/*************************************************************************** * Copyright (C) 2009 by Alexei Babich * * Rezonans plc., Chelyabinsk, Russia * * impatt@mail.ru * * * * Copyright (C) 2010 by Gaetan CARLIER * * Trump s.a., Belgium * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ /* * Freescale iMX2* OpenOCD NAND Flash controller support. * based on Freescale iMX3* OpenOCD NAND Flash controller support. */ /* * driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @imx27 * tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #", * "nand write # file 0", "nand verify" * * get_next_halfword_from_sram_buffer() not tested * !! all function only tested with 2k page nand device; imx27_write_page * writes the 4 MAIN_BUFFER's and is not compatible with < 2k page * !! oob must be be used due to NFS bug */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include "mx2.h" #include /* This permits to print (in LOG_INFO) how much bytes * has been written after a page read or write. * This is useful when OpenOCD is used with a graphical * front-end to estimate progression of the global read/write */ #undef _MX2_PRINT_STAT //#define _MX2_PRINT_STAT static const char target_not_halted_err_msg[] = "target must be halted to use mx2 NAND flash controller"; static const char data_block_size_err_msg[] = "minimal granularity is one half-word, %" PRId32 " is incorrect"; static const char sram_buffer_bounds_err_msg[] = "trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")"; static const char get_status_register_err_msg[] = "can't get NAND status"; static uint32_t in_sram_address; static unsigned char sign_of_sequental_byte_read; static int initialize_nf_controller(struct nand_device *nand); static int get_next_byte_from_sram_buffer(struct target * target, uint8_t * value); static int get_next_halfword_from_sram_buffer(struct target * target, uint16_t * value); static int poll_for_complete_op(struct target * target, const char *text); static int validate_target_state(struct nand_device *nand); static int do_data_output(struct nand_device *nand); static int imx27_command(struct nand_device *nand, uint8_t command); static int imx27_address(struct nand_device *nand, uint8_t address); NAND_DEVICE_COMMAND_HANDLER(imx27_nand_device_command) { struct mx2_nf_controller *mx2_nf_info; int hwecc_needed; int x; mx2_nf_info = malloc(sizeof(struct mx2_nf_controller)); if (mx2_nf_info == NULL) { LOG_ERROR("no memory for nand controller"); return ERROR_FAIL; } nand->controller_priv = mx2_nf_info; if (CMD_ARGC < 3) { LOG_ERROR("use \"nand device imx27 target noecc|hwecc\""); return ERROR_FAIL; } /* * check hwecc requirements */ hwecc_needed = strcmp(CMD_ARGV[2], "hwecc"); if (hwecc_needed == 0) mx2_nf_info->flags.hw_ecc_enabled = 1; else mx2_nf_info->flags.hw_ecc_enabled = 0; mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE; mx2_nf_info->fin = MX2_NF_FIN_NONE; mx2_nf_info->flags.target_little_endian = (nand->target->endianness == TARGET_LITTLE_ENDIAN); /* * testing host endianness */ x = 1; if (*(char *) &x == 1) mx2_nf_info->flags.host_little_endian = 1; else mx2_nf_info->flags.host_little_endian = 0; return ERROR_OK; } static int imx27_init(struct nand_device *nand) { struct mx2_nf_controller *mx2_nf_info = nand->controller_priv; struct target *target = nand->target; int validate_target_result; uint16_t buffsize_register_content; uint32_t pcsr_register_content; int retval; uint16_t nand_status_content; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; target_read_u16(target, MX2_NF_BUFSIZ, &buffsize_register_content); mx2_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f); target_read_u32(target, MX2_FMCR, &pcsr_register_content); if (!nand->bus_width) { /* bus_width not yet defined. Read it from MX2_FMCR */ nand->bus_width = (pcsr_register_content & MX2_FMCR_NF_16BIT_SEL) ? 16 : 8; } else { /* bus_width forced in soft. Sync it to MX2_FMCR */ pcsr_register_content |= ((nand->bus_width == 16) ? MX2_FMCR_NF_16BIT_SEL : 0x00000000); target_write_u32(target, MX2_FMCR, pcsr_register_content); } if (nand->bus_width == 16) LOG_DEBUG("MX2_NF : bus is 16-bit width"); else LOG_DEBUG("MX2_NF : bus is 8-bit width"); if (!nand->page_size) { nand->page_size = (pcsr_register_content & MX2_FMCR_NF_FMS) ? 2048 : 512; } else { pcsr_register_content |= ((nand->page_size == 2048) ? MX2_FMCR_NF_FMS : 0x00000000); target_write_u32(target, MX2_FMCR, pcsr_register_content); } if (mx2_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) { LOG_ERROR("NAND controller have only 1 kb SRAM, so " "pagesize 2048 is incompatible with it"); } else { LOG_DEBUG("MX2_NF : NAND controller can handle pagesize of 2048"); } initialize_nf_controller(nand); retval = ERROR_OK; retval |= imx27_command(nand, NAND_CMD_STATUS); retval |= imx27_address(nand, 0x00); retval |= do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR(get_status_register_err_msg); return ERROR_FAIL; } target_read_u16(target, MX2_NF_MAIN_BUFFER0, &nand_status_content); if (!(nand_status_content & 0x0080)) { LOG_INFO("NAND read-only"); mx2_nf_info->flags.nand_readonly = 1; } else { mx2_nf_info->flags.nand_readonly = 0; } return ERROR_OK; } static int imx27_read_data(struct nand_device *nand, void *data) { struct target *target = nand->target; int validate_target_result; int try_data_output_from_nand_chip; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; /* * get data from nand chip */ try_data_output_from_nand_chip = do_data_output(nand); if (try_data_output_from_nand_chip != ERROR_OK) { LOG_ERROR("imx27_read_data : read data failed : '%x'", try_data_output_from_nand_chip); return try_data_output_from_nand_chip; } if (nand->bus_width == 16) get_next_halfword_from_sram_buffer(target, data); else get_next_byte_from_sram_buffer(target, data); return ERROR_OK; } static int imx27_write_data(struct nand_device *nand, uint16_t data) { LOG_ERROR("write_data() not implemented"); return ERROR_NAND_OPERATION_FAILED; } static int imx27_reset(struct nand_device *nand) { /* * validate target state */ int validate_target_result; validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; initialize_nf_controller(nand); return ERROR_OK; } static int imx27_command(struct nand_device *nand, uint8_t command) { struct mx2_nf_controller *mx2_nf_info = nand->controller_priv; struct target *target = nand->target; int validate_target_result; int poll_result; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; switch(command) { case NAND_CMD_READOOB: command = NAND_CMD_READ0; /* set read point for data_read() and read_block_data() to * spare area in SRAM buffer */ in_sram_address = MX2_NF_SPARE_BUFFER0; break; case NAND_CMD_READ1: command = NAND_CMD_READ0; /* * offset == one half of page size */ in_sram_address = MX2_NF_MAIN_BUFFER0 + (nand->page_size >> 1); break; default: in_sram_address = MX2_NF_MAIN_BUFFER0; break; } target_write_u16(target, MX2_NF_FCMD, command); /* * start command input operation (set MX2_NF_BIT_OP_DONE==0) */ target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FCI); poll_result = poll_for_complete_op(target, "command"); if (poll_result != ERROR_OK) return poll_result; /* * reset cursor to begin of the buffer */ sign_of_sequental_byte_read = 0; /* Handle special read command and adjust NF_CFG2(FDO) */ switch(command) { case NAND_CMD_READID: mx2_nf_info->optype = MX2_NF_DATAOUT_NANDID; mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; break; case NAND_CMD_STATUS: mx2_nf_info->optype = MX2_NF_DATAOUT_NANDSTATUS; mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; target_write_u16 (target, MX2_NF_BUFADDR, 0); in_sram_address = 0; break; case NAND_CMD_READ0: mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE; break; default: /* Ohter command use the default 'One page data out' FDO */ mx2_nf_info->optype = MX2_NF_DATAOUT_PAGE; break; } return ERROR_OK; } static int imx27_address(struct nand_device *nand, uint8_t address) { struct target *target = nand->target; int validate_target_result; int poll_result; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; target_write_u16(target, MX2_NF_FADDR, address); /* * start address input operation (set MX2_NF_BIT_OP_DONE==0) */ target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FAI); poll_result = poll_for_complete_op(target, "address"); if (poll_result != ERROR_OK) return poll_result; return ERROR_OK; } static int imx27_nand_ready(struct nand_device *nand, int tout) { uint16_t poll_complete_status; struct target *target = nand->target; int validate_target_result; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; do { target_read_u16(target, MX2_NF_CFG2, &poll_complete_status); if (poll_complete_status & MX2_NF_BIT_OP_DONE) return tout; alive_sleep(1); } while (tout-- > 0); return tout; } static int imx27_write_page(struct nand_device *nand, uint32_t page, uint8_t * data, uint32_t data_size, uint8_t * oob, uint32_t oob_size) { struct mx2_nf_controller *mx2_nf_info = nand->controller_priv; struct target *target = nand->target; int retval; uint16_t nand_status_content; uint16_t swap1, swap2, new_swap1; int poll_result; if (data_size % 2) { LOG_ERROR(data_block_size_err_msg, data_size); return ERROR_NAND_OPERATION_FAILED; } if (oob_size % 2) { LOG_ERROR(data_block_size_err_msg, oob_size); return ERROR_NAND_OPERATION_FAILED; } if (!data) { LOG_ERROR("nothing to program"); return ERROR_NAND_OPERATION_FAILED; } /* * validate target state */ retval = validate_target_state(nand); if (retval != ERROR_OK) return retval; in_sram_address = MX2_NF_MAIN_BUFFER0; sign_of_sequental_byte_read = 0; retval = ERROR_OK; retval |= imx27_command(nand, NAND_CMD_SEQIN); retval |= imx27_address(nand, 0); //col retval |= imx27_address(nand, 0); //col retval |= imx27_address(nand, page & 0xff); //page address retval |= imx27_address(nand, (page >> 8) & 0xff); //page address retval |= imx27_address(nand, (page >> 16) & 0xff); //page address target_write_buffer(target, MX2_NF_MAIN_BUFFER0, data_size, data); if (oob) { if (mx2_nf_info->flags.hw_ecc_enabled) { /* * part of spare block will be overrided by hardware * ECC generator */ LOG_DEBUG("part of spare block will be overrided " "by hardware ECC generator"); } target_write_buffer(target, MX2_NF_SPARE_BUFFER0, oob_size, oob); } //BI-swap - work-around of imx27 NFC for NAND device with page == 2kb target_read_u16(target, MX2_NF_MAIN_BUFFER3 + 464, &swap1); if (oob) { LOG_ERROR("Due to NFC Bug, oob is not correctly implemented " "in mx2 driver"); return ERROR_NAND_OPERATION_FAILED; } //target_read_u16 (target, MX2_NF_SPARE_BUFFER3 + 4, &swap2); swap2 = 0xffff; //Spare buffer unused forced to 0xffff new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8); swap2 = (swap1 << 8) | (swap2 & 0xFF); target_write_u16(target, MX2_NF_MAIN_BUFFER3 + 464, new_swap1); target_write_u16(target, MX2_NF_SPARE_BUFFER3 + 4, swap2); /* * start data input operation (set MX2_NF_BIT_OP_DONE==0) */ target_write_u16(target, MX2_NF_BUFADDR, 0); target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI); poll_result = poll_for_complete_op(target, "data input"); if (poll_result != ERROR_OK) return poll_result; target_write_u16(target, MX2_NF_BUFADDR, 1); target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI); poll_result = poll_for_complete_op(target, "data input"); if (poll_result != ERROR_OK) return poll_result; target_write_u16(target, MX2_NF_BUFADDR, 2); target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI); poll_result = poll_for_complete_op(target, "data input"); if (poll_result != ERROR_OK) return poll_result; target_write_u16(target, MX2_NF_BUFADDR, 3); target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_OP_FDI); poll_result = poll_for_complete_op(target, "data input"); if (poll_result != ERROR_OK) return poll_result; retval |= imx27_command(nand, NAND_CMD_PAGEPROG); if (retval != ERROR_OK) return retval; /* * check status register */ retval = ERROR_OK; retval |= imx27_command(nand, NAND_CMD_STATUS); target_write_u16 (target, MX2_NF_BUFADDR, 0); mx2_nf_info->optype = MX2_NF_DATAOUT_NANDSTATUS; mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; retval |= do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR (get_status_register_err_msg); return retval; } target_read_u16 (target, MX2_NF_MAIN_BUFFER0, &nand_status_content); if (nand_status_content & 0x0001) { /* * page not correctly written */ return ERROR_NAND_OPERATION_FAILED; } #ifdef _MX2_PRINT_STAT LOG_INFO("%d bytes newly written", data_size); #endif return ERROR_OK; } static int imx27_read_page(struct nand_device *nand, uint32_t page, uint8_t * data, uint32_t data_size, uint8_t * oob, uint32_t oob_size) { struct mx2_nf_controller *mx2_nf_info = nand->controller_priv; struct target *target = nand->target; int retval; uint16_t swap1, swap2, new_swap1; if (data_size % 2) { LOG_ERROR(data_block_size_err_msg, data_size); return ERROR_NAND_OPERATION_FAILED; } if (oob_size % 2) { LOG_ERROR(data_block_size_err_msg, oob_size); return ERROR_NAND_OPERATION_FAILED; } /* * validate target state */ retval = validate_target_state(nand); if (retval != ERROR_OK) { return retval; } /* Reset address_cycles before imx27_command ?? */ retval = imx27_command(nand, NAND_CMD_READ0); if (retval != ERROR_OK) return retval; retval = imx27_address(nand, 0); //col if (retval != ERROR_OK) return retval; retval = imx27_address(nand, 0); //col if (retval != ERROR_OK) return retval; retval = imx27_address(nand, page & 0xff); //page address if (retval != ERROR_OK) return retval; retval = imx27_address(nand, (page >> 8) & 0xff); //page address if (retval != ERROR_OK) return retval; retval = imx27_address(nand, (page >> 16) & 0xff); //page address if (retval != ERROR_OK) return retval; retval = imx27_command(nand, NAND_CMD_READSTART); if (retval != ERROR_OK) return retval; target_write_u16(target, MX2_NF_BUFADDR, 0); mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; retval = do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR("MX2_NF : Error reading page 0"); return retval; } //Test nand page size to know how much MAIN_BUFFER must be written target_write_u16(target, MX2_NF_BUFADDR, 1); mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; retval = do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR("MX2_NF : Error reading page 1"); return retval; } target_write_u16(target, MX2_NF_BUFADDR, 2); mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; retval = do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR("MX2_NF : Error reading page 2"); return retval; } target_write_u16(target, MX2_NF_BUFADDR, 3); mx2_nf_info->fin = MX2_NF_FIN_DATAOUT; retval = do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR("MX2_NF : Error reading page 3"); return retval; } //BI-swap - work-around of imx27 NFC for NAND device with page == 2k target_read_u16(target, MX2_NF_MAIN_BUFFER3 + 464, &swap1); target_read_u16(target, MX2_NF_SPARE_BUFFER3 + 4, &swap2); new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8); swap2 = (swap1 << 8) | (swap2 & 0xFF); target_write_u16(target, MX2_NF_MAIN_BUFFER3 + 464, new_swap1); target_write_u16(target, MX2_NF_SPARE_BUFFER3 + 4, swap2); if (data) target_read_buffer(target, MX2_NF_MAIN_BUFFER0, data_size, data); if (oob) target_read_buffer(target, MX2_NF_SPARE_BUFFER0, oob_size, oob); #ifdef _MX2_PRINT_STAT if (data_size > 0) { /* When Operation Status is read (when page is erased), * this function is used but data_size is null. */ LOG_INFO("%d bytes newly read", data_size); } #endif return ERROR_OK; } static int initialize_nf_controller(struct nand_device *nand) { struct mx2_nf_controller *mx2_nf_info = nand->controller_priv; struct target *target = nand->target; uint16_t work_mode; uint16_t temp; /* * resets NAND flash controller in zero time ? I dont know. */ target_write_u16(target, MX2_NF_CFG1, MX2_NF_BIT_RESET_EN); work_mode = MX2_NF_BIT_INT_DIS; /* disable interrupt */ if (target->endianness == TARGET_BIG_ENDIAN) { LOG_DEBUG("MX2_NF : work in Big Endian mode"); work_mode |= MX2_NF_BIT_BE_EN; } else { LOG_DEBUG("MX2_NF : work in Little Endian mode"); } if (mx2_nf_info->flags.hw_ecc_enabled) { LOG_DEBUG("MX2_NF : work with ECC mode"); work_mode |= MX2_NF_BIT_ECC_EN; } else { LOG_DEBUG("MX2_NF : work without ECC mode"); } target_write_u16(target, MX2_NF_CFG1, work_mode); /* * unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock" */ target_write_u16(target, MX2_NF_BUFCFG, 2); target_read_u16(target, MX2_NF_FWP, &temp); if ((temp & 0x0007) == 1) { LOG_ERROR("NAND flash is tight-locked, reset needed"); return ERROR_FAIL; } /* * unlock NAND flash for write */ target_write_u16(target, MX2_NF_FWP, 4); target_write_u16(target, MX2_NF_LOCKSTART, 0x0000); target_write_u16(target, MX2_NF_LOCKEND, 0xFFFF); /* * 0x0000 means that first SRAM buffer @0xD800_0000 will be used */ target_write_u16(target, MX2_NF_BUFADDR, 0x0000); /* * address of SRAM buffer */ in_sram_address = MX2_NF_MAIN_BUFFER0; sign_of_sequental_byte_read = 0; return ERROR_OK; } static int get_next_byte_from_sram_buffer(struct target * target, uint8_t * value) { static uint8_t even_byte = 0; uint16_t temp; /* * host-big_endian ?? */ if (sign_of_sequental_byte_read == 0) even_byte = 0; if (in_sram_address > MX2_NF_LAST_BUFFER_ADDR) { LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address); *value = 0; sign_of_sequental_byte_read = 0; even_byte = 0; return ERROR_NAND_OPERATION_FAILED; } else { target_read_u16(target, in_sram_address, &temp); if (even_byte) { *value = temp >> 8; even_byte = 0; in_sram_address += 2; } else { *value = temp & 0xff; even_byte = 1; } } sign_of_sequental_byte_read = 1; return ERROR_OK; } static int get_next_halfword_from_sram_buffer(struct target * target, uint16_t * value) { if (in_sram_address > MX2_NF_LAST_BUFFER_ADDR) { LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address); *value = 0; return ERROR_NAND_OPERATION_FAILED; } else { target_read_u16(target, in_sram_address, value); in_sram_address += 2; } return ERROR_OK; } static int poll_for_complete_op(struct target * target, const char *text) { uint16_t poll_complete_status; for (int poll_cycle_count = 0; poll_cycle_count < 100; poll_cycle_count++) { target_read_u16(target, MX2_NF_CFG2, &poll_complete_status); if (poll_complete_status & MX2_NF_BIT_OP_DONE) break; usleep(10); } if (!(poll_complete_status & MX2_NF_BIT_OP_DONE)) { LOG_ERROR("%s sending timeout", text); return ERROR_NAND_OPERATION_FAILED; } return ERROR_OK; } static int validate_target_state(struct nand_device *nand) { struct mx2_nf_controller *mx2_nf_info = nand->controller_priv; struct target *target = nand->target; if (target->state != TARGET_HALTED) { LOG_ERROR(target_not_halted_err_msg); return ERROR_NAND_OPERATION_FAILED; } if (mx2_nf_info->flags.target_little_endian != (target->endianness == TARGET_LITTLE_ENDIAN)) { /* * endianness changed after NAND controller probed */ return ERROR_NAND_OPERATION_FAILED; } return ERROR_OK; } static int do_data_output(struct nand_device *nand) { struct mx2_nf_controller *mx2_nf_info = nand->controller_priv; struct target *target = nand->target; int poll_result; uint16_t ecc_status; switch(mx2_nf_info->fin) { case MX2_NF_FIN_DATAOUT: /* * start data output operation (set MX2_NF_BIT_OP_DONE==0) */ target_write_u16(target, MX2_NF_CFG2, MX2_NF_BIT_DATAOUT_TYPE(mx2_nf_info->optype)); poll_result = poll_for_complete_op(target, "data output"); if (poll_result != ERROR_OK) return poll_result; mx2_nf_info->fin = MX2_NF_FIN_NONE; /* * ECC stuff */ if ((mx2_nf_info->optype == MX2_NF_DATAOUT_PAGE) && mx2_nf_info->flags.hw_ecc_enabled) { target_read_u16(target, MX2_NF_ECCSTATUS, &ecc_status); switch(ecc_status & 0x000c) { case 1 << 2: LOG_INFO("main area readed with 1 (correctable) error"); break; case 2 << 2: LOG_INFO("main area readed with more than 1 (incorrectable) error"); return ERROR_NAND_OPERATION_FAILED; break; } switch(ecc_status & 0x0003) { case 1: LOG_INFO("spare area readed with 1 (correctable) error"); break; case 2: LOG_INFO("main area readed with more than 1 (incorrectable) error"); return ERROR_NAND_OPERATION_FAILED; break; } } break; case MX2_NF_FIN_NONE: break; } return ERROR_OK; } struct nand_flash_controller imx27_nand_flash_controller = { .name = "imx27", .nand_device_command = &imx27_nand_device_command, .init = &imx27_init, .reset = &imx27_reset, .command = &imx27_command, .address = &imx27_address, .write_data = &imx27_write_data, .read_data = &imx27_read_data, .write_page = &imx27_write_page, .read_page = &imx27_read_page, .nand_ready = &imx27_nand_ready, };