/*************************************************************************** * Copyright (C) 2007 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Partially based on drivers/mtd/nand_ids.c from Linux. * * Copyright (C) 2002 Thomas Gleixner * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "nand.h" #include "time_support.h" #include "fileio.h" #include static int handle_nand_list_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_nand_probe_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_nand_check_bad_blocks_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_nand_info_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_nand_dump_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_nand_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int handle_nand_raw_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc); static int nand_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size); //static int nand_read_plain(struct nand_device_s *device, u32 address, u8 *data, u32 data_size); static int nand_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size); /* NAND flash controller */ extern nand_flash_controller_t davinci_nand_controller; extern nand_flash_controller_t lpc3180_nand_controller; extern nand_flash_controller_t orion_nand_controller; extern nand_flash_controller_t s3c2410_nand_controller; extern nand_flash_controller_t s3c2412_nand_controller; extern nand_flash_controller_t s3c2440_nand_controller; extern nand_flash_controller_t s3c2443_nand_controller; /* extern nand_flash_controller_t boundary_scan_nand_controller; */ static nand_flash_controller_t *nand_flash_controllers[] = { &davinci_nand_controller, &lpc3180_nand_controller, &orion_nand_controller, &s3c2410_nand_controller, &s3c2412_nand_controller, &s3c2440_nand_controller, &s3c2443_nand_controller, /* &boundary_scan_nand_controller, */ NULL }; /* configured NAND devices and NAND Flash command handler */ static nand_device_t *nand_devices = NULL; static command_t *nand_cmd; /* Chip ID list * * Name, ID code, pagesize, chipsize in MegaByte, eraseblock size, * options * * Pagesize; 0, 256, 512 * 0 get this information from the extended chip ID * 256 256 Byte page size * 512 512 Byte page size */ static nand_info_t nand_flash_ids[] = { /* start "museum" IDs */ {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0}, {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0}, {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0}, {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0}, {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0}, {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0}, {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0}, {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0}, {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0}, {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, /* end "museum" IDs */ {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0}, {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0}, {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0}, {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0}, {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0}, {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0}, {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0}, {"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0}, {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0}, {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0}, {"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS}, {"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS}, {"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16}, {"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16}, {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS}, {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS}, {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16}, {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16}, {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS}, {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS}, {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16}, {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16}, {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS}, {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS}, {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16}, {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16}, {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS}, {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS}, {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16}, {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16}, {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS}, {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS}, {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16}, {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16}, {NULL, 0, 0, 0, 0, 0 } }; /* Manufacturer ID list */ static nand_manufacturer_t nand_manuf_ids[] = { {0x0, "unknown"}, {NAND_MFR_TOSHIBA, "Toshiba"}, {NAND_MFR_SAMSUNG, "Samsung"}, {NAND_MFR_FUJITSU, "Fujitsu"}, {NAND_MFR_NATIONAL, "National"}, {NAND_MFR_RENESAS, "Renesas"}, {NAND_MFR_STMICRO, "ST Micro"}, {NAND_MFR_HYNIX, "Hynix"}, {NAND_MFR_MICRON, "Micron"}, {0x0, NULL}, }; /* * Define default oob placement schemes for large and small page devices */ #if 0 static nand_ecclayout_t nand_oob_8 = { .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = { {.offset = 3, .length = 2}, {.offset = 6, .length = 2}} }; #endif static nand_ecclayout_t nand_oob_16 = { .eccbytes = 6, .eccpos = {0, 1, 2, 3, 6, 7}, .oobfree = { {.offset = 8, . length = 8}} }; static nand_ecclayout_t nand_oob_64 = { .eccbytes = 24, .eccpos = { 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {.offset = 2, .length = 38}} }; /* nand device [controller options] */ static int handle_nand_device_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { int i; int retval; if (argc < 1) { LOG_WARNING("incomplete flash device nand configuration"); return ERROR_FLASH_BANK_INVALID; } for (i = 0; nand_flash_controllers[i]; i++) { nand_device_t *p, *c; if (strcmp(args[0], nand_flash_controllers[i]->name) == 0) { /* register flash specific commands */ if ((retval = nand_flash_controllers[i]->register_commands(cmd_ctx)) != ERROR_OK) { LOG_ERROR("couldn't register '%s' commands", args[0]); return retval; } c = malloc(sizeof(nand_device_t)); c->controller = nand_flash_controllers[i]; c->controller_priv = NULL; c->manufacturer = NULL; c->device = NULL; c->bus_width = 0; c->address_cycles = 0; c->page_size = 0; c->use_raw = 0; c->next = NULL; if ((retval = nand_flash_controllers[i]->nand_device_command(cmd_ctx, cmd, args, argc, c)) != ERROR_OK) { LOG_ERROR("'%s' driver rejected nand flash", c->controller->name); free(c); return ERROR_OK; } /* put NAND device in linked list */ if (nand_devices) { /* find last flash device */ for (p = nand_devices; p && p->next; p = p->next); if (p) p->next = c; } else { nand_devices = c; } return ERROR_OK; } } /* no valid NAND controller was found (i.e. the configuration option, * didn't match one of the compiled-in controllers) */ LOG_ERROR("No valid NAND flash controller found (%s)", args[0]); LOG_ERROR("compiled-in NAND flash controllers:"); for (i = 0; nand_flash_controllers[i]; i++) { LOG_ERROR("%i: %s", i, nand_flash_controllers[i]->name); } return ERROR_OK; } int nand_register_commands(struct command_context_s *cmd_ctx) { nand_cmd = register_command(cmd_ctx, NULL, "nand", NULL, COMMAND_ANY, "NAND specific commands"); register_command(cmd_ctx, nand_cmd, "device", handle_nand_device_command, COMMAND_CONFIG, NULL); return ERROR_OK; } int nand_init(struct command_context_s *cmd_ctx) { if (nand_devices) { register_command(cmd_ctx, nand_cmd, "list", handle_nand_list_command, COMMAND_EXEC, "list configured NAND flash devices"); register_command(cmd_ctx, nand_cmd, "info", handle_nand_info_command, COMMAND_EXEC, "print info about NAND flash device "); register_command(cmd_ctx, nand_cmd, "probe", handle_nand_probe_command, COMMAND_EXEC, "identify NAND flash device "); register_command(cmd_ctx, nand_cmd, "check_bad_blocks", handle_nand_check_bad_blocks_command, COMMAND_EXEC, "check NAND flash device for bad blocks [ ]"); register_command(cmd_ctx, nand_cmd, "erase", handle_nand_erase_command, COMMAND_EXEC, "erase blocks on NAND flash device "); register_command(cmd_ctx, nand_cmd, "dump", handle_nand_dump_command, COMMAND_EXEC, "dump from NAND flash device " " [oob_raw|oob_only]"); register_command(cmd_ctx, nand_cmd, "write", handle_nand_write_command, COMMAND_EXEC, "write to NAND flash device [oob_raw|oob_only|oob_softecc|oob_softecc_kw]"); register_command(cmd_ctx, nand_cmd, "raw_access", handle_nand_raw_access_command, COMMAND_EXEC, "raw access to NAND flash device ['enable'|'disable']"); } return ERROR_OK; } nand_device_t *get_nand_device_by_num(int num) { nand_device_t *p; int i = 0; for (p = nand_devices; p; p = p->next) { if (i++ == num) { return p; } } return NULL; } static int nand_build_bbt(struct nand_device_s *device, int first, int last) { u32 page = 0x0; int i; u8 oob[6]; if ((first < 0) || (first >= device->num_blocks)) first = 0; if ((last >= device->num_blocks) || (last == -1)) last = device->num_blocks - 1; for (i = first; i < last; i++) { nand_read_page(device, page, NULL, 0, oob, 6); if (((device->device->options & NAND_BUSWIDTH_16) && ((oob[0] & oob[1]) != 0xff)) || (((device->page_size == 512) && (oob[5] != 0xff)) || ((device->page_size == 2048) && (oob[0] != 0xff)))) { LOG_WARNING("bad block: %i", i); device->blocks[i].is_bad = 1; } else { device->blocks[i].is_bad = 0; } page += (device->erase_size / device->page_size); } return ERROR_OK; } int nand_read_status(struct nand_device_s *device, u8 *status) { if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; /* Send read status command */ device->controller->command(device, NAND_CMD_STATUS); alive_sleep(1); /* read status */ if (device->device->options & NAND_BUSWIDTH_16) { u16 data; device->controller->read_data(device, &data); *status = data & 0xff; } else { device->controller->read_data(device, status); } return ERROR_OK; } static int nand_poll_ready(struct nand_device_s *device, int timeout) { u8 status; device->controller->command(device, NAND_CMD_STATUS); do { if (device->device->options & NAND_BUSWIDTH_16) { u16 data; device->controller->read_data(device, &data); status = data & 0xff; } else { device->controller->read_data(device, &status); } if (status & NAND_STATUS_READY) break; alive_sleep(1); } while (timeout--); return (status & NAND_STATUS_READY) != 0; } int nand_probe(struct nand_device_s *device) { u8 manufacturer_id, device_id; u8 id_buff[6]; int retval; int i; /* clear device data */ device->device = NULL; device->manufacturer = NULL; /* clear device parameters */ device->bus_width = 0; device->address_cycles = 0; device->page_size = 0; device->erase_size = 0; /* initialize controller (device parameters are zero, use controller default) */ if ((retval = device->controller->init(device) != ERROR_OK)) { switch (retval) { case ERROR_NAND_OPERATION_FAILED: LOG_DEBUG("controller initialization failed"); return ERROR_NAND_OPERATION_FAILED; case ERROR_NAND_OPERATION_NOT_SUPPORTED: LOG_ERROR("BUG: controller reported that it doesn't support default parameters"); return ERROR_NAND_OPERATION_FAILED; default: LOG_ERROR("BUG: unknown controller initialization failure"); return ERROR_NAND_OPERATION_FAILED; } } device->controller->command(device, NAND_CMD_RESET); device->controller->reset(device); device->controller->command(device, NAND_CMD_READID); device->controller->address(device, 0x0); if (device->bus_width == 8) { device->controller->read_data(device, &manufacturer_id); device->controller->read_data(device, &device_id); } else { u16 data_buf; device->controller->read_data(device, &data_buf); manufacturer_id = data_buf & 0xff; device->controller->read_data(device, &data_buf); device_id = data_buf & 0xff; } for (i = 0; nand_flash_ids[i].name; i++) { if (nand_flash_ids[i].id == device_id) { device->device = &nand_flash_ids[i]; break; } } for (i = 0; nand_manuf_ids[i].name; i++) { if (nand_manuf_ids[i].id == manufacturer_id) { device->manufacturer = &nand_manuf_ids[i]; break; } } if (!device->manufacturer) { device->manufacturer = &nand_manuf_ids[0]; device->manufacturer->id = manufacturer_id; } if (!device->device) { LOG_ERROR("unknown NAND flash device found, manufacturer id: 0x%2.2x device id: 0x%2.2x", manufacturer_id, device_id); return ERROR_NAND_OPERATION_FAILED; } LOG_DEBUG("found %s (%s)", device->device->name, device->manufacturer->name); /* initialize device parameters */ /* bus width */ if (device->device->options & NAND_BUSWIDTH_16) device->bus_width = 16; else device->bus_width = 8; /* Do we need extended device probe information? */ if (device->device->page_size == 0 || device->device->erase_size == 0) { if (device->bus_width == 8) { device->controller->read_data(device, id_buff+3); device->controller->read_data(device, id_buff+4); device->controller->read_data(device, id_buff+5); } else { u16 data_buf; device->controller->read_data(device, &data_buf); id_buff[3] = data_buf; device->controller->read_data(device, &data_buf); id_buff[4] = data_buf; device->controller->read_data(device, &data_buf); id_buff[5] = data_buf >> 8; } } /* page size */ if (device->device->page_size == 0) { device->page_size = 1 << (10 + (id_buff[4] & 3)); } else if (device->device->page_size == 256) { LOG_ERROR("NAND flashes with 256 byte pagesize are not supported"); return ERROR_NAND_OPERATION_FAILED; } else { device->page_size = device->device->page_size; } /* number of address cycles */ if (device->page_size <= 512) { /* small page devices */ if (device->device->chip_size <= 32) device->address_cycles = 3; else if (device->device->chip_size <= 8*1024) device->address_cycles = 4; else { LOG_ERROR("BUG: small page NAND device with more than 8 GiB encountered"); device->address_cycles = 5; } } else { /* large page devices */ if (device->device->chip_size <= 128) device->address_cycles = 4; else if (device->device->chip_size <= 32*1024) device->address_cycles = 5; else { LOG_ERROR("BUG: large page NAND device with more than 32 GiB encountered"); device->address_cycles = 6; } } /* erase size */ if (device->device->erase_size == 0) { switch ((id_buff[4] >> 4) & 3) { case 0: device->erase_size = 64 << 10; break; case 1: device->erase_size = 128 << 10; break; case 2: device->erase_size = 256 << 10; break; case 3: device->erase_size =512 << 10; break; } } else { device->erase_size = device->device->erase_size; } /* initialize controller, but leave parameters at the controllers default */ if ((retval = device->controller->init(device) != ERROR_OK)) { switch (retval) { case ERROR_NAND_OPERATION_FAILED: LOG_DEBUG("controller initialization failed"); return ERROR_NAND_OPERATION_FAILED; case ERROR_NAND_OPERATION_NOT_SUPPORTED: LOG_ERROR("controller doesn't support requested parameters (buswidth: %i, address cycles: %i, page size: %i)", device->bus_width, device->address_cycles, device->page_size); return ERROR_NAND_OPERATION_FAILED; default: LOG_ERROR("BUG: unknown controller initialization failure"); return ERROR_NAND_OPERATION_FAILED; } } device->num_blocks = (device->device->chip_size * 1024) / (device->erase_size / 1024); device->blocks = malloc(sizeof(nand_block_t) * device->num_blocks); for (i = 0; i < device->num_blocks; i++) { device->blocks[i].size = device->erase_size; device->blocks[i].offset = i * device->erase_size; device->blocks[i].is_erased = -1; device->blocks[i].is_bad = -1; } return ERROR_OK; } int nand_erase(struct nand_device_s *device, int first_block, int last_block) { int i; u32 page; u8 status; int retval; if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; if ((first_block < 0) || (last_block > device->num_blocks)) return ERROR_INVALID_ARGUMENTS; /* make sure we know if a block is bad before erasing it */ for (i = first_block; i <= last_block; i++) { if (device->blocks[i].is_bad == -1) { nand_build_bbt(device, i, last_block); break; } } for (i = first_block; i <= last_block; i++) { /* Send erase setup command */ device->controller->command(device, NAND_CMD_ERASE1); page = i * (device->erase_size / device->page_size); /* Send page address */ if (device->page_size <= 512) { /* row */ device->controller->address(device, page & 0xff); device->controller->address(device, (page >> 8) & 0xff); /* 3rd cycle only on devices with more than 32 MiB */ if (device->address_cycles >= 4) device->controller->address(device, (page >> 16) & 0xff); /* 4th cycle only on devices with more than 8 GiB */ if (device->address_cycles >= 5) device->controller->address(device, (page >> 24) & 0xff); } else { /* row */ device->controller->address(device, page & 0xff); device->controller->address(device, (page >> 8) & 0xff); /* 3rd cycle only on devices with more than 128 MiB */ if (device->address_cycles >= 5) device->controller->address(device, (page >> 16) & 0xff); } /* Send erase confirm command */ device->controller->command(device, NAND_CMD_ERASE2); retval = device->controller->nand_ready ? device->controller->nand_ready(device, 1000) : nand_poll_ready(device, 1000); if (!retval) { LOG_ERROR("timeout waiting for NAND flash block erase to complete"); return ERROR_NAND_OPERATION_TIMEOUT; } if ((retval = nand_read_status(device, &status)) != ERROR_OK) { LOG_ERROR("couldn't read status"); return ERROR_NAND_OPERATION_FAILED; } if (status & 0x1) { LOG_ERROR("erase operation didn't pass, status: 0x%2.2x", status); return ERROR_NAND_OPERATION_FAILED; } device->blocks[i].is_erased = 1; } return ERROR_OK; } #if 0 static int nand_read_plain(struct nand_device_s *device, u32 address, u8 *data, u32 data_size) { u8 *page; if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (address % device->page_size) { LOG_ERROR("reads need to be page aligned"); return ERROR_NAND_OPERATION_FAILED; } page = malloc(device->page_size); while (data_size > 0 ) { u32 thisrun_size = (data_size > device->page_size) ? device->page_size : data_size; u32 page_address; page_address = address / device->page_size; nand_read_page(device, page_address, page, device->page_size, NULL, 0); memcpy(data, page, thisrun_size); address += thisrun_size; data += thisrun_size; data_size -= thisrun_size; } free(page); return ERROR_OK; } static int nand_write_plain(struct nand_device_s *device, u32 address, u8 *data, u32 data_size) { u8 *page; if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (address % device->page_size) { LOG_ERROR("writes need to be page aligned"); return ERROR_NAND_OPERATION_FAILED; } page = malloc(device->page_size); while (data_size > 0 ) { u32 thisrun_size = (data_size > device->page_size) ? device->page_size : data_size; u32 page_address; memset(page, 0xff, device->page_size); memcpy(page, data, thisrun_size); page_address = address / device->page_size; nand_write_page(device, page_address, page, device->page_size, NULL, 0); address += thisrun_size; data += thisrun_size; data_size -= thisrun_size; } free(page); return ERROR_OK; } #endif int nand_write_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size) { u32 block; if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; block = page / (device->erase_size / device->page_size); if (device->blocks[block].is_erased == 1) device->blocks[block].is_erased = 0; if (device->use_raw || device->controller->write_page == NULL) return nand_write_page_raw(device, page, data, data_size, oob, oob_size); else return device->controller->write_page(device, page, data, data_size, oob, oob_size); } static int nand_read_page(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size) { if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (device->use_raw || device->controller->read_page == NULL) return nand_read_page_raw(device, page, data, data_size, oob, oob_size); else return device->controller->read_page(device, page, data, data_size, oob, oob_size); } int nand_read_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size) { u32 i; if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (device->page_size <= 512) { /* small page device */ if (data) device->controller->command(device, NAND_CMD_READ0); else device->controller->command(device, NAND_CMD_READOOB); /* column (always 0, we start at the beginning of a page/OOB area) */ device->controller->address(device, 0x0); /* row */ device->controller->address(device, page & 0xff); device->controller->address(device, (page >> 8) & 0xff); /* 4th cycle only on devices with more than 32 MiB */ if (device->address_cycles >= 4) device->controller->address(device, (page >> 16) & 0xff); /* 5th cycle only on devices with more than 8 GiB */ if (device->address_cycles >= 5) device->controller->address(device, (page >> 24) & 0xff); } else { /* large page device */ device->controller->command(device, NAND_CMD_READ0); /* column (0 when we start at the beginning of a page, * or 2048 for the beginning of OOB area) */ device->controller->address(device, 0x0); if (data) device->controller->address(device, 0x0); else device->controller->address(device, 0x8); /* row */ device->controller->address(device, page & 0xff); device->controller->address(device, (page >> 8) & 0xff); /* 5th cycle only on devices with more than 128 MiB */ if (device->address_cycles >= 5) device->controller->address(device, (page >> 16) & 0xff); /* large page devices need a start command */ device->controller->command(device, NAND_CMD_READSTART); } if (device->controller->nand_ready) { if (!device->controller->nand_ready(device, 100)) return ERROR_NAND_OPERATION_TIMEOUT; } else { alive_sleep(1); } if (data) { if (device->controller->read_block_data != NULL) (device->controller->read_block_data)(device, data, data_size); else { for (i = 0; i < data_size;) { if (device->device->options & NAND_BUSWIDTH_16) { device->controller->read_data(device, data); data += 2; i += 2; } else { device->controller->read_data(device, data); data += 1; i += 1; } } } } if (oob) { if (device->controller->read_block_data != NULL) (device->controller->read_block_data)(device, oob, oob_size); else { for (i = 0; i < oob_size;) { if (device->device->options & NAND_BUSWIDTH_16) { device->controller->read_data(device, oob); oob += 2; i += 2; } else { device->controller->read_data(device, oob); oob += 1; i += 1; } } } } return ERROR_OK; } int nand_write_page_raw(struct nand_device_s *device, u32 page, u8 *data, u32 data_size, u8 *oob, u32 oob_size) { u32 i; int retval; u8 status; if (!device->device) return ERROR_NAND_DEVICE_NOT_PROBED; device->controller->command(device, NAND_CMD_SEQIN); if (device->page_size <= 512) { /* column (always 0, we start at the beginning of a page/OOB area) */ device->controller->address(device, 0x0); /* row */ device->controller->address(device, page & 0xff); device->controller->address(device, (page >> 8) & 0xff); /* 4th cycle only on devices with more than 32 MiB */ if (device->address_cycles >= 4) device->controller->address(device, (page >> 16) & 0xff); /* 5th cycle only on devices with more than 8 GiB */ if (device->address_cycles >= 5) device->controller->address(device, (page >> 24) & 0xff); } else { /* column (0 when we start at the beginning of a page, * or 2048 for the beginning of OOB area) */ device->controller->address(device, 0x0); if (data) device->controller->address(device, 0x0); else device->controller->address(device, 0x8); /* row */ device->controller->address(device, page & 0xff); device->controller->address(device, (page >> 8) & 0xff); /* 5th cycle only on devices with more than 128 MiB */ if (device->address_cycles >= 5) device->controller->address(device, (page >> 16) & 0xff); } if (data) { if (device->controller->write_block_data != NULL) (device->controller->write_block_data)(device, data, data_size); else { for (i = 0; i < data_size;) { if (device->device->options & NAND_BUSWIDTH_16) { u16 data_buf = le_to_h_u16(data); device->controller->write_data(device, data_buf); data += 2; i += 2; } else { device->controller->write_data(device, *data); data += 1; i += 1; } } } } if (oob) { if (device->controller->write_block_data != NULL) (device->controller->write_block_data)(device, oob, oob_size); else { for (i = 0; i < oob_size;) { if (device->device->options & NAND_BUSWIDTH_16) { u16 oob_buf = le_to_h_u16(data); device->controller->write_data(device, oob_buf); oob += 2; i += 2; } else { device->controller->write_data(device, *oob); oob += 1; i += 1; } } } } device->controller->command(device, NAND_CMD_PAGEPROG); retval = device->controller->nand_ready ? device->controller->nand_ready(device, 100) : nand_poll_ready(device, 100); if (!retval) return ERROR_NAND_OPERATION_TIMEOUT; if ((retval = nand_read_status(device, &status)) != ERROR_OK) { LOG_ERROR("couldn't read status"); return ERROR_NAND_OPERATION_FAILED; } if (status & NAND_STATUS_FAIL) { LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status); return ERROR_NAND_OPERATION_FAILED; } return ERROR_OK; } int handle_nand_list_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *p; int i; if (!nand_devices) { command_print(cmd_ctx, "no NAND flash devices configured"); return ERROR_OK; } for (p = nand_devices, i = 0; p; p = p->next, i++) { if (p->device) command_print(cmd_ctx, "#%i: %s (%s) pagesize: %i, buswidth: %i, erasesize: %i", i, p->device->name, p->manufacturer->name, p->page_size, p->bus_width, p->erase_size); else command_print(cmd_ctx, "#%i: not probed", i); } return ERROR_OK; } static int handle_nand_info_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *p; int i = 0; int j = 0; int first = -1; int last = -1; switch (argc) { default: return ERROR_COMMAND_SYNTAX_ERROR; case 1: first = 0; last = INT32_MAX; break; case 2: first = last = strtoul(args[1], NULL, 0); break; case 3: first = strtoul(args[1], NULL, 0); last = strtoul(args[2], NULL, 0); break; } p = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (p) { if (p->device) { if (first >= p->num_blocks) first = p->num_blocks - 1; if (last >= p->num_blocks) last = p->num_blocks - 1; command_print(cmd_ctx, "#%i: %s (%s) pagesize: %i, buswidth: %i, erasesize: %i", i++, p->device->name, p->manufacturer->name, p->page_size, p->bus_width, p->erase_size); for (j = first; j <= last; j++) { char *erase_state, *bad_state; if (p->blocks[j].is_erased == 0) erase_state = "not erased"; else if (p->blocks[j].is_erased == 1) erase_state = "erased"; else erase_state = "erase state unknown"; if (p->blocks[j].is_bad == 0) bad_state = ""; else if (p->blocks[j].is_bad == 1) bad_state = " (marked bad)"; else bad_state = " (block condition unknown)"; command_print(cmd_ctx, "\t#%i: 0x%8.8x (%dkB) %s%s", j, p->blocks[j].offset, p->blocks[j].size / 1024, erase_state, bad_state); } } else { command_print(cmd_ctx, "#%s: not probed", args[0]); } } return ERROR_OK; } static int handle_nand_probe_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *p; int retval; if (argc != 1) { return ERROR_COMMAND_SYNTAX_ERROR; } p = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (p) { if ((retval = nand_probe(p)) == ERROR_OK) { command_print(cmd_ctx, "NAND flash device '%s' found", p->device->name); } else if (retval == ERROR_NAND_OPERATION_FAILED) { command_print(cmd_ctx, "probing failed for NAND flash device"); } else { command_print(cmd_ctx, "unknown error when probing NAND flash device"); } } else { command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]); } return ERROR_OK; } static int handle_nand_erase_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *p; int retval; if (argc != 3) { return ERROR_COMMAND_SYNTAX_ERROR; } p = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (p) { char *cp; unsigned long offset; unsigned long length; offset = strtoul(args[1], &cp, 0); if (*cp || offset == ULONG_MAX || offset % p->erase_size) { return ERROR_INVALID_ARGUMENTS; } offset /= p->erase_size; length = strtoul(args[2], &cp, 0); if (*cp || length == ULONG_MAX || length % p->erase_size) { return ERROR_INVALID_ARGUMENTS; } length -= 1; length /= p->erase_size; retval = nand_erase(p, offset, offset + length); if (retval == ERROR_OK) { command_print(cmd_ctx, "successfully erased blocks " "%lu to %lu on NAND flash device '%s'", offset, offset + length, p->device->name); } else if (retval == ERROR_NAND_OPERATION_FAILED) { command_print(cmd_ctx, "erase failed"); } else { command_print(cmd_ctx, "unknown error when erasing NAND flash device"); } } else { command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]); } return ERROR_OK; } int handle_nand_check_bad_blocks_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *p; int retval; int first = -1; int last = -1; if ((argc < 1) || (argc > 3) || (argc == 2)) { return ERROR_COMMAND_SYNTAX_ERROR; } p = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (!p) { command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]); return ERROR_INVALID_ARGUMENTS; } if (argc == 3) { char *cp; unsigned long offset; unsigned long length; offset = strtoul(args[1], &cp, 0); if (*cp || offset == ULONG_MAX || offset % p->erase_size) { return ERROR_INVALID_ARGUMENTS; } offset /= p->erase_size; length = strtoul(args[2], &cp, 0); if (*cp || length == ULONG_MAX || length % p->erase_size) { return ERROR_INVALID_ARGUMENTS; } length -= 1; length /= p->erase_size; first = offset; last = offset + length; } retval = nand_build_bbt(p, first, last); if (retval == ERROR_OK) { command_print(cmd_ctx, "checked NAND flash device for bad blocks, " "use \"nand info\" command to list blocks"); } else if (retval == ERROR_NAND_OPERATION_FAILED) { command_print(cmd_ctx, "error when checking for bad blocks on " "NAND flash device"); } else { command_print(cmd_ctx, "unknown error when checking for bad " "blocks on NAND flash device"); } return ERROR_OK; } static int handle_nand_write_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { u32 offset; u32 binary_size; u32 buf_cnt; enum oob_formats oob_format = NAND_OOB_NONE; fileio_t fileio; duration_t duration; char *duration_text; nand_device_t *p; if (argc < 3) { return ERROR_COMMAND_SYNTAX_ERROR; } p = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (p) { u8 *page = NULL; u32 page_size = 0; u8 *oob = NULL; u32 oob_size = 0; const int *eccpos = NULL; offset = strtoul(args[2], NULL, 0); if (argc > 3) { int i; for (i = 3; i < argc; i++) { if (!strcmp(args[i], "oob_raw")) oob_format |= NAND_OOB_RAW; else if (!strcmp(args[i], "oob_only")) oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY; else if (!strcmp(args[i], "oob_softecc")) oob_format |= NAND_OOB_SW_ECC; else if (!strcmp(args[i], "oob_softecc_kw")) oob_format |= NAND_OOB_SW_ECC_KW; else { command_print(cmd_ctx, "unknown option: %s", args[i]); return ERROR_COMMAND_SYNTAX_ERROR; } } } duration_start_measure(&duration); if (fileio_open(&fileio, args[1], FILEIO_READ, FILEIO_BINARY) != ERROR_OK) { return ERROR_OK; } buf_cnt = binary_size = fileio.size; if (!(oob_format & NAND_OOB_ONLY)) { page_size = p->page_size; page = malloc(p->page_size); } if (oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC | NAND_OOB_SW_ECC_KW)) { if (p->page_size == 512) { oob_size = 16; eccpos = nand_oob_16.eccpos; } else if (p->page_size == 2048) { oob_size = 64; eccpos = nand_oob_64.eccpos; } oob = malloc(oob_size); } if (offset % p->page_size) { command_print(cmd_ctx, "only page size aligned offsets and sizes are supported"); fileio_close(&fileio); free(oob); free(page); return ERROR_OK; } while (buf_cnt > 0) { u32 size_read; if (NULL != page) { fileio_read(&fileio, page_size, page, &size_read); buf_cnt -= size_read; if (size_read < page_size) { memset(page + size_read, 0xff, page_size - size_read); } } if (oob_format & NAND_OOB_SW_ECC) { u32 i, j; u8 ecc[3]; memset(oob, 0xff, oob_size); for (i = 0, j = 0; i < page_size; i += 256) { nand_calculate_ecc(p, page+i, ecc); oob[eccpos[j++]] = ecc[0]; oob[eccpos[j++]] = ecc[1]; oob[eccpos[j++]] = ecc[2]; } } else if (oob_format & NAND_OOB_SW_ECC_KW) { /* * In this case eccpos is not used as * the ECC data is always stored contigously * at the end of the OOB area. It consists * of 10 bytes per 512-byte data block. */ u32 i; u8 *ecc = oob + oob_size - page_size/512 * 10; memset(oob, 0xff, oob_size); for (i = 0; i < page_size; i += 512) { nand_calculate_ecc_kw(p, page+i, ecc); ecc += 10; } } else if (NULL != oob) { fileio_read(&fileio, oob_size, oob, &size_read); buf_cnt -= size_read; if (size_read < oob_size) { memset(oob + size_read, 0xff, oob_size - size_read); } } if (nand_write_page(p, offset / p->page_size, page, page_size, oob, oob_size) != ERROR_OK) { command_print(cmd_ctx, "failed writing file %s to NAND flash %s at offset 0x%8.8x", args[1], args[0], offset); fileio_close(&fileio); free(oob); free(page); return ERROR_OK; } offset += page_size; } fileio_close(&fileio); free(oob); free(page); oob = NULL; page = NULL; duration_stop_measure(&duration, &duration_text); command_print(cmd_ctx, "wrote file %s to NAND flash %s up to offset 0x%8.8x in %s", args[1], args[0], offset, duration_text); free(duration_text); duration_text = NULL; } else { command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]); } return ERROR_OK; } static int handle_nand_dump_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *p; if (argc < 4) { return ERROR_COMMAND_SYNTAX_ERROR; } p = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (p) { if (p->device) { fileio_t fileio; duration_t duration; char *duration_text; int retval; u8 *page = NULL; u32 page_size = 0; u8 *oob = NULL; u32 oob_size = 0; u32 address = strtoul(args[2], NULL, 0); u32 size = strtoul(args[3], NULL, 0); u32 bytes_done = 0; enum oob_formats oob_format = NAND_OOB_NONE; if (argc > 4) { int i; for (i = 4; i < argc; i++) { if (!strcmp(args[i], "oob_raw")) oob_format |= NAND_OOB_RAW; else if (!strcmp(args[i], "oob_only")) oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY; else command_print(cmd_ctx, "unknown option: '%s'", args[i]); } } if ((address % p->page_size) || (size % p->page_size)) { command_print(cmd_ctx, "only page size aligned addresses and sizes are supported"); return ERROR_OK; } if (!(oob_format & NAND_OOB_ONLY)) { page_size = p->page_size; page = malloc(p->page_size); } if (oob_format & NAND_OOB_RAW) { if (p->page_size == 512) oob_size = 16; else if (p->page_size == 2048) oob_size = 64; oob = malloc(oob_size); } if (fileio_open(&fileio, args[1], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK) { return ERROR_OK; } duration_start_measure(&duration); while (size > 0) { u32 size_written; if ((retval = nand_read_page(p, address / p->page_size, page, page_size, oob, oob_size)) != ERROR_OK) { command_print(cmd_ctx, "reading NAND flash page failed"); free(page); free(oob); fileio_close(&fileio); return ERROR_OK; } if (NULL != page) { fileio_write(&fileio, page_size, page, &size_written); bytes_done += page_size; } if (NULL != oob) { fileio_write(&fileio, oob_size, oob, &size_written); bytes_done += oob_size; } size -= p->page_size; address += p->page_size; } free(page); page = NULL; free(oob); oob = NULL; fileio_close(&fileio); duration_stop_measure(&duration, &duration_text); command_print(cmd_ctx, "dumped %lld byte in %s", fileio.size, duration_text); free(duration_text); duration_text = NULL; } else { command_print(cmd_ctx, "#%s: not probed", args[0]); } } else { command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]); } return ERROR_OK; } static int handle_nand_raw_access_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc) { nand_device_t *p; if ((argc < 1) || (argc > 2)) { return ERROR_COMMAND_SYNTAX_ERROR; } p = get_nand_device_by_num(strtoul(args[0], NULL, 0)); if (p) { if (p->device) { if (argc == 2) { if (strcmp("enable", args[1]) == 0) { p->use_raw = 1; } else if (strcmp("disable", args[1]) == 0) { p->use_raw = 0; } else { return ERROR_COMMAND_SYNTAX_ERROR; } } command_print(cmd_ctx, "raw access is %s", (p->use_raw) ? "enabled" : "disabled"); } else { command_print(cmd_ctx, "#%s: not probed", args[0]); } } else { command_print(cmd_ctx, "NAND flash device '#%s' is out of bounds", args[0]); } return ERROR_OK; }