case it would be counterproductive to
604 * let it re-trigger.
605 * @param debug_execution False if all working areas allocated by OpenOCD
606 * should be released and/or restored to their original contents.
607 * (This would for example be true to run some downloaded "helper"
608 * algorithm code, which resides in one such working buffer and uses
609 * another for data storage.)
610 *
611 * @todo Resolve the ambiguity about what the "debug_execution" flag
612 * signifies. For example, Target implementations don't agree on how
613 * it relates to invalidation of the register cache, or to whether
614 * breakpoints and watchpoints should be enabled. (It would seem wrong
615 * to enable breakpoints when running downloaded "helper" algorithms
616 * (debug_execution true), since the breakpoints would be set to match
617 * target firmware being debugged, not the helper algorithm.... and
618 * enabling them could cause such helpers to malfunction (for example,
619 * by overwriting data with a breakpoint instruction. On the other
620 * hand the infrastructure for running such helpers might use this
621 * procedure but rely on hardware breakpoint to detect termination.)
622 */
623 int target_resume(struct target *target, int current, target_addr_t address,
624 int handle_breakpoints, int debug_execution)
625 {
626 int retval;
627
628 /* We can't poll until after examine */
629 if (!target_was_examined(target)) {
630 LOG_ERROR("Target not examined yet");
631 return ERROR_FAIL;
632 }
633
634 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
635
636 /* note that resume *must* be asynchronous. The CPU can halt before
637 * we poll. The CPU can even halt at the current PC as a result of
638 * a software breakpoint being inserted by (a bug?) the application.
639 */
640 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
641 if (retval != ERROR_OK)
642 return retval;
643
644 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
645
646 return retval;
647 }
648
649 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
650 {
651 char buf[100];
652 int retval;
653 Jim_Nvp *n;
654 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
655 if (n->name == NULL) {
656 LOG_ERROR("invalid reset mode");
657 return ERROR_FAIL;
658 }
659
660 struct target *target;
661 for (target = all_targets; target; target = target->next)
662 target_call_reset_callbacks(target, reset_mode);
663
664 /* disable polling during reset to make reset event scripts
665 * more predictable, i.e. dr/irscan & pathmove in events will
666 * not have JTAG operations injected into the middle of a sequence.
667 */
668 bool save_poll = jtag_poll_get_enabled();
669
670 jtag_poll_set_enabled(false);
671
672 sprintf(buf, "ocd_process_reset %s", n->name);
673 retval = Jim_Eval(cmd->ctx->interp, buf);
674
675 jtag_poll_set_enabled(save_poll);
676
677 if (retval != JIM_OK) {
678 Jim_MakeErrorMessage(cmd->ctx->interp);
679 command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
680 return ERROR_FAIL;
681 }
682
683 /* We want any events to be processed before the prompt */
684 retval = target_call_timer_callbacks_now();
685
686 for (target = all_targets; target; target = target->next) {
687 target->type->check_reset(target);
688 target->running_alg = false;
689 }
690
691 return retval;
692 }
693
694 static int identity_virt2phys(struct target *target,
695 target_addr_t virtual, target_addr_t *physical)
696 {
697 *physical = virtual;
698 return ERROR_OK;
699 }
700
701 static int no_mmu(struct target *target, int *enabled)
702 {
703 *enabled = 0;
704 return ERROR_OK;
705 }
706
707 static int default_examine(struct target *target)
708 {
709 target_set_examined(target);
710 return ERROR_OK;
711 }
712
713 /* no check by default */
714 static int default_check_reset(struct target *target)
715 {
716 return ERROR_OK;
717 }
718
719 /* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
720 * Keep in sync */
721 int target_examine_one(struct target *target)
722 {
723 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
724
725 int retval = target->type->examine(target);
726 if (retval != ERROR_OK) {
727 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_FAIL);
728 return retval;
729 }
730
731 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
732
733 return ERROR_OK;
734 }
735
736 static int jtag_enable_callback(enum jtag_event event, void *priv)
737 {
738 struct target *target = priv;
739
740 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
741 return ERROR_OK;
742
743 jtag_unregister_event_callback(jtag_enable_callback, target);
744
745 return target_examine_one(target);
746 }
747
748 /* Targets that correctly implement init + examine, i.e.
749 * no communication with target during init:
750 *
751 * XScale
752 */
753 int target_examine(void)
754 {
755 int retval = ERROR_OK;
756 struct target *target;
757
758 for (target = all_targets; target; target = target->next) {
759 /* defer examination, but don't skip it */
760 if (!target->tap->enabled) {
761 jtag_register_event_callback(jtag_enable_callback,
762 target);
763 continue;
764 }
765
766 if (target->defer_examine)
767 continue;
768
769 retval = target_examine_one(target);
770 if (retval != ERROR_OK)
771 return retval;
772 }
773 return retval;
774 }
775
776 const char *target_type_name(struct target *target)
777 {
778 return target->type->name;
779 }
780
781 static int target_soft_reset_halt(struct target *target)
782 {
783 if (!target_was_examined(target)) {
784 LOG_ERROR("Target not examined yet");
785 return ERROR_FAIL;
786 }
787 if (!target->type->soft_reset_halt) {
788 LOG_ERROR("Target %s does not support soft_reset_halt",
789 target_name(target));
790 return ERROR_FAIL;
791 }
792 return target->type->soft_reset_halt(target);
793 }
794
795 /**
796 * Downloads a target-specific native code algorithm to the target,
797 * and executes it. * Note that some targets may need to set up, enable,
798 * and tear down a breakpoint (hard or * soft) to detect algorithm
799 * termination, while others may support lower overhead schemes where
800 * soft breakpoints embedded in the algorithm automatically terminate the
801 * algorithm.
802 *
803 * @param target used to run the algorithm
804 * @param arch_info target-specific description of the algorithm.
805 */
806 int target_run_algorithm(struct target *target,
807 int num_mem_params, struct mem_param *mem_params,
808 int num_reg_params, struct reg_param *reg_param,
809 uint32_t entry_point, uint32_t exit_point,
810 int timeout_ms, void *arch_info)
811 {
812 int retval = ERROR_FAIL;
813
814 if (!target_was_examined(target)) {
815 LOG_ERROR("Target not examined yet");
816 goto done;
817 }
818 if (!target->type->run_algorithm) {
819 LOG_ERROR("Target type '%s' does not support %s",
820 target_type_name(target), __func__);
821 goto done;
822 }
823
824 target->running_alg = true;
825 retval = target->type->run_algorithm(target,
826 num_mem_params, mem_params,
827 num_reg_params, reg_param,
828 entry_point, exit_point, timeout_ms, arch_info);
829 target->running_alg = false;
830
831 done:
832 return retval;
833 }
834
835 /**
836 * Executes a target-specific native code algorithm and leaves it running.
837 *
838 * @param target used to run the algorithm
839 * @param arch_info target-specific description of the algorithm.
840 */
841 int target_start_algorithm(struct target *target,
842 int num_mem_params, struct mem_param *mem_params,
843 int num_reg_params, struct reg_param *reg_params,
844 uint32_t entry_point, uint32_t exit_point,
845 void *arch_info)
846 {
847 int retval = ERROR_FAIL;
848
849 if (!target_was_examined(target)) {
850 LOG_ERROR("Target not examined yet");
851 goto done;
852 }
853 if (!target->type->start_algorithm) {
854 LOG_ERROR("Target type '%s' does not support %s",
855 target_type_name(target), __func__);
856 goto done;
857 }
858 if (target->running_alg) {
859 LOG_ERROR("Target is already running an algorithm");
860 goto done;
861 }
862
863 target->running_alg = true;
864 retval = target->type->start_algorithm(target,
865 num_mem_params, mem_params,
866 num_reg_params, reg_params,
867 entry_point, exit_point, arch_info);
868
869 done:
870 return retval;
871 }
872
873 /**
874 * Waits for an algorithm started with target_start_algorithm() to complete.
875 *
876 * @param target used to run the algorithm
877 * @param arch_info target-specific description of the algorithm.
878 */
879 int target_wait_algorithm(struct target *target,
880 int num_mem_params, struct mem_param *mem_params,
881 int num_reg_params, struct reg_param *reg_params,
882 uint32_t exit_point, int timeout_ms,
883 void *arch_info)
884 {
885 int retval = ERROR_FAIL;
886
887 if (!target->type->wait_algorithm) {
888 LOG_ERROR("Target type '%s' does not support %s",
889 target_type_name(target), __func__);
890 goto done;
891 }
892 if (!target->running_alg) {
893 LOG_ERROR("Target is not running an algorithm");
894 goto done;
895 }
896
897 retval = target->type->wait_algorithm(target,
898 num_mem_params, mem_params,
899 num_reg_params, reg_params,
900 exit_point, timeout_ms, arch_info);
901 if (retval != ERROR_TARGET_TIMEOUT)
902 target->running_alg = false;
903
904 done:
905 return retval;
906 }
907
908 /**
909 * Streams data to a circular buffer on target intended for consumption by code
910 * running asynchronously on target.
911 *
912 * This is intended for applications where target-specific native code runs
913 * on the target, receives data from the circular buffer, does something with
914 * it (most likely writing it to a flash memory), and advances the circular
915 * buffer pointer.
916 *
917 * This assumes that the helper algorithm has already been loaded to the target,
918 * but has not been started yet. Given memory and register parameters are passed
919 * to the algorithm.
920 *
921 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
922 * following format:
923 *
924 * [buffer_start + 0, buffer_start + 4):
925 * Write Pointer address (aka head). Written and updated by this
926 * routine when new data is written to the circular buffer.
927 * [buffer_start + 4, buffer_start + 8):
928 * Read Pointer address (aka tail). Updated by code running on the
929 * target after it consumes data.
930 * [buffer_start + 8, buffer_start + buffer_size):
931 * Circular buffer contents.
932 *
933 * See contrib/loaders/flash/stm32f1x.S for an example.
934 *
935 * @param target used to run the algorithm
936 * @param buffer address on the host where data to be sent is located
937 * @param count number of blocks to send
938 * @param block_size size in bytes of each block
939 * @param num_mem_params count of memory-based params to pass to algorithm
940 * @param mem_params memory-based params to pass to algorithm
941 * @param num_reg_params count of register-based params to pass to algorithm
942 * @param reg_params memory-based params to pass to algorithm
943 * @param buffer_start address on the target of the circular buffer structure
944 * @param buffer_size size of the circular buffer structure
945 * @param entry_point address on the target to execute to start the algorithm
946 * @param exit_point address at which to set a breakpoint to catch the
947 * end of the algorithm; can be 0 if target triggers a breakpoint itself
948 */
949
950 int target_run_flash_async_algorithm(struct target *target,
951 const uint8_t *buffer, uint32_t count, int block_size,
952 int num_mem_params, struct mem_param *mem_params,
953 int num_reg_params, struct reg_param *reg_params,
954 uint32_t buffer_start, uint32_t buffer_size,
955 uint32_t entry_point, uint32_t exit_point, void *arch_info)
956 {
957 int retval;
958 int timeout = 0;
959
960 const uint8_t *buffer_orig = buffer;
961
962 /* Set up working area. First word is write pointer, second word is read pointer,
963 * rest is fifo data area. */
964 uint32_t wp_addr = buffer_start;
965 uint32_t rp_addr = buffer_start + 4;
966 uint32_t fifo_start_addr = buffer_start + 8;
967 uint32_t fifo_end_addr = buffer_start + buffer_size;
968
969 uint32_t wp = fifo_start_addr;
970 uint32_t rp = fifo_start_addr;
971
972 /* validate block_size is 2^n */
973 assert(!block_size || !(block_size & (block_size - 1)));
974
975 retval = target_write_u32(target, wp_addr, wp);
976 if (retval != ERROR_OK)
977 return retval;
978 retval = target_write_u32(target, rp_addr, rp);
979 if (retval != ERROR_OK)
980 return retval;
981
982 /* Start up algorithm on target and let it idle while writing the first chunk */
983 retval = target_start_algorithm(target, num_mem_params, mem_params,
984 num_reg_params, reg_params,
985 entry_point,
986 exit_point,
987 arch_info);
988
989 if (retval != ERROR_OK) {
990 LOG_ERROR("error starting target flash write algorithm");
991 return retval;
992 }
993
994 while (count > 0) {
995
996 retval = target_read_u32(target, rp_addr, &rp);
997 if (retval != ERROR_OK) {
998 LOG_ERROR("failed to get read pointer");
999 break;
1000 }
1001
1002 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1003 (size_t) (buffer - buffer_orig), count, wp, rp);
1004
1005 if (rp == 0) {
1006 LOG_ERROR("flash write algorithm aborted by target");
1007 retval = ERROR_FLASH_OPERATION_FAILED;
1008 break;
1009 }
1010
1011 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1012 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1013 break;
1014 }
1015
1016 /* Count the number of bytes available in the fifo without
1017 * crossing the wrap around. Make sure to not fill it completely,
1018 * because that would make wp == rp and that's the empty condition. */
1019 uint32_t thisrun_bytes;
1020 if (rp > wp)
1021 thisrun_bytes = rp - wp - block_size;
1022 else if (rp > fifo_start_addr)
1023 thisrun_bytes = fifo_end_addr - wp;
1024 else
1025 thisrun_bytes = fifo_end_addr - wp - block_size;
1026
1027 if (thisrun_bytes == 0) {
1028 /* Throttle polling a bit if transfer is (much) faster than flash
1029 * programming. The exact delay shouldn't matter as long as it's
1030 * less than buffer size / flash speed. This is very unlikely to
1031 * run when using high latency connections such as USB. */
1032 alive_sleep(10);
1033
1034 /* to stop an infinite loop on some targets check and increment a timeout
1035 * this issue was observed on a stellaris using the new ICDI interface */
1036 if (timeout++ >= 500) {
1037 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1038 return ERROR_FLASH_OPERATION_FAILED;
1039 }
1040 continue;
1041 }
1042
1043 /* reset our timeout */
1044 timeout = 0;
1045
1046 /* Limit to the amount of data we actually want to write */
1047 if (thisrun_bytes > count * block_size)
1048 thisrun_bytes = count * block_size;
1049
1050 /* Write data to fifo */
1051 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1052 if (retval != ERROR_OK)
1053 break;
1054
1055 /* Update counters and wrap write pointer */
1056 buffer += thisrun_bytes;
1057 count -= thisrun_bytes / block_size;
1058 wp += thisrun_bytes;
1059 if (wp >= fifo_end_addr)
1060 wp = fifo_start_addr;
1061
1062 /* Store updated write pointer to target */
1063 retval = target_write_u32(target, wp_addr, wp);
1064 if (retval != ERROR_OK)
1065 break;
1066
1067 /* Avoid GDB timeouts */
1068 keep_alive();
1069 }
1070
1071 if (retval != ERROR_OK) {
1072 /* abort flash write algorithm on target */
1073 target_write_u32(target, wp_addr, 0);
1074 }
1075
1076 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1077 num_reg_params, reg_params,
1078 exit_point,
1079 10000,
1080 arch_info);
1081
1082 if (retval2 != ERROR_OK) {
1083 LOG_ERROR("error waiting for target flash write algorithm");
1084 retval = retval2;
1085 }
1086
1087 if (retval == ERROR_OK) {
1088 /* check if algorithm set rp = 0 after fifo writer loop finished */
1089 retval = target_read_u32(target, rp_addr, &rp);
1090 if (retval == ERROR_OK && rp == 0) {
1091 LOG_ERROR("flash write algorithm aborted by target");
1092 retval = ERROR_FLASH_OPERATION_FAILED;
1093 }
1094 }
1095
1096 return retval;
1097 }
1098
1099 int target_read_memory(struct target *target,
1100 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1101 {
1102 if (!target_was_examined(target)) {
1103 LOG_ERROR("Target not examined yet");
1104 return ERROR_FAIL;
1105 }
1106 if (!target->type->read_memory) {
1107 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1108 return ERROR_FAIL;
1109 }
1110 return target->type->read_memory(target, address, size, count, buffer);
1111 }
1112
1113 int target_read_phys_memory(struct target *target,
1114 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1115 {
1116 if (!target_was_examined(target)) {
1117 LOG_ERROR("Target not examined yet");
1118 return ERROR_FAIL;
1119 }
1120 if (!target->type->read_phys_memory) {
1121 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1122 return ERROR_FAIL;
1123 }
1124 return target->type->read_phys_memory(target, address, size, count, buffer);
1125 }
1126
1127 int target_write_memory(struct target *target,
1128 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1129 {
1130 if (!target_was_examined(target)) {
1131 LOG_ERROR("Target not examined yet");
1132 return ERROR_FAIL;
1133 }
1134 if (!target->type->write_memory) {
1135 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1136 return ERROR_FAIL;
1137 }
1138 return target->type->write_memory(target, address, size, count, buffer);
1139 }
1140
1141 int target_write_phys_memory(struct target *target,
1142 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1143 {
1144 if (!target_was_examined(target)) {
1145 LOG_ERROR("Target not examined yet");
1146 return ERROR_FAIL;
1147 }
1148 if (!target->type->write_phys_memory) {
1149 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1150 return ERROR_FAIL;
1151 }
1152 return target->type->write_phys_memory(target, address, size, count, buffer);
1153 }
1154
1155 int target_add_breakpoint(struct target *target,
1156 struct breakpoint *breakpoint)
1157 {
1158 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1159 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1160 return ERROR_TARGET_NOT_HALTED;
1161 }
1162 return target->type->add_breakpoint(target, breakpoint);
1163 }
1164
1165 int target_add_context_breakpoint(struct target *target,
1166 struct breakpoint *breakpoint)
1167 {
1168 if (target->state != TARGET_HALTED) {
1169 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1170 return ERROR_TARGET_NOT_HALTED;
1171 }
1172 return target->type->add_context_breakpoint(target, breakpoint);
1173 }
1174
1175 int target_add_hybrid_breakpoint(struct target *target,
1176 struct breakpoint *breakpoint)
1177 {
1178 if (target->state != TARGET_HALTED) {
1179 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1180 return ERROR_TARGET_NOT_HALTED;
1181 }
1182 return target->type->add_hybrid_breakpoint(target, breakpoint);
1183 }
1184
1185 int target_remove_breakpoint(struct target *target,
1186 struct breakpoint *breakpoint)
1187 {
1188 return target->type->remove_breakpoint(target, breakpoint);
1189 }
1190
1191 int target_add_watchpoint(struct target *target,
1192 struct watchpoint *watchpoint)
1193 {
1194 if (target->state != TARGET_HALTED) {
1195 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1196 return ERROR_TARGET_NOT_HALTED;
1197 }
1198 return target->type->add_watchpoint(target, watchpoint);
1199 }
1200 int target_remove_watchpoint(struct target *target,
1201 struct watchpoint *watchpoint)
1202 {
1203 return target->type->remove_watchpoint(target, watchpoint);
1204 }
1205 int target_hit_watchpoint(struct target *target,
1206 struct watchpoint **hit_watchpoint)
1207 {
1208 if (target->state != TARGET_HALTED) {
1209 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1210 return ERROR_TARGET_NOT_HALTED;
1211 }
1212
1213 if (target->type->hit_watchpoint == NULL) {
1214 /* For backward compatible, if hit_watchpoint is not implemented,
1215 * return ERROR_FAIL such that gdb_server will not take the nonsense
1216 * information. */
1217 return ERROR_FAIL;
1218 }
1219
1220 return target->type->hit_watchpoint(target, hit_watchpoint);
1221 }
1222
1223 const char *target_get_gdb_arch(struct target *target)
1224 {
1225 if (target->type->get_gdb_arch == NULL)
1226 return NULL;
1227 return target->type->get_gdb_arch(target);
1228 }
1229
1230 int target_get_gdb_reg_list(struct target *target,
1231 struct reg **reg_list[], int *reg_list_size,
1232 enum target_register_class reg_class)
1233 {
1234 int result = ERROR_FAIL;
1235
1236 if (!target_was_examined(target)) {
1237 LOG_ERROR("Target not examined yet");
1238 goto done;
1239 }
1240
1241 result = target->type->get_gdb_reg_list(target, reg_list,
1242 reg_list_size, reg_class);
1243
1244 done:
1245 if (result != ERROR_OK) {
1246 *reg_list = NULL;
1247 *reg_list_size = 0;
1248 }
1249 return result;
1250 }
1251
1252 int target_get_gdb_reg_list_noread(struct target *target,
1253 struct reg **reg_list[], int *reg_list_size,
1254 enum target_register_class reg_class)
1255 {
1256 if (target->type->get_gdb_reg_list_noread &&
1257 target->type->get_gdb_reg_list_noread(target, reg_list,
1258 reg_list_size, reg_class) == ERROR_OK)
1259 return ERROR_OK;
1260 return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1261 }
1262
1263 bool target_supports_gdb_connection(struct target *target)
1264 {
1265 /*
1266 * exclude all the targets that don't provide get_gdb_reg_list
1267 * or that have explicit gdb_max_connection == 0
1268 */
1269 return !!target->type->get_gdb_reg_list && !!target->gdb_max_connections;
1270 }
1271
1272 int target_step(struct target *target,
1273 int current, target_addr_t address, int handle_breakpoints)
1274 {
1275 int retval;
1276
1277 target_call_event_callbacks(target, TARGET_EVENT_STEP_START);
1278
1279 retval = target->type->step(target, current, address, handle_breakpoints);
1280 if (retval != ERROR_OK)
1281 return retval;
1282
1283 target_call_event_callbacks(target, TARGET_EVENT_STEP_END);
1284
1285 return retval;
1286 }
1287
1288 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1289 {
1290 if (target->state != TARGET_HALTED) {
1291 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1292 return ERROR_TARGET_NOT_HALTED;
1293 }
1294 return target->type->get_gdb_fileio_info(target, fileio_info);
1295 }
1296
1297 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1298 {
1299 if (target->state != TARGET_HALTED) {
1300 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1301 return ERROR_TARGET_NOT_HALTED;
1302 }
1303 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1304 }
1305
1306 target_addr_t target_address_max(struct target *target)
1307 {
1308 unsigned bits = target_address_bits(target);
1309 if (sizeof(target_addr_t) * 8 == bits)
1310 return (target_addr_t) -1;
1311 else
1312 return (((target_addr_t) 1) << bits) - 1;
1313 }
1314
1315 unsigned target_address_bits(struct target *target)
1316 {
1317 if (target->type->address_bits)
1318 return target->type->address_bits(target);
1319 return 32;
1320 }
1321
1322 static int target_profiling(struct target *target, uint32_t *samples,
1323 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1324 {
1325 return target->type->profiling(target, samples, max_num_samples,
1326 num_samples, seconds);
1327 }
1328
1329 /**
1330 * Reset the @c examined flag for the given target.
1331 * Pure paranoia -- targets are zeroed on allocation.
1332 */
1333 static void target_reset_examined(struct target *target)
1334 {
1335 target->examined = false;
1336 }
1337
1338 static int handle_target(void *priv);
1339
1340 static int target_init_one(struct command_context *cmd_ctx,
1341 struct target *target)
1342 {
1343 target_reset_examined(target);
1344
1345 struct target_type *type = target->type;
1346 if (type->examine == NULL)
1347 type->examine = default_examine;
1348
1349 if (type->check_reset == NULL)
1350 type->check_reset = default_check_reset;
1351
1352 assert(type->init_target != NULL);
1353
1354 int retval = type->init_target(cmd_ctx, target);
1355 if (ERROR_OK != retval) {
1356 LOG_ERROR("target '%s' init failed", target_name(target));
1357 return retval;
1358 }
1359
1360 /* Sanity-check MMU support ... stub in what we must, to help
1361 * implement it in stages, but warn if we need to do so.
1362 */
1363 if (type->mmu) {
1364 if (type->virt2phys == NULL) {
1365 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1366 type->virt2phys = identity_virt2phys;
1367 }
1368 } else {
1369 /* Make sure no-MMU targets all behave the same: make no
1370 * distinction between physical and virtual addresses, and
1371 * ensure that virt2phys() is always an identity mapping.
1372 */
1373 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1374 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1375
1376 type->mmu = no_mmu;
1377 type->write_phys_memory = type->write_memory;
1378 type->read_phys_memory = type->read_memory;
1379 type->virt2phys = identity_virt2phys;
1380 }
1381
1382 if (target->type->read_buffer == NULL)
1383 target->type->read_buffer = target_read_buffer_default;
1384
1385 if (target->type->write_buffer == NULL)
1386 target->type->write_buffer = target_write_buffer_default;
1387
1388 if (target->type->get_gdb_fileio_info == NULL)
1389 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1390
1391 if (target->type->gdb_fileio_end == NULL)
1392 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1393
1394 if (target->type->profiling == NULL)
1395 target->type->profiling = target_profiling_default;
1396
1397 return ERROR_OK;
1398 }
1399
1400 static int target_init(struct command_context *cmd_ctx)
1401 {
1402 struct target *target;
1403 int retval;
1404
1405 for (target = all_targets; target; target = target->next) {
1406 retval = target_init_one(cmd_ctx, target);
1407 if (ERROR_OK != retval)
1408 return retval;
1409 }
1410
1411 if (!all_targets)
1412 return ERROR_OK;
1413
1414 retval = target_register_user_commands(cmd_ctx);
1415 if (ERROR_OK != retval)
1416 return retval;
1417
1418 retval = target_register_timer_callback(&handle_target,
1419 polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
1420 if (ERROR_OK != retval)
1421 return retval;
1422
1423 return ERROR_OK;
1424 }
1425
1426 COMMAND_HANDLER(handle_target_init_command)
1427 {
1428 int retval;
1429
1430 if (CMD_ARGC != 0)
1431 return ERROR_COMMAND_SYNTAX_ERROR;
1432
1433 static bool target_initialized;
1434 if (target_initialized) {
1435 LOG_INFO("'target init' has already been called");
1436 return ERROR_OK;
1437 }
1438 target_initialized = true;
1439
1440 retval = command_run_line(CMD_CTX, "init_targets");
1441 if (ERROR_OK != retval)
1442 return retval;
1443
1444 retval = command_run_line(CMD_CTX, "init_target_events");
1445 if (ERROR_OK != retval)
1446 return retval;
1447
1448 retval = command_run_line(CMD_CTX, "init_board");
1449 if (ERROR_OK != retval)
1450 return retval;
1451
1452 LOG_DEBUG("Initializing targets...");
1453 return target_init(CMD_CTX);
1454 }
1455
1456 int target_register_event_callback(int (*callback)(struct target *target,
1457 enum target_event event, void *priv), void *priv)
1458 {
1459 struct target_event_callback **callbacks_p = &target_event_callbacks;
1460
1461 if (callback == NULL)
1462 return ERROR_COMMAND_SYNTAX_ERROR;
1463
1464 if (*callbacks_p) {
1465 while ((*callbacks_p)->next)
1466 callbacks_p = &((*callbacks_p)->next);
1467 callbacks_p = &((*callbacks_p)->next);
1468 }
1469
1470 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1471 (*callbacks_p)->callback = callback;
1472 (*callbacks_p)->priv = priv;
1473 (*callbacks_p)->next = NULL;
1474
1475 return ERROR_OK;
1476 }
1477
1478 int target_register_reset_callback(int (*callback)(struct target *target,
1479 enum target_reset_mode reset_mode, void *priv), void *priv)
1480 {
1481 struct target_reset_callback *entry;
1482
1483 if (callback == NULL)
1484 return ERROR_COMMAND_SYNTAX_ERROR;
1485
1486 entry = malloc(sizeof(struct target_reset_callback));
1487 if (entry == NULL) {
1488 LOG_ERROR("error allocating buffer for reset callback entry");
1489 return ERROR_COMMAND_SYNTAX_ERROR;
1490 }
1491
1492 entry->callback = callback;
1493 entry->priv = priv;
1494 list_add(&entry->list, &target_reset_callback_list);
1495
1496
1497 return ERROR_OK;
1498 }
1499
1500 int target_register_trace_callback(int (*callback)(struct target *target,
1501 size_t len, uint8_t *data, void *priv), void *priv)
1502 {
1503 struct target_trace_callback *entry;
1504
1505 if (callback == NULL)
1506 return ERROR_COMMAND_SYNTAX_ERROR;
1507
1508 entry = malloc(sizeof(struct target_trace_callback));
1509 if (entry == NULL) {
1510 LOG_ERROR("error allocating buffer for trace callback entry");
1511 return ERROR_COMMAND_SYNTAX_ERROR;
1512 }
1513
1514 entry->callback = callback;
1515 entry->priv = priv;
1516 list_add(&entry->list, &target_trace_callback_list);
1517
1518
1519 return ERROR_OK;
1520 }
1521
1522 int target_register_timer_callback(int (*callback)(void *priv),
1523 unsigned int time_ms, enum target_timer_type type, void *priv)
1524 {
1525 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1526
1527 if (callback == NULL)
1528 return ERROR_COMMAND_SYNTAX_ERROR;
1529
1530 if (*callbacks_p) {
1531 while ((*callbacks_p)->next)
1532 callbacks_p = &((*callbacks_p)->next);
1533 callbacks_p = &((*callbacks_p)->next);
1534 }
1535
1536 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1537 (*callbacks_p)->callback = callback;
1538 (*callbacks_p)->type = type;
1539 (*callbacks_p)->time_ms = time_ms;
1540 (*callbacks_p)->removed = false;
1541
1542 gettimeofday(&(*callbacks_p)->when, NULL);
1543 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1544
1545 (*callbacks_p)->priv = priv;
1546 (*callbacks_p)->next = NULL;
1547
1548 return ERROR_OK;
1549 }
1550
1551 int target_unregister_event_callback(int (*callback)(struct target *target,
1552 enum target_event event, void *priv), void *priv)
1553 {
1554 struct target_event_callback **p = &target_event_callbacks;
1555 struct target_event_callback *c = target_event_callbacks;
1556
1557 if (callback == NULL)
1558 return ERROR_COMMAND_SYNTAX_ERROR;
1559
1560 while (c) {
1561 struct target_event_callback *next = c->next;
1562 if ((c->callback == callback) && (c->priv == priv)) {
1563 *p = next;
1564 free(c);
1565 return ERROR_OK;
1566 } else
1567 p = &(c->next);
1568 c = next;
1569 }
1570
1571 return ERROR_OK;
1572 }
1573
1574 int target_unregister_reset_callback(int (*callback)(struct target *target,
1575 enum target_reset_mode reset_mode, void *priv), void *priv)
1576 {
1577 struct target_reset_callback *entry;
1578
1579 if (callback == NULL)
1580 return ERROR_COMMAND_SYNTAX_ERROR;
1581
1582 list_for_each_entry(entry, &target_reset_callback_list, list) {
1583 if (entry->callback == callback && entry->priv == priv) {
1584 list_del(&entry->list);
1585 free(entry);
1586 break;
1587 }
1588 }
1589
1590 return ERROR_OK;
1591 }
1592
1593 int target_unregister_trace_callback(int (*callback)(struct target *target,
1594 size_t len, uint8_t *data, void *priv), void *priv)
1595 {
1596 struct target_trace_callback *entry;
1597
1598 if (callback == NULL)
1599 return ERROR_COMMAND_SYNTAX_ERROR;
1600
1601 list_for_each_entry(entry, &target_trace_callback_list, list) {
1602 if (entry->callback == callback && entry->priv == priv) {
1603 list_del(&entry->list);
1604 free(entry);
1605 break;
1606 }
1607 }
1608
1609 return ERROR_OK;
1610 }
1611
1612 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1613 {
1614 if (callback == NULL)
1615 return ERROR_COMMAND_SYNTAX_ERROR;
1616
1617 for (struct target_timer_callback *c = target_timer_callbacks;
1618 c; c = c->next) {
1619 if ((c->callback == callback) && (c->priv == priv)) {
1620 c->removed = true;
1621 return ERROR_OK;
1622 }
1623 }
1624
1625 return ERROR_FAIL;
1626 }
1627
1628 int target_call_event_callbacks(struct target *target, enum target_event event)
1629 {
1630 struct target_event_callback *callback = target_event_callbacks;
1631 struct target_event_callback *next_callback;
1632
1633 if (event == TARGET_EVENT_HALTED) {
1634 /* execute early halted first */
1635 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1636 }
1637
1638 LOG_DEBUG("target event %i (%s) for core %s", event,
1639 Jim_Nvp_value2name_simple(nvp_target_event, event)->name,
1640 target_name(target));
1641
1642 target_handle_event(target, event);
1643
1644 while (callback) {
1645 next_callback = callback->next;
1646 callback->callback(target, event, callback->priv);
1647 callback = next_callback;
1648 }
1649
1650 return ERROR_OK;
1651 }
1652
1653 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1654 {
1655 struct target_reset_callback *callback;
1656
1657 LOG_DEBUG("target reset %i (%s)", reset_mode,
1658 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1659
1660 list_for_each_entry(callback, &target_reset_callback_list, list)
1661 callback->callback(target, reset_mode, callback->priv);
1662
1663 return ERROR_OK;
1664 }
1665
1666 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1667 {
1668 struct target_trace_callback *callback;
1669
1670 list_for_each_entry(callback, &target_trace_callback_list, list)
1671 callback->callback(target, len, data, callback->priv);
1672
1673 return ERROR_OK;
1674 }
1675
1676 static int target_timer_callback_periodic_restart(
1677 struct target_timer_callback *cb, struct timeval *now)
1678 {
1679 cb->when = *now;
1680 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1681 return ERROR_OK;
1682 }
1683
1684 static int target_call_timer_callback(struct target_timer_callback *cb,
1685 struct timeval *now)
1686 {
1687 cb->callback(cb->priv);
1688
1689 if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1690 return target_timer_callback_periodic_restart(cb, now);
1691
1692 return target_unregister_timer_callback(cb->callback, cb->priv);
1693 }
1694
1695 static int target_call_timer_callbacks_check_time(int checktime)
1696 {
1697 static bool callback_processing;
1698
1699 /* Do not allow nesting */
1700 if (callback_processing)
1701 return ERROR_OK;
1702
1703 callback_processing = true;
1704
1705 keep_alive();
1706
1707 struct timeval now;
1708 gettimeofday(&now, NULL);
1709
1710 /* Store an address of the place containing a pointer to the
1711 * next item; initially, that's a standalone "root of the
1712 * list" variable. */
1713 struct target_timer_callback **callback = &target_timer_callbacks;
1714 while (callback && *callback) {
1715 if ((*callback)->removed) {
1716 struct target_timer_callback *p = *callback;
1717 *callback = (*callback)->next;
1718 free(p);
1719 continue;
1720 }
1721
1722 bool call_it = (*callback)->callback &&
1723 ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1724 timeval_compare(&now, &(*callback)->when) >= 0);
1725
1726 if (call_it)
1727 target_call_timer_callback(*callback, &now);
1728
1729 callback = &(*callback)->next;
1730 }
1731
1732 callback_processing = false;
1733 return ERROR_OK;
1734 }
1735
1736 int target_call_timer_callbacks(void)
1737 {
1738 return target_call_timer_callbacks_check_time(1);
1739 }
1740
1741 /* invoke periodic callbacks immediately */
1742 int target_call_timer_callbacks_now(void)
1743 {
1744 return target_call_timer_callbacks_check_time(0);
1745 }
1746
1747 /* Prints the working area layout for debug purposes */
1748 static void print_wa_layout(struct target *target)
1749 {
1750 struct working_area *c = target->working_areas;
1751
1752 while (c) {
1753 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1754 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1755 c->address, c->address + c->size - 1, c->size);
1756 c = c->next;
1757 }
1758 }
1759
1760 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1761 static void target_split_working_area(struct working_area *area, uint32_t size)
1762 {
1763 assert(area->free); /* Shouldn't split an allocated area */
1764 assert(size <= area->size); /* Caller should guarantee this */
1765
1766 /* Split only if not already the right size */
1767 if (size < area->size) {
1768 struct working_area *new_wa = malloc(sizeof(*new_wa));
1769
1770 if (new_wa == NULL)
1771 return;
1772
1773 new_wa->next = area->next;
1774 new_wa->size = area->size - size;
1775 new_wa->address = area->address + size;
1776 new_wa->backup = NULL;
1777 new_wa->user = NULL;
1778 new_wa->free = true;
1779
1780 area->next = new_wa;
1781 area->size = size;
1782
1783 /* If backup memory was allocated to this area, it has the wrong size
1784 * now so free it and it will be reallocated if/when needed */
1785 free(area->backup);
1786 area->backup = NULL;
1787 }
1788 }
1789
1790 /* Merge all adjacent free areas into one */
1791 static void target_merge_working_areas(struct target *target)
1792 {
1793 struct working_area *c = target->working_areas;
1794
1795 while (c && c->next) {
1796 assert(c->next->address == c->address + c->size); /* This is an invariant */
1797
1798 /* Find two adjacent free areas */
1799 if (c->free && c->next->free) {
1800 /* Merge the last into the first */
1801 c->size += c->next->size;
1802
1803 /* Remove the last */
1804 struct working_area *to_be_freed = c->next;
1805 c->next = c->next->next;
1806 free(to_be_freed->backup);
1807 free(to_be_freed);
1808
1809 /* If backup memory was allocated to the remaining area, it's has
1810 * the wrong size now */
1811 free(c->backup);
1812 c->backup = NULL;
1813 } else {
1814 c = c->next;
1815 }
1816 }
1817 }
1818
1819 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1820 {
1821 /* Reevaluate working area address based on MMU state*/
1822 if (target->working_areas == NULL) {
1823 int retval;
1824 int enabled;
1825
1826 retval = target->type->mmu(target, &enabled);
1827 if (retval != ERROR_OK)
1828 return retval;
1829
1830 if (!enabled) {
1831 if (target->working_area_phys_spec) {
1832 LOG_DEBUG("MMU disabled, using physical "
1833 "address for working memory " TARGET_ADDR_FMT,
1834 target->working_area_phys);
1835 target->working_area = target->working_area_phys;
1836 } else {
1837 LOG_ERROR("No working memory available. "
1838 "Specify -work-area-phys to target.");
1839 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1840 }
1841 } else {
1842 if (target->working_area_virt_spec) {
1843 LOG_DEBUG("MMU enabled, using virtual "
1844 "address for working memory " TARGET_ADDR_FMT,
1845 target->working_area_virt);
1846 target->working_area = target->working_area_virt;
1847 } else {
1848 LOG_ERROR("No working memory available. "
1849 "Specify -work-area-virt to target.");
1850 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1851 }
1852 }
1853
1854 /* Set up initial working area on first call */
1855 struct working_area *new_wa = malloc(sizeof(*new_wa));
1856 if (new_wa) {
1857 new_wa->next = NULL;
1858 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1859 new_wa->address = target->working_area;
1860 new_wa->backup = NULL;
1861 new_wa->user = NULL;
1862 new_wa->free = true;
1863 }
1864
1865 target->working_areas = new_wa;
1866 }
1867
1868 /* only allocate multiples of 4 byte */
1869 if (size % 4)
1870 size = (size + 3) & (~3UL);
1871
1872 struct working_area *c = target->working_areas;
1873
1874 /* Find the first large enough working area */
1875 while (c) {
1876 if (c->free && c->size >= size)
1877 break;
1878 c = c->next;
1879 }
1880
1881 if (c == NULL)
1882 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1883
1884 /* Split the working area into the requested size */
1885 target_split_working_area(c, size);
1886
1887 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1888 size, c->address);
1889
1890 if (target->backup_working_area) {
1891 if (c->backup == NULL) {
1892 c->backup = malloc(c->size);
1893 if (c->backup == NULL)
1894 return ERROR_FAIL;
1895 }
1896
1897 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1898 if (retval != ERROR_OK)
1899 return retval;
1900 }
1901
1902 /* mark as used, and return the new (reused) area */
1903 c->free = false;
1904 *area = c;
1905
1906 /* user pointer */
1907 c->user = area;
1908
1909 print_wa_layout(target);
1910
1911 return ERROR_OK;
1912 }
1913
1914 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1915 {
1916 int retval;
1917
1918 retval = target_alloc_working_area_try(target, size, area);
1919 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1920 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1921 return retval;
1922
1923 }
1924
1925 static int target_restore_working_area(struct target *target, struct working_area *area)
1926 {
1927 int retval = ERROR_OK;
1928
1929 if (target->backup_working_area && area->backup != NULL) {
1930 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1931 if (retval != ERROR_OK)
1932 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1933 area->size, area->address);
1934 }
1935
1936 return retval;
1937 }
1938
1939 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1940 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1941 {
1942 int retval = ERROR_OK;
1943
1944 if (area->free)
1945 return retval;
1946
1947 if (restore) {
1948 retval = target_restore_working_area(target, area);
1949 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1950 if (retval != ERROR_OK)
1951 return retval;
1952 }
1953
1954 area->free = true;
1955
1956 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1957 area->size, area->address);
1958
1959 /* mark user pointer invalid */
1960 /* TODO: Is this really safe? It points to some previous caller's memory.
1961 * How could we know that the area pointer is still in that place and not
1962 * some other vital data? What's the purpose of this, anyway? */
1963 *area->user = NULL;
1964 area->user = NULL;
1965
1966 target_merge_working_areas(target);
1967
1968 print_wa_layout(target);
1969
1970 return retval;
1971 }
1972
1973 int target_free_working_area(struct target *target, struct working_area *area)
1974 {
1975 return target_free_working_area_restore(target, area, 1);
1976 }
1977
1978 /* free resources and restore memory, if restoring memory fails,
1979 * free up resources anyway
1980 */
1981 static void target_free_all_working_areas_restore(struct target *target, int restore)
1982 {
1983 struct working_area *c = target->working_areas;
1984
1985 LOG_DEBUG("freeing all working areas");
1986
1987 /* Loop through all areas, restoring the allocated ones and marking them as free */
1988 while (c) {
1989 if (!c->free) {
1990 if (restore)
1991 target_restore_working_area(target, c);
1992 c->free = true;
1993 *c->user = NULL; /* Same as above */
1994 c->user = NULL;
1995 }
1996 c = c->next;
1997 }
1998
1999 /* Run a merge pass to combine all areas into one */
2000 target_merge_working_areas(target);
2001
2002 print_wa_layout(target);
2003 }
2004
2005 void target_free_all_working_areas(struct target *target)
2006 {
2007 target_free_all_working_areas_restore(target, 1);
2008
2009 /* Now we have none or only one working area marked as free */
2010 if (target->working_areas) {
2011 /* Free the last one to allow on-the-fly moving and resizing */
2012 free(target->working_areas->backup);
2013 free(target->working_areas);
2014 target->working_areas = NULL;
2015 }
2016 }
2017
2018 /* Find the largest number of bytes that can be allocated */
2019 uint32_t target_get_working_area_avail(struct target *target)
2020 {
2021 struct working_area *c = target->working_areas;
2022 uint32_t max_size = 0;
2023
2024 if (c == NULL)
2025 return target->working_area_size;
2026
2027 while (c) {
2028 if (c->free && max_size < c->size)
2029 max_size = c->size;
2030
2031 c = c->next;
2032 }
2033
2034 return max_size;
2035 }
2036
2037 static void target_destroy(struct target *target)
2038 {
2039 if (target->type->deinit_target)
2040 target->type->deinit_target(target);
2041
2042 free(target->semihosting);
2043
2044 jtag_unregister_event_callback(jtag_enable_callback, target);
2045
2046 struct target_event_action *teap = target->event_action;
2047 while (teap) {
2048 struct target_event_action *next = teap->next;
2049 Jim_DecrRefCount(teap->interp, teap->body);
2050 free(teap);
2051 teap = next;
2052 }
2053
2054 target_free_all_working_areas(target);
2055
2056 /* release the targets SMP list */
2057 if (target->smp) {
2058 struct target_list *head = target->head;
2059 while (head != NULL) {
2060 struct target_list *pos = head->next;
2061 head->target->smp = 0;
2062 free(head);
2063 head = pos;
2064 }
2065 target->smp = 0;
2066 }
2067
2068 rtos_destroy(target);
2069
2070 free(target->gdb_port_override);
2071 free(target->type);
2072 free(target->trace_info);
2073 free(target->fileio_info);
2074 free(target->cmd_name);
2075 free(target);
2076 }
2077
2078 void target_quit(void)
2079 {
2080 struct target_event_callback *pe = target_event_callbacks;
2081 while (pe) {
2082 struct target_event_callback *t = pe->next;
2083 free(pe);
2084 pe = t;
2085 }
2086 target_event_callbacks = NULL;
2087
2088 struct target_timer_callback *pt = target_timer_callbacks;
2089 while (pt) {
2090 struct target_timer_callback *t = pt->next;
2091 free(pt);
2092 pt = t;
2093 }
2094 target_timer_callbacks = NULL;
2095
2096 for (struct target *target = all_targets; target;) {
2097 struct target *tmp;
2098
2099 tmp = target->next;
2100 target_destroy(target);
2101 target = tmp;
2102 }
2103
2104 all_targets = NULL;
2105 }
2106
2107 int target_arch_state(struct target *target)
2108 {
2109 int retval;
2110 if (target == NULL) {
2111 LOG_WARNING("No target has been configured");
2112 return ERROR_OK;
2113 }
2114
2115 if (target->state != TARGET_HALTED)
2116 return ERROR_OK;
2117
2118 retval = target->type->arch_state(target);
2119 return retval;
2120 }
2121
2122 static int target_get_gdb_fileio_info_default(struct target *target,
2123 struct gdb_fileio_info *fileio_info)
2124 {
2125 /* If target does not support semi-hosting function, target
2126 has no need to provide .get_gdb_fileio_info callback.
2127 It just return ERROR_FAIL and gdb_server will return "Txx"
2128 as target halted every time. */
2129 return ERROR_FAIL;
2130 }
2131
2132 static int target_gdb_fileio_end_default(struct target *target,
2133 int retcode, int fileio_errno, bool ctrl_c)
2134 {
2135 return ERROR_OK;
2136 }
2137
2138 int target_profiling_default(struct target *target, uint32_t *samples,
2139 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2140 {
2141 struct timeval timeout, now;
2142
2143 gettimeofday(&timeout, NULL);
2144 timeval_add_time(&timeout, seconds, 0);
2145
2146 LOG_INFO("Starting profiling. Halting and resuming the"
2147 " target as often as we can...");
2148
2149 uint32_t sample_count = 0;
2150 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2151 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2152
2153 int retval = ERROR_OK;
2154 for (;;) {
2155 target_poll(target);
2156 if (target->state == TARGET_HALTED) {
2157 uint32_t t = buf_get_u32(reg->value, 0, 32);
2158 samples[sample_count++] = t;
2159 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2160 retval = target_resume(target, 1, 0, 0, 0);
2161 target_poll(target);
2162 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2163 } else if (target->state == TARGET_RUNNING) {
2164 /* We want to quickly sample the PC. */
2165 retval = target_halt(target);
2166 } else {
2167 LOG_INFO("Target not halted or running");
2168 retval = ERROR_OK;
2169 break;
2170 }
2171
2172 if (retval != ERROR_OK)
2173 break;
2174
2175 gettimeofday(&now, NULL);
2176 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2177 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2178 break;
2179 }
2180 }
2181
2182 *num_samples = sample_count;
2183 return retval;
2184 }
2185
2186 /* Single aligned words are guaranteed to use 16 or 32 bit access
2187 * mode respectively, otherwise data is handled as quickly as
2188 * possible
2189 */
2190 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2191 {
2192 LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2193 size, address);
2194
2195 if (!target_was_examined(target)) {
2196 LOG_ERROR("Target not examined yet");
2197 return ERROR_FAIL;
2198 }
2199
2200 if (size == 0)
2201 return ERROR_OK;
2202
2203 if ((address + size - 1) < address) {
2204 /* GDB can request this when e.g. PC is 0xfffffffc */
2205 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2206 address,
2207 size);
2208 return ERROR_FAIL;
2209 }
2210
2211 return target->type->write_buffer(target, address, size, buffer);
2212 }
2213
2214 static int target_write_buffer_default(struct target *target,
2215 target_addr_t address, uint32_t count, const uint8_t *buffer)
2216 {
2217 uint32_t size;
2218
2219 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2220 * will have something to do with the size we leave to it. */
2221 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2222 if (address & size) {
2223 int retval = target_write_memory(target, address, size, 1, buffer);
2224 if (retval != ERROR_OK)
2225 return retval;
2226 address += size;
2227 count -= size;
2228 buffer += size;
2229 }
2230 }
2231
2232 /* Write the data with as large access size as possible. */
2233 for (; size > 0; size /= 2) {
2234 uint32_t aligned = count - count % size;
2235 if (aligned > 0) {
2236 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2237 if (retval != ERROR_OK)
2238 return retval;
2239 address += aligned;
2240 count -= aligned;
2241 buffer += aligned;
2242 }
2243 }
2244
2245 return ERROR_OK;
2246 }
2247
2248 /* Single aligned words are guaranteed to use 16 or 32 bit access
2249 * mode respectively, otherwise data is handled as quickly as
2250 * possible
2251 */
2252 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2253 {
2254 LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2255 size, address);
2256
2257 if (!target_was_examined(target)) {
2258 LOG_ERROR("Target not examined yet");
2259 return ERROR_FAIL;
2260 }
2261
2262 if (size == 0)
2263 return ERROR_OK;
2264
2265 if ((address + size - 1) < address) {
2266 /* GDB can request this when e.g. PC is 0xfffffffc */
2267 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2268 address,
2269 size);
2270 return ERROR_FAIL;
2271 }
2272
2273 return target->type->read_buffer(target, address, size, buffer);
2274 }
2275
2276 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2277 {
2278 uint32_t size;
2279
2280 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2281 * will have something to do with the size we leave to it. */
2282 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2283 if (address & size) {
2284 int retval = target_read_memory(target, address, size, 1, buffer);
2285 if (retval != ERROR_OK)
2286 return retval;
2287 address += size;
2288 count -= size;
2289 buffer += size;
2290 }
2291 }
2292
2293 /* Read the data with as large access size as possible. */
2294 for (; size > 0; size /= 2) {
2295 uint32_t aligned = count - count % size;
2296 if (aligned > 0) {
2297 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2298 if (retval != ERROR_OK)
2299 return retval;
2300 address += aligned;
2301 count -= aligned;
2302 buffer += aligned;
2303 }
2304 }
2305
2306 return ERROR_OK;
2307 }
2308
2309 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
2310 {
2311 uint8_t *buffer;
2312 int retval;
2313 uint32_t i;
2314 uint32_t checksum = 0;
2315 if (!target_was_examined(target)) {
2316 LOG_ERROR("Target not examined yet");
2317 return ERROR_FAIL;
2318 }
2319
2320 retval = target->type->checksum_memory(target, address, size, &checksum);
2321 if (retval != ERROR_OK) {
2322 buffer = malloc(size);
2323 if (buffer == NULL) {
2324 LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
2325 return ERROR_COMMAND_SYNTAX_ERROR;
2326 }
2327 retval = target_read_buffer(target, address, size, buffer);
2328 if (retval != ERROR_OK) {
2329 free(buffer);
2330 return retval;
2331 }
2332
2333 /* convert to target endianness */
2334 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2335 uint32_t target_data;
2336 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2337 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2338 }
2339
2340 retval = image_calculate_checksum(buffer, size, &checksum);
2341 free(buffer);
2342 }
2343
2344 *crc = checksum;
2345
2346 return retval;
2347 }
2348
2349 int target_blank_check_memory(struct target *target,
2350 struct target_memory_check_block *blocks, int num_blocks,
2351 uint8_t erased_value)
2352 {
2353 if (!target_was_examined(target)) {
2354 LOG_ERROR("Target not examined yet");
2355 return ERROR_FAIL;
2356 }
2357
2358 if (target->type->blank_check_memory == NULL)
2359 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2360
2361 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2362 }
2363
2364 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2365 {
2366 uint8_t value_buf[8];
2367 if (!target_was_examined(target)) {
2368 LOG_ERROR("Target not examined yet");
2369 return ERROR_FAIL;
2370 }
2371
2372 int retval = target_read_memory(target, address, 8, 1, value_buf);
2373
2374 if (retval == ERROR_OK) {
2375 *value = target_buffer_get_u64(target, value_buf);
2376 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2377 address,
2378 *value);
2379 } else {
2380 *value = 0x0;
2381 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2382 address);
2383 }
2384
2385 return retval;
2386 }
2387
2388 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2389 {
2390 uint8_t value_buf[4];
2391 if (!target_was_examined(target)) {
2392 LOG_ERROR("Target not examined yet");
2393 return ERROR_FAIL;
2394 }
2395
2396 int retval = target_read_memory(target, address, 4, 1, value_buf);
2397
2398 if (retval == ERROR_OK) {
2399 *value = target_buffer_get_u32(target, value_buf);
2400 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2401 address,
2402 *value);
2403 } else {
2404 *value = 0x0;
2405 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2406 address);
2407 }
2408
2409 return retval;
2410 }
2411
2412 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2413 {
2414 uint8_t value_buf[2];
2415 if (!target_was_examined(target)) {
2416 LOG_ERROR("Target not examined yet");
2417 return ERROR_FAIL;
2418 }
2419
2420 int retval = target_read_memory(target, address, 2, 1, value_buf);
2421
2422 if (retval == ERROR_OK) {
2423 *value = target_buffer_get_u16(target, value_buf);
2424 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2425 address,
2426 *value);
2427 } else {
2428 *value = 0x0;
2429 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2430 address);
2431 }
2432
2433 return retval;
2434 }
2435
2436 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2437 {
2438 if (!target_was_examined(target)) {
2439 LOG_ERROR("Target not examined yet");
2440 return ERROR_FAIL;
2441 }
2442
2443 int retval = target_read_memory(target, address, 1, 1, value);
2444
2445 if (retval == ERROR_OK) {
2446 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2447 address,
2448 *value);
2449 } else {
2450 *value = 0x0;
2451 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2452 address);
2453 }
2454
2455 return retval;
2456 }
2457
2458 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2459 {
2460 int retval;
2461 uint8_t value_buf[8];
2462 if (!target_was_examined(target)) {
2463 LOG_ERROR("Target not examined yet");
2464 return ERROR_FAIL;
2465 }
2466
2467 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2468 address,
2469 value);
2470
2471 target_buffer_set_u64(target, value_buf, value);
2472 retval = target_write_memory(target, address, 8, 1, value_buf);
2473 if (retval != ERROR_OK)
2474 LOG_DEBUG("failed: %i", retval);
2475
2476 return retval;
2477 }
2478
2479 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2480 {
2481 int retval;
2482 uint8_t value_buf[4];
2483 if (!target_was_examined(target)) {
2484 LOG_ERROR("Target not examined yet");
2485 return ERROR_FAIL;
2486 }
2487
2488 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2489 address,
2490 value);
2491
2492 target_buffer_set_u32(target, value_buf, value);
2493 retval = target_write_memory(target, address, 4, 1, value_buf);
2494 if (retval != ERROR_OK)
2495 LOG_DEBUG("failed: %i", retval);
2496
2497 return retval;
2498 }
2499
2500 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2501 {
2502 int retval;
2503 uint8_t value_buf[2];
2504 if (!target_was_examined(target)) {
2505 LOG_ERROR("Target not examined yet");
2506 return ERROR_FAIL;
2507 }
2508
2509 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2510 address,
2511 value);
2512
2513 target_buffer_set_u16(target, value_buf, value);
2514 retval = target_write_memory(target, address, 2, 1, value_buf);
2515 if (retval != ERROR_OK)
2516 LOG_DEBUG("failed: %i", retval);
2517
2518 return retval;
2519 }
2520
2521 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2522 {
2523 int retval;
2524 if (!target_was_examined(target)) {
2525 LOG_ERROR("Target not examined yet");
2526 return ERROR_FAIL;
2527 }
2528
2529 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2530 address, value);
2531
2532 retval = target_write_memory(target, address, 1, 1, &value);
2533 if (retval != ERROR_OK)
2534 LOG_DEBUG("failed: %i", retval);
2535
2536 return retval;
2537 }
2538
2539 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2540 {
2541 int retval;
2542 uint8_t value_buf[8];
2543 if (!target_was_examined(target)) {
2544 LOG_ERROR("Target not examined yet");
2545 return ERROR_FAIL;
2546 }
2547
2548 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2549 address,
2550 value);
2551
2552 target_buffer_set_u64(target, value_buf, value);
2553 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2554 if (retval != ERROR_OK)
2555 LOG_DEBUG("failed: %i", retval);
2556
2557 return retval;
2558 }
2559
2560 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2561 {
2562 int retval;
2563 uint8_t value_buf[4];
2564 if (!target_was_examined(target)) {
2565 LOG_ERROR("Target not examined yet");
2566 return ERROR_FAIL;
2567 }
2568
2569 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2570 address,
2571 value);
2572
2573 target_buffer_set_u32(target, value_buf, value);
2574 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2575 if (retval != ERROR_OK)
2576 LOG_DEBUG("failed: %i", retval);
2577
2578 return retval;
2579 }
2580
2581 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2582 {
2583 int retval;
2584 uint8_t value_buf[2];
2585 if (!target_was_examined(target)) {
2586 LOG_ERROR("Target not examined yet");
2587 return ERROR_FAIL;
2588 }
2589
2590 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2591 address,
2592 value);
2593
2594 target_buffer_set_u16(target, value_buf, value);
2595 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2596 if (retval != ERROR_OK)
2597 LOG_DEBUG("failed: %i", retval);
2598
2599 return retval;
2600 }
2601
2602 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2603 {
2604 int retval;
2605 if (!target_was_examined(target)) {
2606 LOG_ERROR("Target not examined yet");
2607 return ERROR_FAIL;
2608 }
2609
2610 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2611 address, value);
2612
2613 retval = target_write_phys_memory(target, address, 1, 1, &value);
2614 if (retval != ERROR_OK)
2615 LOG_DEBUG("failed: %i", retval);
2616
2617 return retval;
2618 }
2619
2620 static int find_target(struct command_invocation *cmd, const char *name)
2621 {
2622 struct target *target = get_target(name);
2623 if (target == NULL) {
2624 command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2625 return ERROR_FAIL;
2626 }
2627 if (!target->tap->enabled) {
2628 command_print(cmd, "Target: TAP %s is disabled, "
2629 "can't be the current target\n",
2630 target->tap->dotted_name);
2631 return ERROR_FAIL;
2632 }
2633
2634 cmd->ctx->current_target = target;
2635 if (cmd->ctx->current_target_override)
2636 cmd->ctx->current_target_override = target;
2637
2638 return ERROR_OK;
2639 }
2640
2641
2642 COMMAND_HANDLER(handle_targets_command)
2643 {
2644 int retval = ERROR_OK;
2645 if (CMD_ARGC == 1) {
2646 retval = find_target(CMD, CMD_ARGV[0]);
2647 if (retval == ERROR_OK) {
2648 /* we're done! */
2649 return retval;
2650 }
2651 }
2652
2653 struct target *target = all_targets;
2654 command_print(CMD, " TargetName Type Endian TapName State ");
2655 command_print(CMD, "-- ------------------ ---------- ------ ------------------ ------------");
2656 while (target) {
2657 const char *state;
2658 char marker = ' ';
2659
2660 if (target->tap->enabled)
2661 state = target_state_name(target);
2662 else
2663 state = "tap-disabled";
2664
2665 if (CMD_CTX->current_target == target)
2666 marker = '*';
2667
2668 /* keep columns lined up to match the headers above */
2669 command_print(CMD,
2670 "%2d%c %-18s %-10s %-6s %-18s %s",
2671 target->target_number,
2672 marker,
2673 target_name(target),
2674 target_type_name(target),
2675 Jim_Nvp_value2name_simple(nvp_target_endian,
2676 target->endianness)->name,
2677 target->tap->dotted_name,
2678 state);
2679 target = target->next;
2680 }
2681
2682 return retval;
2683 }
2684
2685 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2686
2687 static int powerDropout;
2688 static int srstAsserted;
2689
2690 static int runPowerRestore;
2691 static int runPowerDropout;
2692 static int runSrstAsserted;
2693 static int runSrstDeasserted;
2694
2695 static int sense_handler(void)
2696 {
2697 static int prevSrstAsserted;
2698 static int prevPowerdropout;
2699
2700 int retval = jtag_power_dropout(&powerDropout);
2701 if (retval != ERROR_OK)
2702 return retval;
2703
2704 int powerRestored;
2705 powerRestored = prevPowerdropout && !powerDropout;
2706 if (powerRestored)
2707 runPowerRestore = 1;
2708
2709 int64_t current = timeval_ms();
2710 static int64_t lastPower;
2711 bool waitMore = lastPower + 2000 > current;
2712 if (powerDropout && !waitMore) {
2713 runPowerDropout = 1;
2714 lastPower = current;
2715 }
2716
2717 retval = jtag_srst_asserted(&srstAsserted);
2718 if (retval != ERROR_OK)
2719 return retval;
2720
2721 int srstDeasserted;
2722 srstDeasserted = prevSrstAsserted && !srstAsserted;
2723
2724 static int64_t lastSrst;
2725 waitMore = lastSrst + 2000 > current;
2726 if (srstDeasserted && !waitMore) {
2727 runSrstDeasserted = 1;
2728 lastSrst = current;
2729 }
2730
2731 if (!prevSrstAsserted && srstAsserted)
2732 runSrstAsserted = 1;
2733
2734 prevSrstAsserted = srstAsserted;
2735 prevPowerdropout = powerDropout;
2736
2737 if (srstDeasserted || powerRestored) {
2738 /* Other than logging the event we can't do anything here.
2739 * Issuing a reset is a particularly bad idea as we might
2740 * be inside a reset already.
2741 */
2742 }
2743
2744 return ERROR_OK;
2745 }
2746
2747 /* process target state changes */
2748 static int handle_target(void *priv)
2749 {
2750 Jim_Interp *interp = (Jim_Interp *)priv;
2751 int retval = ERROR_OK;
2752
2753 if (!is_jtag_poll_safe()) {
2754 /* polling is disabled currently */
2755 return ERROR_OK;
2756 }
2757
2758 /* we do not want to recurse here... */
2759 static int recursive;
2760 if (!recursive) {
2761 recursive = 1;
2762 sense_handler();
2763 /* danger! running these procedures can trigger srst assertions and power dropouts.
2764 * We need to avoid an infinite loop/recursion here and we do that by
2765 * clearing the flags after running these events.
2766 */
2767 int did_something = 0;
2768 if (runSrstAsserted) {
2769 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2770 Jim_Eval(interp, "srst_asserted");
2771 did_something = 1;
2772 }
2773 if (runSrstDeasserted) {
2774 Jim_Eval(interp, "srst_deasserted");
2775 did_something = 1;
2776 }
2777 if (runPowerDropout) {
2778 LOG_INFO("Power dropout detected, running power_dropout proc.");
2779 Jim_Eval(interp, "power_dropout");
2780 did_something = 1;
2781 }
2782 if (runPowerRestore) {
2783 Jim_Eval(interp, "power_restore");
2784 did_something = 1;
2785 }
2786
2787 if (did_something) {
2788 /* clear detect flags */
2789 sense_handler();
2790 }
2791
2792 /* clear action flags */
2793
2794 runSrstAsserted = 0;
2795 runSrstDeasserted = 0;
2796 runPowerRestore = 0;
2797 runPowerDropout = 0;
2798
2799 recursive = 0;
2800 }
2801
2802 /* Poll targets for state changes unless that's globally disabled.
2803 * Skip targets that are currently disabled.
2804 */
2805 for (struct target *target = all_targets;
2806 is_jtag_poll_safe() && target;
2807 target = target->next) {
2808
2809 if (!target_was_examined(target))
2810 continue;
2811
2812 if (!target->tap->enabled)
2813 continue;
2814
2815 if (target->backoff.times > target->backoff.count) {
2816 /* do not poll this time as we failed previously */
2817 target->backoff.count++;
2818 continue;
2819 }
2820 target->backoff.count = 0;
2821
2822 /* only poll target if we've got power and srst isn't asserted */
2823 if (!powerDropout && !srstAsserted) {
2824 /* polling may fail silently until the target has been examined */
2825 retval = target_poll(target);
2826 if (retval != ERROR_OK) {
2827 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2828 if (target->backoff.times * polling_interval < 5000) {
2829 target->backoff.times *= 2;
2830 target->backoff.times++;
2831 }
2832
2833 /* Tell GDB to halt the debugger. This allows the user to
2834 * run monitor commands to handle the situation.
2835 */
2836 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2837 }
2838 if (target->backoff.times > 0) {
2839 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2840 target_reset_examined(target);
2841 retval = target_examine_one(target);
2842 /* Target examination could have failed due to unstable connection,
2843 * but we set the examined flag anyway to repoll it later */
2844 if (retval != ERROR_OK) {
2845 target->examined = true;
2846 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2847 target->backoff.times * polling_interval);
2848 return retval;
2849 }
2850 }
2851
2852 /* Since we succeeded, we reset backoff count */
2853 target->backoff.times = 0;
2854 }
2855 }
2856
2857 return retval;
2858 }
2859
2860 COMMAND_HANDLER(handle_reg_command)
2861 {
2862 struct target *target;
2863 struct reg *reg = NULL;
2864 unsigned count = 0;
2865 char *value;
2866
2867 LOG_DEBUG("-");
2868
2869 target = get_current_target(CMD_CTX);
2870
2871 /* list all available registers for the current target */
2872 if (CMD_ARGC == 0) {
2873 struct reg_cache *cache = target->reg_cache;
2874
2875 count = 0;
2876 while (cache) {
2877 unsigned i;
2878
2879 command_print(CMD, "===== %s", cache->name);
2880
2881 for (i = 0, reg = cache->reg_list;
2882 i < cache->num_regs;
2883 i++, reg++, count++) {
2884 if (reg->exist == false)
2885 continue;
2886 /* only print cached values if they are valid */
2887 if (reg->valid) {
2888 value = buf_to_hex_str(reg->value,
2889 reg->size);
2890 command_print(CMD,
2891 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2892 count, reg->name,
2893 reg->size, value,
2894 reg->dirty
2895 ? " (dirty)"
2896 : "");
2897 free(value);
2898 } else {
2899 command_print(CMD, "(%i) %s (/%" PRIu32 ")",
2900 count, reg->name,
2901 reg->size);
2902 }
2903 }
2904 cache = cache->next;
2905 }
2906
2907 return ERROR_OK;
2908 }
2909
2910 /* access a single register by its ordinal number */
2911 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2912 unsigned num;
2913 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2914
2915 struct reg_cache *cache = target->reg_cache;
2916 count = 0;
2917 while (cache) {
2918 unsigned i;
2919 for (i = 0; i < cache->num_regs; i++) {
2920 if (count++ == num) {
2921 reg = &cache->reg_list[i];
2922 break;
2923 }
2924 }
2925 if (reg)
2926 break;
2927 cache = cache->next;
2928 }
2929
2930 if (!reg) {
2931 command_print(CMD, "%i is out of bounds, the current target "
2932 "has only %i registers (0 - %i)", num, count, count - 1);
2933 return ERROR_OK;
2934 }
2935 } else {
2936 /* access a single register by its name */
2937 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2938
2939 if (!reg)
2940 goto not_found;
2941 }
2942
2943 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2944
2945 if (!reg->exist)
2946 goto not_found;
2947
2948 /* display a register */
2949 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2950 && (CMD_ARGV[1][0] <= '9')))) {
2951 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2952 reg->valid = 0;
2953
2954 if (reg->valid == 0)
2955 reg->type->get(reg);
2956 value = buf_to_hex_str(reg->value, reg->size);
2957 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2958 free(value);
2959 return ERROR_OK;
2960 }
2961
2962 /* set register value */
2963 if (CMD_ARGC == 2) {
2964 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2965 if (buf == NULL)
2966 return ERROR_FAIL;
2967 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2968
2969 reg->type->set(reg, buf);
2970
2971 value = buf_to_hex_str(reg->value, reg->size);
2972 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2973 free(value);
2974
2975 free(buf);
2976
2977 return ERROR_OK;
2978 }
2979
2980 return ERROR_COMMAND_SYNTAX_ERROR;
2981
2982 not_found:
2983 command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
2984 return ERROR_OK;
2985 }
2986
2987 COMMAND_HANDLER(handle_poll_command)
2988 {
2989 int retval = ERROR_OK;
2990 struct target *target = get_current_target(CMD_CTX);
2991
2992 if (CMD_ARGC == 0) {
2993 command_print(CMD, "background polling: %s",
2994 jtag_poll_get_enabled() ? "on" : "off");
2995 command_print(CMD, "TAP: %s (%s)",
2996 target->tap->dotted_name,
2997 target->tap->enabled ? "enabled" : "disabled");
2998 if (!target->tap->enabled)
2999 return ERROR_OK;
3000 retval = target_poll(target);
3001 if (retval != ERROR_OK)
3002 return retval;
3003 retval = target_arch_state(target);
3004 if (retval != ERROR_OK)
3005 return retval;
3006 } else if (CMD_ARGC == 1) {
3007 bool enable;
3008 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
3009 jtag_poll_set_enabled(enable);
3010 } else
3011 return ERROR_COMMAND_SYNTAX_ERROR;
3012
3013 return retval;
3014 }
3015
3016 COMMAND_HANDLER(handle_wait_halt_command)
3017 {
3018 if (CMD_ARGC > 1)
3019 return ERROR_COMMAND_SYNTAX_ERROR;
3020
3021 unsigned ms = DEFAULT_HALT_TIMEOUT;
3022 if (1 == CMD_ARGC) {
3023 int retval = parse_uint(CMD_ARGV[0], &ms);
3024 if (ERROR_OK != retval)
3025 return ERROR_COMMAND_SYNTAX_ERROR;
3026 }
3027
3028 struct target *target = get_current_target(CMD_CTX);
3029 return target_wait_state(target, TARGET_HALTED, ms);
3030 }
3031
3032 /* wait for target state to change. The trick here is to have a low
3033 * latency for short waits and not to suck up all the CPU time
3034 * on longer waits.
3035 *
3036 * After 500ms, keep_alive() is invoked
3037 */
3038 int target_wait_state(struct target *target, enum target_state state, int ms)
3039 {
3040 int retval;
3041 int64_t then = 0, cur;
3042 bool once = true;
3043
3044 for (;;) {
3045 retval = target_poll(target);
3046 if (retval != ERROR_OK)
3047 return retval;
3048 if (target->state == state)
3049 break;
3050 cur = timeval_ms();
3051 if (once) {
3052 once = false;
3053 then = timeval_ms();
3054 LOG_DEBUG("waiting for target %s...",
3055 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3056 }
3057
3058 if (cur-then > 500)
3059 keep_alive();
3060
3061 if ((cur-then) > ms) {
3062 LOG_ERROR("timed out while waiting for target %s",
3063 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3064 return ERROR_FAIL;
3065 }
3066 }
3067
3068 return ERROR_OK;
3069 }
3070
3071 COMMAND_HANDLER(handle_halt_command)
3072 {
3073 LOG_DEBUG("-");
3074
3075 struct target *target = get_current_target(CMD_CTX);
3076
3077 target->verbose_halt_msg = true;
3078
3079 int retval = target_halt(target);
3080 if (ERROR_OK != retval)
3081 return retval;
3082
3083 if (CMD_ARGC == 1) {
3084 unsigned wait_local;
3085 retval = parse_uint(CMD_ARGV[0], &wait_local);
3086 if (ERROR_OK != retval)
3087 return ERROR_COMMAND_SYNTAX_ERROR;
3088 if (!wait_local)
3089 return ERROR_OK;
3090 }
3091
3092 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3093 }
3094
3095 COMMAND_HANDLER(handle_soft_reset_halt_command)
3096 {
3097 struct target *target = get_current_target(CMD_CTX);
3098
3099 LOG_USER("requesting target halt and executing a soft reset");
3100
3101 target_soft_reset_halt(target);
3102
3103 return ERROR_OK;
3104 }
3105
3106 COMMAND_HANDLER(handle_reset_command)
3107 {
3108 if (CMD_ARGC > 1)
3109 return ERROR_COMMAND_SYNTAX_ERROR;
3110
3111 enum target_reset_mode reset_mode = RESET_RUN;
3112 if (CMD_ARGC == 1) {
3113 const Jim_Nvp *n;
3114 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3115 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3116 return ERROR_COMMAND_SYNTAX_ERROR;
3117 reset_mode = n->value;
3118 }
3119
3120 /* reset *all* targets */
3121 return target_process_reset(CMD, reset_mode);
3122 }
3123
3124
3125 COMMAND_HANDLER(handle_resume_command)
3126 {
3127 int current = 1;
3128 if (CMD_ARGC > 1)
3129 return ERROR_COMMAND_SYNTAX_ERROR;
3130
3131 struct target *target = get_current_target(CMD_CTX);
3132
3133 /* with no CMD_ARGV, resume from current pc, addr = 0,
3134 * with one arguments, addr = CMD_ARGV[0],
3135 * handle breakpoints, not debugging */
3136 target_addr_t addr = 0;
3137 if (CMD_ARGC == 1) {
3138 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3139 current = 0;
3140 }
3141
3142 return target_resume(target, current, addr, 1, 0);
3143 }
3144
3145 COMMAND_HANDLER(handle_step_command)
3146 {
3147 if (CMD_ARGC > 1)
3148 return ERROR_COMMAND_SYNTAX_ERROR;
3149
3150 LOG_DEBUG("-");
3151
3152 /* with no CMD_ARGV, step from current pc, addr = 0,
3153 * with one argument addr = CMD_ARGV[0],
3154 * handle breakpoints, debugging */
3155 target_addr_t addr = 0;
3156 int current_pc = 1;
3157 if (CMD_ARGC == 1) {
3158 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3159 current_pc = 0;
3160 }
3161
3162 struct target *target = get_current_target(CMD_CTX);
3163
3164 return target_step(target, current_pc, addr, 1);
3165 }
3166
3167 void target_handle_md_output(struct command_invocation *cmd,
3168 struct target *target, target_addr_t address, unsigned size,
3169 unsigned count, const uint8_t *buffer)
3170 {
3171 const unsigned line_bytecnt = 32;
3172 unsigned line_modulo = line_bytecnt / size;
3173
3174 char output[line_bytecnt * 4 + 1];
3175 unsigned output_len = 0;
3176
3177 const char *value_fmt;
3178 switch (size) {
3179 case 8:
3180 value_fmt = "%16.16"PRIx64" ";
3181 break;
3182 case 4:
3183 value_fmt = "%8.8"PRIx64" ";
3184 break;
3185 case 2:
3186 value_fmt = "%4.4"PRIx64" ";
3187 break;
3188 case 1:
3189 value_fmt = "%2.2"PRIx64" ";
3190 break;
3191 default:
3192 /* "can't happen", caller checked */
3193 LOG_ERROR("invalid memory read size: %u", size);
3194 return;
3195 }
3196
3197 for (unsigned i = 0; i < count; i++) {
3198 if (i % line_modulo == 0) {
3199 output_len += snprintf(output + output_len,
3200 sizeof(output) - output_len,
3201 TARGET_ADDR_FMT ": ",
3202 (address + (i * size)));
3203 }
3204
3205 uint64_t value = 0;
3206 const uint8_t *value_ptr = buffer + i * size;
3207 switch (size) {
3208 case 8:
3209 value = target_buffer_get_u64(target, value_ptr);
3210 break;
3211 case 4:
3212 value = target_buffer_get_u32(target, value_ptr);
3213 break;
3214 case 2:
3215 value = target_buffer_get_u16(target, value_ptr);
3216 break;
3217 case 1:
3218 value = *value_ptr;
3219 }
3220 output_len += snprintf(output + output_len,
3221 sizeof(output) - output_len,
3222 value_fmt, value);
3223
3224 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3225 command_print(cmd, "%s", output);
3226 output_len = 0;
3227 }
3228 }
3229 }
3230
3231 COMMAND_HANDLER(handle_md_command)
3232 {
3233 if (CMD_ARGC < 1)
3234 return ERROR_COMMAND_SYNTAX_ERROR;
3235
3236 unsigned size = 0;
3237 switch (CMD_NAME[2]) {
3238 case 'd':
3239 size = 8;
3240 break;
3241 case 'w':
3242 size = 4;
3243 break;
3244 case 'h':
3245 size = 2;
3246 break;
3247 case 'b':
3248 size = 1;
3249 break;
3250 default:
3251 return ERROR_COMMAND_SYNTAX_ERROR;
3252 }
3253
3254 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3255 int (*fn)(struct target *target,
3256 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3257 if (physical) {
3258 CMD_ARGC--;
3259 CMD_ARGV++;
3260 fn = target_read_phys_memory;
3261 } else
3262 fn = target_read_memory;
3263 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3264 return ERROR_COMMAND_SYNTAX_ERROR;
3265
3266 target_addr_t address;
3267 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3268
3269 unsigned count = 1;
3270 if (CMD_ARGC == 2)
3271 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3272
3273 uint8_t *buffer = calloc(count, size);
3274 if (buffer == NULL) {
3275 LOG_ERROR("Failed to allocate md read buffer");
3276 return ERROR_FAIL;
3277 }
3278
3279 struct target *target = get_current_target(CMD_CTX);
3280 int retval = fn(target, address, size, count, buffer);
3281 if (ERROR_OK == retval)
3282 target_handle_md_output(CMD, target, address, size, count, buffer);
3283
3284 free(buffer);
3285
3286 return retval;
3287 }
3288
3289 typedef int (*target_write_fn)(struct target *target,
3290 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3291
3292 static int target_fill_mem(struct target *target,
3293 target_addr_t address,
3294 target_write_fn fn,
3295 unsigned data_size,
3296 /* value */
3297 uint64_t b,
3298 /* count */
3299 unsigned c)
3300 {
3301 /* We have to write in reasonably large chunks to be able
3302 * to fill large memory areas with any sane speed */
3303 const unsigned chunk_size = 16384;
3304 uint8_t *target_buf = malloc(chunk_size * data_size);
3305 if (target_buf == NULL) {
3306 LOG_ERROR("Out of memory");
3307 return ERROR_FAIL;
3308 }
3309
3310 for (unsigned i = 0; i < chunk_size; i++) {
3311 switch (data_size) {
3312 case 8:
3313 target_buffer_set_u64(target, target_buf + i * data_size, b);
3314 break;
3315 case 4:
3316 target_buffer_set_u32(target, target_buf + i * data_size, b);
3317 break;
3318 case 2:
3319 target_buffer_set_u16(target, target_buf + i * data_size, b);
3320 break;
3321 case 1:
3322 target_buffer_set_u8(target, target_buf + i * data_size, b);
3323 break;
3324 default:
3325 exit(-1);
3326 }
3327 }
3328
3329 int retval = ERROR_OK;
3330
3331 for (unsigned x = 0; x < c; x += chunk_size) {
3332 unsigned current;
3333 current = c - x;
3334 if (current > chunk_size)
3335 current = chunk_size;
3336 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3337 if (retval != ERROR_OK)
3338 break;
3339 /* avoid GDB timeouts */
3340 keep_alive();
3341 }
3342 free(target_buf);
3343
3344 return retval;
3345 }
3346
3347
3348 COMMAND_HANDLER(handle_mw_command)
3349 {
3350 if (CMD_ARGC < 2)
3351 return ERROR_COMMAND_SYNTAX_ERROR;
3352 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3353 target_write_fn fn;
3354 if (physical) {
3355 CMD_ARGC--;
3356 CMD_ARGV++;
3357 fn = target_write_phys_memory;
3358 } else
3359 fn = target_write_memory;
3360 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3361 return ERROR_COMMAND_SYNTAX_ERROR;
3362
3363 target_addr_t address;
3364 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3365
3366 uint64_t value;
3367 COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
3368
3369 unsigned count = 1;
3370 if (CMD_ARGC == 3)
3371 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3372
3373 struct target *target = get_current_target(CMD_CTX);
3374 unsigned wordsize;
3375 switch (CMD_NAME[2]) {
3376 case 'd':
3377 wordsize = 8;
3378 break;
3379 case 'w':
3380 wordsize = 4;
3381 break;
3382 case 'h':
3383 wordsize = 2;
3384 break;
3385 case 'b':
3386 wordsize = 1;
3387 break;
3388 default:
3389 return ERROR_COMMAND_SYNTAX_ERROR;
3390 }
3391
3392 return target_fill_mem(target, address, fn, wordsize, value, count);
3393 }
3394
3395 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3396 target_addr_t *min_address, target_addr_t *max_address)
3397 {
3398 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3399 return ERROR_COMMAND_SYNTAX_ERROR;
3400
3401 /* a base address isn't always necessary,
3402 * default to 0x0 (i.e. don't relocate) */
3403 if (CMD_ARGC >= 2) {
3404 target_addr_t addr;
3405 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3406 image->base_address = addr;
3407 image->base_address_set = 1;
3408 } else
3409 image->base_address_set = 0;
3410
3411 image->start_address_set = 0;
3412
3413 if (CMD_ARGC >= 4)
3414 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3415 if (CMD_ARGC == 5) {
3416 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3417 /* use size (given) to find max (required) */
3418 *max_address += *min_address;
3419 }
3420
3421 if (*min_address > *max_address)
3422 return ERROR_COMMAND_SYNTAX_ERROR;
3423
3424 return ERROR_OK;
3425 }
3426
3427 COMMAND_HANDLER(handle_load_image_command)
3428 {
3429 uint8_t *buffer;
3430 size_t buf_cnt;
3431 uint32_t image_size;
3432 target_addr_t min_address = 0;
3433 target_addr_t max_address = -1;
3434 int i;
3435 struct image image;
3436
3437 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3438 &image, &min_address, &max_address);
3439 if (ERROR_OK != retval)
3440 return retval;
3441
3442 struct target *target = get_current_target(CMD_CTX);
3443
3444 struct duration bench;
3445 duration_start(&bench);
3446
3447 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3448 return ERROR_FAIL;
3449
3450 image_size = 0x0;
3451 retval = ERROR_OK;
3452 for (i = 0; i < image.num_sections; i++) {
3453 buffer = malloc(image.sections[i].size);
3454 if (buffer == NULL) {
3455 command_print(CMD,
3456 "error allocating buffer for section (%d bytes)",
3457 (int)(image.sections[i].size));
3458 retval = ERROR_FAIL;
3459 break;
3460 }
3461
3462 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3463 if (retval != ERROR_OK) {
3464 free(buffer);
3465 break;
3466 }
3467
3468 uint32_t offset = 0;
3469 uint32_t length = buf_cnt;
3470
3471 /* DANGER!!! beware of unsigned comparison here!!! */
3472
3473 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3474 (image.sections[i].base_address < max_address)) {
3475
3476 if (image.sections[i].base_address < min_address) {
3477 /* clip addresses below */
3478 offset += min_address-image.sections[i].base_address;
3479 length -= offset;
3480 }
3481
3482 if (image.sections[i].base_address + buf_cnt > max_address)
3483 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3484
3485 retval = target_write_buffer(target,
3486 image.sections[i].base_address + offset, length, buffer + offset);
3487 if (retval != ERROR_OK) {
3488 free(buffer);
3489 break;
3490 }
3491 image_size += length;
3492 command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3493 (unsigned int)length,
3494 image.sections[i].base_address + offset);
3495 }
3496
3497 free(buffer);
3498 }
3499
3500 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3501 command_print(CMD, "downloaded %" PRIu32 " bytes "
3502 "in %fs (%0.3f KiB/s)", image_size,
3503 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3504 }
3505
3506 image_close(&image);
3507
3508 return retval;
3509
3510 }
3511
3512 COMMAND_HANDLER(handle_dump_image_command)
3513 {
3514 struct fileio *fileio;
3515 uint8_t *buffer;
3516 int retval, retvaltemp;
3517 target_addr_t address, size;
3518 struct duration bench;
3519 struct target *target = get_current_target(CMD_CTX);
3520
3521 if (CMD_ARGC != 3)
3522 return ERROR_COMMAND_SYNTAX_ERROR;
3523
3524 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3525 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3526
3527 uint32_t buf_size = (size > 4096) ? 4096 : size;
3528 buffer = malloc(buf_size);
3529 if (!buffer)
3530 return ERROR_FAIL;
3531
3532 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3533 if (retval != ERROR_OK) {
3534 free(buffer);
3535 return retval;
3536 }
3537
3538 duration_start(&bench);
3539
3540 while (size > 0) {
3541 size_t size_written;
3542 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3543 retval = target_read_buffer(target, address, this_run_size, buffer);
3544 if (retval != ERROR_OK)
3545 break;
3546
3547 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3548 if (retval != ERROR_OK)
3549 break;
3550
3551 size -= this_run_size;
3552 address += this_run_size;
3553 }
3554
3555 free(buffer);
3556
3557 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3558 size_t filesize;
3559 retval = fileio_size(fileio, &filesize);
3560 if (retval != ERROR_OK)
3561 return retval;
3562 command_print(CMD,
3563 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3564 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3565 }
3566
3567 retvaltemp = fileio_close(fileio);
3568 if (retvaltemp != ERROR_OK)
3569 return retvaltemp;
3570
3571 return retval;
3572 }
3573
3574 enum verify_mode {
3575 IMAGE_TEST = 0,
3576 IMAGE_VERIFY = 1,
3577 IMAGE_CHECKSUM_ONLY = 2
3578 };
3579
3580 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3581 {
3582 uint8_t *buffer;
3583 size_t buf_cnt;
3584 uint32_t image_size;
3585 int i;
3586 int retval;
3587 uint32_t checksum = 0;
3588 uint32_t mem_checksum = 0;
3589
3590 struct image image;
3591
3592 struct target *target = get_current_target(CMD_CTX);
3593
3594 if (CMD_ARGC < 1)
3595 return ERROR_COMMAND_SYNTAX_ERROR;
3596
3597 if (!target) {
3598 LOG_ERROR("no target selected");
3599 return ERROR_FAIL;
3600 }
3601
3602 struct duration bench;
3603 duration_start(&bench);
3604
3605 if (CMD_ARGC >= 2) {
3606 target_addr_t addr;
3607 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3608 image.base_address = addr;
3609 image.base_address_set = 1;
3610 } else {
3611 image.base_address_set = 0;
3612 image.base_address = 0x0;
3613 }
3614
3615 image.start_address_set = 0;
3616
3617 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3618 if (retval != ERROR_OK)
3619 return retval;
3620
3621 image_size = 0x0;
3622 int diffs = 0;
3623 retval = ERROR_OK;
3624 for (i = 0; i < image.num_sections; i++) {
3625 buffer = malloc(image.sections[i].size);
3626 if (buffer == NULL) {
3627 command_print(CMD,
3628 "error allocating buffer for section (%d bytes)",
3629 (int)(image.sections[i].size));
3630 break;
3631 }
3632 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3633 if (retval != ERROR_OK) {
3634 free(buffer);
3635 break;
3636 }
3637
3638 if (verify >= IMAGE_VERIFY) {
3639 /* calculate checksum of image */
3640 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3641 if (retval != ERROR_OK) {
3642 free(buffer);
3643 break;
3644 }
3645
3646 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3647 if (retval != ERROR_OK) {
3648 free(buffer);
3649 break;
3650 }
3651 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3652 LOG_ERROR("checksum mismatch");
3653 free(buffer);
3654 retval = ERROR_FAIL;
3655 goto done;
3656 }
3657 if (checksum != mem_checksum) {
3658 /* failed crc checksum, fall back to a binary compare */
3659 uint8_t *data;
3660
3661 if (diffs == 0)
3662 LOG_ERROR("checksum mismatch - attempting binary compare");
3663
3664 data = malloc(buf_cnt);
3665
3666 retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
3667 if (retval == ERROR_OK) {
3668 uint32_t t;
3669 for (t = 0; t < buf_cnt; t++) {
3670 if (data[t] != buffer[t]) {
3671 command_print(CMD,
3672 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3673 diffs,
3674 (unsigned)(t + image.sections[i].base_address),
3675 data[t],
3676 buffer[t]);
3677 if (diffs++ >= 127) {
3678 command_print(CMD, "More than 128 errors, the rest are not printed.");
3679 free(data);
3680 free(buffer);
3681 goto done;
3682 }
3683 }
3684 keep_alive();
3685 }
3686 }
3687 free(data);
3688 }
3689 } else {
3690 command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3691 image.sections[i].base_address,
3692 buf_cnt);
3693 }
3694
3695 free(buffer);
3696 image_size += buf_cnt;
3697 }
3698 if (diffs > 0)
3699 command_print(CMD, "No more differences found.");
3700 done:
3701 if (diffs > 0)
3702 retval = ERROR_FAIL;
3703 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3704 command_print(CMD, "verified %" PRIu32 " bytes "
3705 "in %fs (%0.3f KiB/s)", image_size,
3706 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3707 }
3708
3709 image_close(&image);
3710
3711 return retval;
3712 }
3713
3714 COMMAND_HANDLER(handle_verify_image_checksum_command)
3715 {
3716 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3717 }
3718
3719 COMMAND_HANDLER(handle_verify_image_command)
3720 {
3721 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3722 }
3723
3724 COMMAND_HANDLER(handle_test_image_command)
3725 {
3726 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3727 }
3728
3729 static int handle_bp_command_list(struct command_invocation *cmd)
3730 {
3731 struct target *target = get_current_target(cmd->ctx);
3732 struct breakpoint *breakpoint = target->breakpoints;
3733 while (breakpoint) {
3734 if (breakpoint->type == BKPT_SOFT) {
3735 char *buf = buf_to_hex_str(breakpoint->orig_instr,
3736 breakpoint->length);
3737 command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3738 breakpoint->address,
3739 breakpoint->length,
3740 breakpoint->set, buf);
3741 free(buf);
3742 } else {
3743 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3744 command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3745 breakpoint->asid,
3746 breakpoint->length, breakpoint->set);
3747 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3748 command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3749 breakpoint->address,
3750 breakpoint->length, breakpoint->set);
3751 command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3752 breakpoint->asid);
3753 } else
3754 command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3755 breakpoint->address,
3756 breakpoint->length, breakpoint->set);
3757 }
3758
3759 breakpoint = breakpoint->next;
3760 }
3761 return ERROR_OK;
3762 }
3763
3764 static int handle_bp_command_set(struct command_invocation *cmd,
3765 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3766 {
3767 struct target *target = get_current_target(cmd->ctx);
3768 int retval;
3769
3770 if (asid == 0) {
3771 retval = breakpoint_add(target, addr, length, hw);
3772 /* error is always logged in breakpoint_add(), do not print it again */
3773 if (ERROR_OK == retval)
3774 command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3775
3776 } else if (addr == 0) {
3777 if (target->type->add_context_breakpoint == NULL) {
3778 LOG_ERROR("Context breakpoint not available");
3779 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3780 }
3781 retval = context_breakpoint_add(target, asid, length, hw);
3782 /* error is always logged in context_breakpoint_add(), do not print it again */
3783 if (ERROR_OK == retval)
3784 command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3785
3786 } else {
3787 if (target->type->add_hybrid_breakpoint == NULL) {
3788 LOG_ERROR("Hybrid breakpoint not available");
3789 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3790 }
3791 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3792 /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3793 if (ERROR_OK == retval)
3794 command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3795 }
3796 return retval;
3797 }
3798
3799 COMMAND_HANDLER(handle_bp_command)
3800 {
3801 target_addr_t addr;
3802 uint32_t asid;
3803 uint32_t length;
3804 int hw = BKPT_SOFT;
3805
3806 switch (CMD_ARGC) {
3807 case 0:
3808 return handle_bp_command_list(CMD);
3809
3810 case 2:
3811 asid = 0;
3812 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3813 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3814 return handle_bp_command_set(CMD, addr, asid, length, hw);
3815
3816 case 3:
3817 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3818 hw = BKPT_HARD;
3819 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3820 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3821 asid = 0;
3822 return handle_bp_command_set(CMD, addr, asid, length, hw);
3823 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3824 hw = BKPT_HARD;
3825 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3826 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3827 addr = 0;
3828 return handle_bp_command_set(CMD, addr, asid, length, hw);
3829 }
3830 /* fallthrough */
3831 case 4:
3832 hw = BKPT_HARD;
3833 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3834 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3835 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3836 return handle_bp_command_set(CMD, addr, asid, length, hw);
3837
3838 default:
3839 return ERROR_COMMAND_SYNTAX_ERROR;
3840 }
3841 }
3842
3843 COMMAND_HANDLER(handle_rbp_command)
3844 {
3845 if (CMD_ARGC != 1)
3846 return ERROR_COMMAND_SYNTAX_ERROR;
3847
3848 struct target *target = get_current_target(CMD_CTX);
3849
3850 if (!strcmp(CMD_ARGV[0], "all")) {
3851 breakpoint_remove_all(target);
3852 } else {
3853 target_addr_t addr;
3854 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3855
3856 breakpoint_remove(target, addr);
3857 }
3858
3859 return ERROR_OK;
3860 }
3861
3862 COMMAND_HANDLER(handle_wp_command)
3863 {
3864 struct target *target = get_current_target(CMD_CTX);
3865
3866 if (CMD_ARGC == 0) {
3867 struct watchpoint *watchpoint = target->watchpoints;
3868
3869 while (watchpoint) {
3870 command_print(CMD, "address: " TARGET_ADDR_FMT
3871 ", len: 0x%8.8" PRIx32
3872 ", r/w/a: %i, value: 0x%8.8" PRIx32
3873 ", mask: 0x%8.8" PRIx32,
3874 watchpoint->address,
3875 watchpoint->length,
3876 (int)watchpoint->rw,
3877 watchpoint->value,
3878 watchpoint->mask);
3879 watchpoint = watchpoint->next;
3880 }
3881 return ERROR_OK;
3882 }
3883
3884 enum watchpoint_rw type = WPT_ACCESS;
3885 uint32_t addr = 0;
3886 uint32_t length = 0;
3887 uint32_t data_value = 0x0;
3888 uint32_t data_mask = 0xffffffff;
3889
3890 switch (CMD_ARGC) {
3891 case 5:
3892 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3893 /* fall through */
3894 case 4:
3895 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3896 /* fall through */
3897 case 3:
3898 switch (CMD_ARGV[2][0]) {
3899 case 'r':
3900 type = WPT_READ;
3901 break;
3902 case 'w':
3903 type = WPT_WRITE;
3904 break;
3905 case 'a':
3906 type = WPT_ACCESS;
3907 break;
3908 default:
3909 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3910 return ERROR_COMMAND_SYNTAX_ERROR;
3911 }
3912 /* fall through */
3913 case 2:
3914 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3915 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3916 break;
3917
3918 default:
3919 return ERROR_COMMAND_SYNTAX_ERROR;
3920 }
3921
3922 int retval = watchpoint_add(target, addr, length, type,
3923 data_value, data_mask);
3924 if (ERROR_OK != retval)
3925 LOG_ERROR("Failure setting watchpoints");
3926
3927 return retval;
3928 }
3929
3930 COMMAND_HANDLER(handle_rwp_command)
3931 {
3932 if (CMD_ARGC != 1)
3933 return ERROR_COMMAND_SYNTAX_ERROR;
3934
3935 uint32_t addr;
3936 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3937
3938 struct target *target = get_current_target(CMD_CTX);
3939 watchpoint_remove(target, addr);
3940
3941 return ERROR_OK;
3942 }
3943
3944 /**
3945 * Translate a virtual address to a physical address.
3946 *
3947 * The low-level target implementation must have logged a detailed error
3948 * which is forwarded to telnet/GDB session.
3949 */
3950 COMMAND_HANDLER(handle_virt2phys_command)
3951 {
3952 if (CMD_ARGC != 1)
3953 return ERROR_COMMAND_SYNTAX_ERROR;
3954
3955 target_addr_t va;
3956 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3957 target_addr_t pa;
3958
3959 struct target *target = get_current_target(CMD_CTX);
3960 int retval = target->type->virt2phys(target, va, &pa);
3961 if (retval == ERROR_OK)
3962 command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
3963
3964 return retval;
3965 }
3966
3967 static void writeData(FILE *f, const void *data, size_t len)
3968 {
3969 size_t written = fwrite(data, 1, len, f);
3970 if (written != len)
3971 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3972 }
3973
3974 static void writeLong(FILE *f, int l, struct target *target)
3975 {
3976 uint8_t val[4];
3977
3978 target_buffer_set_u32(target, val, l);
3979 writeData(f, val, 4);
3980 }
3981
3982 static void writeString(FILE *f, char *s)
3983 {
3984 writeData(f, s, strlen(s));
3985 }
3986
3987 typedef unsigned char UNIT[2]; /* unit of profiling */
3988
3989 /* Dump a gmon.out histogram file. */
3990 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3991 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3992 {
3993 uint32_t i;
3994 FILE *f = fopen(filename, "w");
3995 if (f == NULL)
3996 return;
3997 writeString(f, "gmon");
3998 writeLong(f, 0x00000001, target); /* Version */
3999 writeLong(f, 0, target); /* padding */
4000 writeLong(f, 0, target); /* padding */
4001 writeLong(f, 0, target); /* padding */
4002
4003 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
4004 writeData(f, &zero, 1);
4005
4006 /* figure out bucket size */
4007 uint32_t min;
4008 uint32_t max;
4009 if (with_range) {
4010 min = start_address;
4011 max = end_address;
4012 } else {
4013 min = samples[0];
4014 max = samples[0];
4015 for (i = 0; i < sampleNum; i++) {
4016 if (min > samples[i])
4017 min = samples[i];
4018 if (max < samples[i])
4019 max = samples[i];
4020 }
4021
4022 /* max should be (largest sample + 1)
4023 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
4024 max++;
4025 }
4026
4027 int addressSpace = max - min;
4028 assert(addressSpace >= 2);
4029
4030 /* FIXME: What is the reasonable number of buckets?
4031 * The profiling result will be more accurate if there are enough buckets. */
4032 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
4033 uint32_t numBuckets = addressSpace / sizeof(UNIT);
4034 if (numBuckets > maxBuckets)
4035 numBuckets = maxBuckets;
4036 int *buckets = malloc(sizeof(int) * numBuckets);
4037 if (buckets == NULL) {
4038 fclose(f);
4039 return;
4040 }
4041 memset(buckets, 0, sizeof(int) * numBuckets);
4042 for (i = 0; i < sampleNum; i++) {
4043 uint32_t address = samples[i];
4044
4045 if ((address < min) || (max <= address))
4046 continue;
4047
4048 long long a = address - min;
4049 long long b = numBuckets;
4050 long long c = addressSpace;
4051 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4052 buckets[index_t]++;
4053 }
4054
4055 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4056 writeLong(f, min, target); /* low_pc */
4057 writeLong(f, max, target); /* high_pc */
4058 writeLong(f, numBuckets, target); /* # of buckets */
4059 float sample_rate = sampleNum / (duration_ms / 1000.0);
4060 writeLong(f, sample_rate, target);
4061 writeString(f, "seconds");
4062 for (i = 0; i < (15-strlen("seconds")); i++)
4063 writeData(f, &zero, 1);
4064 writeString(f, "s");
4065
4066 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4067
4068 char *data = malloc(2 * numBuckets);
4069 if (data != NULL) {
4070 for (i = 0; i < numBuckets; i++) {
4071 int val;
4072 val = buckets[i];
4073 if (val > 65535)
4074 val = 65535;
4075 data[i * 2] = val&0xff;
4076 data[i * 2 + 1] = (val >> 8) & 0xff;
4077 }
4078 free(buckets);
4079 writeData(f, data, numBuckets * 2);
4080 free(data);
4081 } else
4082 free(buckets);
4083
4084 fclose(f);
4085 }
4086
4087 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4088 * which will be used as a random sampling of PC */
4089 COMMAND_HANDLER(handle_profile_command)
4090 {
4091 struct target *target = get_current_target(CMD_CTX);
4092
4093 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4094 return ERROR_COMMAND_SYNTAX_ERROR;
4095
4096 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4097 uint32_t offset;
4098 uint32_t num_of_samples;
4099 int retval = ERROR_OK;
4100 bool halted_before_profiling = target->state == TARGET_HALTED;
4101
4102 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4103
4104 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4105 if (samples == NULL) {
4106 LOG_ERROR("No memory to store samples.");
4107 return ERROR_FAIL;
4108 }
4109
4110 uint64_t timestart_ms = timeval_ms();
4111 /**
4112 * Some cores let us sample the PC without the
4113 * annoying halt/resume step; for example, ARMv7 PCSR.
4114 * Provide a way to use that more efficient mechanism.
4115 */
4116 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4117 &num_of_samples, offset);
4118 if (retval != ERROR_OK) {
4119 free(samples);
4120 return retval;
4121 }
4122 uint32_t duration_ms = timeval_ms() - timestart_ms;
4123
4124 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4125
4126 retval = target_poll(target);
4127 if (retval != ERROR_OK) {
4128 free(samples);
4129 return retval;
4130 }
4131
4132 if (target->state == TARGET_RUNNING && halted_before_profiling) {
4133 /* The target was halted before we started and is running now. Halt it,
4134 * for consistency. */
4135 retval = target_halt(target);
4136 if (retval != ERROR_OK) {
4137 free(samples);
4138 return retval;
4139 }
4140 } else if (target->state == TARGET_HALTED && !halted_before_profiling) {
4141 /* The target was running before we started and is halted now. Resume
4142 * it, for consistency. */
4143 retval = target_resume(target, 1, 0, 0, 0);
4144 if (retval != ERROR_OK) {
4145 free(samples);
4146 return retval;
4147 }
4148 }
4149
4150 retval = target_poll(target);
4151 if (retval != ERROR_OK) {
4152 free(samples);
4153 return retval;
4154 }
4155
4156 uint32_t start_address = 0;
4157 uint32_t end_address = 0;
4158 bool with_range = false;
4159 if (CMD_ARGC == 4) {
4160 with_range = true;
4161 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4162 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4163 }
4164
4165 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4166 with_range, start_address, end_address, target, duration_ms);
4167 command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4168
4169 free(samples);
4170 return retval;
4171 }
4172
4173 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4174 {
4175 char *namebuf;
4176 Jim_Obj *nameObjPtr, *valObjPtr;
4177 int result;
4178
4179 namebuf = alloc_printf("%s(%d)", varname, idx);
4180 if (!namebuf)
4181 return JIM_ERR;
4182
4183 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4184 valObjPtr = Jim_NewIntObj(interp, val);
4185 if (!nameObjPtr || !valObjPtr) {
4186 free(namebuf);
4187 return JIM_ERR;
4188 }
4189
4190 Jim_IncrRefCount(nameObjPtr);
4191 Jim_IncrRefCount(valObjPtr);
4192 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4193 Jim_DecrRefCount(interp, nameObjPtr);
4194 Jim_DecrRefCount(interp, valObjPtr);
4195 free(namebuf);
4196 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4197 return result;
4198 }
4199
4200 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4201 {
4202 struct command_context *context;
4203 struct target *target;
4204
4205 context = current_command_context(interp);
4206 assert(context != NULL);
4207
4208 target = get_current_target(context);
4209 if (target == NULL) {
4210 LOG_ERROR("mem2array: no current target");
4211 return JIM_ERR;
4212 }
4213
4214 return target_mem2array(interp, target, argc - 1, argv + 1);
4215 }
4216
4217 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4218 {
4219 long l;
4220 uint32_t width;
4221 int len;
4222 uint32_t addr;
4223 uint32_t count;
4224 uint32_t v;
4225 const char *varname;
4226 const char *phys;
4227 bool is_phys;
4228 int n, e, retval;
4229 uint32_t i;
4230
4231 /* argv[1] = name of array to receive the data
4232 * argv[2] = desired width
4233 * argv[3] = memory address
4234 * argv[4] = count of times to read
4235 */
4236
4237 if (argc < 4 || argc > 5) {
4238 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4239 return JIM_ERR;
4240 }
4241 varname = Jim_GetString(argv[0], &len);
4242 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4243
4244 e = Jim_GetLong(interp, argv[1], &l);
4245 width = l;
4246 if (e != JIM_OK)
4247 return e;
4248
4249 e = Jim_GetLong(interp, argv[2], &l);
4250 addr = l;
4251 if (e != JIM_OK)
4252 return e;
4253 e = Jim_GetLong(interp, argv[3], &l);
4254 len = l;
4255 if (e != JIM_OK)
4256 return e;
4257 is_phys = false;
4258 if (argc > 4) {
4259 phys = Jim_GetString(argv[4], &n);
4260 if (!strncmp(phys, "phys", n))
4261 is_phys = true;
4262 else
4263 return JIM_ERR;
4264 }
4265 switch (width) {
4266 case 8:
4267 width = 1;
4268 break;
4269 case 16:
4270 width = 2;
4271 break;
4272 case 32:
4273 width = 4;
4274 break;
4275 default:
4276 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4277 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4278 return JIM_ERR;
4279 }
4280 if (len == 0) {
4281 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4282 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4283 return JIM_ERR;
4284 }
4285 if ((addr + (len * width)) < addr) {
4286 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4287 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4288 return JIM_ERR;
4289 }
4290 /* absurd transfer size? */
4291 if (len > 65536) {
4292 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4293 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4294 return JIM_ERR;
4295 }
4296
4297 if ((width == 1) ||
4298 ((width == 2) && ((addr & 1) == 0)) ||
4299 ((width == 4) && ((addr & 3) == 0))) {
4300 /* all is well */
4301 } else {
4302 char buf[100];
4303 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4304 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4305 addr,
4306 width);
4307 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4308 return JIM_ERR;
4309 }
4310
4311 /* Transfer loop */
4312
4313 /* index counter */
4314 n = 0;
4315
4316 size_t buffersize = 4096;
4317 uint8_t *buffer = malloc(buffersize);
4318 if (buffer == NULL)
4319 return JIM_ERR;
4320
4321 /* assume ok */
4322 e = JIM_OK;
4323 while (len) {
4324 /* Slurp... in buffer size chunks */
4325
4326 count = len; /* in objects.. */
4327 if (count > (buffersize / width))
4328 count = (buffersize / width);
4329
4330 if (is_phys)
4331 retval = target_read_phys_memory(target, addr, width, count, buffer);
4332 else
4333 retval = target_read_memory(target, addr, width, count, buffer);
4334 if (retval != ERROR_OK) {
4335 /* BOO !*/
4336 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4337 addr,
4338 width,
4339 count);
4340 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4341 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4342 e = JIM_ERR;
4343 break;
4344 } else {
4345 v = 0; /* shut up gcc */
4346 for (i = 0; i < count ; i++, n++) {
4347 switch (width) {
4348 case 4:
4349 v = target_buffer_get_u32(target, &buffer[i*width]);
4350 break;
4351 case 2:
4352 v = target_buffer_get_u16(target, &buffer[i*width]);
4353 break;
4354 case 1:
4355 v = buffer[i] & 0x0ff;
4356 break;
4357 }
4358 new_int_array_element(interp, varname, n, v);
4359 }
4360 len -= count;
4361 addr += count * width;
4362 }
4363 }
4364
4365 free(buffer);
4366
4367 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4368
4369 return e;
4370 }
4371
4372 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4373 {
4374 char *namebuf;
4375 Jim_Obj *nameObjPtr, *valObjPtr;
4376 int result;
4377 long l;
4378
4379 namebuf = alloc_printf("%s(%d)", varname, idx);
4380 if (!namebuf)
4381 return JIM_ERR;
4382
4383 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4384 if (!nameObjPtr) {
4385 free(namebuf);
4386 return JIM_ERR;
4387 }
4388
4389 Jim_IncrRefCount(nameObjPtr);
4390 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4391 Jim_DecrRefCount(interp, nameObjPtr);
4392 free(namebuf);
4393 if (valObjPtr == NULL)
4394 return JIM_ERR;
4395
4396 result = Jim_GetLong(interp, valObjPtr, &l);
4397 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4398 *val = l;
4399 return result;
4400 }
4401
4402 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4403 {
4404 struct command_context *context;
4405 struct target *target;
4406
4407 context = current_command_context(interp);
4408 assert(context != NULL);
4409
4410 target = get_current_target(context);
4411 if (target == NULL) {
4412 LOG_ERROR("array2mem: no current target");
4413 return JIM_ERR;
4414 }
4415
4416 return target_array2mem(interp, target, argc-1, argv + 1);
4417 }
4418
4419 static int target_array2mem(Jim_Interp *interp, struct target *target,
4420 int argc, Jim_Obj *const *argv)
4421 {
4422 long l;
4423 uint32_t width;
4424 int len;
4425 uint32_t addr;
4426 uint32_t count;
4427 uint32_t v;
4428 const char *varname;
4429 const char *phys;
4430 bool is_phys;
4431 int n, e, retval;
4432 uint32_t i;
4433
4434 /* argv[1] = name of array to get the data
4435 * argv[2] = desired width
4436 * argv[3] = memory address
4437 * argv[4] = count to write
4438 */
4439 if (argc < 4 || argc > 5) {
4440 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4441 return JIM_ERR;
4442 }
4443 varname = Jim_GetString(argv[0], &len);
4444 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4445
4446 e = Jim_GetLong(interp, argv[1], &l);
4447 width = l;
4448 if (e != JIM_OK)
4449 return e;
4450
4451 e = Jim_GetLong(interp, argv[2], &l);
4452 addr = l;
4453 if (e != JIM_OK)
4454 return e;
4455 e = Jim_GetLong(interp, argv[3], &l);
4456 len = l;
4457 if (e != JIM_OK)
4458 return e;
4459 is_phys = false;
4460 if (argc > 4) {
4461 phys = Jim_GetString(argv[4], &n);
4462 if (!strncmp(phys, "phys", n))
4463 is_phys = true;
4464 else
4465 return JIM_ERR;
4466 }
4467 switch (width) {
4468 case 8:
4469 width = 1;
4470 break;
4471 case 16:
4472 width = 2;
4473 break;
4474 case 32:
4475 width = 4;
4476 break;
4477 default:
4478 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4479 Jim_AppendStrings(interp, Jim_GetResult(interp),
4480 "Invalid width param, must be 8/16/32", NULL);
4481 return JIM_ERR;
4482 }
4483 if (len == 0) {
4484 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4485 Jim_AppendStrings(interp, Jim_GetResult(interp),
4486 "array2mem: zero width read?", NULL);
4487 return JIM_ERR;
4488 }
4489 if ((addr + (len * width)) < addr) {
4490 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4491 Jim_AppendStrings(interp, Jim_GetResult(interp),
4492 "array2mem: addr + len - wraps to zero?", NULL);
4493 return JIM_ERR;
4494 }
4495 /* absurd transfer size? */
4496 if (len > 65536) {
4497 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4498 Jim_AppendStrings(interp, Jim_GetResult(interp),
4499 "array2mem: absurd > 64K item request", NULL);
4500 return JIM_ERR;
4501 }
4502
4503 if ((width == 1) ||
4504 ((width == 2) && ((addr & 1) == 0)) ||
4505 ((width == 4) && ((addr & 3) == 0))) {
4506 /* all is well */
4507 } else {
4508 char buf[100];
4509 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4510 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4511 addr,
4512 width);
4513 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4514 return JIM_ERR;
4515 }
4516
4517 /* Transfer loop */
4518
4519 /* index counter */
4520 n = 0;
4521 /* assume ok */
4522 e = JIM_OK;
4523
4524 size_t buffersize = 4096;
4525 uint8_t *buffer = malloc(buffersize);
4526 if (buffer == NULL)
4527 return JIM_ERR;
4528
4529 while (len) {
4530 /* Slurp... in buffer size chunks */
4531
4532 count = len; /* in objects.. */
4533 if (count > (buffersize / width))
4534 count = (buffersize / width);
4535
4536 v = 0; /* shut up gcc */
4537 for (i = 0; i < count; i++, n++) {
4538 get_int_array_element(interp, varname, n, &v);
4539 switch (width) {
4540 case 4:
4541 target_buffer_set_u32(target, &buffer[i * width], v);
4542 break;
4543 case 2:
4544 target_buffer_set_u16(target, &buffer[i * width], v);
4545 break;
4546 case 1:
4547 buffer[i] = v & 0x0ff;
4548 break;
4549 }
4550 }
4551 len -= count;
4552
4553 if (is_phys)
4554 retval = target_write_phys_memory(target, addr, width, count, buffer);
4555 else
4556 retval = target_write_memory(target, addr, width, count, buffer);
4557 if (retval != ERROR_OK) {
4558 /* BOO !*/
4559 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4560 addr,
4561 width,
4562 count);
4563 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4564 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4565 e = JIM_ERR;
4566 break;
4567 }
4568 addr += count * width;
4569 }
4570
4571 free(buffer);
4572
4573 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4574
4575 return e;
4576 }
4577
4578 /* FIX? should we propagate errors here rather than printing them
4579 * and continuing?
4580 */
4581 void target_handle_event(struct target *target, enum target_event e)
4582 {
4583 struct target_event_action *teap;
4584 int retval;
4585
4586 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4587 if (teap->event == e) {
4588 LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4589 target->target_number,
4590 target_name(target),
4591 target_type_name(target),
4592 e,
4593 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4594 Jim_GetString(teap->body, NULL));
4595
4596 /* Override current target by the target an event
4597 * is issued from (lot of scripts need it).
4598 * Return back to previous override as soon
4599 * as the handler processing is done */
4600 struct command_context *cmd_ctx = current_command_context(teap->interp);
4601 struct target *saved_target_override = cmd_ctx->current_target_override;
4602 cmd_ctx->current_target_override = target;
4603
4604 retval = Jim_EvalObj(teap->interp, teap->body);
4605
4606 cmd_ctx->current_target_override = saved_target_override;
4607
4608 if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
4609 return;
4610
4611 if (retval == JIM_RETURN)
4612 retval = teap->interp->returnCode;
4613
4614 if (retval != JIM_OK) {
4615 Jim_MakeErrorMessage(teap->interp);
4616 LOG_USER("Error executing event %s on target %s:\n%s",
4617 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4618 target_name(target),
4619 Jim_GetString(Jim_GetResult(teap->interp), NULL));
4620 /* clean both error code and stacktrace before return */
4621 Jim_Eval(teap->interp, "error \"\" \"\"");
4622 }
4623 }
4624 }
4625 }
4626
4627 /**
4628 * Returns true only if the target has a handler for the specified event.
4629 */
4630 bool target_has_event_action(struct target *target, enum target_event event)
4631 {
4632 struct target_event_action *teap;
4633
4634 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4635 if (teap->event == event)
4636 return true;
4637 }
4638 return false;
4639 }
4640
4641 enum target_cfg_param {
4642 TCFG_TYPE,
4643 TCFG_EVENT,
4644 TCFG_WORK_AREA_VIRT,
4645 TCFG_WORK_AREA_PHYS,
4646 TCFG_WORK_AREA_SIZE,
4647 TCFG_WORK_AREA_BACKUP,
4648 TCFG_ENDIAN,
4649 TCFG_COREID,
4650 TCFG_CHAIN_POSITION,
4651 TCFG_DBGBASE,
4652 TCFG_RTOS,
4653 TCFG_DEFER_EXAMINE,
4654 TCFG_GDB_PORT,
4655 TCFG_GDB_MAX_CONNECTIONS,
4656 };
4657
4658 static Jim_Nvp nvp_config_opts[] = {
4659 { .name = "-type", .value = TCFG_TYPE },
4660 { .name = "-event", .value = TCFG_EVENT },
4661 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4662 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4663 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4664 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4665 { .name = "-endian", .value = TCFG_ENDIAN },
4666 { .name = "-coreid", .value = TCFG_COREID },
4667 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4668 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4669 { .name = "-rtos", .value = TCFG_RTOS },
4670 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4671 { .name = "-gdb-port", .value = TCFG_GDB_PORT },
4672 { .name = "-gdb-max-connections", .value = TCFG_GDB_MAX_CONNECTIONS },
4673 { .name = NULL, .value = -1 }
4674 };
4675
4676 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4677 {
4678 Jim_Nvp *n;
4679 Jim_Obj *o;
4680 jim_wide w;
4681 int e;
4682
4683 /* parse config or cget options ... */
4684 while (goi->argc > 0) {
4685 Jim_SetEmptyResult(goi->interp);
4686 /* Jim_GetOpt_Debug(goi); */
4687
4688 if (target->type->target_jim_configure) {
4689 /* target defines a configure function */
4690 /* target gets first dibs on parameters */
4691 e = (*(target->type->target_jim_configure))(target, goi);
4692 if (e == JIM_OK) {
4693 /* more? */
4694 continue;
4695 }
4696 if (e == JIM_ERR) {
4697 /* An error */
4698 return e;
4699 }
4700 /* otherwise we 'continue' below */
4701 }
4702 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4703 if (e != JIM_OK) {
4704 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4705 return e;
4706 }
4707 switch (n->value) {
4708 case TCFG_TYPE:
4709 /* not settable */
4710 if (goi->isconfigure) {
4711 Jim_SetResultFormatted(goi->interp,
4712 "not settable: %s", n->name);
4713 return JIM_ERR;
4714 } else {
4715 no_params:
4716 if (goi->argc != 0) {
4717 Jim_WrongNumArgs(goi->interp,
4718 goi->argc, goi->argv,
4719 "NO PARAMS");
4720 return JIM_ERR;
4721 }
4722 }
4723 Jim_SetResultString(goi->interp,
4724 target_type_name(target), -1);
4725 /* loop for more */
4726 break;
4727 case TCFG_EVENT:
4728 if (goi->argc == 0) {
4729 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4730 return JIM_ERR;
4731 }
4732
4733 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4734 if (e != JIM_OK) {
4735 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4736 return e;
4737 }
4738
4739 if (goi->isconfigure) {
4740 if (goi->argc != 1) {
4741 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4742 return JIM_ERR;
4743 }
4744 } else {
4745 if (goi->argc != 0) {
4746 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4747 return JIM_ERR;
4748 }
4749 }
4750
4751 {
4752 struct target_event_action *teap;
4753
4754 teap = target->event_action;
4755 /* replace existing? */
4756 while (teap) {
4757 if (teap->event == (enum target_event)n->value)
4758 break;
4759 teap = teap->next;
4760 }
4761
4762 if (goi->isconfigure) {
4763 bool replace = true;
4764 if (teap == NULL) {
4765 /* create new */
4766 teap = calloc(1, sizeof(*teap));
4767 replace = false;
4768 }
4769 teap->event = n->value;
4770 teap->interp = goi->interp;
4771 Jim_GetOpt_Obj(goi, &o);
4772 if (teap->body)
4773 Jim_DecrRefCount(teap->interp, teap->body);
4774 teap->body = Jim_DuplicateObj(goi->interp, o);
4775 /*
4776 * FIXME:
4777 * Tcl/TK - "tk events" have a nice feature.
4778 * See the "BIND" command.
4779 * We should support that here.
4780 * You can specify %X and %Y in the event code.
4781 * The idea is: %T - target name.
4782 * The idea is: %N - target number
4783 * The idea is: %E - event name.
4784 */
4785 Jim_IncrRefCount(teap->body);
4786
4787 if (!replace) {
4788 /* add to head of event list */
4789 teap->next = target->event_action;
4790 target->event_action = teap;
4791 }
4792 Jim_SetEmptyResult(goi->interp);
4793 } else {
4794 /* get */
4795 if (teap == NULL)
4796 Jim_SetEmptyResult(goi->interp);
4797 else
4798 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4799 }
4800 }
4801 /* loop for more */
4802 break;
4803
4804 case TCFG_WORK_AREA_VIRT:
4805 if (goi->isconfigure) {
4806 target_free_all_working_areas(target);
4807 e = Jim_GetOpt_Wide(goi, &w);
4808 if (e != JIM_OK)
4809 return e;
4810 target->working_area_virt = w;
4811 target->working_area_virt_spec = true;
4812 } else {
4813 if (goi->argc != 0)
4814 goto no_params;
4815 }
4816 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4817 /* loop for more */
4818 break;
4819
4820 case TCFG_WORK_AREA_PHYS:
4821 if (goi->isconfigure) {
4822 target_free_all_working_areas(target);
4823 e = Jim_GetOpt_Wide(goi, &w);
4824 if (e != JIM_OK)
4825 return e;
4826 target->working_area_phys = w;
4827 target->working_area_phys_spec = true;
4828 } else {
4829 if (goi->argc != 0)
4830 goto no_params;
4831 }
4832 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4833 /* loop for more */
4834 break;
4835
4836 case TCFG_WORK_AREA_SIZE:
4837 if (goi->isconfigure) {
4838 target_free_all_working_areas(target);
4839 e = Jim_GetOpt_Wide(goi, &w);
4840 if (e != JIM_OK)
4841 return e;
4842 target->working_area_size = w;
4843 } else {
4844 if (goi->argc != 0)
4845 goto no_params;
4846 }
4847 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4848 /* loop for more */
4849 break;
4850
4851 case TCFG_WORK_AREA_BACKUP:
4852 if (goi->isconfigure) {
4853 target_free_all_working_areas(target);
4854 e = Jim_GetOpt_Wide(goi, &w);
4855 if (e != JIM_OK)
4856 return e;
4857 /* make this exactly 1 or 0 */
4858 target->backup_working_area = (!!w);
4859 } else {
4860 if (goi->argc != 0)
4861 goto no_params;
4862 }
4863 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4864 /* loop for more e*/
4865 break;
4866
4867
4868 case TCFG_ENDIAN:
4869 if (goi->isconfigure) {
4870 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4871 if (e != JIM_OK) {
4872 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4873 return e;
4874 }
4875 target->endianness = n->value;
4876 } else {
4877 if (goi->argc != 0)
4878 goto no_params;
4879 }
4880 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4881 if (n->name == NULL) {
4882 target->endianness = TARGET_LITTLE_ENDIAN;
4883 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4884 }
4885 Jim_SetResultString(goi->interp, n->name, -1);
4886 /* loop for more */
4887 break;
4888
4889 case TCFG_COREID:
4890 if (goi->isconfigure) {
4891 e = Jim_GetOpt_Wide(goi, &w);
4892 if (e != JIM_OK)
4893 return e;
4894 target->coreid = (int32_t)w;
4895 } else {
4896 if (goi->argc != 0)
4897 goto no_params;
4898 }
4899 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
4900 /* loop for more */
4901 break;
4902
4903 case TCFG_CHAIN_POSITION:
4904 if (goi->isconfigure) {
4905 Jim_Obj *o_t;
4906 struct jtag_tap *tap;
4907
4908 if (target->has_dap) {
4909 Jim_SetResultString(goi->interp,
4910 "target requires -dap parameter instead of -chain-position!", -1);
4911 return JIM_ERR;
4912 }
4913
4914 target_free_all_working_areas(target);
4915 e = Jim_GetOpt_Obj(goi, &o_t);
4916 if (e != JIM_OK)
4917 return e;
4918 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4919 if (tap == NULL)
4920 return JIM_ERR;
4921 target->tap = tap;
4922 target->tap_configured = true;
4923 } else {
4924 if (goi->argc != 0)
4925 goto no_params;
4926 }
4927 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4928 /* loop for more e*/
4929 break;
4930 case TCFG_DBGBASE:
4931 if (goi->isconfigure) {
4932 e = Jim_GetOpt_Wide(goi, &w);
4933 if (e != JIM_OK)
4934 return e;
4935 target->dbgbase = (uint32_t)w;
4936 target->dbgbase_set = true;
4937 } else {
4938 if (goi->argc != 0)
4939 goto no_params;
4940 }
4941 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4942 /* loop for more */
4943 break;
4944 case TCFG_RTOS:
4945 /* RTOS */
4946 {
4947 int result = rtos_create(goi, target);
4948 if (result != JIM_OK)
4949 return result;
4950 }
4951 /* loop for more */
4952 break;
4953
4954 case TCFG_DEFER_EXAMINE:
4955 /* DEFER_EXAMINE */
4956 target->defer_examine = true;
4957 /* loop for more */
4958 break;
4959
4960 case TCFG_GDB_PORT:
4961 if (goi->isconfigure) {
4962 struct command_context *cmd_ctx = current_command_context(goi->interp);
4963 if (cmd_ctx->mode != COMMAND_CONFIG) {
4964 Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
4965 return JIM_ERR;
4966 }
4967
4968 const char *s;
4969 e = Jim_GetOpt_String(goi, &s, NULL);
4970 if (e != JIM_OK)
4971 return e;
4972 target->gdb_port_override = strdup(s);
4973 } else {
4974 if (goi->argc != 0)
4975 goto no_params;
4976 }
4977 Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4978 /* loop for more */
4979 break;
4980
4981 case TCFG_GDB_MAX_CONNECTIONS:
4982 if (goi->isconfigure) {
4983 struct command_context *cmd_ctx = current_command_context(goi->interp);
4984 if (cmd_ctx->mode != COMMAND_CONFIG) {
4985 Jim_SetResultString(goi->interp, "-gdb-max-conenctions must be configured before 'init'", -1);
4986 return JIM_ERR;
4987 }
4988
4989 e = Jim_GetOpt_Wide(goi, &w);
4990 if (e != JIM_OK)
4991 return e;
4992 target->gdb_max_connections = (w < 0) ? CONNECTION_LIMIT_UNLIMITED : (int)w;
4993 } else {
4994 if (goi->argc != 0)
4995 goto no_params;
4996 }
4997 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->gdb_max_connections));
4998 break;
4999 }
5000 } /* while (goi->argc) */
5001
5002
5003 /* done - we return */
5004 return JIM_OK;
5005 }
5006
5007 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5008 {
5009 Jim_GetOptInfo goi;
5010
5011 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5012 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
5013 if (goi.argc < 1) {
5014 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5015 "missing: -option ...");
5016 return JIM_ERR;
5017 }
5018 struct target *target = Jim_CmdPrivData(goi.interp);
5019 return target_configure(&goi, target);
5020 }
5021
5022 static int jim_target_mem2array(Jim_Interp *interp,
5023 int argc, Jim_Obj *const *argv)
5024 {
5025 struct target *target = Jim_CmdPrivData(interp);
5026 return target_mem2array(interp, target, argc - 1, argv + 1);
5027 }
5028
5029 static int jim_target_array2mem(Jim_Interp *interp,
5030 int argc, Jim_Obj *const *argv)
5031 {
5032 struct target *target = Jim_CmdPrivData(interp);
5033 return target_array2mem(interp, target, argc - 1, argv + 1);
5034 }
5035
5036 static int jim_target_tap_disabled(Jim_Interp *interp)
5037 {
5038 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5039 return JIM_ERR;
5040 }
5041
5042 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5043 {
5044 bool allow_defer = false;
5045
5046 Jim_GetOptInfo goi;
5047 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5048 if (goi.argc > 1) {
5049 const char *cmd_name = Jim_GetString(argv[0], NULL);
5050 Jim_SetResultFormatted(goi.interp,
5051 "usage: %s ['allow-defer']", cmd_name);
5052 return JIM_ERR;
5053 }
5054 if (goi.argc > 0 &&
5055 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5056 /* consume it */
5057 Jim_Obj *obj;
5058 int e = Jim_GetOpt_Obj(&goi, &obj);
5059 if (e != JIM_OK)
5060 return e;
5061 allow_defer = true;
5062 }
5063
5064 struct target *target = Jim_CmdPrivData(interp);
5065 if (!target->tap->enabled)
5066 return jim_target_tap_disabled(interp);
5067
5068 if (allow_defer && target->defer_examine) {
5069 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5070 LOG_INFO("Use arp_examine command to examine it manually!");
5071 return JIM_OK;
5072 }
5073
5074 int e = target->type->examine(target);
5075 if (e != ERROR_OK)
5076 return JIM_ERR;
5077 return JIM_OK;
5078 }
5079
5080 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5081 {
5082 struct target *target = Jim_CmdPrivData(interp);
5083
5084 Jim_SetResultBool(interp, target_was_examined(target));
5085 return JIM_OK;
5086 }
5087
5088 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5089 {
5090 struct target *target = Jim_CmdPrivData(interp);
5091
5092 Jim_SetResultBool(interp, target->defer_examine);
5093 return JIM_OK;
5094 }
5095
5096 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5097 {
5098 if (argc != 1) {
5099 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5100 return JIM_ERR;
5101 }
5102 struct target *target = Jim_CmdPrivData(interp);
5103
5104 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5105 return JIM_ERR;
5106
5107 return JIM_OK;
5108 }
5109
5110 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5111 {
5112 if (argc != 1) {
5113 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5114 return JIM_ERR;
5115 }
5116 struct target *target = Jim_CmdPrivData(interp);
5117 if (!target->tap->enabled)
5118 return jim_target_tap_disabled(interp);
5119
5120 int e;
5121 if (!(target_was_examined(target)))
5122 e = ERROR_TARGET_NOT_EXAMINED;
5123 else
5124 e = target->type->poll(target);
5125 if (e != ERROR_OK)
5126 return JIM_ERR;
5127 return JIM_OK;
5128 }
5129
5130 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5131 {
5132 Jim_GetOptInfo goi;
5133 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5134
5135 if (goi.argc != 2) {
5136 Jim_WrongNumArgs(interp, 0, argv,
5137 "([tT]|[fF]|assert|deassert) BOOL");
5138 return JIM_ERR;
5139 }
5140
5141 Jim_Nvp *n;
5142 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5143 if (e != JIM_OK) {
5144 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5145 return e;
5146 }
5147 /* the halt or not param */
5148 jim_wide a;
5149 e = Jim_GetOpt_Wide(&goi, &a);
5150 if (e != JIM_OK)
5151 return e;
5152
5153 struct target *target = Jim_CmdPrivData(goi.interp);
5154 if (!target->tap->enabled)
5155 return jim_target_tap_disabled(interp);
5156
5157 if (!target->type->assert_reset || !target->type->deassert_reset) {
5158 Jim_SetResultFormatted(interp,
5159 "No target-specific reset for %s",
5160 target_name(target));
5161 return JIM_ERR;
5162 }
5163
5164 if (target->defer_examine)
5165 target_reset_examined(target);
5166
5167 /* determine if we should halt or not. */
5168 target->reset_halt = !!a;
5169 /* When this happens - all workareas are invalid. */
5170 target_free_all_working_areas_restore(target, 0);
5171
5172 /* do the assert */
5173 if (n->value == NVP_ASSERT)
5174 e = target->type->assert_reset(target);
5175 else
5176 e = target->type->deassert_reset(target);
5177 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5178 }
5179
5180 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5181 {
5182 if (argc != 1) {
5183 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5184 return JIM_ERR;
5185 }
5186 struct target *target = Jim_CmdPrivData(interp);
5187 if (!target->tap->enabled)
5188 return jim_target_tap_disabled(interp);
5189 int e = target->type->halt(target);
5190 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5191 }
5192
5193 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5194 {
5195 Jim_GetOptInfo goi;
5196 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5197
5198 /* params: <name> statename timeoutmsecs */
5199 if (goi.argc != 2) {
5200 const char *cmd_name = Jim_GetString(argv[0], NULL);
5201 Jim_SetResultFormatted(goi.interp,
5202 "%s <state_name> <timeout_in_msec>", cmd_name);
5203 return JIM_ERR;
5204 }
5205
5206 Jim_Nvp *n;
5207 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5208 if (e != JIM_OK) {
5209 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5210 return e;
5211 }
5212 jim_wide a;
5213 e = Jim_GetOpt_Wide(&goi, &a);
5214 if (e != JIM_OK)
5215 return e;
5216 struct target *target = Jim_CmdPrivData(interp);
5217 if (!target->tap->enabled)
5218 return jim_target_tap_disabled(interp);
5219
5220 e = target_wait_state(target, n->value, a);
5221 if (e != ERROR_OK) {
5222 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5223 Jim_SetResultFormatted(goi.interp,
5224 "target: %s wait %s fails (%#s) %s",
5225 target_name(target), n->name,
5226 eObj, target_strerror_safe(e));
5227 return JIM_ERR;
5228 }
5229 return JIM_OK;
5230 }
5231 /* List for human, Events defined for this target.
5232 * scripts/programs should use 'name cget -event NAME'
5233 */
5234 COMMAND_HANDLER(handle_target_event_list)
5235 {
5236 struct target *target = get_current_target(CMD_CTX);
5237 struct target_event_action *teap = target->event_action;
5238
5239 command_print(CMD, "Event actions for target (%d) %s\n",
5240 target->target_number,
5241 target_name(target));
5242 command_print(CMD, "%-25s | Body", "Event");
5243 command_print(CMD, "------------------------- | "
5244 "----------------------------------------");
5245 while (teap) {
5246 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5247 command_print(CMD, "%-25s | %s",
5248 opt->name, Jim_GetString(teap->body, NULL));
5249 teap = teap->next;
5250 }
5251 command_print(CMD, "***END***");
5252 return ERROR_OK;
5253 }
5254 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5255 {
5256 if (argc != 1) {
5257 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5258 return JIM_ERR;
5259 }
5260 struct target *target = Jim_CmdPrivData(interp);
5261 Jim_SetResultString(interp, target_state_name(target), -1);
5262 return JIM_OK;
5263 }
5264 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5265 {
5266 Jim_GetOptInfo goi;
5267 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5268 if (goi.argc != 1) {
5269 const char *cmd_name = Jim_GetString(argv[0], NULL);
5270 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5271 return JIM_ERR;
5272 }
5273 Jim_Nvp *n;
5274 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5275 if (e != JIM_OK) {
5276 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5277 return e;
5278 }
5279 struct target *target = Jim_CmdPrivData(interp);
5280 target_handle_event(target, n->value);
5281 return JIM_OK;
5282 }
5283
5284 static const struct command_registration target_instance_command_handlers[] = {
5285 {
5286 .name = "configure",
5287 .mode = COMMAND_ANY,
5288 .jim_handler = jim_target_configure,
5289 .help = "configure a new target for use",
5290 .usage = "[target_attribute ...]",
5291 },
5292 {
5293 .name = "cget",
5294 .mode = COMMAND_ANY,
5295 .jim_handler = jim_target_configure,
5296 .help = "returns the specified target attribute",
5297 .usage = "target_attribute",
5298 },
5299 {
5300 .name = "mwd",
5301 .handler = handle_mw_command,
5302 .mode = COMMAND_EXEC,
5303 .help = "Write 64-bit word(s) to target memory",
5304 .usage = "address data [count]",
5305 },
5306 {
5307 .name = "mww",
5308 .handler = handle_mw_command,
5309 .mode = COMMAND_EXEC,
5310 .help = "Write 32-bit word(s) to target memory",
5311 .usage = "address data [count]",
5312 },
5313 {
5314 .name = "mwh",
5315 .handler = handle_mw_command,
5316 .mode = COMMAND_EXEC,
5317 .help = "Write 16-bit half-word(s) to target memory",
5318 .usage = "address data [count]",
5319 },
5320 {
5321 .name = "mwb",
5322 .handler = handle_mw_command,
5323 .mode = COMMAND_EXEC,
5324 .help = "Write byte(s) to target memory",
5325 .usage = "address data [count]",
5326 },
5327 {
5328 .name = "mdd",
5329 .handler = handle_md_command,
5330 .mode = COMMAND_EXEC,
5331 .help = "Display target memory as 64-bit words",
5332 .usage = "address [count]",
5333 },
5334 {
5335 .name = "mdw",
5336 .handler = handle_md_command,
5337 .mode = COMMAND_EXEC,
5338 .help = "Display target memory as 32-bit words",
5339 .usage = "address [count]",
5340 },
5341 {
5342 .name = "mdh",
5343 .handler = handle_md_command,
5344 .mode = COMMAND_EXEC,
5345 .help = "Display target memory as 16-bit half-words",
5346 .usage = "address [count]",
5347 },
5348 {
5349 .name = "mdb",
5350 .handler = handle_md_command,
5351 .mode = COMMAND_EXEC,
5352 .help = "Display target memory as 8-bit bytes",
5353 .usage = "address [count]",
5354 },
5355 {
5356 .name = "array2mem",
5357 .mode = COMMAND_EXEC,
5358 .jim_handler = jim_target_array2mem,
5359 .help = "Writes Tcl array of 8/16/32 bit numbers "
5360 "to target memory",
5361 .usage = "arrayname bitwidth address count",
5362 },
5363 {
5364 .name = "mem2array",
5365 .mode = COMMAND_EXEC,
5366 .jim_handler = jim_target_mem2array,
5367 .help = "Loads Tcl array of 8/16/32 bit numbers "
5368 "from target memory",
5369 .usage = "arrayname bitwidth address count",
5370 },
5371 {
5372 .name = "eventlist",
5373 .handler = handle_target_event_list,
5374 .mode = COMMAND_EXEC,
5375 .help = "displays a table of events defined for this target",
5376 .usage = "",
5377 },
5378 {
5379 .name = "curstate",
5380 .mode = COMMAND_EXEC,
5381 .jim_handler = jim_target_current_state,
5382 .help = "displays the current state of this target",
5383 },
5384 {
5385 .name = "arp_examine",
5386 .mode = COMMAND_EXEC,
5387 .jim_handler = jim_target_examine,
5388 .help = "used internally for reset processing",
5389 .usage = "['allow-defer']",
5390 },
5391 {
5392 .name = "was_examined",
5393 .mode = COMMAND_EXEC,
5394 .jim_handler = jim_target_was_examined,
5395 .help = "used internally for reset processing",
5396 },
5397 {
5398 .name = "examine_deferred",
5399 .mode = COMMAND_EXEC,
5400 .jim_handler = jim_target_examine_deferred,
5401 .help = "used internally for reset processing",
5402 },
5403 {
5404 .name = "arp_halt_gdb",
5405 .mode = COMMAND_EXEC,
5406 .jim_handler = jim_target_halt_gdb,
5407 .help = "used internally for reset processing to halt GDB",
5408 },
5409 {
5410 .name = "arp_poll",
5411 .mode = COMMAND_EXEC,
5412 .jim_handler = jim_target_poll,
5413 .help = "used internally for reset processing",
5414 },
5415 {
5416 .name = "arp_reset",
5417 .mode = COMMAND_EXEC,
5418 .jim_handler = jim_target_reset,
5419 .help = "used internally for reset processing",
5420 },
5421 {
5422 .name = "arp_halt",
5423 .mode = COMMAND_EXEC,
5424 .jim_handler = jim_target_halt,
5425 .help = "used internally for reset processing",
5426 },
5427 {
5428 .name = "arp_waitstate",
5429 .mode = COMMAND_EXEC,
5430 .jim_handler = jim_target_wait_state,
5431 .help = "used internally for reset processing",
5432 },
5433 {
5434 .name = "invoke-event",
5435 .mode = COMMAND_EXEC,
5436 .jim_handler = jim_target_invoke_event,
5437 .help = "invoke handler for specified event",
5438 .usage = "event_name",
5439 },
5440 COMMAND_REGISTRATION_DONE
5441 };
5442
5443 static int target_create(Jim_GetOptInfo *goi)
5444 {
5445 Jim_Obj *new_cmd;
5446 Jim_Cmd *cmd;
5447 const char *cp;
5448 int e;
5449 int x;
5450 struct target *target;
5451 struct command_context *cmd_ctx;
5452
5453 cmd_ctx = current_command_context(goi->interp);
5454 assert(cmd_ctx != NULL);
5455
5456 if (goi->argc < 3) {
5457 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5458 return JIM_ERR;
5459 }
5460
5461 /* COMMAND */
5462 Jim_GetOpt_Obj(goi, &new_cmd);
5463 /* does this command exist? */
5464 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5465 if (cmd) {
5466 cp = Jim_GetString(new_cmd, NULL);
5467 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5468 return JIM_ERR;
5469 }
5470
5471 /* TYPE */
5472 e = Jim_GetOpt_String(goi, &cp, NULL);
5473 if (e != JIM_OK)
5474 return e;
5475 struct transport *tr = get_current_transport();
5476 if (tr->override_target) {
5477 e = tr->override_target(&cp);
5478 if (e != ERROR_OK) {
5479 LOG_ERROR("The selected transport doesn't support this target");
5480 return JIM_ERR;
5481 }
5482 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5483 }
5484 /* now does target type exist */
5485 for (x = 0 ; target_types[x] ; x++) {
5486 if (0 == strcmp(cp, target_types[x]->name)) {
5487 /* found */
5488 break;
5489 }
5490
5491 /* check for deprecated name */
5492 if (target_types[x]->deprecated_name) {
5493 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5494 /* found */
5495 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5496 break;
5497 }
5498 }
5499 }
5500 if (target_types[x] == NULL) {
5501 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5502 for (x = 0 ; target_types[x] ; x++) {
5503 if (target_types[x + 1]) {
5504 Jim_AppendStrings(goi->interp,
5505 Jim_GetResult(goi->interp),
5506 target_types[x]->name,
5507 ", ", NULL);
5508 } else {
5509 Jim_AppendStrings(goi->interp,
5510 Jim_GetResult(goi->interp),
5511 " or ",
5512 target_types[x]->name, NULL);
5513 }
5514 }
5515 return JIM_ERR;
5516 }
5517
5518 /* Create it */
5519 target = calloc(1, sizeof(struct target));
5520 if (!target) {
5521 LOG_ERROR("Out of memory");
5522 return JIM_ERR;
5523 }
5524
5525 /* set target number */
5526 target->target_number = new_target_number();
5527
5528 /* allocate memory for each unique target type */
5529 target->type = malloc(sizeof(struct target_type));
5530 if (!target->type) {
5531 LOG_ERROR("Out of memory");
5532 free(target);
5533 return JIM_ERR;
5534 }
5535
5536 memcpy(target->type, target_types[x], sizeof(struct target_type));
5537
5538 /* will be set by "-endian" */
5539 target->endianness = TARGET_ENDIAN_UNKNOWN;
5540
5541 /* default to first core, override with -coreid */
5542 target->coreid = 0;
5543
5544 target->working_area = 0x0;
5545 target->working_area_size = 0x0;
5546 target->working_areas = NULL;
5547 target->backup_working_area = 0;
5548
5549 target->state = TARGET_UNKNOWN;
5550 target->debug_reason = DBG_REASON_UNDEFINED;
5551 target->reg_cache = NULL;
5552 target->breakpoints = NULL;
5553 target->watchpoints = NULL;
5554 target->next = NULL;
5555 target->arch_info = NULL;
5556
5557 target->verbose_halt_msg = true;
5558
5559 target->halt_issued = false;
5560
5561 /* initialize trace information */
5562 target->trace_info = calloc(1, sizeof(struct trace));
5563 if (!target->trace_info) {
5564 LOG_ERROR("Out of memory");
5565 free(target->type);
5566 free(target);
5567 return JIM_ERR;
5568 }
5569
5570 target->dbgmsg = NULL;
5571 target->dbg_msg_enabled = 0;
5572
5573 target->endianness = TARGET_ENDIAN_UNKNOWN;
5574
5575 target->rtos = NULL;
5576 target->rtos_auto_detect = false;
5577
5578 target->gdb_port_override = NULL;
5579 target->gdb_max_connections = 1;
5580
5581 /* Do the rest as "configure" options */
5582 goi->isconfigure = 1;
5583 e = target_configure(goi, target);
5584
5585 if (e == JIM_OK) {
5586 if (target->has_dap) {
5587 if (!target->dap_configured) {
5588 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5589 e = JIM_ERR;
5590 }
5591 } else {
5592 if (!target->tap_configured) {
5593 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5594 e = JIM_ERR;
5595 }
5596 }
5597 /* tap must be set after target was configured */
5598 if (target->tap == NULL)
5599 e = JIM_ERR;
5600 }
5601
5602 if (e != JIM_OK) {
5603 rtos_destroy(target);
5604 free(target->gdb_port_override);
5605 free(target->trace_info);
5606 free(target->type);
5607 free(target);
5608 return e;
5609 }
5610
5611 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5612 /* default endian to little if not specified */
5613 target->endianness = TARGET_LITTLE_ENDIAN;
5614 }
5615
5616 cp = Jim_GetString(new_cmd, NULL);
5617 target->cmd_name = strdup(cp);
5618 if (!target->cmd_name) {
5619 LOG_ERROR("Out of memory");
5620 rtos_destroy(target);
5621 free(target->gdb_port_override);
5622 free(target->trace_info);
5623 free(target->type);
5624 free(target);
5625 return JIM_ERR;
5626 }
5627
5628 if (target->type->target_create) {
5629 e = (*(target->type->target_create))(target, goi->interp);
5630 if (e != ERROR_OK) {
5631 LOG_DEBUG("target_create failed");
5632 free(target->cmd_name);
5633 rtos_destroy(target);
5634 free(target->gdb_port_override);
5635 free(target->trace_info);
5636 free(target->type);
5637 free(target);
5638 return JIM_ERR;
5639 }
5640 }
5641
5642 /* create the target specific commands */
5643 if (target->type->commands) {
5644 e = register_commands(cmd_ctx, NULL, target->type->commands);
5645 if (ERROR_OK != e)
5646 LOG_ERROR("unable to register '%s' commands", cp);
5647 }
5648
5649 /* now - create the new target name command */
5650 const struct command_registration target_subcommands[] = {
5651 {
5652 .chain = target_instance_command_handlers,
5653 },
5654 {
5655 .chain = target->type->commands,
5656 },
5657 COMMAND_REGISTRATION_DONE
5658 };
5659 const struct command_registration target_commands[] = {
5660 {
5661 .name = cp,
5662 .mode = COMMAND_ANY,
5663 .help = "target command group",
5664 .usage = "",
5665 .chain = target_subcommands,
5666 },
5667 COMMAND_REGISTRATION_DONE
5668 };
5669 e = register_commands(cmd_ctx, NULL, target_commands);
5670 if (e != ERROR_OK) {
5671 if (target->type->deinit_target)
5672 target->type->deinit_target(target);
5673 free(target->cmd_name);
5674 rtos_destroy(target);
5675 free(target->gdb_port_override);
5676 free(target->trace_info);
5677 free(target->type);
5678 free(target);
5679 return JIM_ERR;
5680 }
5681
5682 struct command *c = command_find_in_context(cmd_ctx, cp);
5683 assert(c);
5684 command_set_handler_data(c, target);
5685
5686 /* append to end of list */
5687 append_to_list_all_targets(target);
5688
5689 cmd_ctx->current_target = target;
5690 return JIM_OK;
5691 }
5692
5693 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5694 {
5695 if (argc != 1) {
5696 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5697 return JIM_ERR;
5698 }
5699 struct command_context *cmd_ctx = current_command_context(interp);
5700 assert(cmd_ctx != NULL);
5701
5702 struct target *target = get_current_target_or_null(cmd_ctx);
5703 if (target)
5704 Jim_SetResultString(interp, target_name(target), -1);
5705 return JIM_OK;
5706 }
5707
5708 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5709 {
5710 if (argc != 1) {
5711 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5712 return JIM_ERR;
5713 }
5714 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5715 for (unsigned x = 0; NULL != target_types[x]; x++) {
5716 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5717 Jim_NewStringObj(interp, target_types[x]->name, -1));
5718 }
5719 return JIM_OK;
5720 }
5721
5722 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5723 {
5724 if (argc != 1) {
5725 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5726 return JIM_ERR;
5727 }
5728 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5729 struct target *target = all_targets;
5730 while (target) {
5731 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5732 Jim_NewStringObj(interp, target_name(target), -1));
5733 target = target->next;
5734 }
5735 return JIM_OK;
5736 }
5737
5738 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5739 {
5740 int i;
5741 const char *targetname;
5742 int retval, len;
5743 struct target *target = (struct target *) NULL;
5744 struct target_list *head, *curr, *new;
5745 curr = (struct target_list *) NULL;
5746 head = (struct target_list *) NULL;
5747
5748 retval = 0;
5749 LOG_DEBUG("%d", argc);
5750 /* argv[1] = target to associate in smp
5751 * argv[2] = target to associate in smp
5752 * argv[3] ...
5753 */
5754
5755 for (i = 1; i < argc; i++) {
5756
5757 targetname = Jim_GetString(argv[i], &len);
5758 target = get_target(targetname);
5759 LOG_DEBUG("%s ", targetname);
5760 if (target) {
5761 new = malloc(sizeof(struct target_list));
5762 new->target = target;
5763 new->next = (struct target_list *)NULL;
5764 if (head == (struct target_list *)NULL) {
5765 head = new;
5766 curr = head;
5767 } else {
5768 curr->next = new;
5769 curr = new;
5770 }
5771 }
5772 }
5773 /* now parse the list of cpu and put the target in smp mode*/
5774 curr = head;
5775
5776 while (curr != (struct target_list *)NULL) {
5777 target = curr->target;
5778 target->smp = 1;
5779 target->head = head;
5780 curr = curr->next;
5781 }
5782
5783 if (target && target->rtos)
5784 retval = rtos_smp_init(head->target);
5785
5786 return retval;
5787 }
5788
5789
5790 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5791 {
5792 Jim_GetOptInfo goi;
5793 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5794 if (goi.argc < 3) {
5795 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5796 "<name> <target_type> [<target_options> ...]");
5797 return JIM_ERR;
5798 }
5799 return target_create(&goi);
5800 }
5801
5802 static const struct command_registration target_subcommand_handlers[] = {
5803 {
5804 .name = "init",
5805 .mode = COMMAND_CONFIG,
5806 .handler = handle_target_init_command,
5807 .help = "initialize targets",
5808 .usage = "",
5809 },
5810 {
5811 .name = "create",
5812 .mode = COMMAND_CONFIG,
5813 .jim_handler = jim_target_create,
5814 .usage = "name type '-chain-position' name [options ...]",
5815 .help = "Creates and selects a new target",
5816 },
5817 {
5818 .name = "current",
5819 .mode = COMMAND_ANY,
5820 .jim_handler = jim_target_current,
5821 .help = "Returns the currently selected target",
5822 },
5823 {
5824 .name = "types",
5825 .mode = COMMAND_ANY,
5826 .jim_handler = jim_target_types,
5827 .help = "Returns the available target types as "
5828 "a list of strings",
5829 },
5830 {
5831 .name = "names",
5832 .mode = COMMAND_ANY,
5833 .jim_handler = jim_target_names,
5834 .help = "Returns the names of all targets as a list of strings",
5835 },
5836 {
5837 .name = "smp",
5838 .mode = COMMAND_ANY,
5839 .jim_handler = jim_target_smp,
5840 .usage = "targetname1 targetname2 ...",
5841 .help = "gather several target in a smp list"
5842 },
5843
5844 COMMAND_REGISTRATION_DONE
5845 };
5846
5847 struct FastLoad {
5848 target_addr_t address;
5849 uint8_t *data;
5850 int length;
5851
5852 };
5853
5854 static int fastload_num;
5855 static struct FastLoad *fastload;
5856
5857 static void free_fastload(void)
5858 {
5859 if (fastload != NULL) {
5860 for (int i = 0; i < fastload_num; i++)
5861 free(fastload[i].data);
5862 free(fastload);
5863 fastload = NULL;
5864 }
5865 }
5866
5867 COMMAND_HANDLER(handle_fast_load_image_command)
5868 {
5869 uint8_t *buffer;
5870 size_t buf_cnt;
5871 uint32_t image_size;
5872 target_addr_t min_address = 0;
5873 target_addr_t max_address = -1;
5874 int i;
5875
5876 struct image image;
5877
5878 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5879 &image, &min_address, &max_address);
5880 if (ERROR_OK != retval)
5881 return retval;
5882
5883 struct duration bench;
5884 duration_start(&bench);
5885
5886 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5887 if (retval != ERROR_OK)
5888 return retval;
5889
5890 image_size = 0x0;
5891 retval = ERROR_OK;
5892 fastload_num = image.num_sections;
5893 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5894 if (fastload == NULL) {
5895 command_print(CMD, "out of memory");
5896 image_close(&image);
5897 return ERROR_FAIL;
5898 }
5899 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5900 for (i = 0; i < image.num_sections; i++) {
5901 buffer = malloc(image.sections[i].size);
5902 if (buffer == NULL) {
5903 command_print(CMD, "error allocating buffer for section (%d bytes)",
5904 (int)(image.sections[i].size));
5905 retval = ERROR_FAIL;
5906 break;
5907 }
5908
5909 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5910 if (retval != ERROR_OK) {
5911 free(buffer);
5912 break;
5913 }
5914
5915 uint32_t offset = 0;
5916 uint32_t length = buf_cnt;
5917
5918 /* DANGER!!! beware of unsigned comparison here!!! */
5919
5920 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5921 (image.sections[i].base_address < max_address)) {
5922 if (image.sections[i].base_address < min_address) {
5923 /* clip addresses below */
5924 offset += min_address-image.sections[i].base_address;
5925 length -= offset;
5926 }
5927
5928 if (image.sections[i].base_address + buf_cnt > max_address)
5929 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5930
5931 fastload[i].address = image.sections[i].base_address + offset;
5932 fastload[i].data = malloc(length);
5933 if (fastload[i].data == NULL) {
5934 free(buffer);
5935 command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
5936 length);
5937 retval = ERROR_FAIL;
5938 break;
5939 }
5940 memcpy(fastload[i].data, buffer + offset, length);
5941 fastload[i].length = length;
5942
5943 image_size += length;
5944 command_print(CMD, "%u bytes written at address 0x%8.8x",
5945 (unsigned int)length,
5946 ((unsigned int)(image.sections[i].base_address + offset)));
5947 }
5948
5949 free(buffer);
5950 }
5951
5952 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5953 command_print(CMD, "Loaded %" PRIu32 " bytes "
5954 "in %fs (%0.3f KiB/s)", image_size,
5955 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5956
5957 command_print(CMD,
5958 "WARNING: image has not been loaded to target!"
5959 "You can issue a 'fast_load' to finish loading.");
5960 }
5961
5962 image_close(&image);
5963
5964 if (retval != ERROR_OK)
5965 free_fastload();
5966
5967 return retval;
5968 }
5969
5970 COMMAND_HANDLER(handle_fast_load_command)
5971 {
5972 if (CMD_ARGC > 0)
5973 return ERROR_COMMAND_SYNTAX_ERROR;
5974 if (fastload == NULL) {
5975 LOG_ERROR("No image in memory");
5976 return ERROR_FAIL;
5977 }
5978 int i;
5979 int64_t ms = timeval_ms();
5980 int size = 0;
5981 int retval = ERROR_OK;
5982 for (i = 0; i < fastload_num; i++) {
5983 struct target *target = get_current_target(CMD_CTX);
5984 command_print(CMD, "Write to 0x%08x, length 0x%08x",
5985 (unsigned int)(fastload[i].address),
5986 (unsigned int)(fastload[i].length));
5987 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5988 if (retval != ERROR_OK)
5989 break;
5990 size += fastload[i].length;
5991 }
5992 if (retval == ERROR_OK) {
5993 int64_t after = timeval_ms();
5994 command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5995 }
5996 return retval;
5997 }
5998
5999 static const struct command_registration target_command_handlers[] = {
6000 {
6001 .name = "targets",
6002 .handler = handle_targets_command,
6003 .mode = COMMAND_ANY,
6004 .help = "change current default target (one parameter) "
6005 "or prints table of all targets (no parameters)",
6006 .usage = "[target]",
6007 },
6008 {
6009 .name = "target",
6010 .mode = COMMAND_CONFIG,
6011 .help = "configure target",
6012 .chain = target_subcommand_handlers,
6013 .usage = "",
6014 },
6015 COMMAND_REGISTRATION_DONE
6016 };
6017
6018 int target_register_commands(struct command_context *cmd_ctx)
6019 {
6020 return register_commands(cmd_ctx, NULL, target_command_handlers);
6021 }
6022
6023 static bool target_reset_nag = true;
6024
6025 bool get_target_reset_nag(void)
6026 {
6027 return target_reset_nag;
6028 }
6029
6030 COMMAND_HANDLER(handle_target_reset_nag)
6031 {
6032 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6033 &target_reset_nag, "Nag after each reset about options to improve "
6034 "performance");
6035 }
6036
6037 COMMAND_HANDLER(handle_ps_command)
6038 {
6039 struct target *target = get_current_target(CMD_CTX);
6040 char *display;
6041 if (target->state != TARGET_HALTED) {
6042 LOG_INFO("target not halted !!");
6043 return ERROR_OK;
6044 }
6045
6046 if ((target->rtos) && (target->rtos->type)
6047 && (target->rtos->type->ps_command)) {
6048 display = target->rtos->type->ps_command(target);
6049 command_print(CMD, "%s", display);
6050 free(display);
6051 return ERROR_OK;
6052 } else {
6053 LOG_INFO("failed");
6054 return ERROR_TARGET_FAILURE;
6055 }
6056 }
6057
6058 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
6059 {
6060 if (text != NULL)
6061 command_print_sameline(cmd, "%s", text);
6062 for (int i = 0; i < size; i++)
6063 command_print_sameline(cmd, " %02x", buf[i]);
6064 command_print(cmd, " ");
6065 }
6066
6067 COMMAND_HANDLER(handle_test_mem_access_command)
6068 {
6069 struct target *target = get_current_target(CMD_CTX);
6070 uint32_t test_size;
6071 int retval = ERROR_OK;
6072
6073 if (target->state != TARGET_HALTED) {
6074 LOG_INFO("target not halted !!");
6075 return ERROR_FAIL;
6076 }
6077
6078 if (CMD_ARGC != 1)
6079 return ERROR_COMMAND_SYNTAX_ERROR;
6080
6081 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6082
6083 /* Test reads */
6084 size_t num_bytes = test_size + 4;
6085
6086 struct working_area *wa = NULL;
6087 retval = target_alloc_working_area(target, num_bytes, &wa);
6088 if (retval != ERROR_OK) {
6089 LOG_ERROR("Not enough working area");
6090 return ERROR_FAIL;
6091 }
6092
6093 uint8_t *test_pattern = malloc(num_bytes);
6094
6095 for (size_t i = 0; i < num_bytes; i++)
6096 test_pattern[i] = rand();
6097
6098 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6099 if (retval != ERROR_OK) {
6100 LOG_ERROR("Test pattern write failed");
6101 goto out;
6102 }
6103
6104 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6105 for (int size = 1; size <= 4; size *= 2) {
6106 for (int offset = 0; offset < 4; offset++) {
6107 uint32_t count = test_size / size;
6108 size_t host_bufsiz = (count + 2) * size + host_offset;
6109 uint8_t *read_ref = malloc(host_bufsiz);
6110 uint8_t *read_buf = malloc(host_bufsiz);
6111
6112 for (size_t i = 0; i < host_bufsiz; i++) {
6113 read_ref[i] = rand();
6114 read_buf[i] = read_ref[i];
6115 }
6116 command_print_sameline(CMD,
6117 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6118 size, offset, host_offset ? "un" : "");
6119
6120 struct duration bench;
6121 duration_start(&bench);
6122
6123 retval = target_read_memory(target, wa->address + offset, size, count,
6124 read_buf + size + host_offset);
6125
6126 duration_measure(&bench);
6127
6128 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6129 command_print(CMD, "Unsupported alignment");
6130 goto next;
6131 } else if (retval != ERROR_OK) {
6132 command_print(CMD, "Memory read failed");
6133 goto next;
6134 }
6135
6136 /* replay on host */
6137 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6138
6139 /* check result */
6140 int result = memcmp(read_ref, read_buf, host_bufsiz);
6141 if (result == 0) {
6142 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6143 duration_elapsed(&bench),
6144 duration_kbps(&bench, count * size));
6145 } else {
6146 command_print(CMD, "Compare failed");
6147 binprint(CMD, "ref:", read_ref, host_bufsiz);
6148 binprint(CMD, "buf:", read_buf, host_bufsiz);
6149 }
6150 next:
6151 free(read_ref);
6152 free(read_buf);
6153 }
6154 }
6155 }
6156
6157 out:
6158 free(test_pattern);
6159
6160 if (wa != NULL)
6161 target_free_working_area(target, wa);
6162
6163 /* Test writes */
6164 num_bytes = test_size + 4 + 4 + 4;
6165
6166 retval = target_alloc_working_area(target, num_bytes, &wa);
6167 if (retval != ERROR_OK) {
6168 LOG_ERROR("Not enough working area");
6169 return ERROR_FAIL;
6170 }
6171
6172 test_pattern = malloc(num_bytes);
6173
6174 for (size_t i = 0; i < num_bytes; i++)
6175 test_pattern[i] = rand();
6176
6177 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6178 for (int size = 1; size <= 4; size *= 2) {
6179 for (int offset = 0; offset < 4; offset++) {
6180 uint32_t count = test_size / size;
6181 size_t host_bufsiz = count * size + host_offset;
6182 uint8_t *read_ref = malloc(num_bytes);
6183 uint8_t *read_buf = malloc(num_bytes);
6184 uint8_t *write_buf = malloc(host_bufsiz);
6185
6186 for (size_t i = 0; i < host_bufsiz; i++)
6187 write_buf[i] = rand();
6188 command_print_sameline(CMD,
6189 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6190 size, offset, host_offset ? "un" : "");
6191
6192 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6193 if (retval != ERROR_OK) {
6194 command_print(CMD, "Test pattern write failed");
6195 goto nextw;
6196 }
6197
6198 /* replay on host */
6199 memcpy(read_ref, test_pattern, num_bytes);
6200 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6201
6202 struct duration bench;
6203 duration_start(&bench);
6204
6205 retval = target_write_memory(target, wa->address + size + offset, size, count,
6206 write_buf + host_offset);
6207
6208 duration_measure(&bench);
6209
6210 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6211 command_print(CMD, "Unsupported alignment");
6212 goto nextw;
6213 } else if (retval != ERROR_OK) {
6214 command_print(CMD, "Memory write failed");
6215 goto nextw;
6216 }
6217
6218 /* read back */
6219 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6220 if (retval != ERROR_OK) {
6221 command_print(CMD, "Test pattern write failed");
6222 goto nextw;
6223 }
6224
6225 /* check result */
6226 int result = memcmp(read_ref, read_buf, num_bytes);
6227 if (result == 0) {
6228 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6229 duration_elapsed(&bench),
6230 duration_kbps(&bench, count * size));
6231 } else {
6232 command_print(CMD, "Compare failed");
6233 binprint(CMD, "ref:", read_ref, num_bytes);
6234 binprint(CMD, "buf:", read_buf, num_bytes);
6235 }
6236 nextw:
6237 free(read_ref);
6238 free(read_buf);
6239 }
6240 }
6241 }
6242
6243 free(test_pattern);
6244
6245 if (wa != NULL)
6246 target_free_working_area(target, wa);
6247 return retval;
6248 }
6249
6250 static const struct command_registration target_exec_command_handlers[] = {
6251 {
6252 .name = "fast_load_image",
6253 .handler = handle_fast_load_image_command,
6254 .mode = COMMAND_ANY,
6255 .help = "Load image into server memory for later use by "
6256 "fast_load; primarily for profiling",
6257 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6258 "[min_address [max_length]]",
6259 },
6260 {
6261 .name = "fast_load",
6262 .handler = handle_fast_load_command,
6263 .mode = COMMAND_EXEC,
6264 .help = "loads active fast load image to current target "
6265 "- mainly for profiling purposes",
6266 .usage = "",
6267 },
6268 {
6269 .name = "profile",
6270 .handler = handle_profile_command,
6271 .mode = COMMAND_EXEC,
6272 .usage = "seconds filename [start end]",
6273 .help = "profiling samples the CPU PC",
6274 },
6275 /** @todo don't register virt2phys() unless target supports it */
6276 {
6277 .name = "virt2phys",
6278 .handler = handle_virt2phys_command,
6279 .mode = COMMAND_ANY,
6280 .help = "translate a virtual address into a physical address",
6281 .usage = "virtual_address",
6282 },
6283 {
6284 .name = "reg",
6285 .handler = handle_reg_command,
6286 .mode = COMMAND_EXEC,
6287 .help = "display (reread from target with \"force\") or set a register; "
6288 "with no arguments, displays all registers and their values",
6289 .usage = "[(register_number|register_name) [(value|'force')]]",
6290 },
6291 {
6292 .name = "poll",
6293 .handler = handle_poll_command,
6294 .mode = COMMAND_EXEC,
6295 .help = "poll target state; or reconfigure background polling",
6296 .usage = "['on'|'off']",
6297 },
6298 {
6299 .name = "wait_halt",
6300 .handler = handle_wait_halt_command,
6301 .mode = COMMAND_EXEC,
6302 .help = "wait up to the specified number of milliseconds "
6303 "(default 5000) for a previously requested halt",
6304 .usage = "[milliseconds]",
6305 },
6306 {
6307 .name = "halt",
6308 .handler = handle_halt_command,
6309 .mode = COMMAND_EXEC,
6310 .help = "request target to halt, then wait up to the specified "
6311 "number of milliseconds (default 5000) for it to complete",
6312 .usage = "[milliseconds]",
6313 },
6314 {
6315 .name = "resume",
6316 .handler = handle_resume_command,
6317 .mode = COMMAND_EXEC,
6318 .help = "resume target execution from current PC or address",
6319 .usage = "[address]",
6320 },
6321 {
6322 .name = "reset",
6323 .handler = handle_reset_command,
6324 .mode = COMMAND_EXEC,
6325 .usage = "[run|halt|init]",
6326 .help = "Reset all targets into the specified mode. "
6327 "Default reset mode is run, if not given.",
6328 },
6329 {
6330 .name = "soft_reset_halt",
6331 .handler = handle_soft_reset_halt_command,
6332 .mode = COMMAND_EXEC,
6333 .usage = "",
6334 .help = "halt the target and do a soft reset",
6335 },
6336 {
6337 .name = "step",
6338 .handler = handle_step_command,
6339 .mode = COMMAND_EXEC,
6340 .help = "step one instruction from current PC or address",
6341 .usage = "[address]",
6342 },
6343 {
6344 .name = "mdd",
6345 .handler = handle_md_command,
6346 .mode = COMMAND_EXEC,
6347 .help = "display memory double-words",
6348 .usage = "['phys'] address [count]",
6349 },
6350 {
6351 .name = "mdw",
6352 .handler = handle_md_command,
6353 .mode = COMMAND_EXEC,
6354 .help = "display memory words",
6355 .usage = "['phys'] address [count]",
6356 },
6357 {
6358 .name = "mdh",
6359 .handler = handle_md_command,
6360 .mode = COMMAND_EXEC,
6361 .help = "display memory half-words",
6362 .usage = "['phys'] address [count]",
6363 },
6364 {
6365 .name = "mdb",
6366 .handler = handle_md_command,
6367 .mode = COMMAND_EXEC,
6368 .help = "display memory bytes",
6369 .usage = "['phys'] address [count]",
6370 },
6371 {
6372 .name = "mwd",
6373 .handler = handle_mw_command,
6374 .mode = COMMAND_EXEC,
6375 .help = "write memory double-word",
6376 .usage = "['phys'] address value [count]",
6377 },
6378 {
6379 .name = "mww",
6380 .handler = handle_mw_command,
6381 .mode = COMMAND_EXEC,
6382 .help = "write memory word",
6383 .usage = "['phys'] address value [count]",
6384 },
6385 {
6386 .name = "mwh",
6387 .handler = handle_mw_command,
6388 .mode = COMMAND_EXEC,
6389 .help = "write memory half-word",
6390 .usage = "['phys'] address value [count]",
6391 },
6392 {
6393 .name = "mwb",
6394 .handler = handle_mw_command,
6395 .mode = COMMAND_EXEC,
6396 .help = "write memory byte",
6397 .usage = "['phys'] address value [count]",
6398 },
6399 {
6400 .name = "bp",
6401 .handler = handle_bp_command,
6402 .mode = COMMAND_EXEC,
6403 .help = "list or set hardware or software breakpoint",
6404 .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6405 },
6406 {
6407 .name = "rbp",
6408 .handler = handle_rbp_command,
6409 .mode = COMMAND_EXEC,
6410 .help = "remove breakpoint",
6411 .usage = "'all' | address",
6412 },
6413 {
6414 .name = "wp",
6415 .handler = handle_wp_command,
6416 .mode = COMMAND_EXEC,
6417 .help = "list (no params) or create watchpoints",
6418 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6419 },
6420 {
6421 .name = "rwp",
6422 .handler = handle_rwp_command,
6423 .mode = COMMAND_EXEC,
6424 .help = "remove watchpoint",
6425 .usage = "address",
6426 },
6427 {
6428 .name = "load_image",
6429 .handler = handle_load_image_command,
6430 .mode = COMMAND_EXEC,
6431 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6432 "[min_address] [max_length]",
6433 },
6434 {
6435 .name = "dump_image",
6436 .handler = handle_dump_image_command,
6437 .mode = COMMAND_EXEC,
6438 .usage = "filename address size",
6439 },
6440 {
6441 .name = "verify_image_checksum",
6442 .handler = handle_verify_image_checksum_command,
6443 .mode = COMMAND_EXEC,
6444 .usage = "filename [offset [type]]",
6445 },
6446 {
6447 .name = "verify_image",
6448 .handler = handle_verify_image_command,
6449 .mode = COMMAND_EXEC,
6450 .usage = "filename [offset [type]]",
6451 },
6452 {
6453 .name = "test_image",
6454 .handler = handle_test_image_command,
6455 .mode = COMMAND_EXEC,
6456 .usage = "filename [offset [type]]",
6457 },
6458 {
6459 .name = "mem2array",
6460 .mode = COMMAND_EXEC,
6461 .jim_handler = jim_mem2array,
6462 .help = "read 8/16/32 bit memory and return as a TCL array "
6463 "for script processing",
6464 .usage = "arrayname bitwidth address count",
6465 },
6466 {
6467 .name = "array2mem",
6468 .mode = COMMAND_EXEC,
6469 .jim_handler = jim_array2mem,
6470 .help = "convert a TCL array to memory locations "
6471 "and write the 8/16/32 bit values",
6472 .usage = "arrayname bitwidth address count",
6473 },
6474 {
6475 .name = "reset_nag",
6476 .handler = handle_target_reset_nag,
6477 .mode = COMMAND_ANY,
6478 .help = "Nag after each reset about options that could have been "
6479 "enabled to improve performance. ",
6480 .usage = "['enable'|'disable']",
6481 },
6482 {
6483 .name = "ps",
6484 .handler = handle_ps_command,
6485 .mode = COMMAND_EXEC,
6486 .help = "list all tasks ",
6487 .usage = " ",
6488 },
6489 {
6490 .name = "test_mem_access",
6491 .handler = handle_test_mem_access_command,
6492 .mode = COMMAND_EXEC,
6493 .help = "Test the target's memory access functions",
6494 .usage = "size",
6495 },
6496
6497 COMMAND_REGISTRATION_DONE
6498 };
6499 static int target_register_user_commands(struct command_context *cmd_ctx)
6500 {
6501 int retval = ERROR_OK;
6502 retval = target_request_register_commands(cmd_ctx);
6503 if (retval != ERROR_OK)
6504 return retval;
6505
6506 retval = trace_register_commands(cmd_ctx);
6507 if (retval != ERROR_OK)
6508 return retval;
6509
6510
6511 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6512 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)