/*************************************************************************** * Copyright (C) 2009 by Duane Ellis * * openocd@duaneellis.com * * * * Copyright (C) 2010 by Olaf Lüke (at91sam3s* support) * * olaf@uni-paderborn.de * * * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE. See the * * GNU General public License for more details. * * * * You should have received a copy of the GNU General public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ****************************************************************************/ /* Some of the the lower level code was based on code supplied by * ATMEL under this copyright. */ /* BEGIN ATMEL COPYRIGHT */ /* ---------------------------------------------------------------------------- * ATMEL Microcontroller Software Support * ---------------------------------------------------------------------------- * Copyright (c) 2009, Atmel Corporation * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Atmel's name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ /* END ATMEL COPYRIGHT */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #define REG_NAME_WIDTH (12) // at91sam3u series (has one or two flash banks) #define FLASH_BANK0_BASE_U 0x00080000 #define FLASH_BANK1_BASE_U 0x00100000 // at91sam3s series (has always one flash bank) #define FLASH_BANK_BASE_S 0x00400000 #define AT91C_EFC_FCMD_GETD (0x0) // (EFC) Get Flash Descriptor #define AT91C_EFC_FCMD_WP (0x1) // (EFC) Write Page #define AT91C_EFC_FCMD_WPL (0x2) // (EFC) Write Page and Lock #define AT91C_EFC_FCMD_EWP (0x3) // (EFC) Erase Page and Write Page #define AT91C_EFC_FCMD_EWPL (0x4) // (EFC) Erase Page and Write Page then Lock #define AT91C_EFC_FCMD_EA (0x5) // (EFC) Erase All // cmd6 is not present int he at91sam3u4/2/1 data sheet table 17-2 // #define AT91C_EFC_FCMD_EPL (0x6) // (EFC) Erase plane? // cmd7 is not present int he at91sam3u4/2/1 data sheet table 17-2 // #define AT91C_EFC_FCMD_EPA (0x7) // (EFC) Erase pages? #define AT91C_EFC_FCMD_SLB (0x8) // (EFC) Set Lock Bit #define AT91C_EFC_FCMD_CLB (0x9) // (EFC) Clear Lock Bit #define AT91C_EFC_FCMD_GLB (0xA) // (EFC) Get Lock Bit #define AT91C_EFC_FCMD_SFB (0xB) // (EFC) Set Fuse Bit #define AT91C_EFC_FCMD_CFB (0xC) // (EFC) Clear Fuse Bit #define AT91C_EFC_FCMD_GFB (0xD) // (EFC) Get Fuse Bit #define AT91C_EFC_FCMD_STUI (0xE) // (EFC) Start Read Unique ID #define AT91C_EFC_FCMD_SPUI (0xF) // (EFC) Stop Read Unique ID #define offset_EFC_FMR 0 #define offset_EFC_FCR 4 #define offset_EFC_FSR 8 #define offset_EFC_FRR 12 extern struct flash_driver at91sam3_flash; static float _tomhz(uint32_t freq_hz) { float f; f = ((float)(freq_hz)) / 1000000.0; return f; } // How the chip is configured. struct sam3_cfg { uint32_t unique_id[4]; uint32_t slow_freq; uint32_t rc_freq; uint32_t mainosc_freq; uint32_t plla_freq; uint32_t mclk_freq; uint32_t cpu_freq; uint32_t fclk_freq; uint32_t pclk0_freq; uint32_t pclk1_freq; uint32_t pclk2_freq; #define SAM3_CHIPID_CIDR (0x400E0740) uint32_t CHIPID_CIDR; #define SAM3_CHIPID_EXID (0x400E0744) uint32_t CHIPID_EXID; #define SAM3_SUPC_CR (0x400E1210) uint32_t SUPC_CR; #define SAM3_PMC_BASE (0x400E0400) #define SAM3_PMC_SCSR (SAM3_PMC_BASE + 0x0008) uint32_t PMC_SCSR; #define SAM3_PMC_PCSR (SAM3_PMC_BASE + 0x0018) uint32_t PMC_PCSR; #define SAM3_CKGR_UCKR (SAM3_PMC_BASE + 0x001c) uint32_t CKGR_UCKR; #define SAM3_CKGR_MOR (SAM3_PMC_BASE + 0x0020) uint32_t CKGR_MOR; #define SAM3_CKGR_MCFR (SAM3_PMC_BASE + 0x0024) uint32_t CKGR_MCFR; #define SAM3_CKGR_PLLAR (SAM3_PMC_BASE + 0x0028) uint32_t CKGR_PLLAR; #define SAM3_PMC_MCKR (SAM3_PMC_BASE + 0x0030) uint32_t PMC_MCKR; #define SAM3_PMC_PCK0 (SAM3_PMC_BASE + 0x0040) uint32_t PMC_PCK0; #define SAM3_PMC_PCK1 (SAM3_PMC_BASE + 0x0044) uint32_t PMC_PCK1; #define SAM3_PMC_PCK2 (SAM3_PMC_BASE + 0x0048) uint32_t PMC_PCK2; #define SAM3_PMC_SR (SAM3_PMC_BASE + 0x0068) uint32_t PMC_SR; #define SAM3_PMC_IMR (SAM3_PMC_BASE + 0x006c) uint32_t PMC_IMR; #define SAM3_PMC_FSMR (SAM3_PMC_BASE + 0x0070) uint32_t PMC_FSMR; #define SAM3_PMC_FSPR (SAM3_PMC_BASE + 0x0074) uint32_t PMC_FSPR; }; struct sam3_bank_private { int probed; // DANGER: THERE ARE DRAGONS HERE.. // NOTE: If you add more 'ghost' pointers // be aware that you must *manually* update // these pointers in the function sam3_GetDetails() // See the comment "Here there be dragons" // so we can find the chip we belong to struct sam3_chip *pChip; // so we can find the orginal bank pointer struct flash_bank *pBank; unsigned bank_number; uint32_t controller_address; uint32_t base_address; bool present; unsigned size_bytes; unsigned nsectors; unsigned sector_size; unsigned page_size; }; struct sam3_chip_details { // THERE ARE DRAGONS HERE.. // note: If you add pointers here // becareful about them as they // may need to be updated inside // the function: "sam3_GetDetails() // which copy/overwrites the // 'runtime' copy of this structure uint32_t chipid_cidr; const char *name; unsigned n_gpnvms; #define SAM3_N_NVM_BITS 3 unsigned gpnvm[SAM3_N_NVM_BITS]; unsigned total_flash_size; unsigned total_sram_size; unsigned n_banks; #define SAM3_MAX_FLASH_BANKS 2 // these are "initialized" from the global const data struct sam3_bank_private bank[SAM3_MAX_FLASH_BANKS]; }; struct sam3_chip { struct sam3_chip *next; int probed; // this is "initialized" from the global const structure struct sam3_chip_details details; struct target *target; struct sam3_cfg cfg; }; struct sam3_reg_list { uint32_t address; size_t struct_offset; const char *name; void (*explain_func)(struct sam3_chip *pInfo); }; static struct sam3_chip *all_sam3_chips; static struct sam3_chip * get_current_sam3(struct command_context *cmd_ctx) { struct target *t; static struct sam3_chip *p; t = get_current_target(cmd_ctx); if (!t) { command_print(cmd_ctx, "No current target?"); return NULL; } p = all_sam3_chips; if (!p) { // this should not happen // the command is not registered until the chip is created? command_print(cmd_ctx, "No SAM3 chips exist?"); return NULL; } while (p) { if (p->target == t) { return p; } p = p->next; } command_print(cmd_ctx, "Cannot find SAM3 chip?"); return NULL; } // these are used to *initialize* the "pChip->details" structure. static const struct sam3_chip_details all_sam3_details[] = { // Start at91sam3u* series { .chipid_cidr = 0x28100960, .name = "at91sam3u4e", .total_flash_size = 256 * 1024, .total_sram_size = 52 * 1024, .n_gpnvms = 3, .n_banks = 2, // System boots at address 0x0 // gpnvm[1] = selects boot code // if gpnvm[1] == 0 // boot is via "SAMBA" (rom) // else // boot is via FLASH // Selection is via gpnvm[2] // endif // // NOTE: banks 0 & 1 switch places // if gpnvm[2] == 0 // Bank0 is the boot rom // else // Bank1 is the boot rom // endif // .bank[0] = { { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK0_BASE_U, .controller_address = 0x400e0800, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 1, .base_address = FLASH_BANK1_BASE_U, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, }, }, { .chipid_cidr = 0x281a0760, .name = "at91sam3u2e", .total_flash_size = 128 * 1024, .total_sram_size = 36 * 1024, .n_gpnvms = 2, .n_banks = 1, // System boots at address 0x0 // gpnvm[1] = selects boot code // if gpnvm[1] == 0 // boot is via "SAMBA" (rom) // else // boot is via FLASH // Selection is via gpnvm[2] // endif // .bank[0] = { { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK0_BASE_U, .controller_address = 0x400e0800, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28190560, .name = "at91sam3u1e", .total_flash_size = 64 * 1024, .total_sram_size = 20 * 1024, .n_gpnvms = 2, .n_banks = 1, // System boots at address 0x0 // gpnvm[1] = selects boot code // if gpnvm[1] == 0 // boot is via "SAMBA" (rom) // else // boot is via FLASH // Selection is via gpnvm[2] // endif // // .bank[0] = { { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK0_BASE_U, .controller_address = 0x400e0800, .present = 1, .size_bytes = 64 * 1024, .nsectors = 8, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28000960, .name = "at91sam3u4c", .total_flash_size = 256 * 1024, .total_sram_size = 52 * 1024, .n_gpnvms = 3, .n_banks = 2, // System boots at address 0x0 // gpnvm[1] = selects boot code // if gpnvm[1] == 0 // boot is via "SAMBA" (rom) // else // boot is via FLASH // Selection is via gpnvm[2] // endif // // NOTE: banks 0 & 1 switch places // if gpnvm[2] == 0 // Bank0 is the boot rom // else // Bank1 is the boot rom // endif { { // .bank[0] = { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK0_BASE_U, .controller_address = 0x400e0800, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 1, .base_address = FLASH_BANK1_BASE_U, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, }, }, { .chipid_cidr = 0x280a0760, .name = "at91sam3u2c", .total_flash_size = 128 * 1024, .total_sram_size = 36 * 1024, .n_gpnvms = 2, .n_banks = 1, // System boots at address 0x0 // gpnvm[1] = selects boot code // if gpnvm[1] == 0 // boot is via "SAMBA" (rom) // else // boot is via FLASH // Selection is via gpnvm[2] // endif { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK0_BASE_U, .controller_address = 0x400e0800, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28090560, .name = "at91sam3u1c", .total_flash_size = 64 * 1024, .total_sram_size = 20 * 1024, .n_gpnvms = 2, .n_banks = 1, // System boots at address 0x0 // gpnvm[1] = selects boot code // if gpnvm[1] == 0 // boot is via "SAMBA" (rom) // else // boot is via FLASH // Selection is via gpnvm[2] // endif // { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK0_BASE_U, .controller_address = 0x400e0800, .present = 1, .size_bytes = 64 * 1024, .nsectors = 8, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, // Start at91sam3s* series // Note: The preliminary at91sam3s datasheet says on page 302 // that the flash controller is at address 0x400E0800. // This is _not_ the case, the controller resides at address 0x400e0a0. { .chipid_cidr = 0x28A00960, .name = "at91sam3s4c", .total_flash_size = 256 * 1024, .total_sram_size = 48 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 256 * 1024, .nsectors = 32, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28900960, .name = "at91sam3s4b", .total_flash_size = 256 * 1024, .total_sram_size = 48 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 256 * 1024, .nsectors = 32, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28800960, .name = "at91sam3s4a", .total_flash_size = 256 * 1024, .total_sram_size = 48 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 256 * 1024, .nsectors = 32, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28AA0760, .name = "at91sam3s2c", .total_flash_size = 128 * 1024, .total_sram_size = 32 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x289A0760, .name = "at91sam3s2b", .total_flash_size = 128 * 1024, .total_sram_size = 32 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x288A0760, .name = "at91sam3s2a", .total_flash_size = 128 * 1024, .total_sram_size = 32 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 128 * 1024, .nsectors = 16, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28A90560, .name = "at91sam3s1c", .total_flash_size = 64 * 1024, .total_sram_size = 16 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 64 * 1024, .nsectors = 8, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28990560, .name = "at91sam3s1b", .total_flash_size = 64 * 1024, .total_sram_size = 16 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 64 * 1024, .nsectors = 8, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, { .chipid_cidr = 0x28890560, .name = "at91sam3s1a", .total_flash_size = 64 * 1024, .total_sram_size = 16 * 1024, .n_gpnvms = 2, .n_banks = 1, { // .bank[0] = { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .present = 1, .size_bytes = 64 * 1024, .nsectors = 8, .sector_size = 8192, .page_size = 256, }, // .bank[1] = { { .present = 0, .probed = 0, .bank_number = 1, }, }, }, // terminate { .chipid_cidr = 0, .name = NULL, } }; /* Globals above */ /*********************************************************************** ********************************************************************** ********************************************************************** ********************************************************************** ********************************************************************** **********************************************************************/ /* *ATMEL* style code - from the SAM3 driver code */ /** * Get the current status of the EEFC and * the value of some status bits (LOCKE, PROGE). * @param pPrivate - info about the bank * @param v - result goes here */ static int EFC_GetStatus(struct sam3_bank_private *pPrivate, uint32_t *v) { int r; r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FSR, v); LOG_DEBUG("Status: 0x%08x (lockerror: %d, cmderror: %d, ready: %d)", (unsigned int)(*v), ((unsigned int)((*v >> 2) & 1)), ((unsigned int)((*v >> 1) & 1)), ((unsigned int)((*v >> 0) & 1))); return r; } /** * Get the result of the last executed command. * @param pPrivate - info about the bank * @param v - result goes here */ static int EFC_GetResult(struct sam3_bank_private *pPrivate, uint32_t *v) { int r; uint32_t rv; r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FRR, &rv); if (v) { *v = rv; } LOG_DEBUG("Result: 0x%08x", ((unsigned int)(rv))); return r; } static int EFC_StartCommand(struct sam3_bank_private *pPrivate, unsigned command, unsigned argument) { uint32_t n,v; int r; int retry; retry = 0; do_retry: // Check command & argument switch (command) { case AT91C_EFC_FCMD_WP: case AT91C_EFC_FCMD_WPL: case AT91C_EFC_FCMD_EWP: case AT91C_EFC_FCMD_EWPL: // case AT91C_EFC_FCMD_EPL: // case AT91C_EFC_FCMD_EPA: case AT91C_EFC_FCMD_SLB: case AT91C_EFC_FCMD_CLB: n = (pPrivate->size_bytes / pPrivate->page_size); if (argument >= n) { LOG_ERROR("*BUG*: Embedded flash has only %u pages", (unsigned)(n)); } break; case AT91C_EFC_FCMD_SFB: case AT91C_EFC_FCMD_CFB: if (argument >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("*BUG*: Embedded flash has only %d GPNVMs", pPrivate->pChip->details.n_gpnvms); } break; case AT91C_EFC_FCMD_GETD: case AT91C_EFC_FCMD_EA: case AT91C_EFC_FCMD_GLB: case AT91C_EFC_FCMD_GFB: case AT91C_EFC_FCMD_STUI: case AT91C_EFC_FCMD_SPUI: if (argument != 0) { LOG_ERROR("Argument is meaningless for cmd: %d", command); } break; default: LOG_ERROR("Unknown command %d", command); break; } if (command == AT91C_EFC_FCMD_SPUI) { // this is a very special situation. // Situation (1) - error/retry - see below // And we are being called recursively // Situation (2) - normal, finished reading unique id } else { // it should be "ready" EFC_GetStatus(pPrivate, &v); if (v & 1) { // then it is ready // we go on } else { if (retry) { // we have done this before // the controller is not responding. LOG_ERROR("flash controller(%d) is not ready! Error", pPrivate->bank_number); return ERROR_FAIL; } else { retry++; LOG_ERROR("Flash controller(%d) is not ready, attempting reset", pPrivate->bank_number); // we do that by issuing the *STOP* command EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0); // above is recursive, and further recursion is blocked by // if (command == AT91C_EFC_FCMD_SPUI) above goto do_retry; } } } v = (0x5A << 24) | (argument << 8) | command; LOG_DEBUG("Command: 0x%08x", ((unsigned int)(v))); r = target_write_u32(pPrivate->pBank->target, pPrivate->controller_address + offset_EFC_FCR, v); if (r != ERROR_OK) { LOG_DEBUG("Error Write failed"); } return r; } /** * Performs the given command and wait until its completion (or an error). * @param pPrivate - info about the bank * @param command - Command to perform. * @param argument - Optional command argument. * @param status - put command status bits here */ static int EFC_PerformCommand(struct sam3_bank_private *pPrivate, unsigned command, unsigned argument, uint32_t *status) { int r; uint32_t v; long long ms_now, ms_end; // default if (status) { *status = 0; } r = EFC_StartCommand(pPrivate, command, argument); if (r != ERROR_OK) { return r; } ms_end = 500 + timeval_ms(); do { r = EFC_GetStatus(pPrivate, &v); if (r != ERROR_OK) { return r; } ms_now = timeval_ms(); if (ms_now > ms_end) { // error LOG_ERROR("Command timeout"); return ERROR_FAIL; } } while ((v & 1) == 0) ; // error bits.. if (status) { *status = (v & 0x6); } return ERROR_OK; } /** * Read the unique ID. * @param pPrivate - info about the bank * The unique ID is stored in the 'pPrivate' structure. */ static int FLASHD_ReadUniqueID (struct sam3_bank_private *pPrivate) { int r; uint32_t v; int x; // assume 0 pPrivate->pChip->cfg.unique_id[0] = 0; pPrivate->pChip->cfg.unique_id[1] = 0; pPrivate->pChip->cfg.unique_id[2] = 0; pPrivate->pChip->cfg.unique_id[3] = 0; LOG_DEBUG("Begin"); r = EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_STUI, 0); if (r < 0) { return r; } for (x = 0 ; x < 4 ; x++) { r = target_read_u32(pPrivate->pChip->target, pPrivate->pBank->base + (x * 4), &v); if (r < 0) { return r; } pPrivate->pChip->cfg.unique_id[x] = v; } r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0, NULL); LOG_DEBUG("End: R=%d, id = 0x%08x, 0x%08x, 0x%08x, 0x%08x", r, (unsigned int)(pPrivate->pChip->cfg.unique_id[0]), (unsigned int)(pPrivate->pChip->cfg.unique_id[1]), (unsigned int)(pPrivate->pChip->cfg.unique_id[2]), (unsigned int)(pPrivate->pChip->cfg.unique_id[3])); return r; } /** * Erases the entire flash. * @param pPrivate - the info about the bank. */ static int FLASHD_EraseEntireBank(struct sam3_bank_private *pPrivate) { LOG_DEBUG("Here"); return EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_EA, 0, NULL); } /** * Gets current GPNVM state. * @param pPrivate - info about the bank. * @param gpnvm - GPNVM bit index. * @param puthere - result stored here. */ //------------------------------------------------------------------------------ static int FLASHD_GetGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm, unsigned *puthere) { uint32_t v; int r; LOG_DEBUG("Here"); if (pPrivate->bank_number != 0) { LOG_ERROR("GPNVM only works with Bank0"); return ERROR_FAIL; } if (gpnvm >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("Invalid GPNVM %d, max: %d, ignored", gpnvm,pPrivate->pChip->details.n_gpnvms); return ERROR_FAIL; } // Get GPNVMs status r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GFB, 0, NULL); if (r != ERROR_OK) { LOG_ERROR("Failed"); return r; } r = EFC_GetResult(pPrivate, &v); if (puthere) { // Check if GPNVM is set // get the bit and make it a 0/1 *puthere = (v >> gpnvm) & 1; } return r; } /** * Clears the selected GPNVM bit. * @param pPrivate info about the bank * @param gpnvm GPNVM index. * @returns 0 if successful; otherwise returns an error code. */ static int FLASHD_ClrGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm) { int r; unsigned v; LOG_DEBUG("Here"); if (pPrivate->bank_number != 0) { LOG_ERROR("GPNVM only works with Bank0"); return ERROR_FAIL; } if (gpnvm >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("Invalid GPNVM %d, max: %d, ignored", gpnvm,pPrivate->pChip->details.n_gpnvms); return ERROR_FAIL; } r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v); if (r != ERROR_OK) { LOG_DEBUG("Failed: %d",r); return r; } r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CFB, gpnvm, NULL); LOG_DEBUG("End: %d",r); return r; } /** * Sets the selected GPNVM bit. * @param pPrivate info about the bank * @param gpnvm GPNVM index. */ static int FLASHD_SetGPNVM(struct sam3_bank_private *pPrivate, unsigned gpnvm) { int r; unsigned v; if (pPrivate->bank_number != 0) { LOG_ERROR("GPNVM only works with Bank0"); return ERROR_FAIL; } if (gpnvm >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("Invalid GPNVM %d, max: %d, ignored", gpnvm,pPrivate->pChip->details.n_gpnvms); return ERROR_FAIL; } r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v); if (r != ERROR_OK) { return r; } if (v) { // already set r = ERROR_OK; } else { // set it r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SFB, gpnvm, NULL); } return r; } /** * Returns a bit field (at most 64) of locked regions within a page. * @param pPrivate info about the bank * @param v where to store locked bits */ static int FLASHD_GetLockBits(struct sam3_bank_private *pPrivate, uint32_t *v) { int r; LOG_DEBUG("Here"); r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GLB, 0, NULL); if (r == ERROR_OK) { r = EFC_GetResult(pPrivate, v); } LOG_DEBUG("End: %d",r); return r; } /** * Unlocks all the regions in the given address range. * @param pPrivate info about the bank * @param start_sector first sector to unlock * @param end_sector last (inclusive) to unlock */ static int FLASHD_Unlock(struct sam3_bank_private *pPrivate, unsigned start_sector, unsigned end_sector) { int r; uint32_t status; uint32_t pg; uint32_t pages_per_sector; pages_per_sector = pPrivate->sector_size / pPrivate->page_size; /* Unlock all pages */ while (start_sector <= end_sector) { pg = start_sector * pages_per_sector; r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CLB, pg, &status); if (r != ERROR_OK) { return r; } start_sector++; } return ERROR_OK; } /** * Locks regions * @param pPrivate - info about the bank * @param start_sector - first sector to lock * @param end_sector - last sector (inclusive) to lock */ static int FLASHD_Lock(struct sam3_bank_private *pPrivate, unsigned start_sector, unsigned end_sector) { uint32_t status; uint32_t pg; uint32_t pages_per_sector; int r; pages_per_sector = pPrivate->sector_size / pPrivate->page_size; /* Lock all pages */ while (start_sector <= end_sector) { pg = start_sector * pages_per_sector; r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SLB, pg, &status); if (r != ERROR_OK) { return r; } start_sector++; } return ERROR_OK; } /****** END SAM3 CODE ********/ /* begin helpful debug code */ // print the fieldname, the field value, in dec & hex, and return field value static uint32_t sam3_reg_fieldname(struct sam3_chip *pChip, const char *regname, uint32_t value, unsigned shift, unsigned width) { uint32_t v; int hwidth, dwidth; // extract the field v = value >> shift; v = v & ((1 << width)-1); if (width <= 16) { hwidth = 4; dwidth = 5; } else { hwidth = 8; dwidth = 12; } // show the basics LOG_USER_N("\t%*s: %*d [0x%0*x] ", REG_NAME_WIDTH, regname, dwidth, v, hwidth, v); return v; } static const char _unknown[] = "unknown"; static const char * const eproc_names[] = { _unknown, // 0 "arm946es", // 1 "arm7tdmi", // 2 "cortex-m3", // 3 "arm920t", // 4 "arm926ejs", // 5 _unknown, // 6 _unknown, // 7 _unknown, // 8 _unknown, // 9 _unknown, // 10 _unknown, // 11 _unknown, // 12 _unknown, // 13 _unknown, // 14 _unknown, // 15 }; #define nvpsize2 nvpsize // these two tables are identical static const char * const nvpsize[] = { "none", // 0 "8K bytes", // 1 "16K bytes", // 2 "32K bytes", // 3 _unknown, // 4 "64K bytes", // 5 _unknown, // 6 "128K bytes", // 7 _unknown, // 8 "256K bytes", // 9 "512K bytes", // 10 _unknown, // 11 "1024K bytes", // 12 _unknown, // 13 "2048K bytes", // 14 _unknown, // 15 }; static const char * const sramsize[] = { "48K Bytes", // 0 "1K Bytes", // 1 "2K Bytes", // 2 "6K Bytes", // 3 "112K Bytes", // 4 "4K Bytes", // 5 "80K Bytes", // 6 "160K Bytes", // 7 "8K Bytes", // 8 "16K Bytes", // 9 "32K Bytes", // 10 "64K Bytes", // 11 "128K Bytes", // 12 "256K Bytes", // 13 "96K Bytes", // 14 "512K Bytes", // 15 }; static const struct archnames { unsigned value; const char *name; } archnames[] = { { 0x19, "AT91SAM9xx Series" }, { 0x29, "AT91SAM9XExx Series" }, { 0x34, "AT91x34 Series" }, { 0x37, "CAP7 Series" }, { 0x39, "CAP9 Series" }, { 0x3B, "CAP11 Series" }, { 0x40, "AT91x40 Series" }, { 0x42, "AT91x42 Series" }, { 0x55, "AT91x55 Series" }, { 0x60, "AT91SAM7Axx Series" }, { 0x61, "AT91SAM7AQxx Series" }, { 0x63, "AT91x63 Series" }, { 0x70, "AT91SAM7Sxx Series" }, { 0x71, "AT91SAM7XCxx Series" }, { 0x72, "AT91SAM7SExx Series" }, { 0x73, "AT91SAM7Lxx Series" }, { 0x75, "AT91SAM7Xxx Series" }, { 0x76, "AT91SAM7SLxx Series" }, { 0x80, "ATSAM3UxC Series (100-pin version)" }, { 0x81, "ATSAM3UxE Series (144-pin version)" }, { 0x83, "ATSAM3AxC Series (100-pin version)" }, { 0x84, "ATSAM3XxC Series (100-pin version)" }, { 0x85, "ATSAM3XxE Series (144-pin version)" }, { 0x86, "ATSAM3XxG Series (208/217-pin version)" }, { 0x88, "ATSAM3SxA Series (48-pin version)" }, { 0x89, "ATSAM3SxB Series (64-pin version)" }, { 0x8A, "ATSAM3SxC Series (100-pin version)" }, { 0x92, "AT91x92 Series" }, { 0xF0, "AT75Cxx Series" }, { -1, NULL }, }; static const char * const nvptype[] = { "rom", // 0 "romless or onchip flash", // 1 "embedded flash memory", // 2 "rom(nvpsiz) + embedded flash (nvpsiz2)", //3 "sram emulating flash", // 4 _unknown, // 5 _unknown, // 6 _unknown, // 7 }; static const char *_yes_or_no(uint32_t v) { if (v) { return "YES"; } else { return "NO"; } } static const char * const _rc_freq[] = { "4 MHz", "8 MHz", "12 MHz", "reserved" }; static void sam3_explain_ckgr_mor(struct sam3_chip *pChip) { uint32_t v; uint32_t rcen; v = sam3_reg_fieldname(pChip, "MOSCXTEN", pChip->cfg.CKGR_MOR, 0, 1); LOG_USER_N("(main xtal enabled: %s)\n", _yes_or_no(v)); v = sam3_reg_fieldname(pChip, "MOSCXTBY", pChip->cfg.CKGR_MOR, 1, 1); LOG_USER_N("(main osc bypass: %s)\n", _yes_or_no(v)); rcen = sam3_reg_fieldname(pChip, "MOSCRCEN", pChip->cfg.CKGR_MOR, 2, 1); LOG_USER_N("(onchip RC-OSC enabled: %s)\n", _yes_or_no(rcen)); v = sam3_reg_fieldname(pChip, "MOSCRCF", pChip->cfg.CKGR_MOR, 4, 3); LOG_USER_N("(onchip RC-OSC freq: %s)\n", _rc_freq[v]); pChip->cfg.rc_freq = 0; if (rcen) { switch (v) { default: pChip->cfg.rc_freq = 0; case 0: pChip->cfg.rc_freq = 4 * 1000 * 1000; break; case 1: pChip->cfg.rc_freq = 8 * 1000 * 1000; break; case 2: pChip->cfg.rc_freq = 12* 1000 * 1000; break; } } v = sam3_reg_fieldname(pChip,"MOSCXTST", pChip->cfg.CKGR_MOR, 8, 8); LOG_USER_N("(startup clks, time= %f uSecs)\n", ((float)(v * 1000000)) / ((float)(pChip->cfg.slow_freq))); v = sam3_reg_fieldname(pChip, "MOSCSEL", pChip->cfg.CKGR_MOR, 24, 1); LOG_USER_N("(mainosc source: %s)\n", v ? "external xtal" : "internal RC"); v = sam3_reg_fieldname(pChip,"CFDEN", pChip->cfg.CKGR_MOR, 25, 1); LOG_USER_N("(clock failure enabled: %s)\n", _yes_or_no(v)); } static void sam3_explain_chipid_cidr(struct sam3_chip *pChip) { int x; uint32_t v; const char *cp; sam3_reg_fieldname(pChip, "Version", pChip->cfg.CHIPID_CIDR, 0, 5); LOG_USER_N("\n"); v = sam3_reg_fieldname(pChip, "EPROC", pChip->cfg.CHIPID_CIDR, 5, 3); LOG_USER_N("%s\n", eproc_names[v]); v = sam3_reg_fieldname(pChip, "NVPSIZE", pChip->cfg.CHIPID_CIDR, 8, 4); LOG_USER_N("%s\n", nvpsize[v]); v = sam3_reg_fieldname(pChip, "NVPSIZE2", pChip->cfg.CHIPID_CIDR, 12, 4); LOG_USER_N("%s\n", nvpsize2[v]); v = sam3_reg_fieldname(pChip, "SRAMSIZE", pChip->cfg.CHIPID_CIDR, 16,4); LOG_USER_N("%s\n", sramsize[ v ]); v = sam3_reg_fieldname(pChip, "ARCH", pChip->cfg.CHIPID_CIDR, 20, 8); cp = _unknown; for (x = 0 ; archnames[x].name ; x++) { if (v == archnames[x].value) { cp = archnames[x].name; break; } } LOG_USER_N("%s\n", cp); v = sam3_reg_fieldname(pChip, "NVPTYP", pChip->cfg.CHIPID_CIDR, 28, 3); LOG_USER_N("%s\n", nvptype[ v ]); v = sam3_reg_fieldname(pChip, "EXTID", pChip->cfg.CHIPID_CIDR, 31, 1); LOG_USER_N("(exists: %s)\n", _yes_or_no(v)); } static void sam3_explain_ckgr_mcfr(struct sam3_chip *pChip) { uint32_t v; v = sam3_reg_fieldname(pChip, "MAINFRDY", pChip->cfg.CKGR_MCFR, 16, 1); LOG_USER_N("(main ready: %s)\n", _yes_or_no(v)); v = sam3_reg_fieldname(pChip, "MAINF", pChip->cfg.CKGR_MCFR, 0, 16); v = (v * pChip->cfg.slow_freq) / 16; pChip->cfg.mainosc_freq = v; LOG_USER_N("(%3.03f Mhz (%d.%03dkhz slowclk)\n", _tomhz(v), pChip->cfg.slow_freq / 1000, pChip->cfg.slow_freq % 1000); } static void sam3_explain_ckgr_plla(struct sam3_chip *pChip) { uint32_t mula,diva; diva = sam3_reg_fieldname(pChip, "DIVA", pChip->cfg.CKGR_PLLAR, 0, 8); LOG_USER_N("\n"); mula = sam3_reg_fieldname(pChip, "MULA", pChip->cfg.CKGR_PLLAR, 16, 11); LOG_USER_N("\n"); pChip->cfg.plla_freq = 0; if (mula == 0) { LOG_USER_N("\tPLLA Freq: (Disabled,mula = 0)\n"); } else if (diva == 0) { LOG_USER_N("\tPLLA Freq: (Disabled,diva = 0)\n"); } else if (diva == 1) { pChip->cfg.plla_freq = (pChip->cfg.mainosc_freq * (mula + 1)); LOG_USER_N("\tPLLA Freq: %3.03f MHz\n", _tomhz(pChip->cfg.plla_freq)); } } static void sam3_explain_mckr(struct sam3_chip *pChip) { uint32_t css, pres, fin = 0; int pdiv = 0; const char *cp = NULL; css = sam3_reg_fieldname(pChip, "CSS", pChip->cfg.PMC_MCKR, 0, 2); switch (css & 3) { case 0: fin = pChip->cfg.slow_freq; cp = "slowclk"; break; case 1: fin = pChip->cfg.mainosc_freq; cp = "mainosc"; break; case 2: fin = pChip->cfg.plla_freq; cp = "plla"; break; case 3: if (pChip->cfg.CKGR_UCKR & (1 << 16)) { fin = 480 * 1000 * 1000; cp = "upll"; } else { fin = 0; cp = "upll (*ERROR* UPLL is disabled)"; } break; default: assert(0); break; } LOG_USER_N("%s (%3.03f Mhz)\n", cp, _tomhz(fin)); pres = sam3_reg_fieldname(pChip, "PRES", pChip->cfg.PMC_MCKR, 4, 3); switch (pres & 0x07) { case 0: pdiv = 1; cp = "selected clock"; case 1: pdiv = 2; cp = "clock/2"; break; case 2: pdiv = 4; cp = "clock/4"; break; case 3: pdiv = 8; cp = "clock/8"; break; case 4: pdiv = 16; cp = "clock/16"; break; case 5: pdiv = 32; cp = "clock/32"; break; case 6: pdiv = 64; cp = "clock/64"; break; case 7: pdiv = 6; cp = "clock/6"; break; default: assert(0); break; } LOG_USER_N("(%s)\n", cp); fin = fin / pdiv; // sam3 has a *SINGLE* clock - // other at91 series parts have divisors for these. pChip->cfg.cpu_freq = fin; pChip->cfg.mclk_freq = fin; pChip->cfg.fclk_freq = fin; LOG_USER_N("\t\tResult CPU Freq: %3.03f\n", _tomhz(fin)); } #if 0 static struct sam3_chip * target2sam3(struct target *pTarget) { struct sam3_chip *pChip; if (pTarget == NULL) { return NULL; } pChip = all_sam3_chips; while (pChip) { if (pChip->target == pTarget) { break; // return below } else { pChip = pChip->next; } } return pChip; } #endif static uint32_t * sam3_get_reg_ptr(struct sam3_cfg *pCfg, const struct sam3_reg_list *pList) { // this function exists to help // keep funky offsetof() errors // and casting from causing bugs // By using prototypes - we can detect what would // be casting errors. return ((uint32_t *)(void *)(((char *)(pCfg)) + pList->struct_offset)); } #define SAM3_ENTRY(NAME, FUNC) { .address = SAM3_ ## NAME, .struct_offset = offsetof(struct sam3_cfg, NAME), #NAME, FUNC } static const struct sam3_reg_list sam3_all_regs[] = { SAM3_ENTRY(CKGR_MOR , sam3_explain_ckgr_mor), SAM3_ENTRY(CKGR_MCFR , sam3_explain_ckgr_mcfr), SAM3_ENTRY(CKGR_PLLAR , sam3_explain_ckgr_plla), SAM3_ENTRY(CKGR_UCKR , NULL), SAM3_ENTRY(PMC_FSMR , NULL), SAM3_ENTRY(PMC_FSPR , NULL), SAM3_ENTRY(PMC_IMR , NULL), SAM3_ENTRY(PMC_MCKR , sam3_explain_mckr), SAM3_ENTRY(PMC_PCK0 , NULL), SAM3_ENTRY(PMC_PCK1 , NULL), SAM3_ENTRY(PMC_PCK2 , NULL), SAM3_ENTRY(PMC_PCSR , NULL), SAM3_ENTRY(PMC_SCSR , NULL), SAM3_ENTRY(PMC_SR , NULL), SAM3_ENTRY(CHIPID_CIDR , sam3_explain_chipid_cidr), SAM3_ENTRY(CHIPID_EXID , NULL), SAM3_ENTRY(SUPC_CR, NULL), // TERMINATE THE LIST { .name = NULL } }; #undef SAM3_ENTRY static struct sam3_bank_private * get_sam3_bank_private(struct flash_bank *bank) { return (struct sam3_bank_private *)(bank->driver_priv); } /** * Given a pointer to where it goes in the structure, * determine the register name, address from the all registers table. */ static const struct sam3_reg_list * sam3_GetReg(struct sam3_chip *pChip, uint32_t *goes_here) { const struct sam3_reg_list *pReg; pReg = &(sam3_all_regs[0]); while (pReg->name) { uint32_t *pPossible; // calculate where this one go.. // it is "possibly" this register. pPossible = ((uint32_t *)(void *)(((char *)(&(pChip->cfg))) + pReg->struct_offset)); // well? Is it this register if (pPossible == goes_here) { // Jump for joy! return pReg; } // next... pReg++; } // This is *TOTAL*PANIC* - we are totally screwed. LOG_ERROR("INVALID SAM3 REGISTER"); return NULL; } static int sam3_ReadThisReg(struct sam3_chip *pChip, uint32_t *goes_here) { const struct sam3_reg_list *pReg; int r; pReg = sam3_GetReg(pChip, goes_here); if (!pReg) { return ERROR_FAIL; } r = target_read_u32(pChip->target, pReg->address, goes_here); if (r != ERROR_OK) { LOG_ERROR("Cannot read SAM3 register: %s @ 0x%08x, Err: %d", pReg->name, (unsigned)(pReg->address), r); } return r; } static int sam3_ReadAllRegs(struct sam3_chip *pChip) { int r; const struct sam3_reg_list *pReg; pReg = &(sam3_all_regs[0]); while (pReg->name) { r = sam3_ReadThisReg(pChip, sam3_get_reg_ptr(&(pChip->cfg), pReg)); if (r != ERROR_OK) { LOG_ERROR("Cannot read SAM3 registere: %s @ 0x%08x, Error: %d", pReg->name, ((unsigned)(pReg->address)), r); return r; } pReg++; } return ERROR_OK; } static int sam3_GetInfo(struct sam3_chip *pChip) { const struct sam3_reg_list *pReg; uint32_t regval; pReg = &(sam3_all_regs[0]); while (pReg->name) { // display all regs LOG_DEBUG("Start: %s", pReg->name); regval = *sam3_get_reg_ptr(&(pChip->cfg), pReg); LOG_USER_N("%*s: [0x%08x] -> 0x%08x\n", REG_NAME_WIDTH, pReg->name, pReg->address, regval); if (pReg->explain_func) { (*(pReg->explain_func))(pChip); } LOG_DEBUG("End: %s", pReg->name); pReg++; } LOG_USER_N(" rc-osc: %3.03f MHz\n", _tomhz(pChip->cfg.rc_freq)); LOG_USER_N(" mainosc: %3.03f MHz\n", _tomhz(pChip->cfg.mainosc_freq)); LOG_USER_N(" plla: %3.03f MHz\n", _tomhz(pChip->cfg.plla_freq)); LOG_USER_N(" cpu-freq: %3.03f MHz\n", _tomhz(pChip->cfg.cpu_freq)); LOG_USER_N("mclk-freq: %3.03f MHz\n", _tomhz(pChip->cfg.mclk_freq)); LOG_USER_N(" UniqueId: 0x%08x 0x%08x 0x%08x 0x%08x\n", pChip->cfg.unique_id[0], pChip->cfg.unique_id[1], pChip->cfg.unique_id[2], pChip->cfg.unique_id[3]); return ERROR_OK; } static int sam3_erase_check(struct flash_bank *bank) { int x; LOG_DEBUG("Here"); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (0 == bank->num_sectors) { LOG_ERROR("Target: not supported/not probed"); return ERROR_FAIL; } LOG_INFO("sam3 - supports auto-erase, erase_check ignored"); for (x = 0 ; x < bank->num_sectors ; x++) { bank->sectors[x].is_erased = 1; } LOG_DEBUG("Done"); return ERROR_OK; } static int sam3_protect_check(struct flash_bank *bank) { int r; uint32_t v=0; unsigned x; struct sam3_bank_private *pPrivate; LOG_DEBUG("Begin"); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } pPrivate = get_sam3_bank_private(bank); if (!pPrivate) { LOG_ERROR("no private for this bank?"); return ERROR_FAIL; } if (!(pPrivate->probed)) { return ERROR_FLASH_BANK_NOT_PROBED; } r = FLASHD_GetLockBits(pPrivate , &v); if (r != ERROR_OK) { LOG_DEBUG("Failed: %d",r); return r; } for (x = 0 ; x < pPrivate->nsectors ; x++) { bank->sectors[x].is_protected = (!!(v & (1 << x))); } LOG_DEBUG("Done"); return ERROR_OK; } FLASH_BANK_COMMAND_HANDLER(sam3_flash_bank_command) { struct sam3_chip *pChip; pChip = all_sam3_chips; // is this an existing chip? while (pChip) { if (pChip->target == bank->target) { break; } pChip = pChip->next; } if (!pChip) { // this is a *NEW* chip pChip = calloc(1, sizeof(struct sam3_chip)); if (!pChip) { LOG_ERROR("NO RAM!"); return ERROR_FAIL; } pChip->target = bank->target; // insert at head pChip->next = all_sam3_chips; all_sam3_chips = pChip; pChip->target = bank->target; // assumption is this runs at 32khz pChip->cfg.slow_freq = 32768; pChip->probed = 0; } switch (bank->base) { default: LOG_ERROR("Address 0x%08x invalid bank address (try 0x%08x or 0x%08x \ [at91sam3u series] or 0x%08x [at91sam3s series])", ((unsigned int)(bank->base)), ((unsigned int)(FLASH_BANK0_BASE_U)), ((unsigned int)(FLASH_BANK1_BASE_U)), ((unsigned int)(FLASH_BANK_BASE_S))); return ERROR_FAIL; break; // at91sam3u series case FLASH_BANK0_BASE_U: bank->driver_priv = &(pChip->details.bank[0]); bank->bank_number = 0; pChip->details.bank[0].pChip = pChip; pChip->details.bank[0].pBank = bank; break; case FLASH_BANK1_BASE_U: bank->driver_priv = &(pChip->details.bank[1]); bank->bank_number = 1; pChip->details.bank[1].pChip = pChip; pChip->details.bank[1].pBank = bank; // at91sam3s series case FLASH_BANK_BASE_S: bank->driver_priv = &(pChip->details.bank[0]); bank->bank_number = 0; pChip->details.bank[0].pChip = pChip; pChip->details.bank[0].pBank = bank; break; } // we initialize after probing. return ERROR_OK; } static int sam3_GetDetails(struct sam3_bank_private *pPrivate) { const struct sam3_chip_details *pDetails; struct sam3_chip *pChip; struct flash_bank *saved_banks[SAM3_MAX_FLASH_BANKS]; unsigned x; LOG_DEBUG("Begin"); pDetails = all_sam3_details; while (pDetails->name) { if (pDetails->chipid_cidr == pPrivate->pChip->cfg.CHIPID_CIDR) { break; } else { pDetails++; } } if (pDetails->name == NULL) { LOG_ERROR("SAM3 ChipID 0x%08x not found in table (perhaps you can this chip?)", (unsigned int)(pPrivate->pChip->cfg.CHIPID_CIDR)); // Help the victim, print details about the chip LOG_INFO_N("SAM3 CHIPID_CIDR: 0x%08x decodes as follows\n", pPrivate->pChip->cfg.CHIPID_CIDR); sam3_explain_chipid_cidr(pPrivate->pChip); return ERROR_FAIL; } // DANGER: THERE ARE DRAGONS HERE // get our pChip - it is going // to be over-written shortly pChip = pPrivate->pChip; // Note that, in reality: // // pPrivate = &(pChip->details.bank[0]) // or pPrivate = &(pChip->details.bank[1]) // // save the "bank" pointers for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) { saved_banks[ x ] = pChip->details.bank[x].pBank; } // Overwrite the "details" structure. memcpy(&(pPrivate->pChip->details), pDetails, sizeof(pPrivate->pChip->details)); // now fix the ghosted pointers for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) { pChip->details.bank[x].pChip = pChip; pChip->details.bank[x].pBank = saved_banks[x]; } // update the *BANK*SIZE* LOG_DEBUG("End"); return ERROR_OK; } static int _sam3_probe(struct flash_bank *bank, int noise) { unsigned x; int r; struct sam3_bank_private *pPrivate; LOG_DEBUG("Begin: Bank: %d, Noise: %d", bank->bank_number, noise); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } pPrivate = get_sam3_bank_private(bank); if (!pPrivate) { LOG_ERROR("Invalid/unknown bank number"); return ERROR_FAIL; } r = sam3_ReadAllRegs(pPrivate->pChip); if (r != ERROR_OK) { return r; } LOG_DEBUG("Here"); if (pPrivate->pChip->probed) { r = sam3_GetInfo(pPrivate->pChip); } else { r = sam3_GetDetails(pPrivate); } if (r != ERROR_OK) { return r; } // update the flash bank size for (x = 0 ; x < SAM3_MAX_FLASH_BANKS ; x++) { if (bank->base == pPrivate->pChip->details.bank[0].base_address) { bank->size = pPrivate->pChip->details.bank[0].size_bytes; break; } } if (bank->sectors == NULL) { bank->sectors = calloc(pPrivate->nsectors, (sizeof((bank->sectors)[0]))); if (bank->sectors == NULL) { LOG_ERROR("No memory!"); return ERROR_FAIL; } bank->num_sectors = pPrivate->nsectors; for (x = 0 ; ((int)(x)) < bank->num_sectors ; x++) { bank->sectors[x].size = pPrivate->sector_size; bank->sectors[x].offset = x * (pPrivate->sector_size); // mark as unknown bank->sectors[x].is_erased = -1; bank->sectors[x].is_protected = -1; } } pPrivate->probed = 1; r = sam3_protect_check(bank); if (r != ERROR_OK) { return r; } LOG_DEBUG("Bank = %d, nbanks = %d", pPrivate->bank_number , pPrivate->pChip->details.n_banks); if ((pPrivate->bank_number + 1) == pPrivate->pChip->details.n_banks) { // read unique id, // it appears to be associated with the *last* flash bank. FLASHD_ReadUniqueID(pPrivate); } return r; } static int sam3_probe(struct flash_bank *bank) { return _sam3_probe(bank, 1); } static int sam3_auto_probe(struct flash_bank *bank) { return _sam3_probe(bank, 0); } static int sam3_erase(struct flash_bank *bank, int first, int last) { struct sam3_bank_private *pPrivate; int r; LOG_DEBUG("Here"); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } r = sam3_auto_probe(bank); if (r != ERROR_OK) { LOG_DEBUG("Here,r=%d",r); return r; } pPrivate = get_sam3_bank_private(bank); if (!(pPrivate->probed)) { return ERROR_FLASH_BANK_NOT_PROBED; } if ((first == 0) && ((last + 1)== ((int)(pPrivate->nsectors)))) { // whole chip LOG_DEBUG("Here"); return FLASHD_EraseEntireBank(pPrivate); } LOG_INFO("sam3 auto-erases while programing (request ignored)"); return ERROR_OK; } static int sam3_protect(struct flash_bank *bank, int set, int first, int last) { struct sam3_bank_private *pPrivate; int r; LOG_DEBUG("Here"); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } pPrivate = get_sam3_bank_private(bank); if (!(pPrivate->probed)) { return ERROR_FLASH_BANK_NOT_PROBED; } if (set) { r = FLASHD_Lock(pPrivate, (unsigned)(first), (unsigned)(last)); } else { r = FLASHD_Unlock(pPrivate, (unsigned)(first), (unsigned)(last)); } LOG_DEBUG("End: r=%d",r); return r; } static int sam3_info(struct flash_bank *bank, char *buf, int buf_size) { if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } buf[ 0 ] = 0; return ERROR_OK; } static int sam3_page_read(struct sam3_bank_private *pPrivate, unsigned pagenum, uint8_t *buf) { uint32_t adr; int r; adr = pagenum * pPrivate->page_size; adr += adr + pPrivate->base_address; r = target_read_memory(pPrivate->pChip->target, adr, 4, /* THIS*MUST*BE* in 32bit values */ pPrivate->page_size / 4, buf); if (r != ERROR_OK) { LOG_ERROR("SAM3: Flash program failed to read page phys address: 0x%08x", (unsigned int)(adr)); } return r; } // The code below is basically this: // compiled with // arm-none-eabi-gcc -mthumb -mcpu = cortex-m3 -O9 -S ./foobar.c -o foobar.s // // Only the *CPU* can write to the flash buffer. // the DAP cannot... so - we download this 28byte thing // Run the algorithm - (below) // to program the device // // ======================================== // #include // // struct foo { // uint32_t *dst; // const uint32_t *src; // int n; // volatile uint32_t *base; // uint32_t cmd; // }; // // // uint32_t sam3_function(struct foo *p) // { // volatile uint32_t *v; // uint32_t *d; // const uint32_t *s; // int n; // uint32_t r; // // d = p->dst; // s = p->src; // n = p->n; // // do { // *d++ = *s++; // } while (--n) // ; // // v = p->base; // // v[ 1 ] = p->cmd; // do { // r = v[8/4]; // } while (!(r&1)) // ; // return r; // } // ======================================== static const uint8_t sam3_page_write_opcodes[] = { // 24 0000 0446 mov r4, r0 0x04,0x46, // 25 0002 6168 ldr r1, [r4, #4] 0x61,0x68, // 26 0004 0068 ldr r0, [r0, #0] 0x00,0x68, // 27 0006 A268 ldr r2, [r4, #8] 0xa2,0x68, // 28 @ lr needed for prologue // 29 .L2: // 30 0008 51F8043B ldr r3, [r1], #4 0x51,0xf8,0x04,0x3b, // 31 000c 12F1FF32 adds r2, r2, #-1 0x12,0xf1,0xff,0x32, // 32 0010 40F8043B str r3, [r0], #4 0x40,0xf8,0x04,0x3b, // 33 0014 F8D1 bne .L2 0xf8,0xd1, // 34 0016 E268 ldr r2, [r4, #12] 0xe2,0x68, // 35 0018 2369 ldr r3, [r4, #16] 0x23,0x69, // 36 001a 5360 str r3, [r2, #4] 0x53,0x60, // 37 001c 0832 adds r2, r2, #8 0x08,0x32, // 38 .L4: // 39 001e 1068 ldr r0, [r2, #0] 0x10,0x68, // 40 0020 10F0010F tst r0, #1 0x10,0xf0,0x01,0x0f, // 41 0024 FBD0 beq .L4 0xfb,0xd0, 0x00,0xBE /* bkpt #0 */ }; static int sam3_page_write(struct sam3_bank_private *pPrivate, unsigned pagenum, uint8_t *buf) { uint32_t adr; uint32_t status; int r; adr = pagenum * pPrivate->page_size; adr += (adr + pPrivate->base_address); LOG_DEBUG("Wr Page %u @ phys address: 0x%08x", pagenum, (unsigned int)(adr)); r = target_write_memory(pPrivate->pChip->target, adr, 4, /* THIS*MUST*BE* in 32bit values */ pPrivate->page_size / 4, buf); if (r != ERROR_OK) { LOG_ERROR("SAM3: Failed to write (buffer) page at phys address 0x%08x", (unsigned int)(adr)); return r; } r = EFC_PerformCommand(pPrivate, // send Erase & Write Page AT91C_EFC_FCMD_EWP, pagenum, &status); if (r != ERROR_OK) { LOG_ERROR("SAM3: Error performing Erase & Write page @ phys address 0x%08x", (unsigned int)(adr)); } if (status & (1 << 2)) { LOG_ERROR("SAM3: Page @ Phys address 0x%08x is locked", (unsigned int)(adr)); return ERROR_FAIL; } if (status & (1 << 1)) { LOG_ERROR("SAM3: Flash Command error @phys address 0x%08x", (unsigned int)(adr)); return ERROR_FAIL; } return ERROR_OK; } static int sam3_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { int n; unsigned page_cur; unsigned page_end; int r; unsigned page_offset; struct sam3_bank_private *pPrivate; uint8_t *pagebuffer; // incase we bail further below, set this to null pagebuffer = NULL; // ignore dumb requests if (count == 0) { r = ERROR_OK; goto done; } if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); r = ERROR_TARGET_NOT_HALTED; goto done; } pPrivate = get_sam3_bank_private(bank); if (!(pPrivate->probed)) { r = ERROR_FLASH_BANK_NOT_PROBED; goto done; } if ((offset + count) > pPrivate->size_bytes) { LOG_ERROR("Flash write error - past end of bank"); LOG_ERROR(" offset: 0x%08x, count 0x%08x, BankEnd: 0x%08x", (unsigned int)(offset), (unsigned int)(count), (unsigned int)(pPrivate->size_bytes)); r = ERROR_FAIL; goto done; } pagebuffer = malloc(pPrivate->page_size); if( !pagebuffer ){ LOG_ERROR("No memory for %d Byte page buffer", (int)(pPrivate->page_size)); r = ERROR_FAIL; goto done; } // what page do we start & end in? page_cur = offset / pPrivate->page_size; page_end = (offset + count - 1) / pPrivate->page_size; LOG_DEBUG("Offset: 0x%08x, Count: 0x%08x", (unsigned int)(offset), (unsigned int)(count)); LOG_DEBUG("Page start: %d, Page End: %d", (int)(page_cur), (int)(page_end)); // Special case: all one page // // Otherwise: // (1) non-aligned start // (2) body pages // (3) non-aligned end. // Handle special case - all one page. if (page_cur == page_end) { LOG_DEBUG("Special case, all in one page"); r = sam3_page_read(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) { goto done; } page_offset = (offset & (pPrivate->page_size-1)); memcpy(pagebuffer + page_offset, buffer, count); r = sam3_page_write(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) { goto done; } r = ERROR_OK; goto done; } // non-aligned start page_offset = offset & (pPrivate->page_size - 1); if (page_offset) { LOG_DEBUG("Not-Aligned start"); // read the partial r = sam3_page_read(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) { goto done; } // over-write with new data n = (pPrivate->page_size - page_offset); memcpy(pagebuffer + page_offset, buffer, n); r = sam3_page_write(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) { goto done; } count -= n; offset += n; buffer += n; page_cur++; } // intermediate large pages // also - the final *terminal* // if that terminal page is a full page LOG_DEBUG("Full Page Loop: cur=%d, end=%d, count = 0x%08x", (int)page_cur, (int)page_end, (unsigned int)(count)); while ((page_cur < page_end) && (count >= pPrivate->page_size)) { r = sam3_page_write(pPrivate, page_cur, buffer); if (r != ERROR_OK) { goto done; } count -= pPrivate->page_size; buffer += pPrivate->page_size; page_cur += 1; } // terminal partial page? if (count) { LOG_DEBUG("Terminal partial page, count = 0x%08x", (unsigned int)(count)); // we have a partial page r = sam3_page_read(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) { goto done; } // data goes at start memcpy(pagebuffer, buffer, count); r = sam3_page_write(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) { goto done; } buffer += count; count -= count; } LOG_DEBUG("Done!"); r = ERROR_OK; done: if( pagebuffer ){ free(pagebuffer); } return r; } COMMAND_HANDLER(sam3_handle_info_command) { struct sam3_chip *pChip; unsigned x; int r; pChip = get_current_sam3(CMD_CTX); if (!pChip) { return ERROR_OK; } r = 0; // bank0 must exist before we can do anything if (pChip->details.bank[0].pBank == NULL) { x = 0; need_define: command_print(CMD_CTX, "Please define bank %d via command: flash bank %s ... ", x, at91sam3_flash.name); return ERROR_FAIL; } // if bank 0 is not probed, then probe it if (!(pChip->details.bank[0].probed)) { r = sam3_auto_probe(pChip->details.bank[0].pBank); if (r != ERROR_OK) { return ERROR_FAIL; } } // above guarantees the "chip details" structure is valid // and thus, bank private areas are valid // and we have a SAM3 chip, what a concept! // auto-probe other banks, 0 done above for (x = 1 ; x < SAM3_MAX_FLASH_BANKS ; x++) { // skip banks not present if (!(pChip->details.bank[x].present)) { continue; } if (pChip->details.bank[x].pBank == NULL) { goto need_define; } if (pChip->details.bank[x].probed) { continue; } r = sam3_auto_probe(pChip->details.bank[x].pBank); if (r != ERROR_OK) { return r; } } r = sam3_GetInfo(pChip); if (r != ERROR_OK) { LOG_DEBUG("Sam3Info, Failed %d\n",r); return r; } return ERROR_OK; } COMMAND_HANDLER(sam3_handle_gpnvm_command) { unsigned x,v; int r,who; struct sam3_chip *pChip; pChip = get_current_sam3(CMD_CTX); if (!pChip) { return ERROR_OK; } if (pChip->target->state != TARGET_HALTED) { LOG_ERROR("sam3 - target not halted"); return ERROR_TARGET_NOT_HALTED; } if (pChip->details.bank[0].pBank == NULL) { command_print(CMD_CTX, "Bank0 must be defined first via: flash bank %s ...", at91sam3_flash.name); return ERROR_FAIL; } if (!pChip->details.bank[0].probed) { r = sam3_auto_probe(pChip->details.bank[0].pBank); if (r != ERROR_OK) { return r; } } switch (CMD_ARGC) { default: command_print(CMD_CTX,"Too many parameters\n"); return ERROR_COMMAND_SYNTAX_ERROR; break; case 0: who = -1; goto showall; break; case 1: who = -1; break; case 2: if ((0 == strcmp(CMD_ARGV[0], "show")) && (0 == strcmp(CMD_ARGV[1], "all"))) { who = -1; } else { uint32_t v32; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], v32); who = v32; } break; } if (0 == strcmp("show", CMD_ARGV[0])) { if (who == -1) { showall: r = ERROR_OK; for (x = 0 ; x < pChip->details.n_gpnvms ; x++) { r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), x, &v); if (r != ERROR_OK) { break; } command_print(CMD_CTX, "sam3-gpnvm%u: %u", x, v); } return r; } if ((who >= 0) && (((unsigned)(who)) < pChip->details.n_gpnvms)) { r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), who, &v); command_print(CMD_CTX, "sam3-gpnvm%u: %u", who, v); return r; } else { command_print(CMD_CTX, "sam3-gpnvm invalid GPNVM: %u", who); return ERROR_COMMAND_SYNTAX_ERROR; } } if (who == -1) { command_print(CMD_CTX, "Missing GPNVM number"); return ERROR_COMMAND_SYNTAX_ERROR; } if (0 == strcmp("set", CMD_ARGV[0])) { r = FLASHD_SetGPNVM(&(pChip->details.bank[0]), who); } else if ((0 == strcmp("clr", CMD_ARGV[0])) || (0 == strcmp("clear", CMD_ARGV[0]))) { // quietly accept both r = FLASHD_ClrGPNVM(&(pChip->details.bank[0]), who); } else { command_print(CMD_CTX, "Unkown command: %s", CMD_ARGV[0]); r = ERROR_COMMAND_SYNTAX_ERROR; } return r; } COMMAND_HANDLER(sam3_handle_slowclk_command) { struct sam3_chip *pChip; pChip = get_current_sam3(CMD_CTX); if (!pChip) { return ERROR_OK; } switch (CMD_ARGC) { case 0: // show break; case 1: { // set uint32_t v; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], v); if (v > 200000) { // absurd slow clock of 200Khz? command_print(CMD_CTX,"Absurd/illegal slow clock freq: %d\n", (int)(v)); return ERROR_COMMAND_SYNTAX_ERROR; } pChip->cfg.slow_freq = v; break; } default: // error command_print(CMD_CTX,"Too many parameters"); return ERROR_COMMAND_SYNTAX_ERROR; break; } command_print(CMD_CTX, "Slowclk freq: %d.%03dkhz", (int)(pChip->cfg.slow_freq/ 1000), (int)(pChip->cfg.slow_freq% 1000)); return ERROR_OK; } static const struct command_registration at91sam3_exec_command_handlers[] = { { .name = "gpnvm", .handler = sam3_handle_gpnvm_command, .mode = COMMAND_EXEC, .usage = "[('clr'|'set'|'show') bitnum]", .help = "Without arguments, shows all bits in the gpnvm " "register. Otherwise, clears, sets, or shows one " "General Purpose Non-Volatile Memory (gpnvm) bit.", }, { .name = "info", .handler = sam3_handle_info_command, .mode = COMMAND_EXEC, .help = "Print information about the current at91sam3 chip" "and its flash configuration.", }, { .name = "slowclk", .handler = sam3_handle_slowclk_command, .mode = COMMAND_EXEC, .usage = "[clock_hz]", .help = "Display or set the slowclock frequency " "(default 32768 Hz).", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration at91sam3_command_handlers[] = { { .name = "at91sam3", .mode = COMMAND_ANY, .help = "at91sam3 flash command group", .chain = at91sam3_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver at91sam3_flash = { .name = "at91sam3", .commands = at91sam3_command_handlers, .flash_bank_command = sam3_flash_bank_command, .erase = sam3_erase, .protect = sam3_protect, .write = sam3_write, .read = default_flash_read, .probe = sam3_probe, .auto_probe = sam3_auto_probe, .erase_check = sam3_erase_check, .protect_check = sam3_protect_check, .info = sam3_info, };