/*************************************************************************** * Copyright (C) 2009 by Alexei Babich * * Rezonans plc., Chelyabinsk, Russia * * impatt@mail.ru * * * * Copyright (C) 2010 by Gaetan CARLIER * * Trump s.a., Belgium * * * * Copyright (C) 2011 by Erik Ahlen * * Avalon Innovation, Sweden * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ /* * Freescale iMX OpenOCD NAND Flash controller support. * based on Freescale iMX2* and iMX3* OpenOCD NAND Flash controller support. */ /* * driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @mxc * tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #", * "nand write # file 0", "nand verify" * * get_next_halfword_from_sram_buffer() not tested * !! all function only tested with 2k page nand device; mxc_write_page * writes the 4 MAIN_BUFFER's and is not compatible with < 2k page * !! oob must be be used due to NFS bug * !! oob must be 64 bytes per 2KiB page */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include "mxc.h" #include #define OOB_SIZE 64 #define nfc_is_v1() (mxc_nf_info->mxc_version == MXC_VERSION_MX27 || \ mxc_nf_info->mxc_version == MXC_VERSION_MX31) #define nfc_is_v2() (mxc_nf_info->mxc_version == MXC_VERSION_MX25 || \ mxc_nf_info->mxc_version == MXC_VERSION_MX35) /* This permits to print (in LOG_INFO) how much bytes * has been written after a page read or write. * This is useful when OpenOCD is used with a graphical * front-end to estimate progression of the global read/write */ #undef _MXC_PRINT_STAT /* #define _MXC_PRINT_STAT */ static const char target_not_halted_err_msg[] = "target must be halted to use mxc NAND flash controller"; static const char data_block_size_err_msg[] = "minimal granularity is one half-word, %" PRId32 " is incorrect"; static const char sram_buffer_bounds_err_msg[] = "trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")"; static const char get_status_register_err_msg[] = "can't get NAND status"; static uint32_t in_sram_address; static unsigned char sign_of_sequental_byte_read; static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr); static int initialize_nf_controller(struct nand_device *nand); static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value); static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value); static int poll_for_complete_op(struct nand_device *nand, const char *text); static int validate_target_state(struct nand_device *nand); static int do_data_output(struct nand_device *nand); static int mxc_command(struct nand_device *nand, uint8_t command); static int mxc_address(struct nand_device *nand, uint8_t address); NAND_DEVICE_COMMAND_HANDLER(mxc_nand_device_command) { struct mxc_nf_controller *mxc_nf_info; int hwecc_needed; mxc_nf_info = malloc(sizeof(struct mxc_nf_controller)); if (mxc_nf_info == NULL) { LOG_ERROR("no memory for nand controller"); return ERROR_FAIL; } nand->controller_priv = mxc_nf_info; if (CMD_ARGC < 4) { LOG_ERROR("use \"nand device mxc target mx25|mx27|mx31|mx35 noecc|hwecc [biswap]\""); return ERROR_FAIL; } /* * check board type */ if (strcmp(CMD_ARGV[2], "mx25") == 0) { mxc_nf_info->mxc_version = MXC_VERSION_MX25; mxc_nf_info->mxc_base_addr = 0xBB000000; mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00; } else if (strcmp(CMD_ARGV[2], "mx27") == 0) { mxc_nf_info->mxc_version = MXC_VERSION_MX27; mxc_nf_info->mxc_base_addr = 0xD8000000; mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00; } else if (strcmp(CMD_ARGV[2], "mx31") == 0) { mxc_nf_info->mxc_version = MXC_VERSION_MX31; mxc_nf_info->mxc_base_addr = 0xB8000000; mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00; } else if (strcmp(CMD_ARGV[2], "mx35") == 0) { mxc_nf_info->mxc_version = MXC_VERSION_MX35; mxc_nf_info->mxc_base_addr = 0xBB000000; mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00; } /* * check hwecc requirements */ hwecc_needed = strcmp(CMD_ARGV[3], "hwecc"); if (hwecc_needed == 0) mxc_nf_info->flags.hw_ecc_enabled = 1; else mxc_nf_info->flags.hw_ecc_enabled = 0; mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE; mxc_nf_info->fin = MXC_NF_FIN_NONE; mxc_nf_info->flags.target_little_endian = (nand->target->endianness == TARGET_LITTLE_ENDIAN); /* * should factory bad block indicator be swaped * as a workaround for how the nfc handles pages. */ if (CMD_ARGC > 4 && strcmp(CMD_ARGV[4], "biswap") == 0) { LOG_DEBUG("BI-swap enabled"); mxc_nf_info->flags.biswap_enabled = 1; } return ERROR_OK; } COMMAND_HANDLER(handle_mxc_biswap_command) { struct nand_device *nand = NULL; struct mxc_nf_controller *mxc_nf_info = NULL; if (CMD_ARGC < 1 || CMD_ARGC > 2) return ERROR_COMMAND_SYNTAX_ERROR; int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &nand); if (retval != ERROR_OK) { command_print(CMD_CTX, "invalid nand device number or name: %s", CMD_ARGV[0]); return ERROR_COMMAND_ARGUMENT_INVALID; } mxc_nf_info = nand->controller_priv; if (CMD_ARGC == 2) { if (strcmp(CMD_ARGV[1], "enable") == 0) mxc_nf_info->flags.biswap_enabled = true; else mxc_nf_info->flags.biswap_enabled = false; } if (mxc_nf_info->flags.biswap_enabled) command_print(CMD_CTX, "BI-swapping enabled on %s", nand->name); else command_print(CMD_CTX, "BI-swapping disabled on %s", nand->name); return ERROR_OK; } static const struct command_registration mxc_sub_command_handlers[] = { { .name = "biswap", .mode = COMMAND_EXEC, .handler = handle_mxc_biswap_command, .help = "Turns on/off bad block information swaping from main area, " "without parameter query status.", .usage = "bank_id ['enable'|'disable']", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration mxc_nand_command_handler[] = { { .name = "mxc", .mode = COMMAND_ANY, .help = "MXC NAND flash controller commands", .chain = mxc_sub_command_handlers, .usage = "", }, COMMAND_REGISTRATION_DONE }; static int mxc_init(struct nand_device *nand) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; int validate_target_result; uint16_t buffsize_register_content; uint32_t sreg_content; uint32_t SREG = MX2_FMCR; uint32_t SEL_16BIT = MX2_FMCR_NF_16BIT_SEL; uint32_t SEL_FMS = MX2_FMCR_NF_FMS; int retval; uint16_t nand_status_content; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; if (nfc_is_v1()) { target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content); mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f); } else mxc_nf_info->flags.one_kb_sram = 0; if (mxc_nf_info->mxc_version == MXC_VERSION_MX31) { SREG = MX3_PCSR; SEL_16BIT = MX3_PCSR_NF_16BIT_SEL; SEL_FMS = MX3_PCSR_NF_FMS; } else if (mxc_nf_info->mxc_version == MXC_VERSION_MX25) { SREG = MX25_RCSR; SEL_16BIT = MX25_RCSR_NF_16BIT_SEL; SEL_FMS = MX25_RCSR_NF_FMS; } else if (mxc_nf_info->mxc_version == MXC_VERSION_MX35) { SREG = MX35_RCSR; SEL_16BIT = MX35_RCSR_NF_16BIT_SEL; SEL_FMS = MX35_RCSR_NF_FMS; } target_read_u32(target, SREG, &sreg_content); if (!nand->bus_width) { /* bus_width not yet defined. Read it from MXC_FMCR */ nand->bus_width = (sreg_content & SEL_16BIT) ? 16 : 8; } else { /* bus_width forced in soft. Sync it to MXC_FMCR */ sreg_content |= ((nand->bus_width == 16) ? SEL_16BIT : 0x00000000); target_write_u32(target, SREG, sreg_content); } if (nand->bus_width == 16) LOG_DEBUG("MXC_NF : bus is 16-bit width"); else LOG_DEBUG("MXC_NF : bus is 8-bit width"); if (!nand->page_size) nand->page_size = (sreg_content & SEL_FMS) ? 2048 : 512; else { sreg_content |= ((nand->page_size == 2048) ? SEL_FMS : 0x00000000); target_write_u32(target, SREG, sreg_content); } if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) { LOG_ERROR("NAND controller have only 1 kb SRAM, so " "pagesize 2048 is incompatible with it"); } else LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048"); if (nfc_is_v2() && sreg_content & MX35_RCSR_NF_4K) LOG_ERROR("MXC driver does not have support for 4k pagesize."); initialize_nf_controller(nand); retval = ERROR_OK; retval |= mxc_command(nand, NAND_CMD_STATUS); retval |= mxc_address(nand, 0x00); retval |= do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR(get_status_register_err_msg); return ERROR_FAIL; } target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content); if (!(nand_status_content & 0x0080)) { LOG_INFO("NAND read-only"); mxc_nf_info->flags.nand_readonly = 1; } else mxc_nf_info->flags.nand_readonly = 0; return ERROR_OK; } static int mxc_read_data(struct nand_device *nand, void *data) { int validate_target_result; int try_data_output_from_nand_chip; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; /* * get data from nand chip */ try_data_output_from_nand_chip = do_data_output(nand); if (try_data_output_from_nand_chip != ERROR_OK) { LOG_ERROR("mxc_read_data : read data failed : '%x'", try_data_output_from_nand_chip); return try_data_output_from_nand_chip; } if (nand->bus_width == 16) get_next_halfword_from_sram_buffer(nand, data); else get_next_byte_from_sram_buffer(nand, data); return ERROR_OK; } static int mxc_write_data(struct nand_device *nand, uint16_t data) { LOG_ERROR("write_data() not implemented"); return ERROR_NAND_OPERATION_FAILED; } static int mxc_reset(struct nand_device *nand) { /* * validate target state */ int validate_target_result; validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; initialize_nf_controller(nand); return ERROR_OK; } static int mxc_command(struct nand_device *nand, uint8_t command) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; int validate_target_result; int poll_result; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; switch (command) { case NAND_CMD_READOOB: command = NAND_CMD_READ0; /* set read point for data_read() and read_block_data() to * spare area in SRAM buffer */ if (nfc_is_v1()) in_sram_address = MXC_NF_V1_SPARE_BUFFER0; else in_sram_address = MXC_NF_V2_SPARE_BUFFER0; break; case NAND_CMD_READ1: command = NAND_CMD_READ0; /* * offset == one half of page size */ in_sram_address = MXC_NF_MAIN_BUFFER0 + (nand->page_size >> 1); break; default: in_sram_address = MXC_NF_MAIN_BUFFER0; break; } target_write_u16(target, MXC_NF_FCMD, command); /* * start command input operation (set MXC_NF_BIT_OP_DONE==0) */ target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FCI); poll_result = poll_for_complete_op(nand, "command"); if (poll_result != ERROR_OK) return poll_result; /* * reset cursor to begin of the buffer */ sign_of_sequental_byte_read = 0; /* Handle special read command and adjust NF_CFG2(FDO) */ switch (command) { case NAND_CMD_READID: mxc_nf_info->optype = MXC_NF_DATAOUT_NANDID; mxc_nf_info->fin = MXC_NF_FIN_DATAOUT; break; case NAND_CMD_STATUS: mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS; mxc_nf_info->fin = MXC_NF_FIN_DATAOUT; target_write_u16 (target, MXC_NF_BUFADDR, 0); in_sram_address = 0; break; case NAND_CMD_READ0: mxc_nf_info->fin = MXC_NF_FIN_DATAOUT; mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE; break; default: /* Ohter command use the default 'One page data out' FDO */ mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE; break; } return ERROR_OK; } static int mxc_address(struct nand_device *nand, uint8_t address) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; int validate_target_result; int poll_result; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; target_write_u16(target, MXC_NF_FADDR, address); /* * start address input operation (set MXC_NF_BIT_OP_DONE==0) */ target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FAI); poll_result = poll_for_complete_op(nand, "address"); if (poll_result != ERROR_OK) return poll_result; return ERROR_OK; } static int mxc_nand_ready(struct nand_device *nand, int tout) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; uint16_t poll_complete_status; int validate_target_result; /* * validate target state */ validate_target_result = validate_target_state(nand); if (validate_target_result != ERROR_OK) return validate_target_result; do { target_read_u16(target, MXC_NF_CFG2, &poll_complete_status); if (poll_complete_status & MXC_NF_BIT_OP_DONE) return tout; alive_sleep(1); } while (tout-- > 0); return tout; } static int mxc_write_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; int retval; uint16_t nand_status_content; uint16_t swap1, swap2, new_swap1; uint8_t bufs; int poll_result; if (data_size % 2) { LOG_ERROR(data_block_size_err_msg, data_size); return ERROR_NAND_OPERATION_FAILED; } if (oob_size % 2) { LOG_ERROR(data_block_size_err_msg, oob_size); return ERROR_NAND_OPERATION_FAILED; } if (!data) { LOG_ERROR("nothing to program"); return ERROR_NAND_OPERATION_FAILED; } /* * validate target state */ retval = validate_target_state(nand); if (retval != ERROR_OK) return retval; in_sram_address = MXC_NF_MAIN_BUFFER0; sign_of_sequental_byte_read = 0; retval = ERROR_OK; retval |= mxc_command(nand, NAND_CMD_SEQIN); retval |= mxc_address(nand, 0); /* col */ retval |= mxc_address(nand, 0); /* col */ retval |= mxc_address(nand, page & 0xff); /* page address */ retval |= mxc_address(nand, (page >> 8) & 0xff);/* page address */ retval |= mxc_address(nand, (page >> 16) & 0xff); /* page address */ target_write_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data); if (oob) { if (mxc_nf_info->flags.hw_ecc_enabled) { /* * part of spare block will be overrided by hardware * ECC generator */ LOG_DEBUG("part of spare block will be overrided " "by hardware ECC generator"); } if (nfc_is_v1()) target_write_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob); else { uint32_t addr = MXC_NF_V2_SPARE_BUFFER0; while (oob_size > 0) { uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN); target_write_buffer(target, addr, len, oob); addr = align_address_v2(nand, addr + len); oob += len; oob_size -= len; } } } if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) { /* BI-swap - work-around of i.MX NFC for NAND device with page == 2kb*/ target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1); if (oob) { LOG_ERROR("Due to NFC Bug, oob is not correctly implemented in mxc driver"); return ERROR_NAND_OPERATION_FAILED; } swap2 = 0xffff; /* Spare buffer unused forced to 0xffff */ new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8); swap2 = (swap1 << 8) | (swap2 & 0xFF); target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1); if (nfc_is_v1()) target_write_u16(target, MXC_NF_V1_SPARE_BUFFER3 + 4, swap2); else target_write_u16(target, MXC_NF_V2_SPARE_BUFFER3, swap2); } /* * start data input operation (set MXC_NF_BIT_OP_DONE==0) */ if (nfc_is_v1() && nand->page_size > 512) bufs = 4; else bufs = 1; for (uint8_t i = 0; i < bufs; ++i) { target_write_u16(target, MXC_NF_BUFADDR, i); target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI); poll_result = poll_for_complete_op(nand, "data input"); if (poll_result != ERROR_OK) return poll_result; } retval |= mxc_command(nand, NAND_CMD_PAGEPROG); if (retval != ERROR_OK) return retval; /* * check status register */ retval = ERROR_OK; retval |= mxc_command(nand, NAND_CMD_STATUS); target_write_u16 (target, MXC_NF_BUFADDR, 0); mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS; mxc_nf_info->fin = MXC_NF_FIN_DATAOUT; retval |= do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR(get_status_register_err_msg); return retval; } target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content); if (nand_status_content & 0x0001) { /* * page not correctly written */ return ERROR_NAND_OPERATION_FAILED; } #ifdef _MXC_PRINT_STAT LOG_INFO("%d bytes newly written", data_size); #endif return ERROR_OK; } static int mxc_read_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; int retval; uint8_t bufs; uint16_t swap1, swap2, new_swap1; if (data_size % 2) { LOG_ERROR(data_block_size_err_msg, data_size); return ERROR_NAND_OPERATION_FAILED; } if (oob_size % 2) { LOG_ERROR(data_block_size_err_msg, oob_size); return ERROR_NAND_OPERATION_FAILED; } /* * validate target state */ retval = validate_target_state(nand); if (retval != ERROR_OK) return retval; /* Reset address_cycles before mxc_command ?? */ retval = mxc_command(nand, NAND_CMD_READ0); if (retval != ERROR_OK) return retval; retval = mxc_address(nand, 0); /* col */ if (retval != ERROR_OK) return retval; retval = mxc_address(nand, 0); /* col */ if (retval != ERROR_OK) return retval; retval = mxc_address(nand, page & 0xff);/* page address */ if (retval != ERROR_OK) return retval; retval = mxc_address(nand, (page >> 8) & 0xff); /* page address */ if (retval != ERROR_OK) return retval; retval = mxc_address(nand, (page >> 16) & 0xff);/* page address */ if (retval != ERROR_OK) return retval; retval = mxc_command(nand, NAND_CMD_READSTART); if (retval != ERROR_OK) return retval; if (nfc_is_v1() && nand->page_size > 512) bufs = 4; else bufs = 1; for (uint8_t i = 0; i < bufs; ++i) { target_write_u16(target, MXC_NF_BUFADDR, i); mxc_nf_info->fin = MXC_NF_FIN_DATAOUT; retval = do_data_output(nand); if (retval != ERROR_OK) { LOG_ERROR("MXC_NF : Error reading page %d", i); return retval; } } if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) { uint32_t SPARE_BUFFER3; /* BI-swap - work-around of mxc NFC for NAND device with page == 2k */ target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1); if (nfc_is_v1()) SPARE_BUFFER3 = MXC_NF_V1_SPARE_BUFFER3 + 4; else SPARE_BUFFER3 = MXC_NF_V2_SPARE_BUFFER3; target_read_u16(target, SPARE_BUFFER3, &swap2); new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8); swap2 = (swap1 << 8) | (swap2 & 0xFF); target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1); target_write_u16(target, SPARE_BUFFER3, swap2); } if (data) target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data); if (oob) { if (nfc_is_v1()) target_read_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob); else { uint32_t addr = MXC_NF_V2_SPARE_BUFFER0; while (oob_size > 0) { uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN); target_read_buffer(target, addr, len, oob); addr = align_address_v2(nand, addr + len); oob += len; oob_size -= len; } } } #ifdef _MXC_PRINT_STAT if (data_size > 0) { /* When Operation Status is read (when page is erased), * this function is used but data_size is null. */ LOG_INFO("%d bytes newly read", data_size); } #endif return ERROR_OK; } static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; uint32_t ret = addr; if (addr > MXC_NF_V2_SPARE_BUFFER0 && (addr & 0x1F) == MXC_NF_SPARE_BUFFER_LEN) ret += MXC_NF_SPARE_BUFFER_MAX - MXC_NF_SPARE_BUFFER_LEN; else if (addr >= (mxc_nf_info->mxc_base_addr + (uint32_t)nand->page_size)) ret = MXC_NF_V2_SPARE_BUFFER0; return ret; } static int initialize_nf_controller(struct nand_device *nand) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; uint16_t work_mode = 0; uint16_t temp; /* * resets NAND flash controller in zero time ? I dont know. */ target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN); if (mxc_nf_info->mxc_version == MXC_VERSION_MX27) work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */ if (target->endianness == TARGET_BIG_ENDIAN) { LOG_DEBUG("MXC_NF : work in Big Endian mode"); work_mode |= MXC_NF_BIT_BE_EN; } else LOG_DEBUG("MXC_NF : work in Little Endian mode"); if (mxc_nf_info->flags.hw_ecc_enabled) { LOG_DEBUG("MXC_NF : work with ECC mode"); work_mode |= MXC_NF_BIT_ECC_EN; } else LOG_DEBUG("MXC_NF : work without ECC mode"); if (nfc_is_v2()) { target_write_u16(target, MXC_NF_V2_SPAS, OOB_SIZE / 2); if (nand->page_size) { uint16_t pages_per_block = nand->erase_size / nand->page_size; work_mode |= MXC_NF_V2_CFG1_PPB(ffs(pages_per_block) - 6); } work_mode |= MXC_NF_BIT_ECC_4BIT; } target_write_u16(target, MXC_NF_CFG1, work_mode); /* * unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock" */ target_write_u16(target, MXC_NF_BUFCFG, 2); target_read_u16(target, MXC_NF_FWP, &temp); if ((temp & 0x0007) == 1) { LOG_ERROR("NAND flash is tight-locked, reset needed"); return ERROR_FAIL; } /* * unlock NAND flash for write */ if (nfc_is_v1()) { target_write_u16(target, MXC_NF_V1_UNLOCKSTART, 0x0000); target_write_u16(target, MXC_NF_V1_UNLOCKEND, 0xFFFF); } else { target_write_u16(target, MXC_NF_V2_UNLOCKSTART0, 0x0000); target_write_u16(target, MXC_NF_V2_UNLOCKSTART1, 0x0000); target_write_u16(target, MXC_NF_V2_UNLOCKSTART2, 0x0000); target_write_u16(target, MXC_NF_V2_UNLOCKSTART3, 0x0000); target_write_u16(target, MXC_NF_V2_UNLOCKEND0, 0xFFFF); target_write_u16(target, MXC_NF_V2_UNLOCKEND1, 0xFFFF); target_write_u16(target, MXC_NF_V2_UNLOCKEND2, 0xFFFF); target_write_u16(target, MXC_NF_V2_UNLOCKEND3, 0xFFFF); } target_write_u16(target, MXC_NF_FWP, 4); /* * 0x0000 means that first SRAM buffer @base_addr will be used */ target_write_u16(target, MXC_NF_BUFADDR, 0x0000); /* * address of SRAM buffer */ in_sram_address = MXC_NF_MAIN_BUFFER0; sign_of_sequental_byte_read = 0; return ERROR_OK; } static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; static uint8_t even_byte; uint16_t temp; /* * host-big_endian ?? */ if (sign_of_sequental_byte_read == 0) even_byte = 0; if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) { LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address); *value = 0; sign_of_sequental_byte_read = 0; even_byte = 0; return ERROR_NAND_OPERATION_FAILED; } else { if (nfc_is_v2()) in_sram_address = align_address_v2(nand, in_sram_address); target_read_u16(target, in_sram_address, &temp); if (even_byte) { *value = temp >> 8; even_byte = 0; in_sram_address += 2; } else { *value = temp & 0xff; even_byte = 1; } } sign_of_sequental_byte_read = 1; return ERROR_OK; } static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) { LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address); *value = 0; return ERROR_NAND_OPERATION_FAILED; } else { if (nfc_is_v2()) in_sram_address = align_address_v2(nand, in_sram_address); target_read_u16(target, in_sram_address, value); in_sram_address += 2; } return ERROR_OK; } static int poll_for_complete_op(struct nand_device *nand, const char *text) { if (mxc_nand_ready(nand, 1000) == -1) { LOG_ERROR("%s sending timeout", text); return ERROR_NAND_OPERATION_FAILED; } return ERROR_OK; } static int validate_target_state(struct nand_device *nand) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; if (target->state != TARGET_HALTED) { LOG_ERROR(target_not_halted_err_msg); return ERROR_NAND_OPERATION_FAILED; } if (mxc_nf_info->flags.target_little_endian != (target->endianness == TARGET_LITTLE_ENDIAN)) { /* * endianness changed after NAND controller probed */ return ERROR_NAND_OPERATION_FAILED; } return ERROR_OK; } int ecc_status_v1(struct nand_device *nand) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; uint16_t ecc_status; target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status); switch (ecc_status & 0x000c) { case 1 << 2: LOG_INFO("main area read with 1 (correctable) error"); break; case 2 << 2: LOG_INFO("main area read with more than 1 (incorrectable) error"); return ERROR_NAND_OPERATION_FAILED; break; } switch (ecc_status & 0x0003) { case 1: LOG_INFO("spare area read with 1 (correctable) error"); break; case 2: LOG_INFO("main area read with more than 1 (incorrectable) error"); return ERROR_NAND_OPERATION_FAILED; break; } return ERROR_OK; } int ecc_status_v2(struct nand_device *nand) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; uint16_t ecc_status; uint8_t no_subpages; uint8_t err; no_subpages = nand->page_size >> 9; target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status); do { err = ecc_status & 0xF; if (err > 4) { LOG_INFO("UnCorrectable RS-ECC Error"); return ERROR_NAND_OPERATION_FAILED; } else if (err > 0) LOG_INFO("%d Symbol Correctable RS-ECC Error", err); ecc_status >>= 4; } while (--no_subpages); return ERROR_OK; } static int do_data_output(struct nand_device *nand) { struct mxc_nf_controller *mxc_nf_info = nand->controller_priv; struct target *target = nand->target; int poll_result; switch (mxc_nf_info->fin) { case MXC_NF_FIN_DATAOUT: /* * start data output operation (set MXC_NF_BIT_OP_DONE==0) */ target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_DATAOUT_TYPE(mxc_nf_info->optype)); poll_result = poll_for_complete_op(nand, "data output"); if (poll_result != ERROR_OK) return poll_result; mxc_nf_info->fin = MXC_NF_FIN_NONE; /* * ECC stuff */ if (mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE && mxc_nf_info->flags.hw_ecc_enabled) { int ecc_status; if (nfc_is_v1()) ecc_status = ecc_status_v1(nand); else ecc_status = ecc_status_v2(nand); if (ecc_status != ERROR_OK) return ecc_status; } break; case MXC_NF_FIN_NONE: break; } return ERROR_OK; } struct nand_flash_controller mxc_nand_flash_controller = { .name = "mxc", .nand_device_command = &mxc_nand_device_command, .commands = mxc_nand_command_handler, .init = &mxc_init, .reset = &mxc_reset, .command = &mxc_command, .address = &mxc_address, .write_data = &mxc_write_data, .read_data = &mxc_read_data, .write_page = &mxc_write_page, .read_page = &mxc_read_page, .nand_ready = &mxc_nand_ready, };