target: Examine subsequent targets after failure
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75
76 /* targets */
77 extern struct target_type arm7tdmi_target;
78 extern struct target_type arm720t_target;
79 extern struct target_type arm9tdmi_target;
80 extern struct target_type arm920t_target;
81 extern struct target_type arm966e_target;
82 extern struct target_type arm946e_target;
83 extern struct target_type arm926ejs_target;
84 extern struct target_type fa526_target;
85 extern struct target_type feroceon_target;
86 extern struct target_type dragonite_target;
87 extern struct target_type xscale_target;
88 extern struct target_type cortexm_target;
89 extern struct target_type cortexa_target;
90 extern struct target_type aarch64_target;
91 extern struct target_type cortexr4_target;
92 extern struct target_type arm11_target;
93 extern struct target_type ls1_sap_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type mips_mips64_target;
96 extern struct target_type avr_target;
97 extern struct target_type dsp563xx_target;
98 extern struct target_type dsp5680xx_target;
99 extern struct target_type testee_target;
100 extern struct target_type avr32_ap7k_target;
101 extern struct target_type hla_target;
102 extern struct target_type nds32_v2_target;
103 extern struct target_type nds32_v3_target;
104 extern struct target_type nds32_v3m_target;
105 extern struct target_type or1k_target;
106 extern struct target_type quark_x10xx_target;
107 extern struct target_type quark_d20xx_target;
108 extern struct target_type stm8_target;
109 extern struct target_type riscv_target;
110 extern struct target_type mem_ap_target;
111 extern struct target_type esirisc_target;
112 extern struct target_type arcv2_target;
113
114 static struct target_type *target_types[] = {
115 &arm7tdmi_target,
116 &arm9tdmi_target,
117 &arm920t_target,
118 &arm720t_target,
119 &arm966e_target,
120 &arm946e_target,
121 &arm926ejs_target,
122 &fa526_target,
123 &feroceon_target,
124 &dragonite_target,
125 &xscale_target,
126 &cortexm_target,
127 &cortexa_target,
128 &cortexr4_target,
129 &arm11_target,
130 &ls1_sap_target,
131 &mips_m4k_target,
132 &avr_target,
133 &dsp563xx_target,
134 &dsp5680xx_target,
135 &testee_target,
136 &avr32_ap7k_target,
137 &hla_target,
138 &nds32_v2_target,
139 &nds32_v3_target,
140 &nds32_v3m_target,
141 &or1k_target,
142 &quark_x10xx_target,
143 &quark_d20xx_target,
144 &stm8_target,
145 &riscv_target,
146 &mem_ap_target,
147 &esirisc_target,
148 &arcv2_target,
149 &aarch64_target,
150 &mips_mips64_target,
151 NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 static LIST_HEAD(target_reset_callback_list);
158 static LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const Jim_Nvp nvp_assert[] = {
162 { .name = "assert", NVP_ASSERT },
163 { .name = "deassert", NVP_DEASSERT },
164 { .name = "T", NVP_ASSERT },
165 { .name = "F", NVP_DEASSERT },
166 { .name = "t", NVP_ASSERT },
167 { .name = "f", NVP_DEASSERT },
168 { .name = NULL, .value = -1 }
169 };
170
171 static const Jim_Nvp nvp_error_target[] = {
172 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177 { .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
178 { .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
179 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
180 { .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
181 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183 { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188 const Jim_Nvp *n;
189
190 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191 if (n->name == NULL)
192 return "unknown";
193 else
194 return n->name;
195 }
196
197 static const Jim_Nvp nvp_target_event[] = {
198
199 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200 { .value = TARGET_EVENT_HALTED, .name = "halted" },
201 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204 { .value = TARGET_EVENT_STEP_START, .name = "step-start" },
205 { .value = TARGET_EVENT_STEP_END, .name = "step-end" },
206
207 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
208 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
209
210 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
211 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
212 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
213 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
214 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
215 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
216 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
217 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
218
219 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
220 { .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
221 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
222
223 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
224 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
225
226 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
227 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
228
229 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
230 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END, .name = "gdb-flash-write-end" },
231
232 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
233 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END, .name = "gdb-flash-erase-end" },
234
235 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
236
237 { .name = NULL, .value = -1 }
238 };
239
240 static const Jim_Nvp nvp_target_state[] = {
241 { .name = "unknown", .value = TARGET_UNKNOWN },
242 { .name = "running", .value = TARGET_RUNNING },
243 { .name = "halted", .value = TARGET_HALTED },
244 { .name = "reset", .value = TARGET_RESET },
245 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
246 { .name = NULL, .value = -1 },
247 };
248
249 static const Jim_Nvp nvp_target_debug_reason[] = {
250 { .name = "debug-request", .value = DBG_REASON_DBGRQ },
251 { .name = "breakpoint", .value = DBG_REASON_BREAKPOINT },
252 { .name = "watchpoint", .value = DBG_REASON_WATCHPOINT },
253 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
254 { .name = "single-step", .value = DBG_REASON_SINGLESTEP },
255 { .name = "target-not-halted", .value = DBG_REASON_NOTHALTED },
256 { .name = "program-exit", .value = DBG_REASON_EXIT },
257 { .name = "exception-catch", .value = DBG_REASON_EXC_CATCH },
258 { .name = "undefined", .value = DBG_REASON_UNDEFINED },
259 { .name = NULL, .value = -1 },
260 };
261
262 static const Jim_Nvp nvp_target_endian[] = {
263 { .name = "big", .value = TARGET_BIG_ENDIAN },
264 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
265 { .name = "be", .value = TARGET_BIG_ENDIAN },
266 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
267 { .name = NULL, .value = -1 },
268 };
269
270 static const Jim_Nvp nvp_reset_modes[] = {
271 { .name = "unknown", .value = RESET_UNKNOWN },
272 { .name = "run", .value = RESET_RUN },
273 { .name = "halt", .value = RESET_HALT },
274 { .name = "init", .value = RESET_INIT },
275 { .name = NULL, .value = -1 },
276 };
277
278 const char *debug_reason_name(struct target *t)
279 {
280 const char *cp;
281
282 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
283 t->debug_reason)->name;
284 if (!cp) {
285 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
286 cp = "(*BUG*unknown*BUG*)";
287 }
288 return cp;
289 }
290
291 const char *target_state_name(struct target *t)
292 {
293 const char *cp;
294 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
295 if (!cp) {
296 LOG_ERROR("Invalid target state: %d", (int)(t->state));
297 cp = "(*BUG*unknown*BUG*)";
298 }
299
300 if (!target_was_examined(t) && t->defer_examine)
301 cp = "examine deferred";
302
303 return cp;
304 }
305
306 const char *target_event_name(enum target_event event)
307 {
308 const char *cp;
309 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
310 if (!cp) {
311 LOG_ERROR("Invalid target event: %d", (int)(event));
312 cp = "(*BUG*unknown*BUG*)";
313 }
314 return cp;
315 }
316
317 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
318 {
319 const char *cp;
320 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
321 if (!cp) {
322 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
323 cp = "(*BUG*unknown*BUG*)";
324 }
325 return cp;
326 }
327
328 /* determine the number of the new target */
329 static int new_target_number(void)
330 {
331 struct target *t;
332 int x;
333
334 /* number is 0 based */
335 x = -1;
336 t = all_targets;
337 while (t) {
338 if (x < t->target_number)
339 x = t->target_number;
340 t = t->next;
341 }
342 return x + 1;
343 }
344
345 static void append_to_list_all_targets(struct target *target)
346 {
347 struct target **t = &all_targets;
348
349 while (*t)
350 t = &((*t)->next);
351 *t = target;
352 }
353
354 /* read a uint64_t from a buffer in target memory endianness */
355 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
356 {
357 if (target->endianness == TARGET_LITTLE_ENDIAN)
358 return le_to_h_u64(buffer);
359 else
360 return be_to_h_u64(buffer);
361 }
362
363 /* read a uint32_t from a buffer in target memory endianness */
364 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
365 {
366 if (target->endianness == TARGET_LITTLE_ENDIAN)
367 return le_to_h_u32(buffer);
368 else
369 return be_to_h_u32(buffer);
370 }
371
372 /* read a uint24_t from a buffer in target memory endianness */
373 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
374 {
375 if (target->endianness == TARGET_LITTLE_ENDIAN)
376 return le_to_h_u24(buffer);
377 else
378 return be_to_h_u24(buffer);
379 }
380
381 /* read a uint16_t from a buffer in target memory endianness */
382 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
383 {
384 if (target->endianness == TARGET_LITTLE_ENDIAN)
385 return le_to_h_u16(buffer);
386 else
387 return be_to_h_u16(buffer);
388 }
389
390 /* write a uint64_t to a buffer in target memory endianness */
391 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
392 {
393 if (target->endianness == TARGET_LITTLE_ENDIAN)
394 h_u64_to_le(buffer, value);
395 else
396 h_u64_to_be(buffer, value);
397 }
398
399 /* write a uint32_t to a buffer in target memory endianness */
400 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
401 {
402 if (target->endianness == TARGET_LITTLE_ENDIAN)
403 h_u32_to_le(buffer, value);
404 else
405 h_u32_to_be(buffer, value);
406 }
407
408 /* write a uint24_t to a buffer in target memory endianness */
409 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
410 {
411 if (target->endianness == TARGET_LITTLE_ENDIAN)
412 h_u24_to_le(buffer, value);
413 else
414 h_u24_to_be(buffer, value);
415 }
416
417 /* write a uint16_t to a buffer in target memory endianness */
418 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
419 {
420 if (target->endianness == TARGET_LITTLE_ENDIAN)
421 h_u16_to_le(buffer, value);
422 else
423 h_u16_to_be(buffer, value);
424 }
425
426 /* write a uint8_t to a buffer in target memory endianness */
427 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
428 {
429 *buffer = value;
430 }
431
432 /* write a uint64_t array to a buffer in target memory endianness */
433 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
434 {
435 uint32_t i;
436 for (i = 0; i < count; i++)
437 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
438 }
439
440 /* write a uint32_t array to a buffer in target memory endianness */
441 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
442 {
443 uint32_t i;
444 for (i = 0; i < count; i++)
445 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
446 }
447
448 /* write a uint16_t array to a buffer in target memory endianness */
449 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
450 {
451 uint32_t i;
452 for (i = 0; i < count; i++)
453 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
454 }
455
456 /* write a uint64_t array to a buffer in target memory endianness */
457 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
458 {
459 uint32_t i;
460 for (i = 0; i < count; i++)
461 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
462 }
463
464 /* write a uint32_t array to a buffer in target memory endianness */
465 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
466 {
467 uint32_t i;
468 for (i = 0; i < count; i++)
469 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
470 }
471
472 /* write a uint16_t array to a buffer in target memory endianness */
473 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
474 {
475 uint32_t i;
476 for (i = 0; i < count; i++)
477 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
478 }
479
480 /* return a pointer to a configured target; id is name or number */
481 struct target *get_target(const char *id)
482 {
483 struct target *target;
484
485 /* try as tcltarget name */
486 for (target = all_targets; target; target = target->next) {
487 if (target_name(target) == NULL)
488 continue;
489 if (strcmp(id, target_name(target)) == 0)
490 return target;
491 }
492
493 /* It's OK to remove this fallback sometime after August 2010 or so */
494
495 /* no match, try as number */
496 unsigned num;
497 if (parse_uint(id, &num) != ERROR_OK)
498 return NULL;
499
500 for (target = all_targets; target; target = target->next) {
501 if (target->target_number == (int)num) {
502 LOG_WARNING("use '%s' as target identifier, not '%u'",
503 target_name(target), num);
504 return target;
505 }
506 }
507
508 return NULL;
509 }
510
511 /* returns a pointer to the n-th configured target */
512 struct target *get_target_by_num(int num)
513 {
514 struct target *target = all_targets;
515
516 while (target) {
517 if (target->target_number == num)
518 return target;
519 target = target->next;
520 }
521
522 return NULL;
523 }
524
525 struct target *get_current_target(struct command_context *cmd_ctx)
526 {
527 struct target *target = get_current_target_or_null(cmd_ctx);
528
529 if (target == NULL) {
530 LOG_ERROR("BUG: current_target out of bounds");
531 exit(-1);
532 }
533
534 return target;
535 }
536
537 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
538 {
539 return cmd_ctx->current_target_override
540 ? cmd_ctx->current_target_override
541 : cmd_ctx->current_target;
542 }
543
544 int target_poll(struct target *target)
545 {
546 int retval;
547
548 /* We can't poll until after examine */
549 if (!target_was_examined(target)) {
550 /* Fail silently lest we pollute the log */
551 return ERROR_FAIL;
552 }
553
554 retval = target->type->poll(target);
555 if (retval != ERROR_OK)
556 return retval;
557
558 if (target->halt_issued) {
559 if (target->state == TARGET_HALTED)
560 target->halt_issued = false;
561 else {
562 int64_t t = timeval_ms() - target->halt_issued_time;
563 if (t > DEFAULT_HALT_TIMEOUT) {
564 target->halt_issued = false;
565 LOG_INFO("Halt timed out, wake up GDB.");
566 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
567 }
568 }
569 }
570
571 return ERROR_OK;
572 }
573
574 int target_halt(struct target *target)
575 {
576 int retval;
577 /* We can't poll until after examine */
578 if (!target_was_examined(target)) {
579 LOG_ERROR("Target not examined yet");
580 return ERROR_FAIL;
581 }
582
583 retval = target->type->halt(target);
584 if (retval != ERROR_OK)
585 return retval;
586
587 target->halt_issued = true;
588 target->halt_issued_time = timeval_ms();
589
590 return ERROR_OK;
591 }
592
593 /**
594 * Make the target (re)start executing using its saved execution
595 * context (possibly with some modifications).
596 *
597 * @param target Which target should start executing.
598 * @param current True to use the target's saved program counter instead
599 * of the address parameter
600 * @param address Optionally used as the program counter.
601 * @param handle_breakpoints True iff breakpoints at the resumption PC
602 * should be skipped. (For example, maybe execution was stopped by
603 * such a breakpoint, in which case it would be counterproductive to
604 * let it re-trigger.
605 * @param debug_execution False if all working areas allocated by OpenOCD
606 * should be released and/or restored to their original contents.
607 * (This would for example be true to run some downloaded "helper"
608 * algorithm code, which resides in one such working buffer and uses
609 * another for data storage.)
610 *
611 * @todo Resolve the ambiguity about what the "debug_execution" flag
612 * signifies. For example, Target implementations don't agree on how
613 * it relates to invalidation of the register cache, or to whether
614 * breakpoints and watchpoints should be enabled. (It would seem wrong
615 * to enable breakpoints when running downloaded "helper" algorithms
616 * (debug_execution true), since the breakpoints would be set to match
617 * target firmware being debugged, not the helper algorithm.... and
618 * enabling them could cause such helpers to malfunction (for example,
619 * by overwriting data with a breakpoint instruction. On the other
620 * hand the infrastructure for running such helpers might use this
621 * procedure but rely on hardware breakpoint to detect termination.)
622 */
623 int target_resume(struct target *target, int current, target_addr_t address,
624 int handle_breakpoints, int debug_execution)
625 {
626 int retval;
627
628 /* We can't poll until after examine */
629 if (!target_was_examined(target)) {
630 LOG_ERROR("Target not examined yet");
631 return ERROR_FAIL;
632 }
633
634 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
635
636 /* note that resume *must* be asynchronous. The CPU can halt before
637 * we poll. The CPU can even halt at the current PC as a result of
638 * a software breakpoint being inserted by (a bug?) the application.
639 */
640 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
641 if (retval != ERROR_OK)
642 return retval;
643
644 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
645
646 return retval;
647 }
648
649 static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
650 {
651 char buf[100];
652 int retval;
653 Jim_Nvp *n;
654 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
655 if (n->name == NULL) {
656 LOG_ERROR("invalid reset mode");
657 return ERROR_FAIL;
658 }
659
660 struct target *target;
661 for (target = all_targets; target; target = target->next)
662 target_call_reset_callbacks(target, reset_mode);
663
664 /* disable polling during reset to make reset event scripts
665 * more predictable, i.e. dr/irscan & pathmove in events will
666 * not have JTAG operations injected into the middle of a sequence.
667 */
668 bool save_poll = jtag_poll_get_enabled();
669
670 jtag_poll_set_enabled(false);
671
672 sprintf(buf, "ocd_process_reset %s", n->name);
673 retval = Jim_Eval(cmd->ctx->interp, buf);
674
675 jtag_poll_set_enabled(save_poll);
676
677 if (retval != JIM_OK) {
678 Jim_MakeErrorMessage(cmd->ctx->interp);
679 command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
680 return ERROR_FAIL;
681 }
682
683 /* We want any events to be processed before the prompt */
684 retval = target_call_timer_callbacks_now();
685
686 for (target = all_targets; target; target = target->next) {
687 target->type->check_reset(target);
688 target->running_alg = false;
689 }
690
691 return retval;
692 }
693
694 static int identity_virt2phys(struct target *target,
695 target_addr_t virtual, target_addr_t *physical)
696 {
697 *physical = virtual;
698 return ERROR_OK;
699 }
700
701 static int no_mmu(struct target *target, int *enabled)
702 {
703 *enabled = 0;
704 return ERROR_OK;
705 }
706
707 static int default_examine(struct target *target)
708 {
709 target_set_examined(target);
710 return ERROR_OK;
711 }
712
713 /* no check by default */
714 static int default_check_reset(struct target *target)
715 {
716 return ERROR_OK;
717 }
718
719 /* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
720 * Keep in sync */
721 int target_examine_one(struct target *target)
722 {
723 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
724
725 int retval = target->type->examine(target);
726 if (retval != ERROR_OK) {
727 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_FAIL);
728 return retval;
729 }
730
731 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
732
733 return ERROR_OK;
734 }
735
736 static int jtag_enable_callback(enum jtag_event event, void *priv)
737 {
738 struct target *target = priv;
739
740 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
741 return ERROR_OK;
742
743 jtag_unregister_event_callback(jtag_enable_callback, target);
744
745 return target_examine_one(target);
746 }
747
748 /* Targets that correctly implement init + examine, i.e.
749 * no communication with target during init:
750 *
751 * XScale
752 */
753 int target_examine(void)
754 {
755 int retval = ERROR_OK;
756 struct target *target;
757
758 for (target = all_targets; target; target = target->next) {
759 /* defer examination, but don't skip it */
760 if (!target->tap->enabled) {
761 jtag_register_event_callback(jtag_enable_callback,
762 target);
763 continue;
764 }
765
766 if (target->defer_examine)
767 continue;
768
769 int retval2 = target_examine_one(target);
770 if (retval2 != ERROR_OK) {
771 LOG_WARNING("target %s examination failed", target_name(target));
772 retval = retval2;
773 }
774 }
775 return retval;
776 }
777
778 const char *target_type_name(struct target *target)
779 {
780 return target->type->name;
781 }
782
783 static int target_soft_reset_halt(struct target *target)
784 {
785 if (!target_was_examined(target)) {
786 LOG_ERROR("Target not examined yet");
787 return ERROR_FAIL;
788 }
789 if (!target->type->soft_reset_halt) {
790 LOG_ERROR("Target %s does not support soft_reset_halt",
791 target_name(target));
792 return ERROR_FAIL;
793 }
794 return target->type->soft_reset_halt(target);
795 }
796
797 /**
798 * Downloads a target-specific native code algorithm to the target,
799 * and executes it. * Note that some targets may need to set up, enable,
800 * and tear down a breakpoint (hard or * soft) to detect algorithm
801 * termination, while others may support lower overhead schemes where
802 * soft breakpoints embedded in the algorithm automatically terminate the
803 * algorithm.
804 *
805 * @param target used to run the algorithm
806 * @param arch_info target-specific description of the algorithm.
807 */
808 int target_run_algorithm(struct target *target,
809 int num_mem_params, struct mem_param *mem_params,
810 int num_reg_params, struct reg_param *reg_param,
811 uint32_t entry_point, uint32_t exit_point,
812 int timeout_ms, void *arch_info)
813 {
814 int retval = ERROR_FAIL;
815
816 if (!target_was_examined(target)) {
817 LOG_ERROR("Target not examined yet");
818 goto done;
819 }
820 if (!target->type->run_algorithm) {
821 LOG_ERROR("Target type '%s' does not support %s",
822 target_type_name(target), __func__);
823 goto done;
824 }
825
826 target->running_alg = true;
827 retval = target->type->run_algorithm(target,
828 num_mem_params, mem_params,
829 num_reg_params, reg_param,
830 entry_point, exit_point, timeout_ms, arch_info);
831 target->running_alg = false;
832
833 done:
834 return retval;
835 }
836
837 /**
838 * Executes a target-specific native code algorithm and leaves it running.
839 *
840 * @param target used to run the algorithm
841 * @param arch_info target-specific description of the algorithm.
842 */
843 int target_start_algorithm(struct target *target,
844 int num_mem_params, struct mem_param *mem_params,
845 int num_reg_params, struct reg_param *reg_params,
846 uint32_t entry_point, uint32_t exit_point,
847 void *arch_info)
848 {
849 int retval = ERROR_FAIL;
850
851 if (!target_was_examined(target)) {
852 LOG_ERROR("Target not examined yet");
853 goto done;
854 }
855 if (!target->type->start_algorithm) {
856 LOG_ERROR("Target type '%s' does not support %s",
857 target_type_name(target), __func__);
858 goto done;
859 }
860 if (target->running_alg) {
861 LOG_ERROR("Target is already running an algorithm");
862 goto done;
863 }
864
865 target->running_alg = true;
866 retval = target->type->start_algorithm(target,
867 num_mem_params, mem_params,
868 num_reg_params, reg_params,
869 entry_point, exit_point, arch_info);
870
871 done:
872 return retval;
873 }
874
875 /**
876 * Waits for an algorithm started with target_start_algorithm() to complete.
877 *
878 * @param target used to run the algorithm
879 * @param arch_info target-specific description of the algorithm.
880 */
881 int target_wait_algorithm(struct target *target,
882 int num_mem_params, struct mem_param *mem_params,
883 int num_reg_params, struct reg_param *reg_params,
884 uint32_t exit_point, int timeout_ms,
885 void *arch_info)
886 {
887 int retval = ERROR_FAIL;
888
889 if (!target->type->wait_algorithm) {
890 LOG_ERROR("Target type '%s' does not support %s",
891 target_type_name(target), __func__);
892 goto done;
893 }
894 if (!target->running_alg) {
895 LOG_ERROR("Target is not running an algorithm");
896 goto done;
897 }
898
899 retval = target->type->wait_algorithm(target,
900 num_mem_params, mem_params,
901 num_reg_params, reg_params,
902 exit_point, timeout_ms, arch_info);
903 if (retval != ERROR_TARGET_TIMEOUT)
904 target->running_alg = false;
905
906 done:
907 return retval;
908 }
909
910 /**
911 * Streams data to a circular buffer on target intended for consumption by code
912 * running asynchronously on target.
913 *
914 * This is intended for applications where target-specific native code runs
915 * on the target, receives data from the circular buffer, does something with
916 * it (most likely writing it to a flash memory), and advances the circular
917 * buffer pointer.
918 *
919 * This assumes that the helper algorithm has already been loaded to the target,
920 * but has not been started yet. Given memory and register parameters are passed
921 * to the algorithm.
922 *
923 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
924 * following format:
925 *
926 * [buffer_start + 0, buffer_start + 4):
927 * Write Pointer address (aka head). Written and updated by this
928 * routine when new data is written to the circular buffer.
929 * [buffer_start + 4, buffer_start + 8):
930 * Read Pointer address (aka tail). Updated by code running on the
931 * target after it consumes data.
932 * [buffer_start + 8, buffer_start + buffer_size):
933 * Circular buffer contents.
934 *
935 * See contrib/loaders/flash/stm32f1x.S for an example.
936 *
937 * @param target used to run the algorithm
938 * @param buffer address on the host where data to be sent is located
939 * @param count number of blocks to send
940 * @param block_size size in bytes of each block
941 * @param num_mem_params count of memory-based params to pass to algorithm
942 * @param mem_params memory-based params to pass to algorithm
943 * @param num_reg_params count of register-based params to pass to algorithm
944 * @param reg_params memory-based params to pass to algorithm
945 * @param buffer_start address on the target of the circular buffer structure
946 * @param buffer_size size of the circular buffer structure
947 * @param entry_point address on the target to execute to start the algorithm
948 * @param exit_point address at which to set a breakpoint to catch the
949 * end of the algorithm; can be 0 if target triggers a breakpoint itself
950 */
951
952 int target_run_flash_async_algorithm(struct target *target,
953 const uint8_t *buffer, uint32_t count, int block_size,
954 int num_mem_params, struct mem_param *mem_params,
955 int num_reg_params, struct reg_param *reg_params,
956 uint32_t buffer_start, uint32_t buffer_size,
957 uint32_t entry_point, uint32_t exit_point, void *arch_info)
958 {
959 int retval;
960 int timeout = 0;
961
962 const uint8_t *buffer_orig = buffer;
963
964 /* Set up working area. First word is write pointer, second word is read pointer,
965 * rest is fifo data area. */
966 uint32_t wp_addr = buffer_start;
967 uint32_t rp_addr = buffer_start + 4;
968 uint32_t fifo_start_addr = buffer_start + 8;
969 uint32_t fifo_end_addr = buffer_start + buffer_size;
970
971 uint32_t wp = fifo_start_addr;
972 uint32_t rp = fifo_start_addr;
973
974 /* validate block_size is 2^n */
975 assert(!block_size || !(block_size & (block_size - 1)));
976
977 retval = target_write_u32(target, wp_addr, wp);
978 if (retval != ERROR_OK)
979 return retval;
980 retval = target_write_u32(target, rp_addr, rp);
981 if (retval != ERROR_OK)
982 return retval;
983
984 /* Start up algorithm on target and let it idle while writing the first chunk */
985 retval = target_start_algorithm(target, num_mem_params, mem_params,
986 num_reg_params, reg_params,
987 entry_point,
988 exit_point,
989 arch_info);
990
991 if (retval != ERROR_OK) {
992 LOG_ERROR("error starting target flash write algorithm");
993 return retval;
994 }
995
996 while (count > 0) {
997
998 retval = target_read_u32(target, rp_addr, &rp);
999 if (retval != ERROR_OK) {
1000 LOG_ERROR("failed to get read pointer");
1001 break;
1002 }
1003
1004 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
1005 (size_t) (buffer - buffer_orig), count, wp, rp);
1006
1007 if (rp == 0) {
1008 LOG_ERROR("flash write algorithm aborted by target");
1009 retval = ERROR_FLASH_OPERATION_FAILED;
1010 break;
1011 }
1012
1013 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1014 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1015 break;
1016 }
1017
1018 /* Count the number of bytes available in the fifo without
1019 * crossing the wrap around. Make sure to not fill it completely,
1020 * because that would make wp == rp and that's the empty condition. */
1021 uint32_t thisrun_bytes;
1022 if (rp > wp)
1023 thisrun_bytes = rp - wp - block_size;
1024 else if (rp > fifo_start_addr)
1025 thisrun_bytes = fifo_end_addr - wp;
1026 else
1027 thisrun_bytes = fifo_end_addr - wp - block_size;
1028
1029 if (thisrun_bytes == 0) {
1030 /* Throttle polling a bit if transfer is (much) faster than flash
1031 * programming. The exact delay shouldn't matter as long as it's
1032 * less than buffer size / flash speed. This is very unlikely to
1033 * run when using high latency connections such as USB. */
1034 alive_sleep(10);
1035
1036 /* to stop an infinite loop on some targets check and increment a timeout
1037 * this issue was observed on a stellaris using the new ICDI interface */
1038 if (timeout++ >= 500) {
1039 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1040 return ERROR_FLASH_OPERATION_FAILED;
1041 }
1042 continue;
1043 }
1044
1045 /* reset our timeout */
1046 timeout = 0;
1047
1048 /* Limit to the amount of data we actually want to write */
1049 if (thisrun_bytes > count * block_size)
1050 thisrun_bytes = count * block_size;
1051
1052 /* Write data to fifo */
1053 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1054 if (retval != ERROR_OK)
1055 break;
1056
1057 /* Update counters and wrap write pointer */
1058 buffer += thisrun_bytes;
1059 count -= thisrun_bytes / block_size;
1060 wp += thisrun_bytes;
1061 if (wp >= fifo_end_addr)
1062 wp = fifo_start_addr;
1063
1064 /* Store updated write pointer to target */
1065 retval = target_write_u32(target, wp_addr, wp);
1066 if (retval != ERROR_OK)
1067 break;
1068
1069 /* Avoid GDB timeouts */
1070 keep_alive();
1071 }
1072
1073 if (retval != ERROR_OK) {
1074 /* abort flash write algorithm on target */
1075 target_write_u32(target, wp_addr, 0);
1076 }
1077
1078 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1079 num_reg_params, reg_params,
1080 exit_point,
1081 10000,
1082 arch_info);
1083
1084 if (retval2 != ERROR_OK) {
1085 LOG_ERROR("error waiting for target flash write algorithm");
1086 retval = retval2;
1087 }
1088
1089 if (retval == ERROR_OK) {
1090 /* check if algorithm set rp = 0 after fifo writer loop finished */
1091 retval = target_read_u32(target, rp_addr, &rp);
1092 if (retval == ERROR_OK && rp == 0) {
1093 LOG_ERROR("flash write algorithm aborted by target");
1094 retval = ERROR_FLASH_OPERATION_FAILED;
1095 }
1096 }
1097
1098 return retval;
1099 }
1100
1101 int target_read_memory(struct target *target,
1102 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1103 {
1104 if (!target_was_examined(target)) {
1105 LOG_ERROR("Target not examined yet");
1106 return ERROR_FAIL;
1107 }
1108 if (!target->type->read_memory) {
1109 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1110 return ERROR_FAIL;
1111 }
1112 return target->type->read_memory(target, address, size, count, buffer);
1113 }
1114
1115 int target_read_phys_memory(struct target *target,
1116 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1117 {
1118 if (!target_was_examined(target)) {
1119 LOG_ERROR("Target not examined yet");
1120 return ERROR_FAIL;
1121 }
1122 if (!target->type->read_phys_memory) {
1123 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1124 return ERROR_FAIL;
1125 }
1126 return target->type->read_phys_memory(target, address, size, count, buffer);
1127 }
1128
1129 int target_write_memory(struct target *target,
1130 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1131 {
1132 if (!target_was_examined(target)) {
1133 LOG_ERROR("Target not examined yet");
1134 return ERROR_FAIL;
1135 }
1136 if (!target->type->write_memory) {
1137 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1138 return ERROR_FAIL;
1139 }
1140 return target->type->write_memory(target, address, size, count, buffer);
1141 }
1142
1143 int target_write_phys_memory(struct target *target,
1144 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1145 {
1146 if (!target_was_examined(target)) {
1147 LOG_ERROR("Target not examined yet");
1148 return ERROR_FAIL;
1149 }
1150 if (!target->type->write_phys_memory) {
1151 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1152 return ERROR_FAIL;
1153 }
1154 return target->type->write_phys_memory(target, address, size, count, buffer);
1155 }
1156
1157 int target_add_breakpoint(struct target *target,
1158 struct breakpoint *breakpoint)
1159 {
1160 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1161 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1162 return ERROR_TARGET_NOT_HALTED;
1163 }
1164 return target->type->add_breakpoint(target, breakpoint);
1165 }
1166
1167 int target_add_context_breakpoint(struct target *target,
1168 struct breakpoint *breakpoint)
1169 {
1170 if (target->state != TARGET_HALTED) {
1171 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1172 return ERROR_TARGET_NOT_HALTED;
1173 }
1174 return target->type->add_context_breakpoint(target, breakpoint);
1175 }
1176
1177 int target_add_hybrid_breakpoint(struct target *target,
1178 struct breakpoint *breakpoint)
1179 {
1180 if (target->state != TARGET_HALTED) {
1181 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1182 return ERROR_TARGET_NOT_HALTED;
1183 }
1184 return target->type->add_hybrid_breakpoint(target, breakpoint);
1185 }
1186
1187 int target_remove_breakpoint(struct target *target,
1188 struct breakpoint *breakpoint)
1189 {
1190 return target->type->remove_breakpoint(target, breakpoint);
1191 }
1192
1193 int target_add_watchpoint(struct target *target,
1194 struct watchpoint *watchpoint)
1195 {
1196 if (target->state != TARGET_HALTED) {
1197 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1198 return ERROR_TARGET_NOT_HALTED;
1199 }
1200 return target->type->add_watchpoint(target, watchpoint);
1201 }
1202 int target_remove_watchpoint(struct target *target,
1203 struct watchpoint *watchpoint)
1204 {
1205 return target->type->remove_watchpoint(target, watchpoint);
1206 }
1207 int target_hit_watchpoint(struct target *target,
1208 struct watchpoint **hit_watchpoint)
1209 {
1210 if (target->state != TARGET_HALTED) {
1211 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1212 return ERROR_TARGET_NOT_HALTED;
1213 }
1214
1215 if (target->type->hit_watchpoint == NULL) {
1216 /* For backward compatible, if hit_watchpoint is not implemented,
1217 * return ERROR_FAIL such that gdb_server will not take the nonsense
1218 * information. */
1219 return ERROR_FAIL;
1220 }
1221
1222 return target->type->hit_watchpoint(target, hit_watchpoint);
1223 }
1224
1225 const char *target_get_gdb_arch(struct target *target)
1226 {
1227 if (target->type->get_gdb_arch == NULL)
1228 return NULL;
1229 return target->type->get_gdb_arch(target);
1230 }
1231
1232 int target_get_gdb_reg_list(struct target *target,
1233 struct reg **reg_list[], int *reg_list_size,
1234 enum target_register_class reg_class)
1235 {
1236 int result = ERROR_FAIL;
1237
1238 if (!target_was_examined(target)) {
1239 LOG_ERROR("Target not examined yet");
1240 goto done;
1241 }
1242
1243 result = target->type->get_gdb_reg_list(target, reg_list,
1244 reg_list_size, reg_class);
1245
1246 done:
1247 if (result != ERROR_OK) {
1248 *reg_list = NULL;
1249 *reg_list_size = 0;
1250 }
1251 return result;
1252 }
1253
1254 int target_get_gdb_reg_list_noread(struct target *target,
1255 struct reg **reg_list[], int *reg_list_size,
1256 enum target_register_class reg_class)
1257 {
1258 if (target->type->get_gdb_reg_list_noread &&
1259 target->type->get_gdb_reg_list_noread(target, reg_list,
1260 reg_list_size, reg_class) == ERROR_OK)
1261 return ERROR_OK;
1262 return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1263 }
1264
1265 bool target_supports_gdb_connection(struct target *target)
1266 {
1267 /*
1268 * exclude all the targets that don't provide get_gdb_reg_list
1269 * or that have explicit gdb_max_connection == 0
1270 */
1271 return !!target->type->get_gdb_reg_list && !!target->gdb_max_connections;
1272 }
1273
1274 int target_step(struct target *target,
1275 int current, target_addr_t address, int handle_breakpoints)
1276 {
1277 int retval;
1278
1279 target_call_event_callbacks(target, TARGET_EVENT_STEP_START);
1280
1281 retval = target->type->step(target, current, address, handle_breakpoints);
1282 if (retval != ERROR_OK)
1283 return retval;
1284
1285 target_call_event_callbacks(target, TARGET_EVENT_STEP_END);
1286
1287 return retval;
1288 }
1289
1290 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1291 {
1292 if (target->state != TARGET_HALTED) {
1293 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1294 return ERROR_TARGET_NOT_HALTED;
1295 }
1296 return target->type->get_gdb_fileio_info(target, fileio_info);
1297 }
1298
1299 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1300 {
1301 if (target->state != TARGET_HALTED) {
1302 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1303 return ERROR_TARGET_NOT_HALTED;
1304 }
1305 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1306 }
1307
1308 target_addr_t target_address_max(struct target *target)
1309 {
1310 unsigned bits = target_address_bits(target);
1311 if (sizeof(target_addr_t) * 8 == bits)
1312 return (target_addr_t) -1;
1313 else
1314 return (((target_addr_t) 1) << bits) - 1;
1315 }
1316
1317 unsigned target_address_bits(struct target *target)
1318 {
1319 if (target->type->address_bits)
1320 return target->type->address_bits(target);
1321 return 32;
1322 }
1323
1324 static int target_profiling(struct target *target, uint32_t *samples,
1325 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1326 {
1327 return target->type->profiling(target, samples, max_num_samples,
1328 num_samples, seconds);
1329 }
1330
1331 /**
1332 * Reset the @c examined flag for the given target.
1333 * Pure paranoia -- targets are zeroed on allocation.
1334 */
1335 static void target_reset_examined(struct target *target)
1336 {
1337 target->examined = false;
1338 }
1339
1340 static int handle_target(void *priv);
1341
1342 static int target_init_one(struct command_context *cmd_ctx,
1343 struct target *target)
1344 {
1345 target_reset_examined(target);
1346
1347 struct target_type *type = target->type;
1348 if (type->examine == NULL)
1349 type->examine = default_examine;
1350
1351 if (type->check_reset == NULL)
1352 type->check_reset = default_check_reset;
1353
1354 assert(type->init_target != NULL);
1355
1356 int retval = type->init_target(cmd_ctx, target);
1357 if (ERROR_OK != retval) {
1358 LOG_ERROR("target '%s' init failed", target_name(target));
1359 return retval;
1360 }
1361
1362 /* Sanity-check MMU support ... stub in what we must, to help
1363 * implement it in stages, but warn if we need to do so.
1364 */
1365 if (type->mmu) {
1366 if (type->virt2phys == NULL) {
1367 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1368 type->virt2phys = identity_virt2phys;
1369 }
1370 } else {
1371 /* Make sure no-MMU targets all behave the same: make no
1372 * distinction between physical and virtual addresses, and
1373 * ensure that virt2phys() is always an identity mapping.
1374 */
1375 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1376 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1377
1378 type->mmu = no_mmu;
1379 type->write_phys_memory = type->write_memory;
1380 type->read_phys_memory = type->read_memory;
1381 type->virt2phys = identity_virt2phys;
1382 }
1383
1384 if (target->type->read_buffer == NULL)
1385 target->type->read_buffer = target_read_buffer_default;
1386
1387 if (target->type->write_buffer == NULL)
1388 target->type->write_buffer = target_write_buffer_default;
1389
1390 if (target->type->get_gdb_fileio_info == NULL)
1391 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1392
1393 if (target->type->gdb_fileio_end == NULL)
1394 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1395
1396 if (target->type->profiling == NULL)
1397 target->type->profiling = target_profiling_default;
1398
1399 return ERROR_OK;
1400 }
1401
1402 static int target_init(struct command_context *cmd_ctx)
1403 {
1404 struct target *target;
1405 int retval;
1406
1407 for (target = all_targets; target; target = target->next) {
1408 retval = target_init_one(cmd_ctx, target);
1409 if (ERROR_OK != retval)
1410 return retval;
1411 }
1412
1413 if (!all_targets)
1414 return ERROR_OK;
1415
1416 retval = target_register_user_commands(cmd_ctx);
1417 if (ERROR_OK != retval)
1418 return retval;
1419
1420 retval = target_register_timer_callback(&handle_target,
1421 polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
1422 if (ERROR_OK != retval)
1423 return retval;
1424
1425 return ERROR_OK;
1426 }
1427
1428 COMMAND_HANDLER(handle_target_init_command)
1429 {
1430 int retval;
1431
1432 if (CMD_ARGC != 0)
1433 return ERROR_COMMAND_SYNTAX_ERROR;
1434
1435 static bool target_initialized;
1436 if (target_initialized) {
1437 LOG_INFO("'target init' has already been called");
1438 return ERROR_OK;
1439 }
1440 target_initialized = true;
1441
1442 retval = command_run_line(CMD_CTX, "init_targets");
1443 if (ERROR_OK != retval)
1444 return retval;
1445
1446 retval = command_run_line(CMD_CTX, "init_target_events");
1447 if (ERROR_OK != retval)
1448 return retval;
1449
1450 retval = command_run_line(CMD_CTX, "init_board");
1451 if (ERROR_OK != retval)
1452 return retval;
1453
1454 LOG_DEBUG("Initializing targets...");
1455 return target_init(CMD_CTX);
1456 }
1457
1458 int target_register_event_callback(int (*callback)(struct target *target,
1459 enum target_event event, void *priv), void *priv)
1460 {
1461 struct target_event_callback **callbacks_p = &target_event_callbacks;
1462
1463 if (callback == NULL)
1464 return ERROR_COMMAND_SYNTAX_ERROR;
1465
1466 if (*callbacks_p) {
1467 while ((*callbacks_p)->next)
1468 callbacks_p = &((*callbacks_p)->next);
1469 callbacks_p = &((*callbacks_p)->next);
1470 }
1471
1472 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1473 (*callbacks_p)->callback = callback;
1474 (*callbacks_p)->priv = priv;
1475 (*callbacks_p)->next = NULL;
1476
1477 return ERROR_OK;
1478 }
1479
1480 int target_register_reset_callback(int (*callback)(struct target *target,
1481 enum target_reset_mode reset_mode, void *priv), void *priv)
1482 {
1483 struct target_reset_callback *entry;
1484
1485 if (callback == NULL)
1486 return ERROR_COMMAND_SYNTAX_ERROR;
1487
1488 entry = malloc(sizeof(struct target_reset_callback));
1489 if (entry == NULL) {
1490 LOG_ERROR("error allocating buffer for reset callback entry");
1491 return ERROR_COMMAND_SYNTAX_ERROR;
1492 }
1493
1494 entry->callback = callback;
1495 entry->priv = priv;
1496 list_add(&entry->list, &target_reset_callback_list);
1497
1498
1499 return ERROR_OK;
1500 }
1501
1502 int target_register_trace_callback(int (*callback)(struct target *target,
1503 size_t len, uint8_t *data, void *priv), void *priv)
1504 {
1505 struct target_trace_callback *entry;
1506
1507 if (callback == NULL)
1508 return ERROR_COMMAND_SYNTAX_ERROR;
1509
1510 entry = malloc(sizeof(struct target_trace_callback));
1511 if (entry == NULL) {
1512 LOG_ERROR("error allocating buffer for trace callback entry");
1513 return ERROR_COMMAND_SYNTAX_ERROR;
1514 }
1515
1516 entry->callback = callback;
1517 entry->priv = priv;
1518 list_add(&entry->list, &target_trace_callback_list);
1519
1520
1521 return ERROR_OK;
1522 }
1523
1524 int target_register_timer_callback(int (*callback)(void *priv),
1525 unsigned int time_ms, enum target_timer_type type, void *priv)
1526 {
1527 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1528
1529 if (callback == NULL)
1530 return ERROR_COMMAND_SYNTAX_ERROR;
1531
1532 if (*callbacks_p) {
1533 while ((*callbacks_p)->next)
1534 callbacks_p = &((*callbacks_p)->next);
1535 callbacks_p = &((*callbacks_p)->next);
1536 }
1537
1538 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1539 (*callbacks_p)->callback = callback;
1540 (*callbacks_p)->type = type;
1541 (*callbacks_p)->time_ms = time_ms;
1542 (*callbacks_p)->removed = false;
1543
1544 gettimeofday(&(*callbacks_p)->when, NULL);
1545 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1546
1547 (*callbacks_p)->priv = priv;
1548 (*callbacks_p)->next = NULL;
1549
1550 return ERROR_OK;
1551 }
1552
1553 int target_unregister_event_callback(int (*callback)(struct target *target,
1554 enum target_event event, void *priv), void *priv)
1555 {
1556 struct target_event_callback **p = &target_event_callbacks;
1557 struct target_event_callback *c = target_event_callbacks;
1558
1559 if (callback == NULL)
1560 return ERROR_COMMAND_SYNTAX_ERROR;
1561
1562 while (c) {
1563 struct target_event_callback *next = c->next;
1564 if ((c->callback == callback) && (c->priv == priv)) {
1565 *p = next;
1566 free(c);
1567 return ERROR_OK;
1568 } else
1569 p = &(c->next);
1570 c = next;
1571 }
1572
1573 return ERROR_OK;
1574 }
1575
1576 int target_unregister_reset_callback(int (*callback)(struct target *target,
1577 enum target_reset_mode reset_mode, void *priv), void *priv)
1578 {
1579 struct target_reset_callback *entry;
1580
1581 if (callback == NULL)
1582 return ERROR_COMMAND_SYNTAX_ERROR;
1583
1584 list_for_each_entry(entry, &target_reset_callback_list, list) {
1585 if (entry->callback == callback && entry->priv == priv) {
1586 list_del(&entry->list);
1587 free(entry);
1588 break;
1589 }
1590 }
1591
1592 return ERROR_OK;
1593 }
1594
1595 int target_unregister_trace_callback(int (*callback)(struct target *target,
1596 size_t len, uint8_t *data, void *priv), void *priv)
1597 {
1598 struct target_trace_callback *entry;
1599
1600 if (callback == NULL)
1601 return ERROR_COMMAND_SYNTAX_ERROR;
1602
1603 list_for_each_entry(entry, &target_trace_callback_list, list) {
1604 if (entry->callback == callback && entry->priv == priv) {
1605 list_del(&entry->list);
1606 free(entry);
1607 break;
1608 }
1609 }
1610
1611 return ERROR_OK;
1612 }
1613
1614 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1615 {
1616 if (callback == NULL)
1617 return ERROR_COMMAND_SYNTAX_ERROR;
1618
1619 for (struct target_timer_callback *c = target_timer_callbacks;
1620 c; c = c->next) {
1621 if ((c->callback == callback) && (c->priv == priv)) {
1622 c->removed = true;
1623 return ERROR_OK;
1624 }
1625 }
1626
1627 return ERROR_FAIL;
1628 }
1629
1630 int target_call_event_callbacks(struct target *target, enum target_event event)
1631 {
1632 struct target_event_callback *callback = target_event_callbacks;
1633 struct target_event_callback *next_callback;
1634
1635 if (event == TARGET_EVENT_HALTED) {
1636 /* execute early halted first */
1637 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1638 }
1639
1640 LOG_DEBUG("target event %i (%s) for core %s", event,
1641 Jim_Nvp_value2name_simple(nvp_target_event, event)->name,
1642 target_name(target));
1643
1644 target_handle_event(target, event);
1645
1646 while (callback) {
1647 next_callback = callback->next;
1648 callback->callback(target, event, callback->priv);
1649 callback = next_callback;
1650 }
1651
1652 return ERROR_OK;
1653 }
1654
1655 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1656 {
1657 struct target_reset_callback *callback;
1658
1659 LOG_DEBUG("target reset %i (%s)", reset_mode,
1660 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1661
1662 list_for_each_entry(callback, &target_reset_callback_list, list)
1663 callback->callback(target, reset_mode, callback->priv);
1664
1665 return ERROR_OK;
1666 }
1667
1668 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1669 {
1670 struct target_trace_callback *callback;
1671
1672 list_for_each_entry(callback, &target_trace_callback_list, list)
1673 callback->callback(target, len, data, callback->priv);
1674
1675 return ERROR_OK;
1676 }
1677
1678 static int target_timer_callback_periodic_restart(
1679 struct target_timer_callback *cb, struct timeval *now)
1680 {
1681 cb->when = *now;
1682 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1683 return ERROR_OK;
1684 }
1685
1686 static int target_call_timer_callback(struct target_timer_callback *cb,
1687 struct timeval *now)
1688 {
1689 cb->callback(cb->priv);
1690
1691 if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1692 return target_timer_callback_periodic_restart(cb, now);
1693
1694 return target_unregister_timer_callback(cb->callback, cb->priv);
1695 }
1696
1697 static int target_call_timer_callbacks_check_time(int checktime)
1698 {
1699 static bool callback_processing;
1700
1701 /* Do not allow nesting */
1702 if (callback_processing)
1703 return ERROR_OK;
1704
1705 callback_processing = true;
1706
1707 keep_alive();
1708
1709 struct timeval now;
1710 gettimeofday(&now, NULL);
1711
1712 /* Store an address of the place containing a pointer to the
1713 * next item; initially, that's a standalone "root of the
1714 * list" variable. */
1715 struct target_timer_callback **callback = &target_timer_callbacks;
1716 while (callback && *callback) {
1717 if ((*callback)->removed) {
1718 struct target_timer_callback *p = *callback;
1719 *callback = (*callback)->next;
1720 free(p);
1721 continue;
1722 }
1723
1724 bool call_it = (*callback)->callback &&
1725 ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1726 timeval_compare(&now, &(*callback)->when) >= 0);
1727
1728 if (call_it)
1729 target_call_timer_callback(*callback, &now);
1730
1731 callback = &(*callback)->next;
1732 }
1733
1734 callback_processing = false;
1735 return ERROR_OK;
1736 }
1737
1738 int target_call_timer_callbacks(void)
1739 {
1740 return target_call_timer_callbacks_check_time(1);
1741 }
1742
1743 /* invoke periodic callbacks immediately */
1744 int target_call_timer_callbacks_now(void)
1745 {
1746 return target_call_timer_callbacks_check_time(0);
1747 }
1748
1749 /* Prints the working area layout for debug purposes */
1750 static void print_wa_layout(struct target *target)
1751 {
1752 struct working_area *c = target->working_areas;
1753
1754 while (c) {
1755 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1756 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1757 c->address, c->address + c->size - 1, c->size);
1758 c = c->next;
1759 }
1760 }
1761
1762 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1763 static void target_split_working_area(struct working_area *area, uint32_t size)
1764 {
1765 assert(area->free); /* Shouldn't split an allocated area */
1766 assert(size <= area->size); /* Caller should guarantee this */
1767
1768 /* Split only if not already the right size */
1769 if (size < area->size) {
1770 struct working_area *new_wa = malloc(sizeof(*new_wa));
1771
1772 if (new_wa == NULL)
1773 return;
1774
1775 new_wa->next = area->next;
1776 new_wa->size = area->size - size;
1777 new_wa->address = area->address + size;
1778 new_wa->backup = NULL;
1779 new_wa->user = NULL;
1780 new_wa->free = true;
1781
1782 area->next = new_wa;
1783 area->size = size;
1784
1785 /* If backup memory was allocated to this area, it has the wrong size
1786 * now so free it and it will be reallocated if/when needed */
1787 free(area->backup);
1788 area->backup = NULL;
1789 }
1790 }
1791
1792 /* Merge all adjacent free areas into one */
1793 static void target_merge_working_areas(struct target *target)
1794 {
1795 struct working_area *c = target->working_areas;
1796
1797 while (c && c->next) {
1798 assert(c->next->address == c->address + c->size); /* This is an invariant */
1799
1800 /* Find two adjacent free areas */
1801 if (c->free && c->next->free) {
1802 /* Merge the last into the first */
1803 c->size += c->next->size;
1804
1805 /* Remove the last */
1806 struct working_area *to_be_freed = c->next;
1807 c->next = c->next->next;
1808 free(to_be_freed->backup);
1809 free(to_be_freed);
1810
1811 /* If backup memory was allocated to the remaining area, it's has
1812 * the wrong size now */
1813 free(c->backup);
1814 c->backup = NULL;
1815 } else {
1816 c = c->next;
1817 }
1818 }
1819 }
1820
1821 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1822 {
1823 /* Reevaluate working area address based on MMU state*/
1824 if (target->working_areas == NULL) {
1825 int retval;
1826 int enabled;
1827
1828 retval = target->type->mmu(target, &enabled);
1829 if (retval != ERROR_OK)
1830 return retval;
1831
1832 if (!enabled) {
1833 if (target->working_area_phys_spec) {
1834 LOG_DEBUG("MMU disabled, using physical "
1835 "address for working memory " TARGET_ADDR_FMT,
1836 target->working_area_phys);
1837 target->working_area = target->working_area_phys;
1838 } else {
1839 LOG_ERROR("No working memory available. "
1840 "Specify -work-area-phys to target.");
1841 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1842 }
1843 } else {
1844 if (target->working_area_virt_spec) {
1845 LOG_DEBUG("MMU enabled, using virtual "
1846 "address for working memory " TARGET_ADDR_FMT,
1847 target->working_area_virt);
1848 target->working_area = target->working_area_virt;
1849 } else {
1850 LOG_ERROR("No working memory available. "
1851 "Specify -work-area-virt to target.");
1852 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1853 }
1854 }
1855
1856 /* Set up initial working area on first call */
1857 struct working_area *new_wa = malloc(sizeof(*new_wa));
1858 if (new_wa) {
1859 new_wa->next = NULL;
1860 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1861 new_wa->address = target->working_area;
1862 new_wa->backup = NULL;
1863 new_wa->user = NULL;
1864 new_wa->free = true;
1865 }
1866
1867 target->working_areas = new_wa;
1868 }
1869
1870 /* only allocate multiples of 4 byte */
1871 if (size % 4)
1872 size = (size + 3) & (~3UL);
1873
1874 struct working_area *c = target->working_areas;
1875
1876 /* Find the first large enough working area */
1877 while (c) {
1878 if (c->free && c->size >= size)
1879 break;
1880 c = c->next;
1881 }
1882
1883 if (c == NULL)
1884 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1885
1886 /* Split the working area into the requested size */
1887 target_split_working_area(c, size);
1888
1889 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1890 size, c->address);
1891
1892 if (target->backup_working_area) {
1893 if (c->backup == NULL) {
1894 c->backup = malloc(c->size);
1895 if (c->backup == NULL)
1896 return ERROR_FAIL;
1897 }
1898
1899 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1900 if (retval != ERROR_OK)
1901 return retval;
1902 }
1903
1904 /* mark as used, and return the new (reused) area */
1905 c->free = false;
1906 *area = c;
1907
1908 /* user pointer */
1909 c->user = area;
1910
1911 print_wa_layout(target);
1912
1913 return ERROR_OK;
1914 }
1915
1916 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1917 {
1918 int retval;
1919
1920 retval = target_alloc_working_area_try(target, size, area);
1921 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1922 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1923 return retval;
1924
1925 }
1926
1927 static int target_restore_working_area(struct target *target, struct working_area *area)
1928 {
1929 int retval = ERROR_OK;
1930
1931 if (target->backup_working_area && area->backup != NULL) {
1932 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1933 if (retval != ERROR_OK)
1934 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1935 area->size, area->address);
1936 }
1937
1938 return retval;
1939 }
1940
1941 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1942 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1943 {
1944 int retval = ERROR_OK;
1945
1946 if (area->free)
1947 return retval;
1948
1949 if (restore) {
1950 retval = target_restore_working_area(target, area);
1951 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1952 if (retval != ERROR_OK)
1953 return retval;
1954 }
1955
1956 area->free = true;
1957
1958 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1959 area->size, area->address);
1960
1961 /* mark user pointer invalid */
1962 /* TODO: Is this really safe? It points to some previous caller's memory.
1963 * How could we know that the area pointer is still in that place and not
1964 * some other vital data? What's the purpose of this, anyway? */
1965 *area->user = NULL;
1966 area->user = NULL;
1967
1968 target_merge_working_areas(target);
1969
1970 print_wa_layout(target);
1971
1972 return retval;
1973 }
1974
1975 int target_free_working_area(struct target *target, struct working_area *area)
1976 {
1977 return target_free_working_area_restore(target, area, 1);
1978 }
1979
1980 /* free resources and restore memory, if restoring memory fails,
1981 * free up resources anyway
1982 */
1983 static void target_free_all_working_areas_restore(struct target *target, int restore)
1984 {
1985 struct working_area *c = target->working_areas;
1986
1987 LOG_DEBUG("freeing all working areas");
1988
1989 /* Loop through all areas, restoring the allocated ones and marking them as free */
1990 while (c) {
1991 if (!c->free) {
1992 if (restore)
1993 target_restore_working_area(target, c);
1994 c->free = true;
1995 *c->user = NULL; /* Same as above */
1996 c->user = NULL;
1997 }
1998 c = c->next;
1999 }
2000
2001 /* Run a merge pass to combine all areas into one */
2002 target_merge_working_areas(target);
2003
2004 print_wa_layout(target);
2005 }
2006
2007 void target_free_all_working_areas(struct target *target)
2008 {
2009 target_free_all_working_areas_restore(target, 1);
2010
2011 /* Now we have none or only one working area marked as free */
2012 if (target->working_areas) {
2013 /* Free the last one to allow on-the-fly moving and resizing */
2014 free(target->working_areas->backup);
2015 free(target->working_areas);
2016 target->working_areas = NULL;
2017 }
2018 }
2019
2020 /* Find the largest number of bytes that can be allocated */
2021 uint32_t target_get_working_area_avail(struct target *target)
2022 {
2023 struct working_area *c = target->working_areas;
2024 uint32_t max_size = 0;
2025
2026 if (c == NULL)
2027 return target->working_area_size;
2028
2029 while (c) {
2030 if (c->free && max_size < c->size)
2031 max_size = c->size;
2032
2033 c = c->next;
2034 }
2035
2036 return max_size;
2037 }
2038
2039 static void target_destroy(struct target *target)
2040 {
2041 if (target->type->deinit_target)
2042 target->type->deinit_target(target);
2043
2044 free(target->semihosting);
2045
2046 jtag_unregister_event_callback(jtag_enable_callback, target);
2047
2048 struct target_event_action *teap = target->event_action;
2049 while (teap) {
2050 struct target_event_action *next = teap->next;
2051 Jim_DecrRefCount(teap->interp, teap->body);
2052 free(teap);
2053 teap = next;
2054 }
2055
2056 target_free_all_working_areas(target);
2057
2058 /* release the targets SMP list */
2059 if (target->smp) {
2060 struct target_list *head = target->head;
2061 while (head != NULL) {
2062 struct target_list *pos = head->next;
2063 head->target->smp = 0;
2064 free(head);
2065 head = pos;
2066 }
2067 target->smp = 0;
2068 }
2069
2070 rtos_destroy(target);
2071
2072 free(target->gdb_port_override);
2073 free(target->type);
2074 free(target->trace_info);
2075 free(target->fileio_info);
2076 free(target->cmd_name);
2077 free(target);
2078 }
2079
2080 void target_quit(void)
2081 {
2082 struct target_event_callback *pe = target_event_callbacks;
2083 while (pe) {
2084 struct target_event_callback *t = pe->next;
2085 free(pe);
2086 pe = t;
2087 }
2088 target_event_callbacks = NULL;
2089
2090 struct target_timer_callback *pt = target_timer_callbacks;
2091 while (pt) {
2092 struct target_timer_callback *t = pt->next;
2093 free(pt);
2094 pt = t;
2095 }
2096 target_timer_callbacks = NULL;
2097
2098 for (struct target *target = all_targets; target;) {
2099 struct target *tmp;
2100
2101 tmp = target->next;
2102 target_destroy(target);
2103 target = tmp;
2104 }
2105
2106 all_targets = NULL;
2107 }
2108
2109 int target_arch_state(struct target *target)
2110 {
2111 int retval;
2112 if (target == NULL) {
2113 LOG_WARNING("No target has been configured");
2114 return ERROR_OK;
2115 }
2116
2117 if (target->state != TARGET_HALTED)
2118 return ERROR_OK;
2119
2120 retval = target->type->arch_state(target);
2121 return retval;
2122 }
2123
2124 static int target_get_gdb_fileio_info_default(struct target *target,
2125 struct gdb_fileio_info *fileio_info)
2126 {
2127 /* If target does not support semi-hosting function, target
2128 has no need to provide .get_gdb_fileio_info callback.
2129 It just return ERROR_FAIL and gdb_server will return "Txx"
2130 as target halted every time. */
2131 return ERROR_FAIL;
2132 }
2133
2134 static int target_gdb_fileio_end_default(struct target *target,
2135 int retcode, int fileio_errno, bool ctrl_c)
2136 {
2137 return ERROR_OK;
2138 }
2139
2140 int target_profiling_default(struct target *target, uint32_t *samples,
2141 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2142 {
2143 struct timeval timeout, now;
2144
2145 gettimeofday(&timeout, NULL);
2146 timeval_add_time(&timeout, seconds, 0);
2147
2148 LOG_INFO("Starting profiling. Halting and resuming the"
2149 " target as often as we can...");
2150
2151 uint32_t sample_count = 0;
2152 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2153 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2154
2155 int retval = ERROR_OK;
2156 for (;;) {
2157 target_poll(target);
2158 if (target->state == TARGET_HALTED) {
2159 uint32_t t = buf_get_u32(reg->value, 0, 32);
2160 samples[sample_count++] = t;
2161 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2162 retval = target_resume(target, 1, 0, 0, 0);
2163 target_poll(target);
2164 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2165 } else if (target->state == TARGET_RUNNING) {
2166 /* We want to quickly sample the PC. */
2167 retval = target_halt(target);
2168 } else {
2169 LOG_INFO("Target not halted or running");
2170 retval = ERROR_OK;
2171 break;
2172 }
2173
2174 if (retval != ERROR_OK)
2175 break;
2176
2177 gettimeofday(&now, NULL);
2178 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2179 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2180 break;
2181 }
2182 }
2183
2184 *num_samples = sample_count;
2185 return retval;
2186 }
2187
2188 /* Single aligned words are guaranteed to use 16 or 32 bit access
2189 * mode respectively, otherwise data is handled as quickly as
2190 * possible
2191 */
2192 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2193 {
2194 LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2195 size, address);
2196
2197 if (!target_was_examined(target)) {
2198 LOG_ERROR("Target not examined yet");
2199 return ERROR_FAIL;
2200 }
2201
2202 if (size == 0)
2203 return ERROR_OK;
2204
2205 if ((address + size - 1) < address) {
2206 /* GDB can request this when e.g. PC is 0xfffffffc */
2207 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2208 address,
2209 size);
2210 return ERROR_FAIL;
2211 }
2212
2213 return target->type->write_buffer(target, address, size, buffer);
2214 }
2215
2216 static int target_write_buffer_default(struct target *target,
2217 target_addr_t address, uint32_t count, const uint8_t *buffer)
2218 {
2219 uint32_t size;
2220
2221 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2222 * will have something to do with the size we leave to it. */
2223 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2224 if (address & size) {
2225 int retval = target_write_memory(target, address, size, 1, buffer);
2226 if (retval != ERROR_OK)
2227 return retval;
2228 address += size;
2229 count -= size;
2230 buffer += size;
2231 }
2232 }
2233
2234 /* Write the data with as large access size as possible. */
2235 for (; size > 0; size /= 2) {
2236 uint32_t aligned = count - count % size;
2237 if (aligned > 0) {
2238 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2239 if (retval != ERROR_OK)
2240 return retval;
2241 address += aligned;
2242 count -= aligned;
2243 buffer += aligned;
2244 }
2245 }
2246
2247 return ERROR_OK;
2248 }
2249
2250 /* Single aligned words are guaranteed to use 16 or 32 bit access
2251 * mode respectively, otherwise data is handled as quickly as
2252 * possible
2253 */
2254 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2255 {
2256 LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
2257 size, address);
2258
2259 if (!target_was_examined(target)) {
2260 LOG_ERROR("Target not examined yet");
2261 return ERROR_FAIL;
2262 }
2263
2264 if (size == 0)
2265 return ERROR_OK;
2266
2267 if ((address + size - 1) < address) {
2268 /* GDB can request this when e.g. PC is 0xfffffffc */
2269 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2270 address,
2271 size);
2272 return ERROR_FAIL;
2273 }
2274
2275 return target->type->read_buffer(target, address, size, buffer);
2276 }
2277
2278 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2279 {
2280 uint32_t size;
2281
2282 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2283 * will have something to do with the size we leave to it. */
2284 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2285 if (address & size) {
2286 int retval = target_read_memory(target, address, size, 1, buffer);
2287 if (retval != ERROR_OK)
2288 return retval;
2289 address += size;
2290 count -= size;
2291 buffer += size;
2292 }
2293 }
2294
2295 /* Read the data with as large access size as possible. */
2296 for (; size > 0; size /= 2) {
2297 uint32_t aligned = count - count % size;
2298 if (aligned > 0) {
2299 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2300 if (retval != ERROR_OK)
2301 return retval;
2302 address += aligned;
2303 count -= aligned;
2304 buffer += aligned;
2305 }
2306 }
2307
2308 return ERROR_OK;
2309 }
2310
2311 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
2312 {
2313 uint8_t *buffer;
2314 int retval;
2315 uint32_t i;
2316 uint32_t checksum = 0;
2317 if (!target_was_examined(target)) {
2318 LOG_ERROR("Target not examined yet");
2319 return ERROR_FAIL;
2320 }
2321
2322 retval = target->type->checksum_memory(target, address, size, &checksum);
2323 if (retval != ERROR_OK) {
2324 buffer = malloc(size);
2325 if (buffer == NULL) {
2326 LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
2327 return ERROR_COMMAND_SYNTAX_ERROR;
2328 }
2329 retval = target_read_buffer(target, address, size, buffer);
2330 if (retval != ERROR_OK) {
2331 free(buffer);
2332 return retval;
2333 }
2334
2335 /* convert to target endianness */
2336 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2337 uint32_t target_data;
2338 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2339 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2340 }
2341
2342 retval = image_calculate_checksum(buffer, size, &checksum);
2343 free(buffer);
2344 }
2345
2346 *crc = checksum;
2347
2348 return retval;
2349 }
2350
2351 int target_blank_check_memory(struct target *target,
2352 struct target_memory_check_block *blocks, int num_blocks,
2353 uint8_t erased_value)
2354 {
2355 if (!target_was_examined(target)) {
2356 LOG_ERROR("Target not examined yet");
2357 return ERROR_FAIL;
2358 }
2359
2360 if (target->type->blank_check_memory == NULL)
2361 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2362
2363 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2364 }
2365
2366 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2367 {
2368 uint8_t value_buf[8];
2369 if (!target_was_examined(target)) {
2370 LOG_ERROR("Target not examined yet");
2371 return ERROR_FAIL;
2372 }
2373
2374 int retval = target_read_memory(target, address, 8, 1, value_buf);
2375
2376 if (retval == ERROR_OK) {
2377 *value = target_buffer_get_u64(target, value_buf);
2378 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2379 address,
2380 *value);
2381 } else {
2382 *value = 0x0;
2383 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2384 address);
2385 }
2386
2387 return retval;
2388 }
2389
2390 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2391 {
2392 uint8_t value_buf[4];
2393 if (!target_was_examined(target)) {
2394 LOG_ERROR("Target not examined yet");
2395 return ERROR_FAIL;
2396 }
2397
2398 int retval = target_read_memory(target, address, 4, 1, value_buf);
2399
2400 if (retval == ERROR_OK) {
2401 *value = target_buffer_get_u32(target, value_buf);
2402 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2403 address,
2404 *value);
2405 } else {
2406 *value = 0x0;
2407 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2408 address);
2409 }
2410
2411 return retval;
2412 }
2413
2414 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2415 {
2416 uint8_t value_buf[2];
2417 if (!target_was_examined(target)) {
2418 LOG_ERROR("Target not examined yet");
2419 return ERROR_FAIL;
2420 }
2421
2422 int retval = target_read_memory(target, address, 2, 1, value_buf);
2423
2424 if (retval == ERROR_OK) {
2425 *value = target_buffer_get_u16(target, value_buf);
2426 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2427 address,
2428 *value);
2429 } else {
2430 *value = 0x0;
2431 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2432 address);
2433 }
2434
2435 return retval;
2436 }
2437
2438 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2439 {
2440 if (!target_was_examined(target)) {
2441 LOG_ERROR("Target not examined yet");
2442 return ERROR_FAIL;
2443 }
2444
2445 int retval = target_read_memory(target, address, 1, 1, value);
2446
2447 if (retval == ERROR_OK) {
2448 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2449 address,
2450 *value);
2451 } else {
2452 *value = 0x0;
2453 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2454 address);
2455 }
2456
2457 return retval;
2458 }
2459
2460 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2461 {
2462 int retval;
2463 uint8_t value_buf[8];
2464 if (!target_was_examined(target)) {
2465 LOG_ERROR("Target not examined yet");
2466 return ERROR_FAIL;
2467 }
2468
2469 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2470 address,
2471 value);
2472
2473 target_buffer_set_u64(target, value_buf, value);
2474 retval = target_write_memory(target, address, 8, 1, value_buf);
2475 if (retval != ERROR_OK)
2476 LOG_DEBUG("failed: %i", retval);
2477
2478 return retval;
2479 }
2480
2481 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2482 {
2483 int retval;
2484 uint8_t value_buf[4];
2485 if (!target_was_examined(target)) {
2486 LOG_ERROR("Target not examined yet");
2487 return ERROR_FAIL;
2488 }
2489
2490 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2491 address,
2492 value);
2493
2494 target_buffer_set_u32(target, value_buf, value);
2495 retval = target_write_memory(target, address, 4, 1, value_buf);
2496 if (retval != ERROR_OK)
2497 LOG_DEBUG("failed: %i", retval);
2498
2499 return retval;
2500 }
2501
2502 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2503 {
2504 int retval;
2505 uint8_t value_buf[2];
2506 if (!target_was_examined(target)) {
2507 LOG_ERROR("Target not examined yet");
2508 return ERROR_FAIL;
2509 }
2510
2511 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2512 address,
2513 value);
2514
2515 target_buffer_set_u16(target, value_buf, value);
2516 retval = target_write_memory(target, address, 2, 1, value_buf);
2517 if (retval != ERROR_OK)
2518 LOG_DEBUG("failed: %i", retval);
2519
2520 return retval;
2521 }
2522
2523 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2524 {
2525 int retval;
2526 if (!target_was_examined(target)) {
2527 LOG_ERROR("Target not examined yet");
2528 return ERROR_FAIL;
2529 }
2530
2531 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2532 address, value);
2533
2534 retval = target_write_memory(target, address, 1, 1, &value);
2535 if (retval != ERROR_OK)
2536 LOG_DEBUG("failed: %i", retval);
2537
2538 return retval;
2539 }
2540
2541 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2542 {
2543 int retval;
2544 uint8_t value_buf[8];
2545 if (!target_was_examined(target)) {
2546 LOG_ERROR("Target not examined yet");
2547 return ERROR_FAIL;
2548 }
2549
2550 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2551 address,
2552 value);
2553
2554 target_buffer_set_u64(target, value_buf, value);
2555 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2556 if (retval != ERROR_OK)
2557 LOG_DEBUG("failed: %i", retval);
2558
2559 return retval;
2560 }
2561
2562 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2563 {
2564 int retval;
2565 uint8_t value_buf[4];
2566 if (!target_was_examined(target)) {
2567 LOG_ERROR("Target not examined yet");
2568 return ERROR_FAIL;
2569 }
2570
2571 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2572 address,
2573 value);
2574
2575 target_buffer_set_u32(target, value_buf, value);
2576 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2577 if (retval != ERROR_OK)
2578 LOG_DEBUG("failed: %i", retval);
2579
2580 return retval;
2581 }
2582
2583 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2584 {
2585 int retval;
2586 uint8_t value_buf[2];
2587 if (!target_was_examined(target)) {
2588 LOG_ERROR("Target not examined yet");
2589 return ERROR_FAIL;
2590 }
2591
2592 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2593 address,
2594 value);
2595
2596 target_buffer_set_u16(target, value_buf, value);
2597 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2598 if (retval != ERROR_OK)
2599 LOG_DEBUG("failed: %i", retval);
2600
2601 return retval;
2602 }
2603
2604 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2605 {
2606 int retval;
2607 if (!target_was_examined(target)) {
2608 LOG_ERROR("Target not examined yet");
2609 return ERROR_FAIL;
2610 }
2611
2612 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2613 address, value);
2614
2615 retval = target_write_phys_memory(target, address, 1, 1, &value);
2616 if (retval != ERROR_OK)
2617 LOG_DEBUG("failed: %i", retval);
2618
2619 return retval;
2620 }
2621
2622 static int find_target(struct command_invocation *cmd, const char *name)
2623 {
2624 struct target *target = get_target(name);
2625 if (target == NULL) {
2626 command_print(cmd, "Target: %s is unknown, try one of:\n", name);
2627 return ERROR_FAIL;
2628 }
2629 if (!target->tap->enabled) {
2630 command_print(cmd, "Target: TAP %s is disabled, "
2631 "can't be the current target\n",
2632 target->tap->dotted_name);
2633 return ERROR_FAIL;
2634 }
2635
2636 cmd->ctx->current_target = target;
2637 if (cmd->ctx->current_target_override)
2638 cmd->ctx->current_target_override = target;
2639
2640 return ERROR_OK;
2641 }
2642
2643
2644 COMMAND_HANDLER(handle_targets_command)
2645 {
2646 int retval = ERROR_OK;
2647 if (CMD_ARGC == 1) {
2648 retval = find_target(CMD, CMD_ARGV[0]);
2649 if (retval == ERROR_OK) {
2650 /* we're done! */
2651 return retval;
2652 }
2653 }
2654
2655 struct target *target = all_targets;
2656 command_print(CMD, " TargetName Type Endian TapName State ");
2657 command_print(CMD, "-- ------------------ ---------- ------ ------------------ ------------");
2658 while (target) {
2659 const char *state;
2660 char marker = ' ';
2661
2662 if (target->tap->enabled)
2663 state = target_state_name(target);
2664 else
2665 state = "tap-disabled";
2666
2667 if (CMD_CTX->current_target == target)
2668 marker = '*';
2669
2670 /* keep columns lined up to match the headers above */
2671 command_print(CMD,
2672 "%2d%c %-18s %-10s %-6s %-18s %s",
2673 target->target_number,
2674 marker,
2675 target_name(target),
2676 target_type_name(target),
2677 Jim_Nvp_value2name_simple(nvp_target_endian,
2678 target->endianness)->name,
2679 target->tap->dotted_name,
2680 state);
2681 target = target->next;
2682 }
2683
2684 return retval;
2685 }
2686
2687 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2688
2689 static int powerDropout;
2690 static int srstAsserted;
2691
2692 static int runPowerRestore;
2693 static int runPowerDropout;
2694 static int runSrstAsserted;
2695 static int runSrstDeasserted;
2696
2697 static int sense_handler(void)
2698 {
2699 static int prevSrstAsserted;
2700 static int prevPowerdropout;
2701
2702 int retval = jtag_power_dropout(&powerDropout);
2703 if (retval != ERROR_OK)
2704 return retval;
2705
2706 int powerRestored;
2707 powerRestored = prevPowerdropout && !powerDropout;
2708 if (powerRestored)
2709 runPowerRestore = 1;
2710
2711 int64_t current = timeval_ms();
2712 static int64_t lastPower;
2713 bool waitMore = lastPower + 2000 > current;
2714 if (powerDropout && !waitMore) {
2715 runPowerDropout = 1;
2716 lastPower = current;
2717 }
2718
2719 retval = jtag_srst_asserted(&srstAsserted);
2720 if (retval != ERROR_OK)
2721 return retval;
2722
2723 int srstDeasserted;
2724 srstDeasserted = prevSrstAsserted && !srstAsserted;
2725
2726 static int64_t lastSrst;
2727 waitMore = lastSrst + 2000 > current;
2728 if (srstDeasserted && !waitMore) {
2729 runSrstDeasserted = 1;
2730 lastSrst = current;
2731 }
2732
2733 if (!prevSrstAsserted && srstAsserted)
2734 runSrstAsserted = 1;
2735
2736 prevSrstAsserted = srstAsserted;
2737 prevPowerdropout = powerDropout;
2738
2739 if (srstDeasserted || powerRestored) {
2740 /* Other than logging the event we can't do anything here.
2741 * Issuing a reset is a particularly bad idea as we might
2742 * be inside a reset already.
2743 */
2744 }
2745
2746 return ERROR_OK;
2747 }
2748
2749 /* process target state changes */
2750 static int handle_target(void *priv)
2751 {
2752 Jim_Interp *interp = (Jim_Interp *)priv;
2753 int retval = ERROR_OK;
2754
2755 if (!is_jtag_poll_safe()) {
2756 /* polling is disabled currently */
2757 return ERROR_OK;
2758 }
2759
2760 /* we do not want to recurse here... */
2761 static int recursive;
2762 if (!recursive) {
2763 recursive = 1;
2764 sense_handler();
2765 /* danger! running these procedures can trigger srst assertions and power dropouts.
2766 * We need to avoid an infinite loop/recursion here and we do that by
2767 * clearing the flags after running these events.
2768 */
2769 int did_something = 0;
2770 if (runSrstAsserted) {
2771 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2772 Jim_Eval(interp, "srst_asserted");
2773 did_something = 1;
2774 }
2775 if (runSrstDeasserted) {
2776 Jim_Eval(interp, "srst_deasserted");
2777 did_something = 1;
2778 }
2779 if (runPowerDropout) {
2780 LOG_INFO("Power dropout detected, running power_dropout proc.");
2781 Jim_Eval(interp, "power_dropout");
2782 did_something = 1;
2783 }
2784 if (runPowerRestore) {
2785 Jim_Eval(interp, "power_restore");
2786 did_something = 1;
2787 }
2788
2789 if (did_something) {
2790 /* clear detect flags */
2791 sense_handler();
2792 }
2793
2794 /* clear action flags */
2795
2796 runSrstAsserted = 0;
2797 runSrstDeasserted = 0;
2798 runPowerRestore = 0;
2799 runPowerDropout = 0;
2800
2801 recursive = 0;
2802 }
2803
2804 /* Poll targets for state changes unless that's globally disabled.
2805 * Skip targets that are currently disabled.
2806 */
2807 for (struct target *target = all_targets;
2808 is_jtag_poll_safe() && target;
2809 target = target->next) {
2810
2811 if (!target_was_examined(target))
2812 continue;
2813
2814 if (!target->tap->enabled)
2815 continue;
2816
2817 if (target->backoff.times > target->backoff.count) {
2818 /* do not poll this time as we failed previously */
2819 target->backoff.count++;
2820 continue;
2821 }
2822 target->backoff.count = 0;
2823
2824 /* only poll target if we've got power and srst isn't asserted */
2825 if (!powerDropout && !srstAsserted) {
2826 /* polling may fail silently until the target has been examined */
2827 retval = target_poll(target);
2828 if (retval != ERROR_OK) {
2829 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2830 if (target->backoff.times * polling_interval < 5000) {
2831 target->backoff.times *= 2;
2832 target->backoff.times++;
2833 }
2834
2835 /* Tell GDB to halt the debugger. This allows the user to
2836 * run monitor commands to handle the situation.
2837 */
2838 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2839 }
2840 if (target->backoff.times > 0) {
2841 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2842 target_reset_examined(target);
2843 retval = target_examine_one(target);
2844 /* Target examination could have failed due to unstable connection,
2845 * but we set the examined flag anyway to repoll it later */
2846 if (retval != ERROR_OK) {
2847 target->examined = true;
2848 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2849 target->backoff.times * polling_interval);
2850 return retval;
2851 }
2852 }
2853
2854 /* Since we succeeded, we reset backoff count */
2855 target->backoff.times = 0;
2856 }
2857 }
2858
2859 return retval;
2860 }
2861
2862 COMMAND_HANDLER(handle_reg_command)
2863 {
2864 struct target *target;
2865 struct reg *reg = NULL;
2866 unsigned count = 0;
2867 char *value;
2868
2869 LOG_DEBUG("-");
2870
2871 target = get_current_target(CMD_CTX);
2872
2873 /* list all available registers for the current target */
2874 if (CMD_ARGC == 0) {
2875 struct reg_cache *cache = target->reg_cache;
2876
2877 count = 0;
2878 while (cache) {
2879 unsigned i;
2880
2881 command_print(CMD, "===== %s", cache->name);
2882
2883 for (i = 0, reg = cache->reg_list;
2884 i < cache->num_regs;
2885 i++, reg++, count++) {
2886 if (reg->exist == false)
2887 continue;
2888 /* only print cached values if they are valid */
2889 if (reg->valid) {
2890 value = buf_to_hex_str(reg->value,
2891 reg->size);
2892 command_print(CMD,
2893 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2894 count, reg->name,
2895 reg->size, value,
2896 reg->dirty
2897 ? " (dirty)"
2898 : "");
2899 free(value);
2900 } else {
2901 command_print(CMD, "(%i) %s (/%" PRIu32 ")",
2902 count, reg->name,
2903 reg->size);
2904 }
2905 }
2906 cache = cache->next;
2907 }
2908
2909 return ERROR_OK;
2910 }
2911
2912 /* access a single register by its ordinal number */
2913 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2914 unsigned num;
2915 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2916
2917 struct reg_cache *cache = target->reg_cache;
2918 count = 0;
2919 while (cache) {
2920 unsigned i;
2921 for (i = 0; i < cache->num_regs; i++) {
2922 if (count++ == num) {
2923 reg = &cache->reg_list[i];
2924 break;
2925 }
2926 }
2927 if (reg)
2928 break;
2929 cache = cache->next;
2930 }
2931
2932 if (!reg) {
2933 command_print(CMD, "%i is out of bounds, the current target "
2934 "has only %i registers (0 - %i)", num, count, count - 1);
2935 return ERROR_OK;
2936 }
2937 } else {
2938 /* access a single register by its name */
2939 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2940
2941 if (!reg)
2942 goto not_found;
2943 }
2944
2945 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2946
2947 if (!reg->exist)
2948 goto not_found;
2949
2950 /* display a register */
2951 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2952 && (CMD_ARGV[1][0] <= '9')))) {
2953 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2954 reg->valid = 0;
2955
2956 if (reg->valid == 0)
2957 reg->type->get(reg);
2958 value = buf_to_hex_str(reg->value, reg->size);
2959 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2960 free(value);
2961 return ERROR_OK;
2962 }
2963
2964 /* set register value */
2965 if (CMD_ARGC == 2) {
2966 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2967 if (buf == NULL)
2968 return ERROR_FAIL;
2969 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2970
2971 reg->type->set(reg, buf);
2972
2973 value = buf_to_hex_str(reg->value, reg->size);
2974 command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2975 free(value);
2976
2977 free(buf);
2978
2979 return ERROR_OK;
2980 }
2981
2982 return ERROR_COMMAND_SYNTAX_ERROR;
2983
2984 not_found:
2985 command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
2986 return ERROR_OK;
2987 }
2988
2989 COMMAND_HANDLER(handle_poll_command)
2990 {
2991 int retval = ERROR_OK;
2992 struct target *target = get_current_target(CMD_CTX);
2993
2994 if (CMD_ARGC == 0) {
2995 command_print(CMD, "background polling: %s",
2996 jtag_poll_get_enabled() ? "on" : "off");
2997 command_print(CMD, "TAP: %s (%s)",
2998 target->tap->dotted_name,
2999 target->tap->enabled ? "enabled" : "disabled");
3000 if (!target->tap->enabled)
3001 return ERROR_OK;
3002 retval = target_poll(target);
3003 if (retval != ERROR_OK)
3004 return retval;
3005 retval = target_arch_state(target);
3006 if (retval != ERROR_OK)
3007 return retval;
3008 } else if (CMD_ARGC == 1) {
3009 bool enable;
3010 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
3011 jtag_poll_set_enabled(enable);
3012 } else
3013 return ERROR_COMMAND_SYNTAX_ERROR;
3014
3015 return retval;
3016 }
3017
3018 COMMAND_HANDLER(handle_wait_halt_command)
3019 {
3020 if (CMD_ARGC > 1)
3021 return ERROR_COMMAND_SYNTAX_ERROR;
3022
3023 unsigned ms = DEFAULT_HALT_TIMEOUT;
3024 if (1 == CMD_ARGC) {
3025 int retval = parse_uint(CMD_ARGV[0], &ms);
3026 if (ERROR_OK != retval)
3027 return ERROR_COMMAND_SYNTAX_ERROR;
3028 }
3029
3030 struct target *target = get_current_target(CMD_CTX);
3031 return target_wait_state(target, TARGET_HALTED, ms);
3032 }
3033
3034 /* wait for target state to change. The trick here is to have a low
3035 * latency for short waits and not to suck up all the CPU time
3036 * on longer waits.
3037 *
3038 * After 500ms, keep_alive() is invoked
3039 */
3040 int target_wait_state(struct target *target, enum target_state state, int ms)
3041 {
3042 int retval;
3043 int64_t then = 0, cur;
3044 bool once = true;
3045
3046 for (;;) {
3047 retval = target_poll(target);
3048 if (retval != ERROR_OK)
3049 return retval;
3050 if (target->state == state)
3051 break;
3052 cur = timeval_ms();
3053 if (once) {
3054 once = false;
3055 then = timeval_ms();
3056 LOG_DEBUG("waiting for target %s...",
3057 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3058 }
3059
3060 if (cur-then > 500)
3061 keep_alive();
3062
3063 if ((cur-then) > ms) {
3064 LOG_ERROR("timed out while waiting for target %s",
3065 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3066 return ERROR_FAIL;
3067 }
3068 }
3069
3070 return ERROR_OK;
3071 }
3072
3073 COMMAND_HANDLER(handle_halt_command)
3074 {
3075 LOG_DEBUG("-");
3076
3077 struct target *target = get_current_target(CMD_CTX);
3078
3079 target->verbose_halt_msg = true;
3080
3081 int retval = target_halt(target);
3082 if (ERROR_OK != retval)
3083 return retval;
3084
3085 if (CMD_ARGC == 1) {
3086 unsigned wait_local;
3087 retval = parse_uint(CMD_ARGV[0], &wait_local);
3088 if (ERROR_OK != retval)
3089 return ERROR_COMMAND_SYNTAX_ERROR;
3090 if (!wait_local)
3091 return ERROR_OK;
3092 }
3093
3094 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3095 }
3096
3097 COMMAND_HANDLER(handle_soft_reset_halt_command)
3098 {
3099 struct target *target = get_current_target(CMD_CTX);
3100
3101 LOG_USER("requesting target halt and executing a soft reset");
3102
3103 target_soft_reset_halt(target);
3104
3105 return ERROR_OK;
3106 }
3107
3108 COMMAND_HANDLER(handle_reset_command)
3109 {
3110 if (CMD_ARGC > 1)
3111 return ERROR_COMMAND_SYNTAX_ERROR;
3112
3113 enum target_reset_mode reset_mode = RESET_RUN;
3114 if (CMD_ARGC == 1) {
3115 const Jim_Nvp *n;
3116 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3117 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3118 return ERROR_COMMAND_SYNTAX_ERROR;
3119 reset_mode = n->value;
3120 }
3121
3122 /* reset *all* targets */
3123 return target_process_reset(CMD, reset_mode);
3124 }
3125
3126
3127 COMMAND_HANDLER(handle_resume_command)
3128 {
3129 int current = 1;
3130 if (CMD_ARGC > 1)
3131 return ERROR_COMMAND_SYNTAX_ERROR;
3132
3133 struct target *target = get_current_target(CMD_CTX);
3134
3135 /* with no CMD_ARGV, resume from current pc, addr = 0,
3136 * with one arguments, addr = CMD_ARGV[0],
3137 * handle breakpoints, not debugging */
3138 target_addr_t addr = 0;
3139 if (CMD_ARGC == 1) {
3140 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3141 current = 0;
3142 }
3143
3144 return target_resume(target, current, addr, 1, 0);
3145 }
3146
3147 COMMAND_HANDLER(handle_step_command)
3148 {
3149 if (CMD_ARGC > 1)
3150 return ERROR_COMMAND_SYNTAX_ERROR;
3151
3152 LOG_DEBUG("-");
3153
3154 /* with no CMD_ARGV, step from current pc, addr = 0,
3155 * with one argument addr = CMD_ARGV[0],
3156 * handle breakpoints, debugging */
3157 target_addr_t addr = 0;
3158 int current_pc = 1;
3159 if (CMD_ARGC == 1) {
3160 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3161 current_pc = 0;
3162 }
3163
3164 struct target *target = get_current_target(CMD_CTX);
3165
3166 return target_step(target, current_pc, addr, 1);
3167 }
3168
3169 void target_handle_md_output(struct command_invocation *cmd,
3170 struct target *target, target_addr_t address, unsigned size,
3171 unsigned count, const uint8_t *buffer)
3172 {
3173 const unsigned line_bytecnt = 32;
3174 unsigned line_modulo = line_bytecnt / size;
3175
3176 char output[line_bytecnt * 4 + 1];
3177 unsigned output_len = 0;
3178
3179 const char *value_fmt;
3180 switch (size) {
3181 case 8:
3182 value_fmt = "%16.16"PRIx64" ";
3183 break;
3184 case 4:
3185 value_fmt = "%8.8"PRIx64" ";
3186 break;
3187 case 2:
3188 value_fmt = "%4.4"PRIx64" ";
3189 break;
3190 case 1:
3191 value_fmt = "%2.2"PRIx64" ";
3192 break;
3193 default:
3194 /* "can't happen", caller checked */
3195 LOG_ERROR("invalid memory read size: %u", size);
3196 return;
3197 }
3198
3199 for (unsigned i = 0; i < count; i++) {
3200 if (i % line_modulo == 0) {
3201 output_len += snprintf(output + output_len,
3202 sizeof(output) - output_len,
3203 TARGET_ADDR_FMT ": ",
3204 (address + (i * size)));
3205 }
3206
3207 uint64_t value = 0;
3208 const uint8_t *value_ptr = buffer + i * size;
3209 switch (size) {
3210 case 8:
3211 value = target_buffer_get_u64(target, value_ptr);
3212 break;
3213 case 4:
3214 value = target_buffer_get_u32(target, value_ptr);
3215 break;
3216 case 2:
3217 value = target_buffer_get_u16(target, value_ptr);
3218 break;
3219 case 1:
3220 value = *value_ptr;
3221 }
3222 output_len += snprintf(output + output_len,
3223 sizeof(output) - output_len,
3224 value_fmt, value);
3225
3226 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3227 command_print(cmd, "%s", output);
3228 output_len = 0;
3229 }
3230 }
3231 }
3232
3233 COMMAND_HANDLER(handle_md_command)
3234 {
3235 if (CMD_ARGC < 1)
3236 return ERROR_COMMAND_SYNTAX_ERROR;
3237
3238 unsigned size = 0;
3239 switch (CMD_NAME[2]) {
3240 case 'd':
3241 size = 8;
3242 break;
3243 case 'w':
3244 size = 4;
3245 break;
3246 case 'h':
3247 size = 2;
3248 break;
3249 case 'b':
3250 size = 1;
3251 break;
3252 default:
3253 return ERROR_COMMAND_SYNTAX_ERROR;
3254 }
3255
3256 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3257 int (*fn)(struct target *target,
3258 target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
3259 if (physical) {
3260 CMD_ARGC--;
3261 CMD_ARGV++;
3262 fn = target_read_phys_memory;
3263 } else
3264 fn = target_read_memory;
3265 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
3266 return ERROR_COMMAND_SYNTAX_ERROR;
3267
3268 target_addr_t address;
3269 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3270
3271 unsigned count = 1;
3272 if (CMD_ARGC == 2)
3273 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
3274
3275 uint8_t *buffer = calloc(count, size);
3276 if (buffer == NULL) {
3277 LOG_ERROR("Failed to allocate md read buffer");
3278 return ERROR_FAIL;
3279 }
3280
3281 struct target *target = get_current_target(CMD_CTX);
3282 int retval = fn(target, address, size, count, buffer);
3283 if (ERROR_OK == retval)
3284 target_handle_md_output(CMD, target, address, size, count, buffer);
3285
3286 free(buffer);
3287
3288 return retval;
3289 }
3290
3291 typedef int (*target_write_fn)(struct target *target,
3292 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
3293
3294 static int target_fill_mem(struct target *target,
3295 target_addr_t address,
3296 target_write_fn fn,
3297 unsigned data_size,
3298 /* value */
3299 uint64_t b,
3300 /* count */
3301 unsigned c)
3302 {
3303 /* We have to write in reasonably large chunks to be able
3304 * to fill large memory areas with any sane speed */
3305 const unsigned chunk_size = 16384;
3306 uint8_t *target_buf = malloc(chunk_size * data_size);
3307 if (target_buf == NULL) {
3308 LOG_ERROR("Out of memory");
3309 return ERROR_FAIL;
3310 }
3311
3312 for (unsigned i = 0; i < chunk_size; i++) {
3313 switch (data_size) {
3314 case 8:
3315 target_buffer_set_u64(target, target_buf + i * data_size, b);
3316 break;
3317 case 4:
3318 target_buffer_set_u32(target, target_buf + i * data_size, b);
3319 break;
3320 case 2:
3321 target_buffer_set_u16(target, target_buf + i * data_size, b);
3322 break;
3323 case 1:
3324 target_buffer_set_u8(target, target_buf + i * data_size, b);
3325 break;
3326 default:
3327 exit(-1);
3328 }
3329 }
3330
3331 int retval = ERROR_OK;
3332
3333 for (unsigned x = 0; x < c; x += chunk_size) {
3334 unsigned current;
3335 current = c - x;
3336 if (current > chunk_size)
3337 current = chunk_size;
3338 retval = fn(target, address + x * data_size, data_size, current, target_buf);
3339 if (retval != ERROR_OK)
3340 break;
3341 /* avoid GDB timeouts */
3342 keep_alive();
3343 }
3344 free(target_buf);
3345
3346 return retval;
3347 }
3348
3349
3350 COMMAND_HANDLER(handle_mw_command)
3351 {
3352 if (CMD_ARGC < 2)
3353 return ERROR_COMMAND_SYNTAX_ERROR;
3354 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3355 target_write_fn fn;
3356 if (physical) {
3357 CMD_ARGC--;
3358 CMD_ARGV++;
3359 fn = target_write_phys_memory;
3360 } else
3361 fn = target_write_memory;
3362 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
3363 return ERROR_COMMAND_SYNTAX_ERROR;
3364
3365 target_addr_t address;
3366 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
3367
3368 uint64_t value;
3369 COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
3370
3371 unsigned count = 1;
3372 if (CMD_ARGC == 3)
3373 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
3374
3375 struct target *target = get_current_target(CMD_CTX);
3376 unsigned wordsize;
3377 switch (CMD_NAME[2]) {
3378 case 'd':
3379 wordsize = 8;
3380 break;
3381 case 'w':
3382 wordsize = 4;
3383 break;
3384 case 'h':
3385 wordsize = 2;
3386 break;
3387 case 'b':
3388 wordsize = 1;
3389 break;
3390 default:
3391 return ERROR_COMMAND_SYNTAX_ERROR;
3392 }
3393
3394 return target_fill_mem(target, address, fn, wordsize, value, count);
3395 }
3396
3397 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
3398 target_addr_t *min_address, target_addr_t *max_address)
3399 {
3400 if (CMD_ARGC < 1 || CMD_ARGC > 5)
3401 return ERROR_COMMAND_SYNTAX_ERROR;
3402
3403 /* a base address isn't always necessary,
3404 * default to 0x0 (i.e. don't relocate) */
3405 if (CMD_ARGC >= 2) {
3406 target_addr_t addr;
3407 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3408 image->base_address = addr;
3409 image->base_address_set = true;
3410 } else
3411 image->base_address_set = false;
3412
3413 image->start_address_set = false;
3414
3415 if (CMD_ARGC >= 4)
3416 COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
3417 if (CMD_ARGC == 5) {
3418 COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
3419 /* use size (given) to find max (required) */
3420 *max_address += *min_address;
3421 }
3422
3423 if (*min_address > *max_address)
3424 return ERROR_COMMAND_SYNTAX_ERROR;
3425
3426 return ERROR_OK;
3427 }
3428
3429 COMMAND_HANDLER(handle_load_image_command)
3430 {
3431 uint8_t *buffer;
3432 size_t buf_cnt;
3433 uint32_t image_size;
3434 target_addr_t min_address = 0;
3435 target_addr_t max_address = -1;
3436 struct image image;
3437
3438 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
3439 &image, &min_address, &max_address);
3440 if (ERROR_OK != retval)
3441 return retval;
3442
3443 struct target *target = get_current_target(CMD_CTX);
3444
3445 struct duration bench;
3446 duration_start(&bench);
3447
3448 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
3449 return ERROR_FAIL;
3450
3451 image_size = 0x0;
3452 retval = ERROR_OK;
3453 for (unsigned int i = 0; i < image.num_sections; i++) {
3454 buffer = malloc(image.sections[i].size);
3455 if (buffer == NULL) {
3456 command_print(CMD,
3457 "error allocating buffer for section (%d bytes)",
3458 (int)(image.sections[i].size));
3459 retval = ERROR_FAIL;
3460 break;
3461 }
3462
3463 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3464 if (retval != ERROR_OK) {
3465 free(buffer);
3466 break;
3467 }
3468
3469 uint32_t offset = 0;
3470 uint32_t length = buf_cnt;
3471
3472 /* DANGER!!! beware of unsigned comparison here!!! */
3473
3474 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3475 (image.sections[i].base_address < max_address)) {
3476
3477 if (image.sections[i].base_address < min_address) {
3478 /* clip addresses below */
3479 offset += min_address-image.sections[i].base_address;
3480 length -= offset;
3481 }
3482
3483 if (image.sections[i].base_address + buf_cnt > max_address)
3484 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3485
3486 retval = target_write_buffer(target,
3487 image.sections[i].base_address + offset, length, buffer + offset);
3488 if (retval != ERROR_OK) {
3489 free(buffer);
3490 break;
3491 }
3492 image_size += length;
3493 command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
3494 (unsigned int)length,
3495 image.sections[i].base_address + offset);
3496 }
3497
3498 free(buffer);
3499 }
3500
3501 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3502 command_print(CMD, "downloaded %" PRIu32 " bytes "
3503 "in %fs (%0.3f KiB/s)", image_size,
3504 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3505 }
3506
3507 image_close(&image);
3508
3509 return retval;
3510
3511 }
3512
3513 COMMAND_HANDLER(handle_dump_image_command)
3514 {
3515 struct fileio *fileio;
3516 uint8_t *buffer;
3517 int retval, retvaltemp;
3518 target_addr_t address, size;
3519 struct duration bench;
3520 struct target *target = get_current_target(CMD_CTX);
3521
3522 if (CMD_ARGC != 3)
3523 return ERROR_COMMAND_SYNTAX_ERROR;
3524
3525 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
3526 COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
3527
3528 uint32_t buf_size = (size > 4096) ? 4096 : size;
3529 buffer = malloc(buf_size);
3530 if (!buffer)
3531 return ERROR_FAIL;
3532
3533 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3534 if (retval != ERROR_OK) {
3535 free(buffer);
3536 return retval;
3537 }
3538
3539 duration_start(&bench);
3540
3541 while (size > 0) {
3542 size_t size_written;
3543 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3544 retval = target_read_buffer(target, address, this_run_size, buffer);
3545 if (retval != ERROR_OK)
3546 break;
3547
3548 retval = fileio_write(fileio, this_run_size, buffer, &size_written);
3549 if (retval != ERROR_OK)
3550 break;
3551
3552 size -= this_run_size;
3553 address += this_run_size;
3554 }
3555
3556 free(buffer);
3557
3558 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3559 size_t filesize;
3560 retval = fileio_size(fileio, &filesize);
3561 if (retval != ERROR_OK)
3562 return retval;
3563 command_print(CMD,
3564 "dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
3565 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3566 }
3567
3568 retvaltemp = fileio_close(fileio);
3569 if (retvaltemp != ERROR_OK)
3570 return retvaltemp;
3571
3572 return retval;
3573 }
3574
3575 enum verify_mode {
3576 IMAGE_TEST = 0,
3577 IMAGE_VERIFY = 1,
3578 IMAGE_CHECKSUM_ONLY = 2
3579 };
3580
3581 static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
3582 {
3583 uint8_t *buffer;
3584 size_t buf_cnt;
3585 uint32_t image_size;
3586 int retval;
3587 uint32_t checksum = 0;
3588 uint32_t mem_checksum = 0;
3589
3590 struct image image;
3591
3592 struct target *target = get_current_target(CMD_CTX);
3593
3594 if (CMD_ARGC < 1)
3595 return ERROR_COMMAND_SYNTAX_ERROR;
3596
3597 if (!target) {
3598 LOG_ERROR("no target selected");
3599 return ERROR_FAIL;
3600 }
3601
3602 struct duration bench;
3603 duration_start(&bench);
3604
3605 if (CMD_ARGC >= 2) {
3606 target_addr_t addr;
3607 COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
3608 image.base_address = addr;
3609 image.base_address_set = true;
3610 } else {
3611 image.base_address_set = false;
3612 image.base_address = 0x0;
3613 }
3614
3615 image.start_address_set = false;
3616
3617 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3618 if (retval != ERROR_OK)
3619 return retval;
3620
3621 image_size = 0x0;
3622 int diffs = 0;
3623 retval = ERROR_OK;
3624 for (unsigned int i = 0; i < image.num_sections; i++) {
3625 buffer = malloc(image.sections[i].size);
3626 if (buffer == NULL) {
3627 command_print(CMD,
3628 "error allocating buffer for section (%" PRIu32 " bytes)",
3629 image.sections[i].size);
3630 break;
3631 }
3632 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3633 if (retval != ERROR_OK) {
3634 free(buffer);
3635 break;
3636 }
3637
3638 if (verify >= IMAGE_VERIFY) {
3639 /* calculate checksum of image */
3640 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3641 if (retval != ERROR_OK) {
3642 free(buffer);
3643 break;
3644 }
3645
3646 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3647 if (retval != ERROR_OK) {
3648 free(buffer);
3649 break;
3650 }
3651 if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
3652 LOG_ERROR("checksum mismatch");
3653 free(buffer);
3654 retval = ERROR_FAIL;
3655 goto done;
3656 }
3657 if (checksum != mem_checksum) {
3658 /* failed crc checksum, fall back to a binary compare */
3659 uint8_t *data;
3660
3661 if (diffs == 0)
3662 LOG_ERROR("checksum mismatch - attempting binary compare");
3663
3664 data = malloc(buf_cnt);
3665
3666 retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
3667 if (retval == ERROR_OK) {
3668 uint32_t t;
3669 for (t = 0; t < buf_cnt; t++) {
3670 if (data[t] != buffer[t]) {
3671 command_print(CMD,
3672 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3673 diffs,
3674 (unsigned)(t + image.sections[i].base_address),
3675 data[t],
3676 buffer[t]);
3677 if (diffs++ >= 127) {
3678 command_print(CMD, "More than 128 errors, the rest are not printed.");
3679 free(data);
3680 free(buffer);
3681 goto done;
3682 }
3683 }
3684 keep_alive();
3685 }
3686 }
3687 free(data);
3688 }
3689 } else {
3690 command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
3691 image.sections[i].base_address,
3692 buf_cnt);
3693 }
3694
3695 free(buffer);
3696 image_size += buf_cnt;
3697 }
3698 if (diffs > 0)
3699 command_print(CMD, "No more differences found.");
3700 done:
3701 if (diffs > 0)
3702 retval = ERROR_FAIL;
3703 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3704 command_print(CMD, "verified %" PRIu32 " bytes "
3705 "in %fs (%0.3f KiB/s)", image_size,
3706 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3707 }
3708
3709 image_close(&image);
3710
3711 return retval;
3712 }
3713
3714 COMMAND_HANDLER(handle_verify_image_checksum_command)
3715 {
3716 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
3717 }
3718
3719 COMMAND_HANDLER(handle_verify_image_command)
3720 {
3721 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
3722 }
3723
3724 COMMAND_HANDLER(handle_test_image_command)
3725 {
3726 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
3727 }
3728
3729 static int handle_bp_command_list(struct command_invocation *cmd)
3730 {
3731 struct target *target = get_current_target(cmd->ctx);
3732 struct breakpoint *breakpoint = target->breakpoints;
3733 while (breakpoint) {
3734 if (breakpoint->type == BKPT_SOFT) {
3735 char *buf = buf_to_hex_str(breakpoint->orig_instr,
3736 breakpoint->length);
3737 command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, %i, 0x%s",
3738 breakpoint->address,
3739 breakpoint->length,
3740 breakpoint->set, buf);
3741 free(buf);
3742 } else {
3743 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3744 command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3745 breakpoint->asid,
3746 breakpoint->length, breakpoint->set);
3747 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3748 command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3749 breakpoint->address,
3750 breakpoint->length, breakpoint->set);
3751 command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3752 breakpoint->asid);
3753 } else
3754 command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %i",
3755 breakpoint->address,
3756 breakpoint->length, breakpoint->set);
3757 }
3758
3759 breakpoint = breakpoint->next;
3760 }
3761 return ERROR_OK;
3762 }
3763
3764 static int handle_bp_command_set(struct command_invocation *cmd,
3765 target_addr_t addr, uint32_t asid, uint32_t length, int hw)
3766 {
3767 struct target *target = get_current_target(cmd->ctx);
3768 int retval;
3769
3770 if (asid == 0) {
3771 retval = breakpoint_add(target, addr, length, hw);
3772 /* error is always logged in breakpoint_add(), do not print it again */
3773 if (ERROR_OK == retval)
3774 command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
3775
3776 } else if (addr == 0) {
3777 if (target->type->add_context_breakpoint == NULL) {
3778 LOG_ERROR("Context breakpoint not available");
3779 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3780 }
3781 retval = context_breakpoint_add(target, asid, length, hw);
3782 /* error is always logged in context_breakpoint_add(), do not print it again */
3783 if (ERROR_OK == retval)
3784 command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3785
3786 } else {
3787 if (target->type->add_hybrid_breakpoint == NULL) {
3788 LOG_ERROR("Hybrid breakpoint not available");
3789 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
3790 }
3791 retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3792 /* error is always logged in hybrid_breakpoint_add(), do not print it again */
3793 if (ERROR_OK == retval)
3794 command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3795 }
3796 return retval;
3797 }
3798
3799 COMMAND_HANDLER(handle_bp_command)
3800 {
3801 target_addr_t addr;
3802 uint32_t asid;
3803 uint32_t length;
3804 int hw = BKPT_SOFT;
3805
3806 switch (CMD_ARGC) {
3807 case 0:
3808 return handle_bp_command_list(CMD);
3809
3810 case 2:
3811 asid = 0;
3812 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3813 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3814 return handle_bp_command_set(CMD, addr, asid, length, hw);
3815
3816 case 3:
3817 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3818 hw = BKPT_HARD;
3819 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3820 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3821 asid = 0;
3822 return handle_bp_command_set(CMD, addr, asid, length, hw);
3823 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3824 hw = BKPT_HARD;
3825 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3826 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3827 addr = 0;
3828 return handle_bp_command_set(CMD, addr, asid, length, hw);
3829 }
3830 /* fallthrough */
3831 case 4:
3832 hw = BKPT_HARD;
3833 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3834 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3835 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3836 return handle_bp_command_set(CMD, addr, asid, length, hw);
3837
3838 default:
3839 return ERROR_COMMAND_SYNTAX_ERROR;
3840 }
3841 }
3842
3843 COMMAND_HANDLER(handle_rbp_command)
3844 {
3845 if (CMD_ARGC != 1)
3846 return ERROR_COMMAND_SYNTAX_ERROR;
3847
3848 struct target *target = get_current_target(CMD_CTX);
3849
3850 if (!strcmp(CMD_ARGV[0], "all")) {
3851 breakpoint_remove_all(target);
3852 } else {
3853 target_addr_t addr;
3854 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3855
3856 breakpoint_remove(target, addr);
3857 }
3858
3859 return ERROR_OK;
3860 }
3861
3862 COMMAND_HANDLER(handle_wp_command)
3863 {
3864 struct target *target = get_current_target(CMD_CTX);
3865
3866 if (CMD_ARGC == 0) {
3867 struct watchpoint *watchpoint = target->watchpoints;
3868
3869 while (watchpoint) {
3870 command_print(CMD, "address: " TARGET_ADDR_FMT
3871 ", len: 0x%8.8" PRIx32
3872 ", r/w/a: %i, value: 0x%8.8" PRIx32
3873 ", mask: 0x%8.8" PRIx32,
3874 watchpoint->address,
3875 watchpoint->length,
3876 (int)watchpoint->rw,
3877 watchpoint->value,
3878 watchpoint->mask);
3879 watchpoint = watchpoint->next;
3880 }
3881 return ERROR_OK;
3882 }
3883
3884 enum watchpoint_rw type = WPT_ACCESS;
3885 uint32_t addr = 0;
3886 uint32_t length = 0;
3887 uint32_t data_value = 0x0;
3888 uint32_t data_mask = 0xffffffff;
3889
3890 switch (CMD_ARGC) {
3891 case 5:
3892 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3893 /* fall through */
3894 case 4:
3895 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3896 /* fall through */
3897 case 3:
3898 switch (CMD_ARGV[2][0]) {
3899 case 'r':
3900 type = WPT_READ;
3901 break;
3902 case 'w':
3903 type = WPT_WRITE;
3904 break;
3905 case 'a':
3906 type = WPT_ACCESS;
3907 break;
3908 default:
3909 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3910 return ERROR_COMMAND_SYNTAX_ERROR;
3911 }
3912 /* fall through */
3913 case 2:
3914 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3915 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3916 break;
3917
3918 default:
3919 return ERROR_COMMAND_SYNTAX_ERROR;
3920 }
3921
3922 int retval = watchpoint_add(target, addr, length, type,
3923 data_value, data_mask);
3924 if (ERROR_OK != retval)
3925 LOG_ERROR("Failure setting watchpoints");
3926
3927 return retval;
3928 }
3929
3930 COMMAND_HANDLER(handle_rwp_command)
3931 {
3932 if (CMD_ARGC != 1)
3933 return ERROR_COMMAND_SYNTAX_ERROR;
3934
3935 uint32_t addr;
3936 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3937
3938 struct target *target = get_current_target(CMD_CTX);
3939 watchpoint_remove(target, addr);
3940
3941 return ERROR_OK;
3942 }
3943
3944 /**
3945 * Translate a virtual address to a physical address.
3946 *
3947 * The low-level target implementation must have logged a detailed error
3948 * which is forwarded to telnet/GDB session.
3949 */
3950 COMMAND_HANDLER(handle_virt2phys_command)
3951 {
3952 if (CMD_ARGC != 1)
3953 return ERROR_COMMAND_SYNTAX_ERROR;
3954
3955 target_addr_t va;
3956 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
3957 target_addr_t pa;
3958
3959 struct target *target = get_current_target(CMD_CTX);
3960 int retval = target->type->virt2phys(target, va, &pa);
3961 if (retval == ERROR_OK)
3962 command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
3963
3964 return retval;
3965 }
3966
3967 static void writeData(FILE *f, const void *data, size_t len)
3968 {
3969 size_t written = fwrite(data, 1, len, f);
3970 if (written != len)
3971 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3972 }
3973
3974 static void writeLong(FILE *f, int l, struct target *target)
3975 {
3976 uint8_t val[4];
3977
3978 target_buffer_set_u32(target, val, l);
3979 writeData(f, val, 4);
3980 }
3981
3982 static void writeString(FILE *f, char *s)
3983 {
3984 writeData(f, s, strlen(s));
3985 }
3986
3987 typedef unsigned char UNIT[2]; /* unit of profiling */
3988
3989 /* Dump a gmon.out histogram file. */
3990 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename, bool with_range,
3991 uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
3992 {
3993 uint32_t i;
3994 FILE *f = fopen(filename, "w");
3995 if (f == NULL)
3996 return;
3997 writeString(f, "gmon");
3998 writeLong(f, 0x00000001, target); /* Version */
3999 writeLong(f, 0, target); /* padding */
4000 writeLong(f, 0, target); /* padding */
4001 writeLong(f, 0, target); /* padding */
4002
4003 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
4004 writeData(f, &zero, 1);
4005
4006 /* figure out bucket size */
4007 uint32_t min;
4008 uint32_t max;
4009 if (with_range) {
4010 min = start_address;
4011 max = end_address;
4012 } else {
4013 min = samples[0];
4014 max = samples[0];
4015 for (i = 0; i < sampleNum; i++) {
4016 if (min > samples[i])
4017 min = samples[i];
4018 if (max < samples[i])
4019 max = samples[i];
4020 }
4021
4022 /* max should be (largest sample + 1)
4023 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
4024 max++;
4025 }
4026
4027 int addressSpace = max - min;
4028 assert(addressSpace >= 2);
4029
4030 /* FIXME: What is the reasonable number of buckets?
4031 * The profiling result will be more accurate if there are enough buckets. */
4032 static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
4033 uint32_t numBuckets = addressSpace / sizeof(UNIT);
4034 if (numBuckets > maxBuckets)
4035 numBuckets = maxBuckets;
4036 int *buckets = malloc(sizeof(int) * numBuckets);
4037 if (buckets == NULL) {
4038 fclose(f);
4039 return;
4040 }
4041 memset(buckets, 0, sizeof(int) * numBuckets);
4042 for (i = 0; i < sampleNum; i++) {
4043 uint32_t address = samples[i];
4044
4045 if ((address < min) || (max <= address))
4046 continue;
4047
4048 long long a = address - min;
4049 long long b = numBuckets;
4050 long long c = addressSpace;
4051 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
4052 buckets[index_t]++;
4053 }
4054
4055 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
4056 writeLong(f, min, target); /* low_pc */
4057 writeLong(f, max, target); /* high_pc */
4058 writeLong(f, numBuckets, target); /* # of buckets */
4059 float sample_rate = sampleNum / (duration_ms / 1000.0);
4060 writeLong(f, sample_rate, target);
4061 writeString(f, "seconds");
4062 for (i = 0; i < (15-strlen("seconds")); i++)
4063 writeData(f, &zero, 1);
4064 writeString(f, "s");
4065
4066 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
4067
4068 char *data = malloc(2 * numBuckets);
4069 if (data != NULL) {
4070 for (i = 0; i < numBuckets; i++) {
4071 int val;
4072 val = buckets[i];
4073 if (val > 65535)
4074 val = 65535;
4075 data[i * 2] = val&0xff;
4076 data[i * 2 + 1] = (val >> 8) & 0xff;
4077 }
4078 free(buckets);
4079 writeData(f, data, numBuckets * 2);
4080 free(data);
4081 } else
4082 free(buckets);
4083
4084 fclose(f);
4085 }
4086
4087 /* profiling samples the CPU PC as quickly as OpenOCD is able,
4088 * which will be used as a random sampling of PC */
4089 COMMAND_HANDLER(handle_profile_command)
4090 {
4091 struct target *target = get_current_target(CMD_CTX);
4092
4093 if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
4094 return ERROR_COMMAND_SYNTAX_ERROR;
4095
4096 const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
4097 uint32_t offset;
4098 uint32_t num_of_samples;
4099 int retval = ERROR_OK;
4100 bool halted_before_profiling = target->state == TARGET_HALTED;
4101
4102 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
4103
4104 uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
4105 if (samples == NULL) {
4106 LOG_ERROR("No memory to store samples.");
4107 return ERROR_FAIL;
4108 }
4109
4110 uint64_t timestart_ms = timeval_ms();
4111 /**
4112 * Some cores let us sample the PC without the
4113 * annoying halt/resume step; for example, ARMv7 PCSR.
4114 * Provide a way to use that more efficient mechanism.
4115 */
4116 retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
4117 &num_of_samples, offset);
4118 if (retval != ERROR_OK) {
4119 free(samples);
4120 return retval;
4121 }
4122 uint32_t duration_ms = timeval_ms() - timestart_ms;
4123
4124 assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
4125
4126 retval = target_poll(target);
4127 if (retval != ERROR_OK) {
4128 free(samples);
4129 return retval;
4130 }
4131
4132 if (target->state == TARGET_RUNNING && halted_before_profiling) {
4133 /* The target was halted before we started and is running now. Halt it,
4134 * for consistency. */
4135 retval = target_halt(target);
4136 if (retval != ERROR_OK) {
4137 free(samples);
4138 return retval;
4139 }
4140 } else if (target->state == TARGET_HALTED && !halted_before_profiling) {
4141 /* The target was running before we started and is halted now. Resume
4142 * it, for consistency. */
4143 retval = target_resume(target, 1, 0, 0, 0);
4144 if (retval != ERROR_OK) {
4145 free(samples);
4146 return retval;
4147 }
4148 }
4149
4150 retval = target_poll(target);
4151 if (retval != ERROR_OK) {
4152 free(samples);
4153 return retval;
4154 }
4155
4156 uint32_t start_address = 0;
4157 uint32_t end_address = 0;
4158 bool with_range = false;
4159 if (CMD_ARGC == 4) {
4160 with_range = true;
4161 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
4162 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
4163 }
4164
4165 write_gmon(samples, num_of_samples, CMD_ARGV[1],
4166 with_range, start_address, end_address, target, duration_ms);
4167 command_print(CMD, "Wrote %s", CMD_ARGV[1]);
4168
4169 free(samples);
4170 return retval;
4171 }
4172
4173 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
4174 {
4175 char *namebuf;
4176 Jim_Obj *nameObjPtr, *valObjPtr;
4177 int result;
4178
4179 namebuf = alloc_printf("%s(%d)", varname, idx);
4180 if (!namebuf)
4181 return JIM_ERR;
4182
4183 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4184 valObjPtr = Jim_NewIntObj(interp, val);
4185 if (!nameObjPtr || !valObjPtr) {
4186 free(namebuf);
4187 return JIM_ERR;
4188 }
4189
4190 Jim_IncrRefCount(nameObjPtr);
4191 Jim_IncrRefCount(valObjPtr);
4192 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
4193 Jim_DecrRefCount(interp, nameObjPtr);
4194 Jim_DecrRefCount(interp, valObjPtr);
4195 free(namebuf);
4196 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
4197 return result;
4198 }
4199
4200 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4201 {
4202 struct command_context *context;
4203 struct target *target;
4204
4205 context = current_command_context(interp);
4206 assert(context != NULL);
4207
4208 target = get_current_target(context);
4209 if (target == NULL) {
4210 LOG_ERROR("mem2array: no current target");
4211 return JIM_ERR;
4212 }
4213
4214 return target_mem2array(interp, target, argc - 1, argv + 1);
4215 }
4216
4217 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
4218 {
4219 long l;
4220 uint32_t width;
4221 int len;
4222 uint32_t addr;
4223 uint32_t count;
4224 uint32_t v;
4225 const char *varname;
4226 const char *phys;
4227 bool is_phys;
4228 int n, e, retval;
4229 uint32_t i;
4230
4231 /* argv[1] = name of array to receive the data
4232 * argv[2] = desired width
4233 * argv[3] = memory address
4234 * argv[4] = count of times to read
4235 */
4236
4237 if (argc < 4 || argc > 5) {
4238 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4239 return JIM_ERR;
4240 }
4241 varname = Jim_GetString(argv[0], &len);
4242 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4243
4244 e = Jim_GetLong(interp, argv[1], &l);
4245 width = l;
4246 if (e != JIM_OK)
4247 return e;
4248
4249 e = Jim_GetLong(interp, argv[2], &l);
4250 addr = l;
4251 if (e != JIM_OK)
4252 return e;
4253 e = Jim_GetLong(interp, argv[3], &l);
4254 len = l;
4255 if (e != JIM_OK)
4256 return e;
4257 is_phys = false;
4258 if (argc > 4) {
4259 phys = Jim_GetString(argv[4], &n);
4260 if (!strncmp(phys, "phys", n))
4261 is_phys = true;
4262 else
4263 return JIM_ERR;
4264 }
4265 switch (width) {
4266 case 8:
4267 width = 1;
4268 break;
4269 case 16:
4270 width = 2;
4271 break;
4272 case 32:
4273 width = 4;
4274 break;
4275 default:
4276 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4277 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
4278 return JIM_ERR;
4279 }
4280 if (len == 0) {
4281 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4282 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
4283 return JIM_ERR;
4284 }
4285 if ((addr + (len * width)) < addr) {
4286 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4287 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
4288 return JIM_ERR;
4289 }
4290 /* absurd transfer size? */
4291 if (len > 65536) {
4292 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4293 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
4294 return JIM_ERR;
4295 }
4296
4297 if ((width == 1) ||
4298 ((width == 2) && ((addr & 1) == 0)) ||
4299 ((width == 4) && ((addr & 3) == 0))) {
4300 /* all is well */
4301 } else {
4302 char buf[100];
4303 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4304 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4305 addr,
4306 width);
4307 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4308 return JIM_ERR;
4309 }
4310
4311 /* Transfer loop */
4312
4313 /* index counter */
4314 n = 0;
4315
4316 size_t buffersize = 4096;
4317 uint8_t *buffer = malloc(buffersize);
4318 if (buffer == NULL)
4319 return JIM_ERR;
4320
4321 /* assume ok */
4322 e = JIM_OK;
4323 while (len) {
4324 /* Slurp... in buffer size chunks */
4325
4326 count = len; /* in objects.. */
4327 if (count > (buffersize / width))
4328 count = (buffersize / width);
4329
4330 if (is_phys)
4331 retval = target_read_phys_memory(target, addr, width, count, buffer);
4332 else
4333 retval = target_read_memory(target, addr, width, count, buffer);
4334 if (retval != ERROR_OK) {
4335 /* BOO !*/
4336 LOG_ERROR("mem2array: Read @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4337 addr,
4338 width,
4339 count);
4340 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4341 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
4342 e = JIM_ERR;
4343 break;
4344 } else {
4345 v = 0; /* shut up gcc */
4346 for (i = 0; i < count ; i++, n++) {
4347 switch (width) {
4348 case 4:
4349 v = target_buffer_get_u32(target, &buffer[i*width]);
4350 break;
4351 case 2:
4352 v = target_buffer_get_u16(target, &buffer[i*width]);
4353 break;
4354 case 1:
4355 v = buffer[i] & 0x0ff;
4356 break;
4357 }
4358 new_int_array_element(interp, varname, n, v);
4359 }
4360 len -= count;
4361 addr += count * width;
4362 }
4363 }
4364
4365 free(buffer);
4366
4367 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4368
4369 return e;
4370 }
4371
4372 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
4373 {
4374 char *namebuf;
4375 Jim_Obj *nameObjPtr, *valObjPtr;
4376 int result;
4377 long l;
4378
4379 namebuf = alloc_printf("%s(%d)", varname, idx);
4380 if (!namebuf)
4381 return JIM_ERR;
4382
4383 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
4384 if (!nameObjPtr) {
4385 free(namebuf);
4386 return JIM_ERR;
4387 }
4388
4389 Jim_IncrRefCount(nameObjPtr);
4390 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
4391 Jim_DecrRefCount(interp, nameObjPtr);
4392 free(namebuf);
4393 if (valObjPtr == NULL)
4394 return JIM_ERR;
4395
4396 result = Jim_GetLong(interp, valObjPtr, &l);
4397 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
4398 *val = l;
4399 return result;
4400 }
4401
4402 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4403 {
4404 struct command_context *context;
4405 struct target *target;
4406
4407 context = current_command_context(interp);
4408 assert(context != NULL);
4409
4410 target = get_current_target(context);
4411 if (target == NULL) {
4412 LOG_ERROR("array2mem: no current target");
4413 return JIM_ERR;
4414 }
4415
4416 return target_array2mem(interp, target, argc-1, argv + 1);
4417 }
4418
4419 static int target_array2mem(Jim_Interp *interp, struct target *target,
4420 int argc, Jim_Obj *const *argv)
4421 {
4422 long l;
4423 uint32_t width;
4424 int len;
4425 uint32_t addr;
4426 uint32_t count;
4427 uint32_t v;
4428 const char *varname;
4429 const char *phys;
4430 bool is_phys;
4431 int n, e, retval;
4432 uint32_t i;
4433
4434 /* argv[1] = name of array to get the data
4435 * argv[2] = desired width
4436 * argv[3] = memory address
4437 * argv[4] = count to write
4438 */
4439 if (argc < 4 || argc > 5) {
4440 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
4441 return JIM_ERR;
4442 }
4443 varname = Jim_GetString(argv[0], &len);
4444 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
4445
4446 e = Jim_GetLong(interp, argv[1], &l);
4447 width = l;
4448 if (e != JIM_OK)
4449 return e;
4450
4451 e = Jim_GetLong(interp, argv[2], &l);
4452 addr = l;
4453 if (e != JIM_OK)
4454 return e;
4455 e = Jim_GetLong(interp, argv[3], &l);
4456 len = l;
4457 if (e != JIM_OK)
4458 return e;
4459 is_phys = false;
4460 if (argc > 4) {
4461 phys = Jim_GetString(argv[4], &n);
4462 if (!strncmp(phys, "phys", n))
4463 is_phys = true;
4464 else
4465 return JIM_ERR;
4466 }
4467 switch (width) {
4468 case 8:
4469 width = 1;
4470 break;
4471 case 16:
4472 width = 2;
4473 break;
4474 case 32:
4475 width = 4;
4476 break;
4477 default:
4478 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4479 Jim_AppendStrings(interp, Jim_GetResult(interp),
4480 "Invalid width param, must be 8/16/32", NULL);
4481 return JIM_ERR;
4482 }
4483 if (len == 0) {
4484 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4485 Jim_AppendStrings(interp, Jim_GetResult(interp),
4486 "array2mem: zero width read?", NULL);
4487 return JIM_ERR;
4488 }
4489 if ((addr + (len * width)) < addr) {
4490 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4491 Jim_AppendStrings(interp, Jim_GetResult(interp),
4492 "array2mem: addr + len - wraps to zero?", NULL);
4493 return JIM_ERR;
4494 }
4495 /* absurd transfer size? */
4496 if (len > 65536) {
4497 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4498 Jim_AppendStrings(interp, Jim_GetResult(interp),
4499 "array2mem: absurd > 64K item request", NULL);
4500 return JIM_ERR;
4501 }
4502
4503 if ((width == 1) ||
4504 ((width == 2) && ((addr & 1) == 0)) ||
4505 ((width == 4) && ((addr & 3) == 0))) {
4506 /* all is well */
4507 } else {
4508 char buf[100];
4509 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4510 sprintf(buf, "array2mem address: 0x%08" PRIx32 " is not aligned for %" PRIu32 " byte reads",
4511 addr,
4512 width);
4513 Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
4514 return JIM_ERR;
4515 }
4516
4517 /* Transfer loop */
4518
4519 /* index counter */
4520 n = 0;
4521 /* assume ok */
4522 e = JIM_OK;
4523
4524 size_t buffersize = 4096;
4525 uint8_t *buffer = malloc(buffersize);
4526 if (buffer == NULL)
4527 return JIM_ERR;
4528
4529 while (len) {
4530 /* Slurp... in buffer size chunks */
4531
4532 count = len; /* in objects.. */
4533 if (count > (buffersize / width))
4534 count = (buffersize / width);
4535
4536 v = 0; /* shut up gcc */
4537 for (i = 0; i < count; i++, n++) {
4538 get_int_array_element(interp, varname, n, &v);
4539 switch (width) {
4540 case 4:
4541 target_buffer_set_u32(target, &buffer[i * width], v);
4542 break;
4543 case 2:
4544 target_buffer_set_u16(target, &buffer[i * width], v);
4545 break;
4546 case 1:
4547 buffer[i] = v & 0x0ff;
4548 break;
4549 }
4550 }
4551 len -= count;
4552
4553 if (is_phys)
4554 retval = target_write_phys_memory(target, addr, width, count, buffer);
4555 else
4556 retval = target_write_memory(target, addr, width, count, buffer);
4557 if (retval != ERROR_OK) {
4558 /* BOO !*/
4559 LOG_ERROR("array2mem: Write @ 0x%08" PRIx32 ", w=%" PRIu32 ", cnt=%" PRIu32 ", failed",
4560 addr,
4561 width,
4562 count);
4563 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4564 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4565 e = JIM_ERR;
4566 break;
4567 }
4568 addr += count * width;
4569 }
4570
4571 free(buffer);
4572
4573 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4574
4575 return e;
4576 }
4577
4578 /* FIX? should we propagate errors here rather than printing them
4579 * and continuing?
4580 */
4581 void target_handle_event(struct target *target, enum target_event e)
4582 {
4583 struct target_event_action *teap;
4584 int retval;
4585
4586 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4587 if (teap->event == e) {
4588 LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
4589 target->target_number,
4590 target_name(target),
4591 target_type_name(target),
4592 e,
4593 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4594 Jim_GetString(teap->body, NULL));
4595
4596 /* Override current target by the target an event
4597 * is issued from (lot of scripts need it).
4598 * Return back to previous override as soon
4599 * as the handler processing is done */
4600 struct command_context *cmd_ctx = current_command_context(teap->interp);
4601 struct target *saved_target_override = cmd_ctx->current_target_override;
4602 cmd_ctx->current_target_override = target;
4603
4604 retval = Jim_EvalObj(teap->interp, teap->body);
4605
4606 cmd_ctx->current_target_override = saved_target_override;
4607
4608 if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
4609 return;
4610
4611 if (retval == JIM_RETURN)
4612 retval = teap->interp->returnCode;
4613
4614 if (retval != JIM_OK) {
4615 Jim_MakeErrorMessage(teap->interp);
4616 LOG_USER("Error executing event %s on target %s:\n%s",
4617 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4618 target_name(target),
4619 Jim_GetString(Jim_GetResult(teap->interp), NULL));
4620 /* clean both error code and stacktrace before return */
4621 Jim_Eval(teap->interp, "error \"\" \"\"");
4622 }
4623 }
4624 }
4625 }
4626
4627 /**
4628 * Returns true only if the target has a handler for the specified event.
4629 */
4630 bool target_has_event_action(struct target *target, enum target_event event)
4631 {
4632 struct target_event_action *teap;
4633
4634 for (teap = target->event_action; teap != NULL; teap = teap->next) {
4635 if (teap->event == event)
4636 return true;
4637 }
4638 return false;
4639 }
4640
4641 enum target_cfg_param {
4642 TCFG_TYPE,
4643 TCFG_EVENT,
4644 TCFG_WORK_AREA_VIRT,
4645 TCFG_WORK_AREA_PHYS,
4646 TCFG_WORK_AREA_SIZE,
4647 TCFG_WORK_AREA_BACKUP,
4648 TCFG_ENDIAN,
4649 TCFG_COREID,
4650 TCFG_CHAIN_POSITION,
4651 TCFG_DBGBASE,
4652 TCFG_RTOS,
4653 TCFG_DEFER_EXAMINE,
4654 TCFG_GDB_PORT,
4655 TCFG_GDB_MAX_CONNECTIONS,
4656 };
4657
4658 static Jim_Nvp nvp_config_opts[] = {
4659 { .name = "-type", .value = TCFG_TYPE },
4660 { .name = "-event", .value = TCFG_EVENT },
4661 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
4662 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
4663 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
4664 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4665 { .name = "-endian", .value = TCFG_ENDIAN },
4666 { .name = "-coreid", .value = TCFG_COREID },
4667 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
4668 { .name = "-dbgbase", .value = TCFG_DBGBASE },
4669 { .name = "-rtos", .value = TCFG_RTOS },
4670 { .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
4671 { .name = "-gdb-port", .value = TCFG_GDB_PORT },
4672 { .name = "-gdb-max-connections", .value = TCFG_GDB_MAX_CONNECTIONS },
4673 { .name = NULL, .value = -1 }
4674 };
4675
4676 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4677 {
4678 Jim_Nvp *n;
4679 Jim_Obj *o;
4680 jim_wide w;
4681 int e;
4682
4683 /* parse config or cget options ... */
4684 while (goi->argc > 0) {
4685 Jim_SetEmptyResult(goi->interp);
4686 /* Jim_GetOpt_Debug(goi); */
4687
4688 if (target->type->target_jim_configure) {
4689 /* target defines a configure function */
4690 /* target gets first dibs on parameters */
4691 e = (*(target->type->target_jim_configure))(target, goi);
4692 if (e == JIM_OK) {
4693 /* more? */
4694 continue;
4695 }
4696 if (e == JIM_ERR) {
4697 /* An error */
4698 return e;
4699 }
4700 /* otherwise we 'continue' below */
4701 }
4702 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4703 if (e != JIM_OK) {
4704 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4705 return e;
4706 }
4707 switch (n->value) {
4708 case TCFG_TYPE:
4709 /* not settable */
4710 if (goi->isconfigure) {
4711 Jim_SetResultFormatted(goi->interp,
4712 "not settable: %s", n->name);
4713 return JIM_ERR;
4714 } else {
4715 no_params:
4716 if (goi->argc != 0) {
4717 Jim_WrongNumArgs(goi->interp,
4718 goi->argc, goi->argv,
4719 "NO PARAMS");
4720 return JIM_ERR;
4721 }
4722 }
4723 Jim_SetResultString(goi->interp,
4724 target_type_name(target), -1);
4725 /* loop for more */
4726 break;
4727 case TCFG_EVENT:
4728 if (goi->argc == 0) {
4729 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4730 return JIM_ERR;
4731 }
4732
4733 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4734 if (e != JIM_OK) {
4735 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4736 return e;
4737 }
4738
4739 if (goi->isconfigure) {
4740 if (goi->argc != 1) {
4741 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4742 return JIM_ERR;
4743 }
4744 } else {
4745 if (goi->argc != 0) {
4746 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4747 return JIM_ERR;
4748 }
4749 }
4750
4751 {
4752 struct target_event_action *teap;
4753
4754 teap = target->event_action;
4755 /* replace existing? */
4756 while (teap) {
4757 if (teap->event == (enum target_event)n->value)
4758 break;
4759 teap = teap->next;
4760 }
4761
4762 if (goi->isconfigure) {
4763 bool replace = true;
4764 if (teap == NULL) {
4765 /* create new */
4766 teap = calloc(1, sizeof(*teap));
4767 replace = false;
4768 }
4769 teap->event = n->value;
4770 teap->interp = goi->interp;
4771 Jim_GetOpt_Obj(goi, &o);
4772 if (teap->body)
4773 Jim_DecrRefCount(teap->interp, teap->body);
4774 teap->body = Jim_DuplicateObj(goi->interp, o);
4775 /*
4776 * FIXME:
4777 * Tcl/TK - "tk events" have a nice feature.
4778 * See the "BIND" command.
4779 * We should support that here.
4780 * You can specify %X and %Y in the event code.
4781 * The idea is: %T - target name.
4782 * The idea is: %N - target number
4783 * The idea is: %E - event name.
4784 */
4785 Jim_IncrRefCount(teap->body);
4786
4787 if (!replace) {
4788 /* add to head of event list */
4789 teap->next = target->event_action;
4790 target->event_action = teap;
4791 }
4792 Jim_SetEmptyResult(goi->interp);
4793 } else {
4794 /* get */
4795 if (teap == NULL)
4796 Jim_SetEmptyResult(goi->interp);
4797 else
4798 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4799 }
4800 }
4801 /* loop for more */
4802 break;
4803
4804 case TCFG_WORK_AREA_VIRT:
4805 if (goi->isconfigure) {
4806 target_free_all_working_areas(target);
4807 e = Jim_GetOpt_Wide(goi, &w);
4808 if (e != JIM_OK)
4809 return e;
4810 target->working_area_virt = w;
4811 target->working_area_virt_spec = true;
4812 } else {
4813 if (goi->argc != 0)
4814 goto no_params;
4815 }
4816 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4817 /* loop for more */
4818 break;
4819
4820 case TCFG_WORK_AREA_PHYS:
4821 if (goi->isconfigure) {
4822 target_free_all_working_areas(target);
4823 e = Jim_GetOpt_Wide(goi, &w);
4824 if (e != JIM_OK)
4825 return e;
4826 target->working_area_phys = w;
4827 target->working_area_phys_spec = true;
4828 } else {
4829 if (goi->argc != 0)
4830 goto no_params;
4831 }
4832 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4833 /* loop for more */
4834 break;
4835
4836 case TCFG_WORK_AREA_SIZE:
4837 if (goi->isconfigure) {
4838 target_free_all_working_areas(target);
4839 e = Jim_GetOpt_Wide(goi, &w);
4840 if (e != JIM_OK)
4841 return e;
4842 target->working_area_size = w;
4843 } else {
4844 if (goi->argc != 0)
4845 goto no_params;
4846 }
4847 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4848 /* loop for more */
4849 break;
4850
4851 case TCFG_WORK_AREA_BACKUP:
4852 if (goi->isconfigure) {
4853 target_free_all_working_areas(target);
4854 e = Jim_GetOpt_Wide(goi, &w);
4855 if (e != JIM_OK)
4856 return e;
4857 /* make this exactly 1 or 0 */
4858 target->backup_working_area = (!!w);
4859 } else {
4860 if (goi->argc != 0)
4861 goto no_params;
4862 }
4863 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4864 /* loop for more e*/
4865 break;
4866
4867
4868 case TCFG_ENDIAN:
4869 if (goi->isconfigure) {
4870 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4871 if (e != JIM_OK) {
4872 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4873 return e;
4874 }
4875 target->endianness = n->value;
4876 } else {
4877 if (goi->argc != 0)
4878 goto no_params;
4879 }
4880 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4881 if (n->name == NULL) {
4882 target->endianness = TARGET_LITTLE_ENDIAN;
4883 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4884 }
4885 Jim_SetResultString(goi->interp, n->name, -1);
4886 /* loop for more */
4887 break;
4888
4889 case TCFG_COREID:
4890 if (goi->isconfigure) {
4891 e = Jim_GetOpt_Wide(goi, &w);
4892 if (e != JIM_OK)
4893 return e;
4894 target->coreid = (int32_t)w;
4895 } else {
4896 if (goi->argc != 0)
4897 goto no_params;
4898 }
4899 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
4900 /* loop for more */
4901 break;
4902
4903 case TCFG_CHAIN_POSITION:
4904 if (goi->isconfigure) {
4905 Jim_Obj *o_t;
4906 struct jtag_tap *tap;
4907
4908 if (target->has_dap) {
4909 Jim_SetResultString(goi->interp,
4910 "target requires -dap parameter instead of -chain-position!", -1);
4911 return JIM_ERR;
4912 }
4913
4914 target_free_all_working_areas(target);
4915 e = Jim_GetOpt_Obj(goi, &o_t);
4916 if (e != JIM_OK)
4917 return e;
4918 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4919 if (tap == NULL)
4920 return JIM_ERR;
4921 target->tap = tap;
4922 target->tap_configured = true;
4923 } else {
4924 if (goi->argc != 0)
4925 goto no_params;
4926 }
4927 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4928 /* loop for more e*/
4929 break;
4930 case TCFG_DBGBASE:
4931 if (goi->isconfigure) {
4932 e = Jim_GetOpt_Wide(goi, &w);
4933 if (e != JIM_OK)
4934 return e;
4935 target->dbgbase = (uint32_t)w;
4936 target->dbgbase_set = true;
4937 } else {
4938 if (goi->argc != 0)
4939 goto no_params;
4940 }
4941 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4942 /* loop for more */
4943 break;
4944 case TCFG_RTOS:
4945 /* RTOS */
4946 {
4947 int result = rtos_create(goi, target);
4948 if (result != JIM_OK)
4949 return result;
4950 }
4951 /* loop for more */
4952 break;
4953
4954 case TCFG_DEFER_EXAMINE:
4955 /* DEFER_EXAMINE */
4956 target->defer_examine = true;
4957 /* loop for more */
4958 break;
4959
4960 case TCFG_GDB_PORT:
4961 if (goi->isconfigure) {
4962 struct command_context *cmd_ctx = current_command_context(goi->interp);
4963 if (cmd_ctx->mode != COMMAND_CONFIG) {
4964 Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
4965 return JIM_ERR;
4966 }
4967
4968 const char *s;
4969 e = Jim_GetOpt_String(goi, &s, NULL);
4970 if (e != JIM_OK)
4971 return e;
4972 target->gdb_port_override = strdup(s);
4973 } else {
4974 if (goi->argc != 0)
4975 goto no_params;
4976 }
4977 Jim_SetResultString(goi->interp, target->gdb_port_override ? : "undefined", -1);
4978 /* loop for more */
4979 break;
4980
4981 case TCFG_GDB_MAX_CONNECTIONS:
4982 if (goi->isconfigure) {
4983 struct command_context *cmd_ctx = current_command_context(goi->interp);
4984 if (cmd_ctx->mode != COMMAND_CONFIG) {
4985 Jim_SetResultString(goi->interp, "-gdb-max-conenctions must be configured before 'init'", -1);
4986 return JIM_ERR;
4987 }
4988
4989 e = Jim_GetOpt_Wide(goi, &w);
4990 if (e != JIM_OK)
4991 return e;
4992 target->gdb_max_connections = (w < 0) ? CONNECTION_LIMIT_UNLIMITED : (int)w;
4993 } else {
4994 if (goi->argc != 0)
4995 goto no_params;
4996 }
4997 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->gdb_max_connections));
4998 break;
4999 }
5000 } /* while (goi->argc) */
5001
5002
5003 /* done - we return */
5004 return JIM_OK;
5005 }
5006
5007 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5008 {
5009 Jim_GetOptInfo goi;
5010
5011 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5012 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
5013 if (goi.argc < 1) {
5014 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5015 "missing: -option ...");
5016 return JIM_ERR;
5017 }
5018 struct target *target = Jim_CmdPrivData(goi.interp);
5019 return target_configure(&goi, target);
5020 }
5021
5022 static int jim_target_mem2array(Jim_Interp *interp,
5023 int argc, Jim_Obj *const *argv)
5024 {
5025 struct target *target = Jim_CmdPrivData(interp);
5026 return target_mem2array(interp, target, argc - 1, argv + 1);
5027 }
5028
5029 static int jim_target_array2mem(Jim_Interp *interp,
5030 int argc, Jim_Obj *const *argv)
5031 {
5032 struct target *target = Jim_CmdPrivData(interp);
5033 return target_array2mem(interp, target, argc - 1, argv + 1);
5034 }
5035
5036 static int jim_target_tap_disabled(Jim_Interp *interp)
5037 {
5038 Jim_SetResultFormatted(interp, "[TAP is disabled]");
5039 return JIM_ERR;
5040 }
5041
5042 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5043 {
5044 bool allow_defer = false;
5045
5046 Jim_GetOptInfo goi;
5047 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5048 if (goi.argc > 1) {
5049 const char *cmd_name = Jim_GetString(argv[0], NULL);
5050 Jim_SetResultFormatted(goi.interp,
5051 "usage: %s ['allow-defer']", cmd_name);
5052 return JIM_ERR;
5053 }
5054 if (goi.argc > 0 &&
5055 strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
5056 /* consume it */
5057 Jim_Obj *obj;
5058 int e = Jim_GetOpt_Obj(&goi, &obj);
5059 if (e != JIM_OK)
5060 return e;
5061 allow_defer = true;
5062 }
5063
5064 struct target *target = Jim_CmdPrivData(interp);
5065 if (!target->tap->enabled)
5066 return jim_target_tap_disabled(interp);
5067
5068 if (allow_defer && target->defer_examine) {
5069 LOG_INFO("Deferring arp_examine of %s", target_name(target));
5070 LOG_INFO("Use arp_examine command to examine it manually!");
5071 return JIM_OK;
5072 }
5073
5074 int e = target->type->examine(target);
5075 if (e != ERROR_OK)
5076 return JIM_ERR;
5077 return JIM_OK;
5078 }
5079
5080 static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5081 {
5082 struct target *target = Jim_CmdPrivData(interp);
5083
5084 Jim_SetResultBool(interp, target_was_examined(target));
5085 return JIM_OK;
5086 }
5087
5088 static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
5089 {
5090 struct target *target = Jim_CmdPrivData(interp);
5091
5092 Jim_SetResultBool(interp, target->defer_examine);
5093 return JIM_OK;
5094 }
5095
5096 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5097 {
5098 if (argc != 1) {
5099 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5100 return JIM_ERR;
5101 }
5102 struct target *target = Jim_CmdPrivData(interp);
5103
5104 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
5105 return JIM_ERR;
5106
5107 return JIM_OK;
5108 }
5109
5110 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5111 {
5112 if (argc != 1) {
5113 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5114 return JIM_ERR;
5115 }
5116 struct target *target = Jim_CmdPrivData(interp);
5117 if (!target->tap->enabled)
5118 return jim_target_tap_disabled(interp);
5119
5120 int e;
5121 if (!(target_was_examined(target)))
5122 e = ERROR_TARGET_NOT_EXAMINED;
5123 else
5124 e = target->type->poll(target);
5125 if (e != ERROR_OK)
5126 return JIM_ERR;
5127 return JIM_OK;
5128 }
5129
5130 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5131 {
5132 Jim_GetOptInfo goi;
5133 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5134
5135 if (goi.argc != 2) {
5136 Jim_WrongNumArgs(interp, 0, argv,
5137 "([tT]|[fF]|assert|deassert) BOOL");
5138 return JIM_ERR;
5139 }
5140
5141 Jim_Nvp *n;
5142 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
5143 if (e != JIM_OK) {
5144 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
5145 return e;
5146 }
5147 /* the halt or not param */
5148 jim_wide a;
5149 e = Jim_GetOpt_Wide(&goi, &a);
5150 if (e != JIM_OK)
5151 return e;
5152
5153 struct target *target = Jim_CmdPrivData(goi.interp);
5154 if (!target->tap->enabled)
5155 return jim_target_tap_disabled(interp);
5156
5157 if (!target->type->assert_reset || !target->type->deassert_reset) {
5158 Jim_SetResultFormatted(interp,
5159 "No target-specific reset for %s",
5160 target_name(target));
5161 return JIM_ERR;
5162 }
5163
5164 if (target->defer_examine)
5165 target_reset_examined(target);
5166
5167 /* determine if we should halt or not. */
5168 target->reset_halt = !!a;
5169 /* When this happens - all workareas are invalid. */
5170 target_free_all_working_areas_restore(target, 0);
5171
5172 /* do the assert */
5173 if (n->value == NVP_ASSERT)
5174 e = target->type->assert_reset(target);
5175 else
5176 e = target->type->deassert_reset(target);
5177 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5178 }
5179
5180 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5181 {
5182 if (argc != 1) {
5183 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5184 return JIM_ERR;
5185 }
5186 struct target *target = Jim_CmdPrivData(interp);
5187 if (!target->tap->enabled)
5188 return jim_target_tap_disabled(interp);
5189 int e = target->type->halt(target);
5190 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
5191 }
5192
5193 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5194 {
5195 Jim_GetOptInfo goi;
5196 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5197
5198 /* params: <name> statename timeoutmsecs */
5199 if (goi.argc != 2) {
5200 const char *cmd_name = Jim_GetString(argv[0], NULL);
5201 Jim_SetResultFormatted(goi.interp,
5202 "%s <state_name> <timeout_in_msec>", cmd_name);
5203 return JIM_ERR;
5204 }
5205
5206 Jim_Nvp *n;
5207 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
5208 if (e != JIM_OK) {
5209 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
5210 return e;
5211 }
5212 jim_wide a;
5213 e = Jim_GetOpt_Wide(&goi, &a);
5214 if (e != JIM_OK)
5215 return e;
5216 struct target *target = Jim_CmdPrivData(interp);
5217 if (!target->tap->enabled)
5218 return jim_target_tap_disabled(interp);
5219
5220 e = target_wait_state(target, n->value, a);
5221 if (e != ERROR_OK) {
5222 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
5223 Jim_SetResultFormatted(goi.interp,
5224 "target: %s wait %s fails (%#s) %s",
5225 target_name(target), n->name,
5226 eObj, target_strerror_safe(e));
5227 return JIM_ERR;
5228 }
5229 return JIM_OK;
5230 }
5231 /* List for human, Events defined for this target.
5232 * scripts/programs should use 'name cget -event NAME'
5233 */
5234 COMMAND_HANDLER(handle_target_event_list)
5235 {
5236 struct target *target = get_current_target(CMD_CTX);
5237 struct target_event_action *teap = target->event_action;
5238
5239 command_print(CMD, "Event actions for target (%d) %s\n",
5240 target->target_number,
5241 target_name(target));
5242 command_print(CMD, "%-25s | Body", "Event");
5243 command_print(CMD, "------------------------- | "
5244 "----------------------------------------");
5245 while (teap) {
5246 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
5247 command_print(CMD, "%-25s | %s",
5248 opt->name, Jim_GetString(teap->body, NULL));
5249 teap = teap->next;
5250 }
5251 command_print(CMD, "***END***");
5252 return ERROR_OK;
5253 }
5254 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5255 {
5256 if (argc != 1) {
5257 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
5258 return JIM_ERR;
5259 }
5260 struct target *target = Jim_CmdPrivData(interp);
5261 Jim_SetResultString(interp, target_state_name(target), -1);
5262 return JIM_OK;
5263 }
5264 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5265 {
5266 Jim_GetOptInfo goi;
5267 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5268 if (goi.argc != 1) {
5269 const char *cmd_name = Jim_GetString(argv[0], NULL);
5270 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
5271 return JIM_ERR;
5272 }
5273 Jim_Nvp *n;
5274 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
5275 if (e != JIM_OK) {
5276 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
5277 return e;
5278 }
5279 struct target *target = Jim_CmdPrivData(interp);
5280 target_handle_event(target, n->value);
5281 return JIM_OK;
5282 }
5283
5284 static const struct command_registration target_instance_command_handlers[] = {
5285 {
5286 .name = "configure",
5287 .mode = COMMAND_ANY,
5288 .jim_handler = jim_target_configure,
5289 .help = "configure a new target for use",
5290 .usage = "[target_attribute ...]",
5291 },
5292 {
5293 .name = "cget",
5294 .mode = COMMAND_ANY,
5295 .jim_handler = jim_target_configure,
5296 .help = "returns the specified target attribute",
5297 .usage = "target_attribute",
5298 },
5299 {
5300 .name = "mwd",
5301 .handler = handle_mw_command,
5302 .mode = COMMAND_EXEC,
5303 .help = "Write 64-bit word(s) to target memory",
5304 .usage = "address data [count]",
5305 },
5306 {
5307 .name = "mww",
5308 .handler = handle_mw_command,
5309 .mode = COMMAND_EXEC,
5310 .help = "Write 32-bit word(s) to target memory",
5311 .usage = "address data [count]",
5312 },
5313 {
5314 .name = "mwh",
5315 .handler = handle_mw_command,
5316 .mode = COMMAND_EXEC,
5317 .help = "Write 16-bit half-word(s) to target memory",
5318 .usage = "address data [count]",
5319 },
5320 {
5321 .name = "mwb",
5322 .handler = handle_mw_command,
5323 .mode = COMMAND_EXEC,
5324 .help = "Write byte(s) to target memory",
5325 .usage = "address data [count]",
5326 },
5327 {
5328 .name = "mdd",
5329 .handler = handle_md_command,
5330 .mode = COMMAND_EXEC,
5331 .help = "Display target memory as 64-bit words",
5332 .usage = "address [count]",
5333 },
5334 {
5335 .name = "mdw",
5336 .handler = handle_md_command,
5337 .mode = COMMAND_EXEC,
5338 .help = "Display target memory as 32-bit words",
5339 .usage = "address [count]",
5340 },
5341 {
5342 .name = "mdh",
5343 .handler = handle_md_command,
5344 .mode = COMMAND_EXEC,
5345 .help = "Display target memory as 16-bit half-words",
5346 .usage = "address [count]",
5347 },
5348 {
5349 .name = "mdb",
5350 .handler = handle_md_command,
5351 .mode = COMMAND_EXEC,
5352 .help = "Display target memory as 8-bit bytes",
5353 .usage = "address [count]",
5354 },
5355 {
5356 .name = "array2mem",
5357 .mode = COMMAND_EXEC,
5358 .jim_handler = jim_target_array2mem,
5359 .help = "Writes Tcl array of 8/16/32 bit numbers "
5360 "to target memory",
5361 .usage = "arrayname bitwidth address count",
5362 },
5363 {
5364 .name = "mem2array",
5365 .mode = COMMAND_EXEC,
5366 .jim_handler = jim_target_mem2array,
5367 .help = "Loads Tcl array of 8/16/32 bit numbers "
5368 "from target memory",
5369 .usage = "arrayname bitwidth address count",
5370 },
5371 {
5372 .name = "eventlist",
5373 .handler = handle_target_event_list,
5374 .mode = COMMAND_EXEC,
5375 .help = "displays a table of events defined for this target",
5376 .usage = "",
5377 },
5378 {
5379 .name = "curstate",
5380 .mode = COMMAND_EXEC,
5381 .jim_handler = jim_target_current_state,
5382 .help = "displays the current state of this target",
5383 },
5384 {
5385 .name = "arp_examine",
5386 .mode = COMMAND_EXEC,
5387 .jim_handler = jim_target_examine,
5388 .help = "used internally for reset processing",
5389 .usage = "['allow-defer']",
5390 },
5391 {
5392 .name = "was_examined",
5393 .mode = COMMAND_EXEC,
5394 .jim_handler = jim_target_was_examined,
5395 .help = "used internally for reset processing",
5396 },
5397 {
5398 .name = "examine_deferred",
5399 .mode = COMMAND_EXEC,
5400 .jim_handler = jim_target_examine_deferred,
5401 .help = "used internally for reset processing",
5402 },
5403 {
5404 .name = "arp_halt_gdb",
5405 .mode = COMMAND_EXEC,
5406 .jim_handler = jim_target_halt_gdb,
5407 .help = "used internally for reset processing to halt GDB",
5408 },
5409 {
5410 .name = "arp_poll",
5411 .mode = COMMAND_EXEC,
5412 .jim_handler = jim_target_poll,
5413 .help = "used internally for reset processing",
5414 },
5415 {
5416 .name = "arp_reset",
5417 .mode = COMMAND_EXEC,
5418 .jim_handler = jim_target_reset,
5419 .help = "used internally for reset processing",
5420 },
5421 {
5422 .name = "arp_halt",
5423 .mode = COMMAND_EXEC,
5424 .jim_handler = jim_target_halt,
5425 .help = "used internally for reset processing",
5426 },
5427 {
5428 .name = "arp_waitstate",
5429 .mode = COMMAND_EXEC,
5430 .jim_handler = jim_target_wait_state,
5431 .help = "used internally for reset processing",
5432 },
5433 {
5434 .name = "invoke-event",
5435 .mode = COMMAND_EXEC,
5436 .jim_handler = jim_target_invoke_event,
5437 .help = "invoke handler for specified event",
5438 .usage = "event_name",
5439 },
5440 COMMAND_REGISTRATION_DONE
5441 };
5442
5443 static int target_create(Jim_GetOptInfo *goi)
5444 {
5445 Jim_Obj *new_cmd;
5446 Jim_Cmd *cmd;
5447 const char *cp;
5448 int e;
5449 int x;
5450 struct target *target;
5451 struct command_context *cmd_ctx;
5452
5453 cmd_ctx = current_command_context(goi->interp);
5454 assert(cmd_ctx != NULL);
5455
5456 if (goi->argc < 3) {
5457 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5458 return JIM_ERR;
5459 }
5460
5461 /* COMMAND */
5462 Jim_GetOpt_Obj(goi, &new_cmd);
5463 /* does this command exist? */
5464 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5465 if (cmd) {
5466 cp = Jim_GetString(new_cmd, NULL);
5467 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5468 return JIM_ERR;
5469 }
5470
5471 /* TYPE */
5472 e = Jim_GetOpt_String(goi, &cp, NULL);
5473 if (e != JIM_OK)
5474 return e;
5475 struct transport *tr = get_current_transport();
5476 if (tr->override_target) {
5477 e = tr->override_target(&cp);
5478 if (e != ERROR_OK) {
5479 LOG_ERROR("The selected transport doesn't support this target");
5480 return JIM_ERR;
5481 }
5482 LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
5483 }
5484 /* now does target type exist */
5485 for (x = 0 ; target_types[x] ; x++) {
5486 if (0 == strcmp(cp, target_types[x]->name)) {
5487 /* found */
5488 break;
5489 }
5490
5491 /* check for deprecated name */
5492 if (target_types[x]->deprecated_name) {
5493 if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5494 /* found */
5495 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5496 break;
5497 }
5498 }
5499 }
5500 if (target_types[x] == NULL) {
5501 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5502 for (x = 0 ; target_types[x] ; x++) {
5503 if (target_types[x + 1]) {
5504 Jim_AppendStrings(goi->interp,
5505 Jim_GetResult(goi->interp),
5506 target_types[x]->name,
5507 ", ", NULL);
5508 } else {
5509 Jim_AppendStrings(goi->interp,
5510 Jim_GetResult(goi->interp),
5511 " or ",
5512 target_types[x]->name, NULL);
5513 }
5514 }
5515 return JIM_ERR;
5516 }
5517
5518 /* Create it */
5519 target = calloc(1, sizeof(struct target));
5520 if (!target) {
5521 LOG_ERROR("Out of memory");
5522 return JIM_ERR;
5523 }
5524
5525 /* set target number */
5526 target->target_number = new_target_number();
5527
5528 /* allocate memory for each unique target type */
5529 target->type = malloc(sizeof(struct target_type));
5530 if (!target->type) {
5531 LOG_ERROR("Out of memory");
5532 free(target);
5533 return JIM_ERR;
5534 }
5535
5536 memcpy(target->type, target_types[x], sizeof(struct target_type));
5537
5538 /* will be set by "-endian" */
5539 target->endianness = TARGET_ENDIAN_UNKNOWN;
5540
5541 /* default to first core, override with -coreid */
5542 target->coreid = 0;
5543
5544 target->working_area = 0x0;
5545 target->working_area_size = 0x0;
5546 target->working_areas = NULL;
5547 target->backup_working_area = 0;
5548
5549 target->state = TARGET_UNKNOWN;
5550 target->debug_reason = DBG_REASON_UNDEFINED;
5551 target->reg_cache = NULL;
5552 target->breakpoints = NULL;
5553 target->watchpoints = NULL;
5554 target->next = NULL;
5555 target->arch_info = NULL;
5556
5557 target->verbose_halt_msg = true;
5558
5559 target->halt_issued = false;
5560
5561 /* initialize trace information */
5562 target->trace_info = calloc(1, sizeof(struct trace));
5563 if (!target->trace_info) {
5564 LOG_ERROR("Out of memory");
5565 free(target->type);
5566 free(target);
5567 return JIM_ERR;
5568 }
5569
5570 target->dbgmsg = NULL;
5571 target->dbg_msg_enabled = 0;
5572
5573 target->endianness = TARGET_ENDIAN_UNKNOWN;
5574
5575 target->rtos = NULL;
5576 target->rtos_auto_detect = false;
5577
5578 target->gdb_port_override = NULL;
5579 target->gdb_max_connections = 1;
5580
5581 /* Do the rest as "configure" options */
5582 goi->isconfigure = 1;
5583 e = target_configure(goi, target);
5584
5585 if (e == JIM_OK) {
5586 if (target->has_dap) {
5587 if (!target->dap_configured) {
5588 Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
5589 e = JIM_ERR;
5590 }
5591 } else {
5592 if (!target->tap_configured) {
5593 Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
5594 e = JIM_ERR;
5595 }
5596 }
5597 /* tap must be set after target was configured */
5598 if (target->tap == NULL)
5599 e = JIM_ERR;
5600 }
5601
5602 if (e != JIM_OK) {
5603 rtos_destroy(target);
5604 free(target->gdb_port_override);
5605 free(target->trace_info);
5606 free(target->type);
5607 free(target);
5608 return e;
5609 }
5610
5611 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5612 /* default endian to little if not specified */
5613 target->endianness = TARGET_LITTLE_ENDIAN;
5614 }
5615
5616 cp = Jim_GetString(new_cmd, NULL);
5617 target->cmd_name = strdup(cp);
5618 if (!target->cmd_name) {
5619 LOG_ERROR("Out of memory");
5620 rtos_destroy(target);
5621 free(target->gdb_port_override);
5622 free(target->trace_info);
5623 free(target->type);
5624 free(target);
5625 return JIM_ERR;
5626 }
5627
5628 if (target->type->target_create) {
5629 e = (*(target->type->target_create))(target, goi->interp);
5630 if (e != ERROR_OK) {
5631 LOG_DEBUG("target_create failed");
5632 free(target->cmd_name);
5633 rtos_destroy(target);
5634 free(target->gdb_port_override);
5635 free(target->trace_info);
5636 free(target->type);
5637 free(target);
5638 return JIM_ERR;
5639 }
5640 }
5641
5642 /* create the target specific commands */
5643 if (target->type->commands) {
5644 e = register_commands(cmd_ctx, NULL, target->type->commands);
5645 if (ERROR_OK != e)
5646 LOG_ERROR("unable to register '%s' commands", cp);
5647 }
5648
5649 /* now - create the new target name command */
5650 const struct command_registration target_subcommands[] = {
5651 {
5652 .chain = target_instance_command_handlers,
5653 },
5654 {
5655 .chain = target->type->commands,
5656 },
5657 COMMAND_REGISTRATION_DONE
5658 };
5659 const struct command_registration target_commands[] = {
5660 {
5661 .name = cp,
5662 .mode = COMMAND_ANY,
5663 .help = "target command group",
5664 .usage = "",
5665 .chain = target_subcommands,
5666 },
5667 COMMAND_REGISTRATION_DONE
5668 };
5669 e = register_commands(cmd_ctx, NULL, target_commands);
5670 if (e != ERROR_OK) {
5671 if (target->type->deinit_target)
5672 target->type->deinit_target(target);
5673 free(target->cmd_name);
5674 rtos_destroy(target);
5675 free(target->gdb_port_override);
5676 free(target->trace_info);
5677 free(target->type);
5678 free(target);
5679 return JIM_ERR;
5680 }
5681
5682 struct command *c = command_find_in_context(cmd_ctx, cp);
5683 assert(c);
5684 command_set_handler_data(c, target);
5685
5686 /* append to end of list */
5687 append_to_list_all_targets(target);
5688
5689 cmd_ctx->current_target = target;
5690 return JIM_OK;
5691 }
5692
5693 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5694 {
5695 if (argc != 1) {
5696 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5697 return JIM_ERR;
5698 }
5699 struct command_context *cmd_ctx = current_command_context(interp);
5700 assert(cmd_ctx != NULL);
5701
5702 struct target *target = get_current_target_or_null(cmd_ctx);
5703 if (target)
5704 Jim_SetResultString(interp, target_name(target), -1);
5705 return JIM_OK;
5706 }
5707
5708 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5709 {
5710 if (argc != 1) {
5711 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5712 return JIM_ERR;
5713 }
5714 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5715 for (unsigned x = 0; NULL != target_types[x]; x++) {
5716 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5717 Jim_NewStringObj(interp, target_types[x]->name, -1));
5718 }
5719 return JIM_OK;
5720 }
5721
5722 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5723 {
5724 if (argc != 1) {
5725 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5726 return JIM_ERR;
5727 }
5728 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5729 struct target *target = all_targets;
5730 while (target) {
5731 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5732 Jim_NewStringObj(interp, target_name(target), -1));
5733 target = target->next;
5734 }
5735 return JIM_OK;
5736 }
5737
5738 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5739 {
5740 int i;
5741 const char *targetname;
5742 int retval, len;
5743 struct target *target = (struct target *) NULL;
5744 struct target_list *head, *curr, *new;
5745 curr = (struct target_list *) NULL;
5746 head = (struct target_list *) NULL;
5747
5748 retval = 0;
5749 LOG_DEBUG("%d", argc);
5750 /* argv[1] = target to associate in smp
5751 * argv[2] = target to associate in smp
5752 * argv[3] ...
5753 */
5754
5755 for (i = 1; i < argc; i++) {
5756
5757 targetname = Jim_GetString(argv[i], &len);
5758 target = get_target(targetname);
5759 LOG_DEBUG("%s ", targetname);
5760 if (target) {
5761 new = malloc(sizeof(struct target_list));
5762 new->target = target;
5763 new->next = (struct target_list *)NULL;
5764 if (head == (struct target_list *)NULL) {
5765 head = new;
5766 curr = head;
5767 } else {
5768 curr->next = new;
5769 curr = new;
5770 }
5771 }
5772 }
5773 /* now parse the list of cpu and put the target in smp mode*/
5774 curr = head;
5775
5776 while (curr != (struct target_list *)NULL) {
5777 target = curr->target;
5778 target->smp = 1;
5779 target->head = head;
5780 curr = curr->next;
5781 }
5782
5783 if (target && target->rtos)
5784 retval = rtos_smp_init(head->target);
5785
5786 return retval;
5787 }
5788
5789
5790 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5791 {
5792 Jim_GetOptInfo goi;
5793 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5794 if (goi.argc < 3) {
5795 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5796 "<name> <target_type> [<target_options> ...]");
5797 return JIM_ERR;
5798 }
5799 return target_create(&goi);
5800 }
5801
5802 static const struct command_registration target_subcommand_handlers[] = {
5803 {
5804 .name = "init",
5805 .mode = COMMAND_CONFIG,
5806 .handler = handle_target_init_command,
5807 .help = "initialize targets",
5808 .usage = "",
5809 },
5810 {
5811 .name = "create",
5812 .mode = COMMAND_CONFIG,
5813 .jim_handler = jim_target_create,
5814 .usage = "name type '-chain-position' name [options ...]",
5815 .help = "Creates and selects a new target",
5816 },
5817 {
5818 .name = "current",
5819 .mode = COMMAND_ANY,
5820 .jim_handler = jim_target_current,
5821 .help = "Returns the currently selected target",
5822 },
5823 {
5824 .name = "types",
5825 .mode = COMMAND_ANY,
5826 .jim_handler = jim_target_types,
5827 .help = "Returns the available target types as "
5828 "a list of strings",
5829 },
5830 {
5831 .name = "names",
5832 .mode = COMMAND_ANY,
5833 .jim_handler = jim_target_names,
5834 .help = "Returns the names of all targets as a list of strings",
5835 },
5836 {
5837 .name = "smp",
5838 .mode = COMMAND_ANY,
5839 .jim_handler = jim_target_smp,
5840 .usage = "targetname1 targetname2 ...",
5841 .help = "gather several target in a smp list"
5842 },
5843
5844 COMMAND_REGISTRATION_DONE
5845 };
5846
5847 struct FastLoad {
5848 target_addr_t address;
5849 uint8_t *data;
5850 int length;
5851
5852 };
5853
5854 static int fastload_num;
5855 static struct FastLoad *fastload;
5856
5857 static void free_fastload(void)
5858 {
5859 if (fastload != NULL) {
5860 for (int i = 0; i < fastload_num; i++)
5861 free(fastload[i].data);
5862 free(fastload);
5863 fastload = NULL;
5864 }
5865 }
5866
5867 COMMAND_HANDLER(handle_fast_load_image_command)
5868 {
5869 uint8_t *buffer;
5870 size_t buf_cnt;
5871 uint32_t image_size;
5872 target_addr_t min_address = 0;
5873 target_addr_t max_address = -1;
5874
5875 struct image image;
5876
5877 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5878 &image, &min_address, &max_address);
5879 if (ERROR_OK != retval)
5880 return retval;
5881
5882 struct duration bench;
5883 duration_start(&bench);
5884
5885 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5886 if (retval != ERROR_OK)
5887 return retval;
5888
5889 image_size = 0x0;
5890 retval = ERROR_OK;
5891 fastload_num = image.num_sections;
5892 fastload = malloc(sizeof(struct FastLoad)*image.num_sections);
5893 if (fastload == NULL) {
5894 command_print(CMD, "out of memory");
5895 image_close(&image);
5896 return ERROR_FAIL;
5897 }
5898 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5899 for (unsigned int i = 0; i < image.num_sections; i++) {
5900 buffer = malloc(image.sections[i].size);
5901 if (buffer == NULL) {
5902 command_print(CMD, "error allocating buffer for section (%d bytes)",
5903 (int)(image.sections[i].size));
5904 retval = ERROR_FAIL;
5905 break;
5906 }
5907
5908 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5909 if (retval != ERROR_OK) {
5910 free(buffer);
5911 break;
5912 }
5913
5914 uint32_t offset = 0;
5915 uint32_t length = buf_cnt;
5916
5917 /* DANGER!!! beware of unsigned comparison here!!! */
5918
5919 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5920 (image.sections[i].base_address < max_address)) {
5921 if (image.sections[i].base_address < min_address) {
5922 /* clip addresses below */
5923 offset += min_address-image.sections[i].base_address;
5924 length -= offset;
5925 }
5926
5927 if (image.sections[i].base_address + buf_cnt > max_address)
5928 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5929
5930 fastload[i].address = image.sections[i].base_address + offset;
5931 fastload[i].data = malloc(length);
5932 if (fastload[i].data == NULL) {
5933 free(buffer);
5934 command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
5935 length);
5936 retval = ERROR_FAIL;
5937 break;
5938 }
5939 memcpy(fastload[i].data, buffer + offset, length);
5940 fastload[i].length = length;
5941
5942 image_size += length;
5943 command_print(CMD, "%u bytes written at address 0x%8.8x",
5944 (unsigned int)length,
5945 ((unsigned int)(image.sections[i].base_address + offset)));
5946 }
5947
5948 free(buffer);
5949 }
5950
5951 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5952 command_print(CMD, "Loaded %" PRIu32 " bytes "
5953 "in %fs (%0.3f KiB/s)", image_size,
5954 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5955
5956 command_print(CMD,
5957 "WARNING: image has not been loaded to target!"
5958 "You can issue a 'fast_load' to finish loading.");
5959 }
5960
5961 image_close(&image);
5962
5963 if (retval != ERROR_OK)
5964 free_fastload();
5965
5966 return retval;
5967 }
5968
5969 COMMAND_HANDLER(handle_fast_load_command)
5970 {
5971 if (CMD_ARGC > 0)
5972 return ERROR_COMMAND_SYNTAX_ERROR;
5973 if (fastload == NULL) {
5974 LOG_ERROR("No image in memory");
5975 return ERROR_FAIL;
5976 }
5977 int i;
5978 int64_t ms = timeval_ms();
5979 int size = 0;
5980 int retval = ERROR_OK;
5981 for (i = 0; i < fastload_num; i++) {
5982 struct target *target = get_current_target(CMD_CTX);
5983 command_print(CMD, "Write to 0x%08x, length 0x%08x",
5984 (unsigned int)(fastload[i].address),
5985 (unsigned int)(fastload[i].length));
5986 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5987 if (retval != ERROR_OK)
5988 break;
5989 size += fastload[i].length;
5990 }
5991 if (retval == ERROR_OK) {
5992 int64_t after = timeval_ms();
5993 command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5994 }
5995 return retval;
5996 }
5997
5998 static const struct command_registration target_command_handlers[] = {
5999 {
6000 .name = "targets",
6001 .handler = handle_targets_command,
6002 .mode = COMMAND_ANY,
6003 .help = "change current default target (one parameter) "
6004 "or prints table of all targets (no parameters)",
6005 .usage = "[target]",
6006 },
6007 {
6008 .name = "target",
6009 .mode = COMMAND_CONFIG,
6010 .help = "configure target",
6011 .chain = target_subcommand_handlers,
6012 .usage = "",
6013 },
6014 COMMAND_REGISTRATION_DONE
6015 };
6016
6017 int target_register_commands(struct command_context *cmd_ctx)
6018 {
6019 return register_commands(cmd_ctx, NULL, target_command_handlers);
6020 }
6021
6022 static bool target_reset_nag = true;
6023
6024 bool get_target_reset_nag(void)
6025 {
6026 return target_reset_nag;
6027 }
6028
6029 COMMAND_HANDLER(handle_target_reset_nag)
6030 {
6031 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
6032 &target_reset_nag, "Nag after each reset about options to improve "
6033 "performance");
6034 }
6035
6036 COMMAND_HANDLER(handle_ps_command)
6037 {
6038 struct target *target = get_current_target(CMD_CTX);
6039 char *display;
6040 if (target->state != TARGET_HALTED) {
6041 LOG_INFO("target not halted !!");
6042 return ERROR_OK;
6043 }
6044
6045 if ((target->rtos) && (target->rtos->type)
6046 && (target->rtos->type->ps_command)) {
6047 display = target->rtos->type->ps_command(target);
6048 command_print(CMD, "%s", display);
6049 free(display);
6050 return ERROR_OK;
6051 } else {
6052 LOG_INFO("failed");
6053 return ERROR_TARGET_FAILURE;
6054 }
6055 }
6056
6057 static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
6058 {
6059 if (text != NULL)
6060 command_print_sameline(cmd, "%s", text);
6061 for (int i = 0; i < size; i++)
6062 command_print_sameline(cmd, " %02x", buf[i]);
6063 command_print(cmd, " ");
6064 }
6065
6066 COMMAND_HANDLER(handle_test_mem_access_command)
6067 {
6068 struct target *target = get_current_target(CMD_CTX);
6069 uint32_t test_size;
6070 int retval = ERROR_OK;
6071
6072 if (target->state != TARGET_HALTED) {
6073 LOG_INFO("target not halted !!");
6074 return ERROR_FAIL;
6075 }
6076
6077 if (CMD_ARGC != 1)
6078 return ERROR_COMMAND_SYNTAX_ERROR;
6079
6080 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
6081
6082 /* Test reads */
6083 size_t num_bytes = test_size + 4;
6084
6085 struct working_area *wa = NULL;
6086 retval = target_alloc_working_area(target, num_bytes, &wa);
6087 if (retval != ERROR_OK) {
6088 LOG_ERROR("Not enough working area");
6089 return ERROR_FAIL;
6090 }
6091
6092 uint8_t *test_pattern = malloc(num_bytes);
6093
6094 for (size_t i = 0; i < num_bytes; i++)
6095 test_pattern[i] = rand();
6096
6097 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6098 if (retval != ERROR_OK) {
6099 LOG_ERROR("Test pattern write failed");
6100 goto out;
6101 }
6102
6103 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6104 for (int size = 1; size <= 4; size *= 2) {
6105 for (int offset = 0; offset < 4; offset++) {
6106 uint32_t count = test_size / size;
6107 size_t host_bufsiz = (count + 2) * size + host_offset;
6108 uint8_t *read_ref = malloc(host_bufsiz);
6109 uint8_t *read_buf = malloc(host_bufsiz);
6110
6111 for (size_t i = 0; i < host_bufsiz; i++) {
6112 read_ref[i] = rand();
6113 read_buf[i] = read_ref[i];
6114 }
6115 command_print_sameline(CMD,
6116 "Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
6117 size, offset, host_offset ? "un" : "");
6118
6119 struct duration bench;
6120 duration_start(&bench);
6121
6122 retval = target_read_memory(target, wa->address + offset, size, count,
6123 read_buf + size + host_offset);
6124
6125 duration_measure(&bench);
6126
6127 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6128 command_print(CMD, "Unsupported alignment");
6129 goto next;
6130 } else if (retval != ERROR_OK) {
6131 command_print(CMD, "Memory read failed");
6132 goto next;
6133 }
6134
6135 /* replay on host */
6136 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
6137
6138 /* check result */
6139 int result = memcmp(read_ref, read_buf, host_bufsiz);
6140 if (result == 0) {
6141 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6142 duration_elapsed(&bench),
6143 duration_kbps(&bench, count * size));
6144 } else {
6145 command_print(CMD, "Compare failed");
6146 binprint(CMD, "ref:", read_ref, host_bufsiz);
6147 binprint(CMD, "buf:", read_buf, host_bufsiz);
6148 }
6149 next:
6150 free(read_ref);
6151 free(read_buf);
6152 }
6153 }
6154 }
6155
6156 out:
6157 free(test_pattern);
6158
6159 if (wa != NULL)
6160 target_free_working_area(target, wa);
6161
6162 /* Test writes */
6163 num_bytes = test_size + 4 + 4 + 4;
6164
6165 retval = target_alloc_working_area(target, num_bytes, &wa);
6166 if (retval != ERROR_OK) {
6167 LOG_ERROR("Not enough working area");
6168 return ERROR_FAIL;
6169 }
6170
6171 test_pattern = malloc(num_bytes);
6172
6173 for (size_t i = 0; i < num_bytes; i++)
6174 test_pattern[i] = rand();
6175
6176 for (int host_offset = 0; host_offset <= 1; host_offset++) {
6177 for (int size = 1; size <= 4; size *= 2) {
6178 for (int offset = 0; offset < 4; offset++) {
6179 uint32_t count = test_size / size;
6180 size_t host_bufsiz = count * size + host_offset;
6181 uint8_t *read_ref = malloc(num_bytes);
6182 uint8_t *read_buf = malloc(num_bytes);
6183 uint8_t *write_buf = malloc(host_bufsiz);
6184
6185 for (size_t i = 0; i < host_bufsiz; i++)
6186 write_buf[i] = rand();
6187 command_print_sameline(CMD,
6188 "Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
6189 size, offset, host_offset ? "un" : "");
6190
6191 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
6192 if (retval != ERROR_OK) {
6193 command_print(CMD, "Test pattern write failed");
6194 goto nextw;
6195 }
6196
6197 /* replay on host */
6198 memcpy(read_ref, test_pattern, num_bytes);
6199 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
6200
6201 struct duration bench;
6202 duration_start(&bench);
6203
6204 retval = target_write_memory(target, wa->address + size + offset, size, count,
6205 write_buf + host_offset);
6206
6207 duration_measure(&bench);
6208
6209 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
6210 command_print(CMD, "Unsupported alignment");
6211 goto nextw;
6212 } else if (retval != ERROR_OK) {
6213 command_print(CMD, "Memory write failed");
6214 goto nextw;
6215 }
6216
6217 /* read back */
6218 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
6219 if (retval != ERROR_OK) {
6220 command_print(CMD, "Test pattern write failed");
6221 goto nextw;
6222 }
6223
6224 /* check result */
6225 int result = memcmp(read_ref, read_buf, num_bytes);
6226 if (result == 0) {
6227 command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
6228 duration_elapsed(&bench),
6229 duration_kbps(&bench, count * size));
6230 } else {
6231 command_print(CMD, "Compare failed");
6232 binprint(CMD, "ref:", read_ref, num_bytes);
6233 binprint(CMD, "buf:", read_buf, num_bytes);
6234 }
6235 nextw:
6236 free(read_ref);
6237 free(read_buf);
6238 }
6239 }
6240 }
6241
6242 free(test_pattern);
6243
6244 if (wa != NULL)
6245 target_free_working_area(target, wa);
6246 return retval;
6247 }
6248
6249 static const struct command_registration target_exec_command_handlers[] = {
6250 {
6251 .name = "fast_load_image",
6252 .handler = handle_fast_load_image_command,
6253 .mode = COMMAND_ANY,
6254 .help = "Load image into server memory for later use by "
6255 "fast_load; primarily for profiling",
6256 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6257 "[min_address [max_length]]",
6258 },
6259 {
6260 .name = "fast_load",
6261 .handler = handle_fast_load_command,
6262 .mode = COMMAND_EXEC,
6263 .help = "loads active fast load image to current target "
6264 "- mainly for profiling purposes",
6265 .usage = "",
6266 },
6267 {
6268 .name = "profile",
6269 .handler = handle_profile_command,
6270 .mode = COMMAND_EXEC,
6271 .usage = "seconds filename [start end]",
6272 .help = "profiling samples the CPU PC",
6273 },
6274 /** @todo don't register virt2phys() unless target supports it */
6275 {
6276 .name = "virt2phys",
6277 .handler = handle_virt2phys_command,
6278 .mode = COMMAND_ANY,
6279 .help = "translate a virtual address into a physical address",
6280 .usage = "virtual_address",
6281 },
6282 {
6283 .name = "reg",
6284 .handler = handle_reg_command,
6285 .mode = COMMAND_EXEC,
6286 .help = "display (reread from target with \"force\") or set a register; "
6287 "with no arguments, displays all registers and their values",
6288 .usage = "[(register_number|register_name) [(value|'force')]]",
6289 },
6290 {
6291 .name = "poll",
6292 .handler = handle_poll_command,
6293 .mode = COMMAND_EXEC,
6294 .help = "poll target state; or reconfigure background polling",
6295 .usage = "['on'|'off']",
6296 },
6297 {
6298 .name = "wait_halt",
6299 .handler = handle_wait_halt_command,
6300 .mode = COMMAND_EXEC,
6301 .help = "wait up to the specified number of milliseconds "
6302 "(default 5000) for a previously requested halt",
6303 .usage = "[milliseconds]",
6304 },
6305 {
6306 .name = "halt",
6307 .handler = handle_halt_command,
6308 .mode = COMMAND_EXEC,
6309 .help = "request target to halt, then wait up to the specified "
6310 "number of milliseconds (default 5000) for it to complete",
6311 .usage = "[milliseconds]",
6312 },
6313 {
6314 .name = "resume",
6315 .handler = handle_resume_command,
6316 .mode = COMMAND_EXEC,
6317 .help = "resume target execution from current PC or address",
6318 .usage = "[address]",
6319 },
6320 {
6321 .name = "reset",
6322 .handler = handle_reset_command,
6323 .mode = COMMAND_EXEC,
6324 .usage = "[run|halt|init]",
6325 .help = "Reset all targets into the specified mode. "
6326 "Default reset mode is run, if not given.",
6327 },
6328 {
6329 .name = "soft_reset_halt",
6330 .handler = handle_soft_reset_halt_command,
6331 .mode = COMMAND_EXEC,
6332 .usage = "",
6333 .help = "halt the target and do a soft reset",
6334 },
6335 {
6336 .name = "step",
6337 .handler = handle_step_command,
6338 .mode = COMMAND_EXEC,
6339 .help = "step one instruction from current PC or address",
6340 .usage = "[address]",
6341 },
6342 {
6343 .name = "mdd",
6344 .handler = handle_md_command,
6345 .mode = COMMAND_EXEC,
6346 .help = "display memory double-words",
6347 .usage = "['phys'] address [count]",
6348 },
6349 {
6350 .name = "mdw",
6351 .handler = handle_md_command,
6352 .mode = COMMAND_EXEC,
6353 .help = "display memory words",
6354 .usage = "['phys'] address [count]",
6355 },
6356 {
6357 .name = "mdh",
6358 .handler = handle_md_command,
6359 .mode = COMMAND_EXEC,
6360 .help = "display memory half-words",
6361 .usage = "['phys'] address [count]",
6362 },
6363 {
6364 .name = "mdb",
6365 .handler = handle_md_command,
6366 .mode = COMMAND_EXEC,
6367 .help = "display memory bytes",
6368 .usage = "['phys'] address [count]",
6369 },
6370 {
6371 .name = "mwd",
6372 .handler = handle_mw_command,
6373 .mode = COMMAND_EXEC,
6374 .help = "write memory double-word",
6375 .usage = "['phys'] address value [count]",
6376 },
6377 {
6378 .name = "mww",
6379 .handler = handle_mw_command,
6380 .mode = COMMAND_EXEC,
6381 .help = "write memory word",
6382 .usage = "['phys'] address value [count]",
6383 },
6384 {
6385 .name = "mwh",
6386 .handler = handle_mw_command,
6387 .mode = COMMAND_EXEC,
6388 .help = "write memory half-word",
6389 .usage = "['phys'] address value [count]",
6390 },
6391 {
6392 .name = "mwb",
6393 .handler = handle_mw_command,
6394 .mode = COMMAND_EXEC,
6395 .help = "write memory byte",
6396 .usage = "['phys'] address value [count]",
6397 },
6398 {
6399 .name = "bp",
6400 .handler = handle_bp_command,
6401 .mode = COMMAND_EXEC,
6402 .help = "list or set hardware or software breakpoint",
6403 .usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
6404 },
6405 {
6406 .name = "rbp",
6407 .handler = handle_rbp_command,
6408 .mode = COMMAND_EXEC,
6409 .help = "remove breakpoint",
6410 .usage = "'all' | address",
6411 },
6412 {
6413 .name = "wp",
6414 .handler = handle_wp_command,
6415 .mode = COMMAND_EXEC,
6416 .help = "list (no params) or create watchpoints",
6417 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
6418 },
6419 {
6420 .name = "rwp",
6421 .handler = handle_rwp_command,
6422 .mode = COMMAND_EXEC,
6423 .help = "remove watchpoint",
6424 .usage = "address",
6425 },
6426 {
6427 .name = "load_image",
6428 .handler = handle_load_image_command,
6429 .mode = COMMAND_EXEC,
6430 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6431 "[min_address] [max_length]",
6432 },
6433 {
6434 .name = "dump_image",
6435 .handler = handle_dump_image_command,
6436 .mode = COMMAND_EXEC,
6437 .usage = "filename address size",
6438 },
6439 {
6440 .name = "verify_image_checksum",
6441 .handler = handle_verify_image_checksum_command,
6442 .mode = COMMAND_EXEC,
6443 .usage = "filename [offset [type]]",
6444 },
6445 {
6446 .name = "verify_image",
6447 .handler = handle_verify_image_command,
6448 .mode = COMMAND_EXEC,
6449 .usage = "filename [offset [type]]",
6450 },
6451 {
6452 .name = "test_image",
6453 .handler = handle_test_image_command,
6454 .mode = COMMAND_EXEC,
6455 .usage = "filename [offset [type]]",
6456 },
6457 {
6458 .name = "mem2array",
6459 .mode = COMMAND_EXEC,
6460 .jim_handler = jim_mem2array,
6461 .help = "read 8/16/32 bit memory and return as a TCL array "
6462 "for script processing",
6463 .usage = "arrayname bitwidth address count",
6464 },
6465 {
6466 .name = "array2mem",
6467 .mode = COMMAND_EXEC,
6468 .jim_handler = jim_array2mem,
6469 .help = "convert a TCL array to memory locations "
6470 "and write the 8/16/32 bit values",
6471 .usage = "arrayname bitwidth address count",
6472 },
6473 {
6474 .name = "reset_nag",
6475 .handler = handle_target_reset_nag,
6476 .mode = COMMAND_ANY,
6477 .help = "Nag after each reset about options that could have been "
6478 "enabled to improve performance. ",
6479 .usage = "['enable'|'disable']",
6480 },
6481 {
6482 .name = "ps",
6483 .handler = handle_ps_command,
6484 .mode = COMMAND_EXEC,
6485 .help = "list all tasks ",
6486 .usage = " ",
6487 },
6488 {
6489 .name = "test_mem_access",
6490 .handler = handle_test_mem_access_command,
6491 .mode = COMMAND_EXEC,
6492 .help = "Test the target's memory access functions",
6493 .usage = "size",
6494 },
6495
6496 COMMAND_REGISTRATION_DONE
6497 };
6498 static int target_register_user_commands(struct command_context *cmd_ctx)
6499 {
6500 int retval = ERROR_OK;
6501 retval = target_request_register_commands(cmd_ctx);
6502 if (retval != ERROR_OK)
6503 return retval;
6504
6505 retval = trace_register_commands(cmd_ctx);
6506 if (retval != ERROR_OK)
6507 return retval;
6508
6509
6510 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6511 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)