/*************************************************************************** * Copyright (C) 2009 by Duane Ellis * * openocd@duaneellis.com * * * * Copyright (C) 2010 by Olaf Lüke (at91sam3s* support) * * olaf@uni-paderborn.de * * * * Copyright (C) 2011 by Olivier Schonken, Jim Norris * * (at91sam3x* & at91sam4 support)* * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS for A PARTICULAR PURPOSE. See the * * GNU General public License for more details. * * * * You should have received a copy of the GNU General public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ****************************************************************************/ /* Some of the the lower level code was based on code supplied by * ATMEL under this copyright. */ /* BEGIN ATMEL COPYRIGHT */ /* ---------------------------------------------------------------------------- * ATMEL Microcontroller Software Support * ---------------------------------------------------------------------------- * Copyright (c) 2009, Atmel Corporation * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Atmel's name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ /* END ATMEL COPYRIGHT */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #define REG_NAME_WIDTH (12) /* at91sam4s series (has always one flash bank)*/ #define FLASH_BANK_BASE_S 0x00400000 /* at91sam4sd series (two one flash banks), first bank address */ #define FLASH_BANK0_BASE_SD FLASH_BANK_BASE_S /* at91sam4sd16x, second bank address */ #define FLASH_BANK1_BASE_1024K_SD (FLASH_BANK0_BASE_SD+(1024*1024/2)) /* at91sam4sd32x, second bank address */ #define FLASH_BANK1_BASE_2048K_SD (FLASH_BANK0_BASE_SD+(2048*1024/2)) #define AT91C_EFC_FCMD_GETD (0x0) /* (EFC) Get Flash Descriptor */ #define AT91C_EFC_FCMD_WP (0x1) /* (EFC) Write Page */ #define AT91C_EFC_FCMD_WPL (0x2) /* (EFC) Write Page and Lock */ #define AT91C_EFC_FCMD_EWP (0x3) /* (EFC) Erase Page and Write Page */ #define AT91C_EFC_FCMD_EWPL (0x4) /* (EFC) Erase Page and Write Page then Lock */ #define AT91C_EFC_FCMD_EA (0x5) /* (EFC) Erase All */ /* cmd6 is not present in the at91sam4u4/2/1 data sheet table 19-2 */ /* #define AT91C_EFC_FCMD_EPL (0x6) // (EFC) Erase plane? */ #define AT91C_EFC_FCMD_EPA (0x7) /* (EFC) Erase pages */ #define AT91C_EFC_FCMD_SLB (0x8) /* (EFC) Set Lock Bit */ #define AT91C_EFC_FCMD_CLB (0x9) /* (EFC) Clear Lock Bit */ #define AT91C_EFC_FCMD_GLB (0xA) /* (EFC) Get Lock Bit */ #define AT91C_EFC_FCMD_SFB (0xB) /* (EFC) Set Fuse Bit */ #define AT91C_EFC_FCMD_CFB (0xC) /* (EFC) Clear Fuse Bit */ #define AT91C_EFC_FCMD_GFB (0xD) /* (EFC) Get Fuse Bit */ #define AT91C_EFC_FCMD_STUI (0xE) /* (EFC) Start Read Unique ID */ #define AT91C_EFC_FCMD_SPUI (0xF) /* (EFC) Stop Read Unique ID */ #define offset_EFC_FMR 0 #define offset_EFC_FCR 4 #define offset_EFC_FSR 8 #define offset_EFC_FRR 12 extern struct flash_driver at91sam4_flash; static float _tomhz(uint32_t freq_hz) { float f; f = ((float)(freq_hz)) / 1000000.0; return f; } /* How the chip is configured. */ struct sam4_cfg { uint32_t unique_id[4]; uint32_t slow_freq; uint32_t rc_freq; uint32_t mainosc_freq; uint32_t plla_freq; uint32_t mclk_freq; uint32_t cpu_freq; uint32_t fclk_freq; uint32_t pclk0_freq; uint32_t pclk1_freq; uint32_t pclk2_freq; #define SAM4_CHIPID_CIDR (0x400E0740) uint32_t CHIPID_CIDR; #define SAM4_CHIPID_EXID (0x400E0744) uint32_t CHIPID_EXID; #define SAM4_PMC_BASE (0x400E0400) #define SAM4_PMC_SCSR (SAM4_PMC_BASE + 0x0008) uint32_t PMC_SCSR; #define SAM4_PMC_PCSR (SAM4_PMC_BASE + 0x0018) uint32_t PMC_PCSR; #define SAM4_CKGR_UCKR (SAM4_PMC_BASE + 0x001c) uint32_t CKGR_UCKR; #define SAM4_CKGR_MOR (SAM4_PMC_BASE + 0x0020) uint32_t CKGR_MOR; #define SAM4_CKGR_MCFR (SAM4_PMC_BASE + 0x0024) uint32_t CKGR_MCFR; #define SAM4_CKGR_PLLAR (SAM4_PMC_BASE + 0x0028) uint32_t CKGR_PLLAR; #define SAM4_PMC_MCKR (SAM4_PMC_BASE + 0x0030) uint32_t PMC_MCKR; #define SAM4_PMC_PCK0 (SAM4_PMC_BASE + 0x0040) uint32_t PMC_PCK0; #define SAM4_PMC_PCK1 (SAM4_PMC_BASE + 0x0044) uint32_t PMC_PCK1; #define SAM4_PMC_PCK2 (SAM4_PMC_BASE + 0x0048) uint32_t PMC_PCK2; #define SAM4_PMC_SR (SAM4_PMC_BASE + 0x0068) uint32_t PMC_SR; #define SAM4_PMC_IMR (SAM4_PMC_BASE + 0x006c) uint32_t PMC_IMR; #define SAM4_PMC_FSMR (SAM4_PMC_BASE + 0x0070) uint32_t PMC_FSMR; #define SAM4_PMC_FSPR (SAM4_PMC_BASE + 0x0074) uint32_t PMC_FSPR; }; struct sam4_bank_private { int probed; /* DANGER: THERE ARE DRAGONS HERE.. */ /* NOTE: If you add more 'ghost' pointers */ /* be aware that you must *manually* update */ /* these pointers in the function sam4_GetDetails() */ /* See the comment "Here there be dragons" */ /* so we can find the chip we belong to */ struct sam4_chip *pChip; /* so we can find the original bank pointer */ struct flash_bank *pBank; unsigned bank_number; uint32_t controller_address; uint32_t base_address; uint32_t flash_wait_states; bool present; unsigned size_bytes; unsigned nsectors; unsigned sector_size; unsigned page_size; }; struct sam4_chip_details { /* THERE ARE DRAGONS HERE.. */ /* note: If you add pointers here */ /* be careful about them as they */ /* may need to be updated inside */ /* the function: "sam4_GetDetails() */ /* which copy/overwrites the */ /* 'runtime' copy of this structure */ uint32_t chipid_cidr; const char *name; unsigned n_gpnvms; #define SAM4_N_NVM_BITS 3 unsigned gpnvm[SAM4_N_NVM_BITS]; unsigned total_flash_size; unsigned total_sram_size; unsigned n_banks; #define SAM4_MAX_FLASH_BANKS 2 /* these are "initialized" from the global const data */ struct sam4_bank_private bank[SAM4_MAX_FLASH_BANKS]; }; struct sam4_chip { struct sam4_chip *next; int probed; /* this is "initialized" from the global const structure */ struct sam4_chip_details details; struct target *target; struct sam4_cfg cfg; }; struct sam4_reg_list { uint32_t address; size_t struct_offset; const char *name; void (*explain_func)(struct sam4_chip *pInfo); }; static struct sam4_chip *all_sam4_chips; static struct sam4_chip *get_current_sam4(struct command_context *cmd_ctx) { struct target *t; static struct sam4_chip *p; t = get_current_target(cmd_ctx); if (!t) { command_print(cmd_ctx, "No current target?"); return NULL; } p = all_sam4_chips; if (!p) { /* this should not happen */ /* the command is not registered until the chip is created? */ command_print(cmd_ctx, "No SAM4 chips exist?"); return NULL; } while (p) { if (p->target == t) return p; p = p->next; } command_print(cmd_ctx, "Cannot find SAM4 chip?"); return NULL; } /*The actual sector size of the SAM4S flash memory is 65536 bytes. 16 sectors for a 1024KB device*/ /*The lockregions are 8KB per lock region, with a 1024KB device having 128 lock regions. */ /*For the best results, nsectors are thus set to the amount of lock regions, and the sector_size*/ /*set to the lock region size. Page erases are used to erase 8KB sections when programming*/ /* these are used to *initialize* the "pChip->details" structure. */ static const struct sam4_chip_details all_sam4_details[] = { /* Start at91sam4s* series */ /*atsam4s16c - LQFP100/BGA100*/ { .chipid_cidr = 0x28AC0CE0, .name = "at91sam4s16c", .total_flash_size = 1024 * 1024, .total_sram_size = 128 * 1024, .n_gpnvms = 2, .n_banks = 1, { /* .bank[0] = {*/ { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 1024 * 1024, .nsectors = 128, .sector_size = 8192, .page_size = 512, }, /* .bank[1] = {*/ { .present = 0, .probed = 0, .bank_number = 1, }, }, }, /*atsam4s16b - LQFP64/QFN64*/ { .chipid_cidr = 0x289C0CE0, .name = "at91sam4s16b", .total_flash_size = 1024 * 1024, .total_sram_size = 128 * 1024, .n_gpnvms = 2, .n_banks = 1, { /* .bank[0] = {*/ { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 1024 * 1024, .nsectors = 128, .sector_size = 8192, .page_size = 512, }, /* .bank[1] = {*/ { .present = 0, .probed = 0, .bank_number = 1, }, }, }, /*atsam4s16a - LQFP48/QFN48*/ { .chipid_cidr = 0x288C0CE0, .name = "at91sam4s16a", .total_flash_size = 1024 * 1024, .total_sram_size = 128 * 1024, .n_gpnvms = 2, .n_banks = 1, { /* .bank[0] = {*/ { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 1024 * 1024, .nsectors = 128, .sector_size = 8192, .page_size = 512, }, /* .bank[1] = {*/ { .present = 0, .probed = 0, .bank_number = 1, }, }, }, /*atsam4s8c - LQFP100/BGA100*/ { .chipid_cidr = 0x28AC0AE0, .name = "at91sam4s8c", .total_flash_size = 512 * 1024, .total_sram_size = 128 * 1024, .n_gpnvms = 2, .n_banks = 1, { /* .bank[0] = {*/ { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 512 * 1024, .nsectors = 64, .sector_size = 8192, .page_size = 512, }, /* .bank[1] = {*/ { .present = 0, .probed = 0, .bank_number = 1, }, }, }, /*atsam4s8b - LQFP64/BGA64*/ { .chipid_cidr = 0x289C0AE0, .name = "at91sam4s8b", .total_flash_size = 512 * 1024, .total_sram_size = 128 * 1024, .n_gpnvms = 2, .n_banks = 1, { /* .bank[0] = {*/ { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 512 * 1024, .nsectors = 64, .sector_size = 8192, .page_size = 512, }, /* .bank[1] = {*/ { .present = 0, .probed = 0, .bank_number = 1, }, }, }, /*atsam4s8a - LQFP48/BGA48*/ { .chipid_cidr = 0x288C0AE0, .name = "at91sam4s8a", .total_flash_size = 512 * 1024, .total_sram_size = 128 * 1024, .n_gpnvms = 2, .n_banks = 1, { /* .bank[0] = {*/ { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK_BASE_S, .controller_address = 0x400e0a00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 512 * 1024, .nsectors = 64, .sector_size = 8192, .page_size = 512, }, /* .bank[1] = {*/ { .present = 0, .probed = 0, .bank_number = 1, }, }, }, /*at91sam4sd32c*/ { .chipid_cidr = 0x29a70ee0, .name = "at91sam4sd32c", .total_flash_size = 2048 * 1024, .total_sram_size = 160 * 1024, .n_gpnvms = 3, .n_banks = 2, /* .bank[0] = { */ { { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 0, .base_address = FLASH_BANK0_BASE_SD, .controller_address = 0x400e0a00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 1024 * 1024, .nsectors = 128, .sector_size = 8192, .page_size = 512, }, /* .bank[1] = { */ { .probed = 0, .pChip = NULL, .pBank = NULL, .bank_number = 1, .base_address = FLASH_BANK1_BASE_2048K_SD, .controller_address = 0x400e0c00, .flash_wait_states = 6, /* workaround silicon bug */ .present = 1, .size_bytes = 1024 * 1024, .nsectors = 128, .sector_size = 8192, .page_size = 512, }, }, }, /* terminate */ { .chipid_cidr = 0, .name = NULL, } }; /* Globals above */ /*********************************************************************** ********************************************************************** ********************************************************************** ********************************************************************** ********************************************************************** **********************************************************************/ /* *ATMEL* style code - from the SAM4 driver code */ /** * Get the current status of the EEFC and * the value of some status bits (LOCKE, PROGE). * @param pPrivate - info about the bank * @param v - result goes here */ static int EFC_GetStatus(struct sam4_bank_private *pPrivate, uint32_t *v) { int r; r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FSR, v); LOG_DEBUG("Status: 0x%08x (lockerror: %d, cmderror: %d, ready: %d)", (unsigned int)(*v), ((unsigned int)((*v >> 2) & 1)), ((unsigned int)((*v >> 1) & 1)), ((unsigned int)((*v >> 0) & 1))); return r; } /** * Get the result of the last executed command. * @param pPrivate - info about the bank * @param v - result goes here */ static int EFC_GetResult(struct sam4_bank_private *pPrivate, uint32_t *v) { int r; uint32_t rv; r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address + offset_EFC_FRR, &rv); if (v) *v = rv; LOG_DEBUG("Result: 0x%08x", ((unsigned int)(rv))); return r; } static int EFC_StartCommand(struct sam4_bank_private *pPrivate, unsigned command, unsigned argument) { uint32_t n, v; int r; int retry; retry = 0; do_retry: /* Check command & argument */ switch (command) { case AT91C_EFC_FCMD_WP: case AT91C_EFC_FCMD_WPL: case AT91C_EFC_FCMD_EWP: case AT91C_EFC_FCMD_EWPL: /* case AT91C_EFC_FCMD_EPL: */ case AT91C_EFC_FCMD_EPA: case AT91C_EFC_FCMD_SLB: case AT91C_EFC_FCMD_CLB: n = (pPrivate->size_bytes / pPrivate->page_size); if (argument >= n) LOG_ERROR("*BUG*: Embedded flash has only %u pages", (unsigned)(n)); break; case AT91C_EFC_FCMD_SFB: case AT91C_EFC_FCMD_CFB: if (argument >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("*BUG*: Embedded flash has only %d GPNVMs", pPrivate->pChip->details.n_gpnvms); } break; case AT91C_EFC_FCMD_GETD: case AT91C_EFC_FCMD_EA: case AT91C_EFC_FCMD_GLB: case AT91C_EFC_FCMD_GFB: case AT91C_EFC_FCMD_STUI: case AT91C_EFC_FCMD_SPUI: if (argument != 0) LOG_ERROR("Argument is meaningless for cmd: %d", command); break; default: LOG_ERROR("Unknown command %d", command); break; } if (command == AT91C_EFC_FCMD_SPUI) { /* this is a very special situation. */ /* Situation (1) - error/retry - see below */ /* And we are being called recursively */ /* Situation (2) - normal, finished reading unique id */ } else { /* it should be "ready" */ EFC_GetStatus(pPrivate, &v); if (v & 1) { /* then it is ready */ /* we go on */ } else { if (retry) { /* we have done this before */ /* the controller is not responding. */ LOG_ERROR("flash controller(%d) is not ready! Error", pPrivate->bank_number); return ERROR_FAIL; } else { retry++; LOG_ERROR("Flash controller(%d) is not ready, attempting reset", pPrivate->bank_number); /* we do that by issuing the *STOP* command */ EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0); /* above is recursive, and further recursion is blocked by */ /* if (command == AT91C_EFC_FCMD_SPUI) above */ goto do_retry; } } } v = (0x5A << 24) | (argument << 8) | command; LOG_DEBUG("Command: 0x%08x", ((unsigned int)(v))); r = target_write_u32(pPrivate->pBank->target, pPrivate->controller_address + offset_EFC_FCR, v); if (r != ERROR_OK) LOG_DEBUG("Error Write failed"); return r; } /** * Performs the given command and wait until its completion (or an error). * @param pPrivate - info about the bank * @param command - Command to perform. * @param argument - Optional command argument. * @param status - put command status bits here */ static int EFC_PerformCommand(struct sam4_bank_private *pPrivate, unsigned command, unsigned argument, uint32_t *status) { int r; uint32_t v; long long ms_now, ms_end; /* default */ if (status) *status = 0; r = EFC_StartCommand(pPrivate, command, argument); if (r != ERROR_OK) return r; ms_end = 10000 + timeval_ms(); do { r = EFC_GetStatus(pPrivate, &v); if (r != ERROR_OK) return r; ms_now = timeval_ms(); if (ms_now > ms_end) { /* error */ LOG_ERROR("Command timeout"); return ERROR_FAIL; } } while ((v & 1) == 0); /* error bits.. */ if (status) *status = (v & 0x6); return ERROR_OK; } /** * Read the unique ID. * @param pPrivate - info about the bank * The unique ID is stored in the 'pPrivate' structure. */ static int FLASHD_ReadUniqueID(struct sam4_bank_private *pPrivate) { int r; uint32_t v; int x; /* assume 0 */ pPrivate->pChip->cfg.unique_id[0] = 0; pPrivate->pChip->cfg.unique_id[1] = 0; pPrivate->pChip->cfg.unique_id[2] = 0; pPrivate->pChip->cfg.unique_id[3] = 0; LOG_DEBUG("Begin"); r = EFC_StartCommand(pPrivate, AT91C_EFC_FCMD_STUI, 0); if (r < 0) return r; for (x = 0; x < 4; x++) { r = target_read_u32(pPrivate->pChip->target, pPrivate->pBank->base + (x * 4), &v); if (r < 0) return r; pPrivate->pChip->cfg.unique_id[x] = v; } r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SPUI, 0, NULL); LOG_DEBUG("End: R=%d, id = 0x%08x, 0x%08x, 0x%08x, 0x%08x", r, (unsigned int)(pPrivate->pChip->cfg.unique_id[0]), (unsigned int)(pPrivate->pChip->cfg.unique_id[1]), (unsigned int)(pPrivate->pChip->cfg.unique_id[2]), (unsigned int)(pPrivate->pChip->cfg.unique_id[3])); return r; } /** * Erases the entire flash. * @param pPrivate - the info about the bank. */ static int FLASHD_EraseEntireBank(struct sam4_bank_private *pPrivate) { LOG_DEBUG("Here"); return EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_EA, 0, NULL); } /** * Erases the entire flash. * @param pPrivate - the info about the bank. */ static int FLASHD_ErasePages(struct sam4_bank_private *pPrivate, int firstPage, int numPages, uint32_t *status) { LOG_DEBUG("Here"); uint8_t erasePages; switch (numPages) { case 4: erasePages = 0x00; break; case 8: erasePages = 0x01; break; case 16: erasePages = 0x02; break; case 32: erasePages = 0x03; break; default: erasePages = 0x00; break; } /* AT91C_EFC_FCMD_EPA * According to the datasheet FARG[15:2] defines the page from which * the erase will start.This page must be modulo 4, 8, 16 or 32 * according to the number of pages to erase. FARG[1:0] defines the * number of pages to be erased. Previously (firstpage << 2) was used * to conform to this, seems it should not be shifted... */ return EFC_PerformCommand(pPrivate, /* send Erase Page */ AT91C_EFC_FCMD_EPA, (firstPage) | erasePages, status); } /** * Gets current GPNVM state. * @param pPrivate - info about the bank. * @param gpnvm - GPNVM bit index. * @param puthere - result stored here. */ /* ------------------------------------------------------------------------------ */ static int FLASHD_GetGPNVM(struct sam4_bank_private *pPrivate, unsigned gpnvm, unsigned *puthere) { uint32_t v; int r; LOG_DEBUG("Here"); if (pPrivate->bank_number != 0) { LOG_ERROR("GPNVM only works with Bank0"); return ERROR_FAIL; } if (gpnvm >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("Invalid GPNVM %d, max: %d, ignored", gpnvm, pPrivate->pChip->details.n_gpnvms); return ERROR_FAIL; } /* Get GPNVMs status */ r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GFB, 0, NULL); if (r != ERROR_OK) { LOG_ERROR("Failed"); return r; } r = EFC_GetResult(pPrivate, &v); if (puthere) { /* Check if GPNVM is set */ /* get the bit and make it a 0/1 */ *puthere = (v >> gpnvm) & 1; } return r; } /** * Clears the selected GPNVM bit. * @param pPrivate info about the bank * @param gpnvm GPNVM index. * @returns 0 if successful; otherwise returns an error code. */ static int FLASHD_ClrGPNVM(struct sam4_bank_private *pPrivate, unsigned gpnvm) { int r; unsigned v; LOG_DEBUG("Here"); if (pPrivate->bank_number != 0) { LOG_ERROR("GPNVM only works with Bank0"); return ERROR_FAIL; } if (gpnvm >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("Invalid GPNVM %d, max: %d, ignored", gpnvm, pPrivate->pChip->details.n_gpnvms); return ERROR_FAIL; } r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v); if (r != ERROR_OK) { LOG_DEBUG("Failed: %d", r); return r; } r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CFB, gpnvm, NULL); LOG_DEBUG("End: %d", r); return r; } /** * Sets the selected GPNVM bit. * @param pPrivate info about the bank * @param gpnvm GPNVM index. */ static int FLASHD_SetGPNVM(struct sam4_bank_private *pPrivate, unsigned gpnvm) { int r; unsigned v; if (pPrivate->bank_number != 0) { LOG_ERROR("GPNVM only works with Bank0"); return ERROR_FAIL; } if (gpnvm >= pPrivate->pChip->details.n_gpnvms) { LOG_ERROR("Invalid GPNVM %d, max: %d, ignored", gpnvm, pPrivate->pChip->details.n_gpnvms); return ERROR_FAIL; } r = FLASHD_GetGPNVM(pPrivate, gpnvm, &v); if (r != ERROR_OK) return r; if (v) { /* already set */ r = ERROR_OK; } else { /* set it */ r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SFB, gpnvm, NULL); } return r; } /** * Returns a bit field (at most 64) of locked regions within a page. * @param pPrivate info about the bank * @param v where to store locked bits */ static int FLASHD_GetLockBits(struct sam4_bank_private *pPrivate, uint32_t *v) { int r; LOG_DEBUG("Here"); r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_GLB, 0, NULL); if (r == ERROR_OK) { EFC_GetResult(pPrivate, v); EFC_GetResult(pPrivate, v); EFC_GetResult(pPrivate, v); r = EFC_GetResult(pPrivate, v); } LOG_DEBUG("End: %d", r); return r; } /** * Unlocks all the regions in the given address range. * @param pPrivate info about the bank * @param start_sector first sector to unlock * @param end_sector last (inclusive) to unlock */ static int FLASHD_Unlock(struct sam4_bank_private *pPrivate, unsigned start_sector, unsigned end_sector) { int r; uint32_t status; uint32_t pg; uint32_t pages_per_sector; pages_per_sector = pPrivate->sector_size / pPrivate->page_size; /* Unlock all pages */ while (start_sector <= end_sector) { pg = start_sector * pages_per_sector; r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_CLB, pg, &status); if (r != ERROR_OK) return r; start_sector++; } return ERROR_OK; } /** * Locks regions * @param pPrivate - info about the bank * @param start_sector - first sector to lock * @param end_sector - last sector (inclusive) to lock */ static int FLASHD_Lock(struct sam4_bank_private *pPrivate, unsigned start_sector, unsigned end_sector) { uint32_t status; uint32_t pg; uint32_t pages_per_sector; int r; pages_per_sector = pPrivate->sector_size / pPrivate->page_size; /* Lock all pages */ while (start_sector <= end_sector) { pg = start_sector * pages_per_sector; r = EFC_PerformCommand(pPrivate, AT91C_EFC_FCMD_SLB, pg, &status); if (r != ERROR_OK) return r; start_sector++; } return ERROR_OK; } /****** END SAM4 CODE ********/ /* begin helpful debug code */ /* print the fieldname, the field value, in dec & hex, and return field value */ static uint32_t sam4_reg_fieldname(struct sam4_chip *pChip, const char *regname, uint32_t value, unsigned shift, unsigned width) { uint32_t v; int hwidth, dwidth; /* extract the field */ v = value >> shift; v = v & ((1 << width)-1); if (width <= 16) { hwidth = 4; dwidth = 5; } else { hwidth = 8; dwidth = 12; } /* show the basics */ LOG_USER_N("\t%*s: %*" PRId32 " [0x%0*" PRIx32 "] ", REG_NAME_WIDTH, regname, dwidth, v, hwidth, v); return v; } static const char _unknown[] = "unknown"; static const char *const eproc_names[] = { _unknown, /* 0 */ "arm946es", /* 1 */ "arm7tdmi", /* 2 */ "cortex-m3", /* 3 */ "arm920t", /* 4 */ "arm926ejs", /* 5 */ "cortex-a5", /* 6 */ "cortex-m4", /* 7 */ _unknown, /* 8 */ _unknown, /* 9 */ _unknown, /* 10 */ _unknown, /* 11 */ _unknown, /* 12 */ _unknown, /* 13 */ _unknown, /* 14 */ _unknown, /* 15 */ }; #define nvpsize2 nvpsize /* these two tables are identical */ static const char *const nvpsize[] = { "none", /* 0 */ "8K bytes", /* 1 */ "16K bytes", /* 2 */ "32K bytes", /* 3 */ _unknown, /* 4 */ "64K bytes", /* 5 */ _unknown, /* 6 */ "128K bytes", /* 7 */ _unknown, /* 8 */ "256K bytes", /* 9 */ "512K bytes", /* 10 */ _unknown, /* 11 */ "1024K bytes", /* 12 */ _unknown, /* 13 */ "2048K bytes", /* 14 */ _unknown, /* 15 */ }; static const char *const sramsize[] = { "48K Bytes", /* 0 */ "1K Bytes", /* 1 */ "2K Bytes", /* 2 */ "6K Bytes", /* 3 */ "112K Bytes", /* 4 */ "4K Bytes", /* 5 */ "80K Bytes", /* 6 */ "160K Bytes", /* 7 */ "8K Bytes", /* 8 */ "16K Bytes", /* 9 */ "32K Bytes", /* 10 */ "64K Bytes", /* 11 */ "128K Bytes", /* 12 */ "256K Bytes", /* 13 */ "96K Bytes", /* 14 */ "512K Bytes", /* 15 */ }; static const struct archnames { unsigned value; const char *name; } archnames[] = { { 0x19, "AT91SAM9xx Series" }, { 0x29, "AT91SAM9XExx Series" }, { 0x34, "AT91x34 Series" }, { 0x37, "CAP7 Series" }, { 0x39, "CAP9 Series" }, { 0x3B, "CAP11 Series" }, { 0x40, "AT91x40 Series" }, { 0x42, "AT91x42 Series" }, { 0x55, "AT91x55 Series" }, { 0x60, "AT91SAM7Axx Series" }, { 0x61, "AT91SAM7AQxx Series" }, { 0x63, "AT91x63 Series" }, { 0x70, "AT91SAM7Sxx Series" }, { 0x71, "AT91SAM7XCxx Series" }, { 0x72, "AT91SAM7SExx Series" }, { 0x73, "AT91SAM7Lxx Series" }, { 0x75, "AT91SAM7Xxx Series" }, { 0x76, "AT91SAM7SLxx Series" }, { 0x80, "ATSAM3UxC Series (100-pin version)" }, { 0x81, "ATSAM3UxE Series (144-pin version)" }, { 0x83, "ATSAM3A/SAM4A xC Series (100-pin version)"}, { 0x84, "ATSAM3X/SAM4X xC Series (100-pin version)"}, { 0x85, "ATSAM3X/SAM4X xE Series (144-pin version)"}, { 0x86, "ATSAM3X/SAM4X xG Series (208/217-pin version)" }, { 0x88, "ATSAM3S/SAM4S xA Series (48-pin version)" }, { 0x89, "ATSAM3S/SAM4S xB Series (64-pin version)" }, { 0x8A, "ATSAM3S/SAM4S xC Series (100-pin version)"}, { 0x92, "AT91x92 Series" }, { 0x93, "ATSAM3NxA Series (48-pin version)" }, { 0x94, "ATSAM3NxB Series (64-pin version)" }, { 0x95, "ATSAM3NxC Series (100-pin version)" }, { 0x98, "ATSAM3SDxA Series (48-pin version)" }, { 0x99, "ATSAM3SDxB Series (64-pin version)" }, { 0x9A, "ATSAM3SDxC Series (100-pin version)" }, { 0xA5, "ATSAM5A" }, { 0xF0, "AT75Cxx Series" }, { -1, NULL }, }; static const char *const nvptype[] = { "rom", /* 0 */ "romless or onchip flash", /* 1 */ "embedded flash memory",/* 2 */ "rom(nvpsiz) + embedded flash (nvpsiz2)", /* 3 */ "sram emulating flash", /* 4 */ _unknown, /* 5 */ _unknown, /* 6 */ _unknown, /* 7 */ }; static const char *_yes_or_no(uint32_t v) { if (v) return "YES"; else return "NO"; } static const char *const _rc_freq[] = { "4 MHz", "8 MHz", "12 MHz", "reserved" }; static void sam4_explain_ckgr_mor(struct sam4_chip *pChip) { uint32_t v; uint32_t rcen; v = sam4_reg_fieldname(pChip, "MOSCXTEN", pChip->cfg.CKGR_MOR, 0, 1); LOG_USER("(main xtal enabled: %s)", _yes_or_no(v)); v = sam4_reg_fieldname(pChip, "MOSCXTBY", pChip->cfg.CKGR_MOR, 1, 1); LOG_USER("(main osc bypass: %s)", _yes_or_no(v)); rcen = sam4_reg_fieldname(pChip, "MOSCRCEN", pChip->cfg.CKGR_MOR, 3, 1); LOG_USER("(onchip RC-OSC enabled: %s)", _yes_or_no(rcen)); v = sam4_reg_fieldname(pChip, "MOSCRCF", pChip->cfg.CKGR_MOR, 4, 3); LOG_USER("(onchip RC-OSC freq: %s)", _rc_freq[v]); pChip->cfg.rc_freq = 0; if (rcen) { switch (v) { default: pChip->cfg.rc_freq = 0; break; case 0: pChip->cfg.rc_freq = 4 * 1000 * 1000; break; case 1: pChip->cfg.rc_freq = 8 * 1000 * 1000; break; case 2: pChip->cfg.rc_freq = 12 * 1000 * 1000; break; } } v = sam4_reg_fieldname(pChip, "MOSCXTST", pChip->cfg.CKGR_MOR, 8, 8); LOG_USER("(startup clks, time= %f uSecs)", ((float)(v * 1000000)) / ((float)(pChip->cfg.slow_freq))); v = sam4_reg_fieldname(pChip, "MOSCSEL", pChip->cfg.CKGR_MOR, 24, 1); LOG_USER("(mainosc source: %s)", v ? "external xtal" : "internal RC"); v = sam4_reg_fieldname(pChip, "CFDEN", pChip->cfg.CKGR_MOR, 25, 1); LOG_USER("(clock failure enabled: %s)", _yes_or_no(v)); } static void sam4_explain_chipid_cidr(struct sam4_chip *pChip) { int x; uint32_t v; const char *cp; sam4_reg_fieldname(pChip, "Version", pChip->cfg.CHIPID_CIDR, 0, 5); LOG_USER_N("\n"); v = sam4_reg_fieldname(pChip, "EPROC", pChip->cfg.CHIPID_CIDR, 5, 3); LOG_USER("%s", eproc_names[v]); v = sam4_reg_fieldname(pChip, "NVPSIZE", pChip->cfg.CHIPID_CIDR, 8, 4); LOG_USER("%s", nvpsize[v]); v = sam4_reg_fieldname(pChip, "NVPSIZE2", pChip->cfg.CHIPID_CIDR, 12, 4); LOG_USER("%s", nvpsize2[v]); v = sam4_reg_fieldname(pChip, "SRAMSIZE", pChip->cfg.CHIPID_CIDR, 16, 4); LOG_USER("%s", sramsize[v]); v = sam4_reg_fieldname(pChip, "ARCH", pChip->cfg.CHIPID_CIDR, 20, 8); cp = _unknown; for (x = 0; archnames[x].name; x++) { if (v == archnames[x].value) { cp = archnames[x].name; break; } } LOG_USER("%s", cp); v = sam4_reg_fieldname(pChip, "NVPTYP", pChip->cfg.CHIPID_CIDR, 28, 3); LOG_USER("%s", nvptype[v]); v = sam4_reg_fieldname(pChip, "EXTID", pChip->cfg.CHIPID_CIDR, 31, 1); LOG_USER("(exists: %s)", _yes_or_no(v)); } static void sam4_explain_ckgr_mcfr(struct sam4_chip *pChip) { uint32_t v; v = sam4_reg_fieldname(pChip, "MAINFRDY", pChip->cfg.CKGR_MCFR, 16, 1); LOG_USER("(main ready: %s)", _yes_or_no(v)); v = sam4_reg_fieldname(pChip, "MAINF", pChip->cfg.CKGR_MCFR, 0, 16); v = (v * pChip->cfg.slow_freq) / 16; pChip->cfg.mainosc_freq = v; LOG_USER("(%3.03f Mhz (%" PRIu32 ".%03" PRIu32 "khz slowclk)", _tomhz(v), (uint32_t)(pChip->cfg.slow_freq / 1000), (uint32_t)(pChip->cfg.slow_freq % 1000)); } static void sam4_explain_ckgr_plla(struct sam4_chip *pChip) { uint32_t mula, diva; diva = sam4_reg_fieldname(pChip, "DIVA", pChip->cfg.CKGR_PLLAR, 0, 8); LOG_USER_N("\n"); mula = sam4_reg_fieldname(pChip, "MULA", pChip->cfg.CKGR_PLLAR, 16, 11); LOG_USER_N("\n"); pChip->cfg.plla_freq = 0; if (mula == 0) LOG_USER("\tPLLA Freq: (Disabled,mula = 0)"); else if (diva == 0) LOG_USER("\tPLLA Freq: (Disabled,diva = 0)"); else if (diva >= 1) { pChip->cfg.plla_freq = (pChip->cfg.mainosc_freq * (mula + 1) / diva); LOG_USER("\tPLLA Freq: %3.03f MHz", _tomhz(pChip->cfg.plla_freq)); } } static void sam4_explain_mckr(struct sam4_chip *pChip) { uint32_t css, pres, fin = 0; int pdiv = 0; const char *cp = NULL; css = sam4_reg_fieldname(pChip, "CSS", pChip->cfg.PMC_MCKR, 0, 2); switch (css & 3) { case 0: fin = pChip->cfg.slow_freq; cp = "slowclk"; break; case 1: fin = pChip->cfg.mainosc_freq; cp = "mainosc"; break; case 2: fin = pChip->cfg.plla_freq; cp = "plla"; break; case 3: if (pChip->cfg.CKGR_UCKR & (1 << 16)) { fin = 480 * 1000 * 1000; cp = "upll"; } else { fin = 0; cp = "upll (*ERROR* UPLL is disabled)"; } break; default: assert(0); break; } LOG_USER("%s (%3.03f Mhz)", cp, _tomhz(fin)); pres = sam4_reg_fieldname(pChip, "PRES", pChip->cfg.PMC_MCKR, 4, 3); switch (pres & 0x07) { case 0: pdiv = 1; cp = "selected clock"; break; case 1: pdiv = 2; cp = "clock/2"; break; case 2: pdiv = 4; cp = "clock/4"; break; case 3: pdiv = 8; cp = "clock/8"; break; case 4: pdiv = 16; cp = "clock/16"; break; case 5: pdiv = 32; cp = "clock/32"; break; case 6: pdiv = 64; cp = "clock/64"; break; case 7: pdiv = 6; cp = "clock/6"; break; default: assert(0); break; } LOG_USER("(%s)", cp); fin = fin / pdiv; /* sam4 has a *SINGLE* clock - */ /* other at91 series parts have divisors for these. */ pChip->cfg.cpu_freq = fin; pChip->cfg.mclk_freq = fin; pChip->cfg.fclk_freq = fin; LOG_USER("\t\tResult CPU Freq: %3.03f", _tomhz(fin)); } #if 0 static struct sam4_chip *target2sam4(struct target *pTarget) { struct sam4_chip *pChip; if (pTarget == NULL) return NULL; pChip = all_sam4_chips; while (pChip) { if (pChip->target == pTarget) break; /* return below */ else pChip = pChip->next; } return pChip; } #endif static uint32_t *sam4_get_reg_ptr(struct sam4_cfg *pCfg, const struct sam4_reg_list *pList) { /* this function exists to help */ /* keep funky offsetof() errors */ /* and casting from causing bugs */ /* By using prototypes - we can detect what would */ /* be casting errors. */ return (uint32_t *)(void *)(((char *)(pCfg)) + pList->struct_offset); } #define SAM4_ENTRY(NAME, FUNC) { .address = SAM4_ ## NAME, .struct_offset = offsetof( \ struct sam4_cfg, \ NAME), # NAME, FUNC } static const struct sam4_reg_list sam4_all_regs[] = { SAM4_ENTRY(CKGR_MOR, sam4_explain_ckgr_mor), SAM4_ENTRY(CKGR_MCFR, sam4_explain_ckgr_mcfr), SAM4_ENTRY(CKGR_PLLAR, sam4_explain_ckgr_plla), SAM4_ENTRY(CKGR_UCKR, NULL), SAM4_ENTRY(PMC_FSMR, NULL), SAM4_ENTRY(PMC_FSPR, NULL), SAM4_ENTRY(PMC_IMR, NULL), SAM4_ENTRY(PMC_MCKR, sam4_explain_mckr), SAM4_ENTRY(PMC_PCK0, NULL), SAM4_ENTRY(PMC_PCK1, NULL), SAM4_ENTRY(PMC_PCK2, NULL), SAM4_ENTRY(PMC_PCSR, NULL), SAM4_ENTRY(PMC_SCSR, NULL), SAM4_ENTRY(PMC_SR, NULL), SAM4_ENTRY(CHIPID_CIDR, sam4_explain_chipid_cidr), SAM4_ENTRY(CHIPID_EXID, NULL), /* TERMINATE THE LIST */ { .name = NULL } }; #undef SAM4_ENTRY static struct sam4_bank_private *get_sam4_bank_private(struct flash_bank *bank) { return (struct sam4_bank_private *)(bank->driver_priv); } /** * Given a pointer to where it goes in the structure, * determine the register name, address from the all registers table. */ static const struct sam4_reg_list *sam4_GetReg(struct sam4_chip *pChip, uint32_t *goes_here) { const struct sam4_reg_list *pReg; pReg = &(sam4_all_regs[0]); while (pReg->name) { uint32_t *pPossible; /* calculate where this one go.. */ /* it is "possibly" this register. */ pPossible = ((uint32_t *)(void *)(((char *)(&(pChip->cfg))) + pReg->struct_offset)); /* well? Is it this register */ if (pPossible == goes_here) { /* Jump for joy! */ return pReg; } /* next... */ pReg++; } /* This is *TOTAL*PANIC* - we are totally screwed. */ LOG_ERROR("INVALID SAM4 REGISTER"); return NULL; } static int sam4_ReadThisReg(struct sam4_chip *pChip, uint32_t *goes_here) { const struct sam4_reg_list *pReg; int r; pReg = sam4_GetReg(pChip, goes_here); if (!pReg) return ERROR_FAIL; r = target_read_u32(pChip->target, pReg->address, goes_here); if (r != ERROR_OK) { LOG_ERROR("Cannot read SAM4 register: %s @ 0x%08x, Err: %d", pReg->name, (unsigned)(pReg->address), r); } return r; } static int sam4_ReadAllRegs(struct sam4_chip *pChip) { int r; const struct sam4_reg_list *pReg; pReg = &(sam4_all_regs[0]); while (pReg->name) { r = sam4_ReadThisReg(pChip, sam4_get_reg_ptr(&(pChip->cfg), pReg)); if (r != ERROR_OK) { LOG_ERROR("Cannot read SAM4 register: %s @ 0x%08x, Error: %d", pReg->name, ((unsigned)(pReg->address)), r); return r; } pReg++; } return ERROR_OK; } static int sam4_GetInfo(struct sam4_chip *pChip) { const struct sam4_reg_list *pReg; uint32_t regval; pReg = &(sam4_all_regs[0]); while (pReg->name) { /* display all regs */ LOG_DEBUG("Start: %s", pReg->name); regval = *sam4_get_reg_ptr(&(pChip->cfg), pReg); LOG_USER("%*s: [0x%08" PRIx32 "] -> 0x%08" PRIx32, REG_NAME_WIDTH, pReg->name, pReg->address, regval); if (pReg->explain_func) (*(pReg->explain_func))(pChip); LOG_DEBUG("End: %s", pReg->name); pReg++; } LOG_USER(" rc-osc: %3.03f MHz", _tomhz(pChip->cfg.rc_freq)); LOG_USER(" mainosc: %3.03f MHz", _tomhz(pChip->cfg.mainosc_freq)); LOG_USER(" plla: %3.03f MHz", _tomhz(pChip->cfg.plla_freq)); LOG_USER(" cpu-freq: %3.03f MHz", _tomhz(pChip->cfg.cpu_freq)); LOG_USER("mclk-freq: %3.03f MHz", _tomhz(pChip->cfg.mclk_freq)); LOG_USER(" UniqueId: 0x%08" PRIx32 " 0x%08" PRIx32 " 0x%08" PRIx32 " 0x%08"PRIx32, pChip->cfg.unique_id[0], pChip->cfg.unique_id[1], pChip->cfg.unique_id[2], pChip->cfg.unique_id[3]); return ERROR_OK; } static int sam4_protect_check(struct flash_bank *bank) { int r; uint32_t v[4] = {0}; unsigned x; struct sam4_bank_private *pPrivate; LOG_DEBUG("Begin"); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } pPrivate = get_sam4_bank_private(bank); if (!pPrivate) { LOG_ERROR("no private for this bank?"); return ERROR_FAIL; } if (!(pPrivate->probed)) return ERROR_FLASH_BANK_NOT_PROBED; r = FLASHD_GetLockBits(pPrivate, v); if (r != ERROR_OK) { LOG_DEBUG("Failed: %d", r); return r; } for (x = 0; x < pPrivate->nsectors; x++) bank->sectors[x].is_protected = (!!(v[x >> 5] & (1 << (x % 32)))); LOG_DEBUG("Done"); return ERROR_OK; } FLASH_BANK_COMMAND_HANDLER(sam4_flash_bank_command) { struct sam4_chip *pChip; pChip = all_sam4_chips; /* is this an existing chip? */ while (pChip) { if (pChip->target == bank->target) break; pChip = pChip->next; } if (!pChip) { /* this is a *NEW* chip */ pChip = calloc(1, sizeof(struct sam4_chip)); if (!pChip) { LOG_ERROR("NO RAM!"); return ERROR_FAIL; } pChip->target = bank->target; /* insert at head */ pChip->next = all_sam4_chips; all_sam4_chips = pChip; pChip->target = bank->target; /* assumption is this runs at 32khz */ pChip->cfg.slow_freq = 32768; pChip->probed = 0; } switch (bank->base) { default: LOG_ERROR("Address 0x%08x invalid bank address (try 0x%08x" "[at91sam4s series] )", ((unsigned int)(bank->base)), ((unsigned int)(FLASH_BANK_BASE_S))); return ERROR_FAIL; break; /* at91sam4s series only has bank 0*/ /* at91sam4sd series has the same address for bank 0 (FLASH_BANK0_BASE_SD)*/ case FLASH_BANK_BASE_S: bank->driver_priv = &(pChip->details.bank[0]); bank->bank_number = 0; pChip->details.bank[0].pChip = pChip; pChip->details.bank[0].pBank = bank; break; /* Bank 1 of at91sam4sd series */ case FLASH_BANK1_BASE_1024K_SD: case FLASH_BANK1_BASE_2048K_SD: bank->driver_priv = &(pChip->details.bank[1]); bank->bank_number = 1; pChip->details.bank[1].pChip = pChip; pChip->details.bank[1].pBank = bank; break; } /* we initialize after probing. */ return ERROR_OK; } static int sam4_GetDetails(struct sam4_bank_private *pPrivate) { const struct sam4_chip_details *pDetails; struct sam4_chip *pChip; struct flash_bank *saved_banks[SAM4_MAX_FLASH_BANKS]; unsigned x; LOG_DEBUG("Begin"); pDetails = all_sam4_details; while (pDetails->name) { /* Compare cidr without version bits */ if (pDetails->chipid_cidr == (pPrivate->pChip->cfg.CHIPID_CIDR & 0xFFFFFFE0)) break; else pDetails++; } if (pDetails->name == NULL) { LOG_ERROR("SAM4 ChipID 0x%08x not found in table (perhaps you can ID this chip?)", (unsigned int)(pPrivate->pChip->cfg.CHIPID_CIDR)); /* Help the victim, print details about the chip */ LOG_INFO("SAM4 CHIPID_CIDR: 0x%08" PRIx32 " decodes as follows", pPrivate->pChip->cfg.CHIPID_CIDR); sam4_explain_chipid_cidr(pPrivate->pChip); return ERROR_FAIL; } /* DANGER: THERE ARE DRAGONS HERE */ /* get our pChip - it is going */ /* to be over-written shortly */ pChip = pPrivate->pChip; /* Note that, in reality: */ /* */ /* pPrivate = &(pChip->details.bank[0]) */ /* or pPrivate = &(pChip->details.bank[1]) */ /* */ /* save the "bank" pointers */ for (x = 0; x < SAM4_MAX_FLASH_BANKS; x++) saved_banks[x] = pChip->details.bank[x].pBank; /* Overwrite the "details" structure. */ memcpy(&(pPrivate->pChip->details), pDetails, sizeof(pPrivate->pChip->details)); /* now fix the ghosted pointers */ for (x = 0; x < SAM4_MAX_FLASH_BANKS; x++) { pChip->details.bank[x].pChip = pChip; pChip->details.bank[x].pBank = saved_banks[x]; } /* update the *BANK*SIZE* */ LOG_DEBUG("End"); return ERROR_OK; } static int _sam4_probe(struct flash_bank *bank, int noise) { unsigned x; int r; struct sam4_bank_private *pPrivate; LOG_DEBUG("Begin: Bank: %d, Noise: %d", bank->bank_number, noise); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } pPrivate = get_sam4_bank_private(bank); if (!pPrivate) { LOG_ERROR("Invalid/unknown bank number"); return ERROR_FAIL; } r = sam4_ReadAllRegs(pPrivate->pChip); if (r != ERROR_OK) return r; LOG_DEBUG("Here"); if (pPrivate->pChip->probed) r = sam4_GetInfo(pPrivate->pChip); else r = sam4_GetDetails(pPrivate); if (r != ERROR_OK) return r; /* update the flash bank size */ for (x = 0; x < SAM4_MAX_FLASH_BANKS; x++) { if (bank->base == pPrivate->pChip->details.bank[x].base_address) { bank->size = pPrivate->pChip->details.bank[x].size_bytes; break; } } if (bank->sectors == NULL) { bank->sectors = calloc(pPrivate->nsectors, (sizeof((bank->sectors)[0]))); if (bank->sectors == NULL) { LOG_ERROR("No memory!"); return ERROR_FAIL; } bank->num_sectors = pPrivate->nsectors; for (x = 0; ((int)(x)) < bank->num_sectors; x++) { bank->sectors[x].size = pPrivate->sector_size; bank->sectors[x].offset = x * (pPrivate->sector_size); /* mark as unknown */ bank->sectors[x].is_erased = -1; bank->sectors[x].is_protected = -1; } } pPrivate->probed = 1; r = sam4_protect_check(bank); if (r != ERROR_OK) return r; LOG_DEBUG("Bank = %d, nbanks = %d", pPrivate->bank_number, pPrivate->pChip->details.n_banks); if ((pPrivate->bank_number + 1) == pPrivate->pChip->details.n_banks) { /* read unique id, */ /* it appears to be associated with the *last* flash bank. */ FLASHD_ReadUniqueID(pPrivate); } return r; } static int sam4_probe(struct flash_bank *bank) { return _sam4_probe(bank, 1); } static int sam4_auto_probe(struct flash_bank *bank) { return _sam4_probe(bank, 0); } static int sam4_erase(struct flash_bank *bank, int first, int last) { struct sam4_bank_private *pPrivate; int r; int i; int pageCount; /*16 pages equals 8KB - Same size as a lock region*/ pageCount = 16; uint32_t status; LOG_DEBUG("Here"); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } r = sam4_auto_probe(bank); if (r != ERROR_OK) { LOG_DEBUG("Here,r=%d", r); return r; } pPrivate = get_sam4_bank_private(bank); if (!(pPrivate->probed)) return ERROR_FLASH_BANK_NOT_PROBED; if ((first == 0) && ((last + 1) == ((int)(pPrivate->nsectors)))) { /* whole chip */ LOG_DEBUG("Here"); return FLASHD_EraseEntireBank(pPrivate); } LOG_INFO("sam4 does not auto-erase while programming (Erasing relevant sectors)"); LOG_INFO("sam4 First: 0x%08x Last: 0x%08x", (unsigned int)(first), (unsigned int)(last)); for (i = first; i <= last; i++) { /*16 pages equals 8KB - Same size as a lock region*/ r = FLASHD_ErasePages(pPrivate, (i * pageCount), pageCount, &status); LOG_INFO("Erasing sector: 0x%08x", (unsigned int)(i)); if (r != ERROR_OK) LOG_ERROR("SAM4: Error performing Erase page @ lock region number %d", (unsigned int)(i)); if (status & (1 << 2)) { LOG_ERROR("SAM4: Lock Region %d is locked", (unsigned int)(i)); return ERROR_FAIL; } if (status & (1 << 1)) { LOG_ERROR("SAM4: Flash Command error @lock region %d", (unsigned int)(i)); return ERROR_FAIL; } } return ERROR_OK; } static int sam4_protect(struct flash_bank *bank, int set, int first, int last) { struct sam4_bank_private *pPrivate; int r; LOG_DEBUG("Here"); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } pPrivate = get_sam4_bank_private(bank); if (!(pPrivate->probed)) return ERROR_FLASH_BANK_NOT_PROBED; if (set) r = FLASHD_Lock(pPrivate, (unsigned)(first), (unsigned)(last)); else r = FLASHD_Unlock(pPrivate, (unsigned)(first), (unsigned)(last)); LOG_DEBUG("End: r=%d", r); return r; } static int sam4_page_read(struct sam4_bank_private *pPrivate, unsigned pagenum, uint8_t *buf) { uint32_t adr; int r; adr = pagenum * pPrivate->page_size; adr = adr + pPrivate->base_address; r = target_read_memory(pPrivate->pChip->target, adr, 4, /* THIS*MUST*BE* in 32bit values */ pPrivate->page_size / 4, buf); if (r != ERROR_OK) LOG_ERROR("SAM4: Flash program failed to read page phys address: 0x%08x", (unsigned int)(adr)); return r; } static int sam4_page_write(struct sam4_bank_private *pPrivate, unsigned pagenum, uint8_t *buf) { uint32_t adr; uint32_t status; uint32_t fmr; /* EEFC Flash Mode Register */ int r; adr = pagenum * pPrivate->page_size; adr = (adr + pPrivate->base_address); /* Get flash mode register value */ r = target_read_u32(pPrivate->pChip->target, pPrivate->controller_address, &fmr); if (r != ERROR_OK) LOG_DEBUG("Error Read failed: read flash mode register"); /* Clear flash wait state field */ fmr &= 0xfffff0ff; /* set FWS (flash wait states) field in the FMR (flash mode register) */ fmr |= (pPrivate->flash_wait_states << 8); LOG_DEBUG("Flash Mode: 0x%08x", ((unsigned int)(fmr))); r = target_write_u32(pPrivate->pBank->target, pPrivate->controller_address, fmr); if (r != ERROR_OK) LOG_DEBUG("Error Write failed: set flash mode register"); /* 1st sector 8kBytes - page 0 - 15*/ /* 2nd sector 8kBytes - page 16 - 30*/ /* 3rd sector 48kBytes - page 31 - 127*/ LOG_DEBUG("Wr Page %u @ phys address: 0x%08x", pagenum, (unsigned int)(adr)); r = target_write_memory(pPrivate->pChip->target, adr, 4, /* THIS*MUST*BE* in 32bit values */ pPrivate->page_size / 4, buf); if (r != ERROR_OK) { LOG_ERROR("SAM4: Failed to write (buffer) page at phys address 0x%08x", (unsigned int)(adr)); return r; } r = EFC_PerformCommand(pPrivate, /* send Erase & Write Page */ AT91C_EFC_FCMD_WP, /*AT91C_EFC_FCMD_EWP only works on first two 8kb sectors*/ pagenum, &status); if (r != ERROR_OK) LOG_ERROR("SAM4: Error performing Write page @ phys address 0x%08x", (unsigned int)(adr)); if (status & (1 << 2)) { LOG_ERROR("SAM4: Page @ Phys address 0x%08x is locked", (unsigned int)(adr)); return ERROR_FAIL; } if (status & (1 << 1)) { LOG_ERROR("SAM4: Flash Command error @phys address 0x%08x", (unsigned int)(adr)); return ERROR_FAIL; } return ERROR_OK; } static int sam4_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { int n; unsigned page_cur; unsigned page_end; int r; unsigned page_offset; struct sam4_bank_private *pPrivate; uint8_t *pagebuffer; /* incase we bail further below, set this to null */ pagebuffer = NULL; /* ignore dumb requests */ if (count == 0) { r = ERROR_OK; goto done; } if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); r = ERROR_TARGET_NOT_HALTED; goto done; } pPrivate = get_sam4_bank_private(bank); if (!(pPrivate->probed)) { r = ERROR_FLASH_BANK_NOT_PROBED; goto done; } if ((offset + count) > pPrivate->size_bytes) { LOG_ERROR("Flash write error - past end of bank"); LOG_ERROR(" offset: 0x%08x, count 0x%08x, BankEnd: 0x%08x", (unsigned int)(offset), (unsigned int)(count), (unsigned int)(pPrivate->size_bytes)); r = ERROR_FAIL; goto done; } pagebuffer = malloc(pPrivate->page_size); if (!pagebuffer) { LOG_ERROR("No memory for %d Byte page buffer", (int)(pPrivate->page_size)); r = ERROR_FAIL; goto done; } /* what page do we start & end in? */ page_cur = offset / pPrivate->page_size; page_end = (offset + count - 1) / pPrivate->page_size; LOG_DEBUG("Offset: 0x%08x, Count: 0x%08x", (unsigned int)(offset), (unsigned int)(count)); LOG_DEBUG("Page start: %d, Page End: %d", (int)(page_cur), (int)(page_end)); /* Special case: all one page */ /* */ /* Otherwise: */ /* (1) non-aligned start */ /* (2) body pages */ /* (3) non-aligned end. */ /* Handle special case - all one page. */ if (page_cur == page_end) { LOG_DEBUG("Special case, all in one page"); r = sam4_page_read(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) goto done; page_offset = (offset & (pPrivate->page_size-1)); memcpy(pagebuffer + page_offset, buffer, count); r = sam4_page_write(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) goto done; r = ERROR_OK; goto done; } /* non-aligned start */ page_offset = offset & (pPrivate->page_size - 1); if (page_offset) { LOG_DEBUG("Not-Aligned start"); /* read the partial */ r = sam4_page_read(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) goto done; /* over-write with new data */ n = (pPrivate->page_size - page_offset); memcpy(pagebuffer + page_offset, buffer, n); r = sam4_page_write(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) goto done; count -= n; offset += n; buffer += n; page_cur++; } /* By checking that offset is correct here, we also fix a clang warning */ assert(offset % pPrivate->page_size == 0); /* intermediate large pages */ /* also - the final *terminal* */ /* if that terminal page is a full page */ LOG_DEBUG("Full Page Loop: cur=%d, end=%d, count = 0x%08x", (int)page_cur, (int)page_end, (unsigned int)(count)); while ((page_cur < page_end) && (count >= pPrivate->page_size)) { r = sam4_page_write(pPrivate, page_cur, buffer); if (r != ERROR_OK) goto done; count -= pPrivate->page_size; buffer += pPrivate->page_size; page_cur += 1; } /* terminal partial page? */ if (count) { LOG_DEBUG("Terminal partial page, count = 0x%08x", (unsigned int)(count)); /* we have a partial page */ r = sam4_page_read(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) goto done; /* data goes at start */ memcpy(pagebuffer, buffer, count); r = sam4_page_write(pPrivate, page_cur, pagebuffer); if (r != ERROR_OK) goto done; } LOG_DEBUG("Done!"); r = ERROR_OK; done: if (pagebuffer) free(pagebuffer); return r; } COMMAND_HANDLER(sam4_handle_info_command) { struct sam4_chip *pChip; pChip = get_current_sam4(CMD_CTX); if (!pChip) return ERROR_OK; unsigned x; int r; /* bank0 must exist before we can do anything */ if (pChip->details.bank[0].pBank == NULL) { x = 0; need_define: command_print(CMD_CTX, "Please define bank %d via command: flash bank %s ... ", x, at91sam4_flash.name); return ERROR_FAIL; } /* if bank 0 is not probed, then probe it */ if (!(pChip->details.bank[0].probed)) { r = sam4_auto_probe(pChip->details.bank[0].pBank); if (r != ERROR_OK) return ERROR_FAIL; } /* above guarantees the "chip details" structure is valid */ /* and thus, bank private areas are valid */ /* and we have a SAM4 chip, what a concept! */ /* auto-probe other banks, 0 done above */ for (x = 1; x < SAM4_MAX_FLASH_BANKS; x++) { /* skip banks not present */ if (!(pChip->details.bank[x].present)) continue; if (pChip->details.bank[x].pBank == NULL) goto need_define; if (pChip->details.bank[x].probed) continue; r = sam4_auto_probe(pChip->details.bank[x].pBank); if (r != ERROR_OK) return r; } r = sam4_GetInfo(pChip); if (r != ERROR_OK) { LOG_DEBUG("Sam4Info, Failed %d", r); return r; } return ERROR_OK; } COMMAND_HANDLER(sam4_handle_gpnvm_command) { unsigned x, v; int r, who; struct sam4_chip *pChip; pChip = get_current_sam4(CMD_CTX); if (!pChip) return ERROR_OK; if (pChip->target->state != TARGET_HALTED) { LOG_ERROR("sam4 - target not halted"); return ERROR_TARGET_NOT_HALTED; } if (pChip->details.bank[0].pBank == NULL) { command_print(CMD_CTX, "Bank0 must be defined first via: flash bank %s ...", at91sam4_flash.name); return ERROR_FAIL; } if (!pChip->details.bank[0].probed) { r = sam4_auto_probe(pChip->details.bank[0].pBank); if (r != ERROR_OK) return r; } switch (CMD_ARGC) { default: return ERROR_COMMAND_SYNTAX_ERROR; break; case 0: goto showall; break; case 1: who = -1; break; case 2: if ((0 == strcmp(CMD_ARGV[0], "show")) && (0 == strcmp(CMD_ARGV[1], "all"))) who = -1; else { uint32_t v32; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], v32); who = v32; } break; } if (0 == strcmp("show", CMD_ARGV[0])) { if (who == -1) { showall: r = ERROR_OK; for (x = 0; x < pChip->details.n_gpnvms; x++) { r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), x, &v); if (r != ERROR_OK) break; command_print(CMD_CTX, "sam4-gpnvm%u: %u", x, v); } return r; } if ((who >= 0) && (((unsigned)(who)) < pChip->details.n_gpnvms)) { r = FLASHD_GetGPNVM(&(pChip->details.bank[0]), who, &v); command_print(CMD_CTX, "sam4-gpnvm%u: %u", who, v); return r; } else { command_print(CMD_CTX, "sam4-gpnvm invalid GPNVM: %u", who); return ERROR_COMMAND_SYNTAX_ERROR; } } if (who == -1) { command_print(CMD_CTX, "Missing GPNVM number"); return ERROR_COMMAND_SYNTAX_ERROR; } if (0 == strcmp("set", CMD_ARGV[0])) r = FLASHD_SetGPNVM(&(pChip->details.bank[0]), who); else if ((0 == strcmp("clr", CMD_ARGV[0])) || (0 == strcmp("clear", CMD_ARGV[0]))) /* quietly accept both */ r = FLASHD_ClrGPNVM(&(pChip->details.bank[0]), who); else { command_print(CMD_CTX, "Unknown command: %s", CMD_ARGV[0]); r = ERROR_COMMAND_SYNTAX_ERROR; } return r; } COMMAND_HANDLER(sam4_handle_slowclk_command) { struct sam4_chip *pChip; pChip = get_current_sam4(CMD_CTX); if (!pChip) return ERROR_OK; switch (CMD_ARGC) { case 0: /* show */ break; case 1: { /* set */ uint32_t v; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], v); if (v > 200000) { /* absurd slow clock of 200Khz? */ command_print(CMD_CTX, "Absurd/illegal slow clock freq: %d\n", (int)(v)); return ERROR_COMMAND_SYNTAX_ERROR; } pChip->cfg.slow_freq = v; break; } default: /* error */ command_print(CMD_CTX, "Too many parameters"); return ERROR_COMMAND_SYNTAX_ERROR; break; } command_print(CMD_CTX, "Slowclk freq: %d.%03dkhz", (int)(pChip->cfg.slow_freq / 1000), (int)(pChip->cfg.slow_freq % 1000)); return ERROR_OK; } static const struct command_registration at91sam4_exec_command_handlers[] = { { .name = "gpnvm", .handler = sam4_handle_gpnvm_command, .mode = COMMAND_EXEC, .usage = "[('clr'|'set'|'show') bitnum]", .help = "Without arguments, shows all bits in the gpnvm " "register. Otherwise, clears, sets, or shows one " "General Purpose Non-Volatile Memory (gpnvm) bit.", }, { .name = "info", .handler = sam4_handle_info_command, .mode = COMMAND_EXEC, .help = "Print information about the current at91sam4 chip" "and its flash configuration.", }, { .name = "slowclk", .handler = sam4_handle_slowclk_command, .mode = COMMAND_EXEC, .usage = "[clock_hz]", .help = "Display or set the slowclock frequency " "(default 32768 Hz).", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration at91sam4_command_handlers[] = { { .name = "at91sam4", .mode = COMMAND_ANY, .help = "at91sam4 flash command group", .usage = "", .chain = at91sam4_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver at91sam4_flash = { .name = "at91sam4", .commands = at91sam4_command_handlers, .flash_bank_command = sam4_flash_bank_command, .erase = sam4_erase, .protect = sam4_protect, .write = sam4_write, .read = default_flash_read, .probe = sam4_probe, .auto_probe = sam4_auto_probe, .erase_check = default_flash_blank_check, .protect_check = sam4_protect_check, };