/*************************************************************************** * Copyright (C) 2013 by Andrey Yurovsky * * Andrey Yurovsky * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" /* At this time, the SAM4L Flash is available in these capacities: * ATSAM4Lx4xx: 256KB (512 pages) * ATSAM4Lx2xx: 128KB (256 pages) * ATSAM4Lx8xx: 512KB (1024 pages) */ /* There are 16 lockable regions regardless of overall capacity. The number * of pages per sector is therefore dependant on capacity. */ #define SAM4L_NUM_SECTORS 16 /* Locations in memory map */ #define SAM4L_FLASH 0x00000000 /* Flash region */ #define SAM4L_FLASH_USER 0x00800000 /* Flash user page region */ #define SAM4L_FLASHCALW 0x400A0000 /* Flash controller */ #define SAM4L_CHIPID 0x400E0740 /* Chip Identification */ /* Offsets from SAM4L_FLASHCALW */ #define SAM4L_FCR 0x00 /* Flash Control Register (RW) */ #define SAM4L_FCMD 0x04 /* Flash Command Register (RW) */ #define SAM4L_FSR 0x08 /* Flash Status Register (RO) */ #define SAM4L_FPR 0x0C /* Flash Parameter Register (RO) */ #define SAM4L_FVR 0x10 /* Flash Version Register (RO) */ #define SAM4L_FGPFRHI 0x14 /* Flash General Purpose Register High (RO) */ #define SAM4L_FGPFRLO 0x18 /* Flash General Purpose Register Low (RO) */ /* Offsets from SAM4L_CHIPID */ #define SAM4L_CIDR 0x00 /* Chip ID Register (RO) */ #define SAM4L_EXID 0x04 /* Chip ID Extension Register (RO) */ /* Flash commands (for SAM4L_FCMD), see Table 14-5 */ #define SAM4L_FCMD_NOP 0 /* No Operation */ #define SAM4L_FCMD_WP 1 /* Write Page */ #define SAM4L_FCMD_EP 2 /* Erase Page */ #define SAM4L_FCMD_CPB 3 /* Clear Page Buffer */ #define SAM4L_FCMD_LP 4 /* Lock region containing given page */ #define SAM4L_FCMD_UP 5 /* Unlock region containing given page */ #define SAM4L_FCMD_EA 6 /* Erase All */ #define SAM4L_FCMD_WGPB 7 /* Write general-purpose fuse bit */ #define SAM4L_FCMD_EGPB 8 /* Erase general-purpose fuse bit */ #define SAM4L_FCMD_SSB 9 /* Set security fuses */ #define SAM4L_FCMD_PGPFB 10 /* Program general-purpose fuse byte */ #define SAM4L_FCMD_EAGPF 11 /* Erase all general-purpose fuse bits */ #define SAM4L_FCMD_QPR 12 /* Quick page read */ #define SAM4L_FCMD_WUP 13 /* Write user page */ #define SAM4L_FCMD_EUP 14 /* Erase user page */ #define SAM4L_FCMD_QPRUP 15 /* Quick page read (user page) */ #define SAM4L_FCMD_HSEN 16 /* High speed mode enable */ #define SAM4L_FCMD_HSDIS 17 /* High speed mode disable */ #define SAM4L_FMCD_CMDKEY 0xA5UL /* 'key' to issue commands, see 14.10.2 */ struct sam4l_chip_info { uint32_t id; uint32_t exid; const char *name; }; /* These are taken from Table 9-1 in 42023E-SAM-07/2013 */ static struct sam4l_chip_info sam4l_known_chips[] = { { 0xAB0B0AE0, 0x1400000F, "ATSAM4LC8C" }, { 0xAB0A09E0, 0x0400000F, "ATSAM4LC4C" }, { 0xAB0A07E0, 0x0400000F, "ATSAM4LC2C" }, { 0xAB0B0AE0, 0x1300000F, "ATSAM4LC8B" }, { 0xAB0A09E0, 0x0300000F, "ATSAM4LC4B" }, { 0xAB0A07E0, 0x0300000F, "ATSAM4LC2B" }, { 0xAB0B0AE0, 0x1200000F, "ATSAM4LC8A" }, { 0xAB0A09E0, 0x0200000F, "ATSAM4LC4A" }, { 0xAB0A07E0, 0x0200000F, "ATSAM4LC2A" }, { 0xAB0B0AE0, 0x14000002, "ATSAM4LS8C" }, { 0xAB0A09E0, 0x04000002, "ATSAM4LS4C" }, { 0xAB0A07E0, 0x04000002, "ATSAM4LS2C" }, { 0xAB0B0AE0, 0x13000002, "ATSAM4LS8B" }, { 0xAB0A09E0, 0x03000002, "ATSAM4LS4B" }, { 0xAB0A07E0, 0x03000002, "ATSAM4LS2B" }, { 0xAB0B0AE0, 0x12000002, "ATSAM4LS8A" }, { 0xAB0A09E0, 0x02000002, "ATSAM4LS4A" }, { 0xAB0A07E0, 0x02000002, "ATSAM4LS2A" }, }; /* Meaning of SRAMSIZ field in CHIPID, see 9.3.1 in 42023E-SAM-07/2013 */ static uint16_t sam4l_ram_sizes[16] = { 48, 1, 2, 6, 24, 4, 80, 160, 8, 16, 32, 64, 128, 256, 96, 512 }; /* Meaning of PSZ field in FPR, see 14.10.4 in 42023E-SAM-07/2013 */ static const uint16_t sam4l_page_sizes[8] = { 32, 64, 128, 256, 512, 1024, 2048, 4096 }; struct sam4l_info { struct sam4l_chip_info *details; uint32_t flash_kb; uint32_t ram_kb; uint32_t page_size; int num_pages; int sector_size; int pages_per_sector; bool probed; struct target *target; struct sam4l_info *next; }; static struct sam4l_info *sam4l_chips; static int sam4l_flash_wait_until_ready(struct target *target) { volatile unsigned int t = 0; uint32_t st; int res; /* Poll the status register until the FRDY bit is set */ do { res = target_read_u32(target, SAM4L_FLASHCALW + SAM4L_FSR, &st); } while (res == ERROR_OK && !(st & (1<<0)) && ++t < 10); return res; } static int sam4l_flash_check_error(struct target *target, uint32_t *err) { uint32_t st; int res; res = target_read_u32(target, SAM4L_FLASHCALW + SAM4L_FSR, &st); if (res == ERROR_OK) *err = st & ((1<<3) | (1<<2)); /* grab PROGE and LOCKE bits */ return res; } static int sam4l_flash_command(struct target *target, uint8_t cmd, int page) { int res; uint32_t fcmd; uint32_t err; res = sam4l_flash_wait_until_ready(target); if (res != ERROR_OK) return res; if (page >= 0) { /* Set the page number. For some commands, the page number is just an * argument (ex: fuse bit number). */ fcmd = (SAM4L_FMCD_CMDKEY << 24) | ((page & 0xFFFF) << 8) | (cmd & 0x3F); } else { /* Reuse the page number that was read from the flash command register. */ res = target_read_u32(target, SAM4L_FLASHCALW + SAM4L_FCMD, &fcmd); if (res != ERROR_OK) return res; fcmd &= ~0x3F; /* clear out the command code */ fcmd |= (SAM4L_FMCD_CMDKEY << 24) | (cmd & 0x3F); } /* Send the command */ res = target_write_u32(target, SAM4L_FLASHCALW + SAM4L_FCMD, fcmd); if (res != ERROR_OK) return res; res = sam4l_flash_check_error(target, &err); if (res != ERROR_OK) return res; if (err != 0) LOG_ERROR("%s got error status 0x%08" PRIx32, __func__, err); res = sam4l_flash_wait_until_ready(target); return res; } FLASH_BANK_COMMAND_HANDLER(sam4l_flash_bank_command) { struct sam4l_info *chip = sam4l_chips; while (chip) { if (chip->target == bank->target) break; chip = chip->next; } if (!chip) { /* Create a new chip */ chip = calloc(1, sizeof(*chip)); if (!chip) return ERROR_FAIL; chip->target = bank->target; chip->probed = false; bank->driver_priv = chip; /* Insert it into the chips list (at head) */ chip->next = sam4l_chips; sam4l_chips = chip; } if (bank->base != SAM4L_FLASH) { LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32 "[at91sam4l series] )", bank->base, SAM4L_FLASH); return ERROR_FAIL; } return ERROR_OK; } static struct sam4l_chip_info *sam4l_find_chip_name(uint32_t id, uint32_t exid) { unsigned int i; id &= ~0xF; for (i = 0; i < ARRAY_SIZE(sam4l_known_chips); i++) { if (sam4l_known_chips[i].id == id && sam4l_known_chips[i].exid == exid) return &sam4l_known_chips[i]; } return NULL; } static int sam4l_check_page_erased(struct flash_bank *bank, uint32_t pn, bool *is_erased_p) { int res; uint32_t st; /* Issue a quick page read to verify that we've erased this page */ res = sam4l_flash_command(bank->target, SAM4L_FCMD_QPR, pn); if (res != ERROR_OK) { LOG_ERROR("Quick page read %d failed", pn); return res; } /* Retrieve the flash status */ res = target_read_u32(bank->target, SAM4L_FLASHCALW + SAM4L_FSR, &st); if (res != ERROR_OK) { LOG_ERROR("Couldn't read erase status"); return res; } /* Is the page in question really erased? */ *is_erased_p = !!(st & (1<<5)); return ERROR_OK; } static int sam4l_probe(struct flash_bank *bank) { uint32_t id, exid, param; int res; struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv; if (chip->probed) return ERROR_OK; res = target_read_u32(bank->target, SAM4L_CHIPID + SAM4L_CIDR, &id); if (res != ERROR_OK) { LOG_ERROR("Couldn't read chip ID"); return res; } res = target_read_u32(bank->target, SAM4L_CHIPID + SAM4L_EXID, &exid); if (res != ERROR_OK) { LOG_ERROR("Couldn't read extended chip ID"); return res; } chip->details = sam4l_find_chip_name(id, exid); /* The RAM capacity is in a lookup table. */ chip->ram_kb = sam4l_ram_sizes[0xF & (id >> 16)]; switch (0xF & (id >> 8)) { case 0x07: chip->flash_kb = 128; break; case 0x09: chip->flash_kb = 256; break; case 0x0A: chip->flash_kb = 512; break; default: LOG_ERROR("Unknown flash size (chip ID is %08X), assuming 128K", id); chip->flash_kb = 128; break; } /* Retrieve the Flash parameters */ res = target_read_u32(bank->target, SAM4L_FLASHCALW + SAM4L_FPR, ¶m); if (res != ERROR_OK) { LOG_ERROR("Couldn't read Flash parameters"); return res; } /* Fetch the page size from the parameter register. Technically the flash * capacity is there too though the manual mentions that not all parts will * have it set so we use the Chip ID capacity information instead. */ chip->page_size = sam4l_page_sizes[0x7 & (param >> 8)]; assert(chip->page_size); chip->num_pages = chip->flash_kb * 1024 / chip->page_size; chip->sector_size = (chip->flash_kb * 1024) / SAM4L_NUM_SECTORS; chip->pages_per_sector = chip->sector_size / chip->page_size; /* Make sure the bank size is correct */ bank->size = chip->flash_kb * 1024; /* Allocate the sector table. */ bank->num_sectors = SAM4L_NUM_SECTORS; bank->sectors = calloc(bank->num_sectors, (sizeof((bank->sectors)[0]))); if (!bank->sectors) return ERROR_FAIL; /* Fill out the sector information: all SAM4L sectors are the same size and * there is always a fixed number of them. */ for (int i = 0; i < bank->num_sectors; i++) { bank->sectors[i].size = chip->sector_size; bank->sectors[i].offset = i * chip->sector_size; /* mark as unknown */ bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = -1; } /* Done */ chip->probed = true; LOG_INFO("SAM4L MCU: %s (Rev %c) (%uKB Flash with %d %dB pages, %uKB RAM)", chip->details ? chip->details->name : "unknown", 'A' + (id & 0xF), chip->flash_kb, chip->num_pages, chip->page_size, chip->ram_kb); return ERROR_OK; } static int sam4l_protect_check(struct flash_bank *bank) { int res; uint32_t st; struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!chip->probed) { if (sam4l_probe(bank) != ERROR_OK) return ERROR_FLASH_BANK_NOT_PROBED; } res = target_read_u32(bank->target, SAM4L_FLASHCALW + SAM4L_FSR, &st); if (res != ERROR_OK) return res; st >>= 16; /* There are 16 lock region bits in the upper half word */ for (int i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_protected = !!(st & (1<target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!chip->probed) { if (sam4l_probe(bank) != ERROR_OK) return ERROR_FLASH_BANK_NOT_PROBED; } /* Make sure the pages make sense. */ if (first >= bank->num_sectors || last >= bank->num_sectors) { LOG_ERROR("Protect range %d - %d not valid (%d sectors total)", first, last, bank->num_sectors); return ERROR_FAIL; } /* Try to lock or unlock each sector in the range. This is done by locking * a region containing one page in that sector, we arbitrarily choose the 0th * page in the sector. */ for (int i = first; i <= last; i++) { int res; res = sam4l_flash_command(bank->target, set ? SAM4L_FCMD_LP : SAM4L_FCMD_UP, i * chip->pages_per_sector); if (res != ERROR_OK) { LOG_ERROR("Can't %slock region containing page %d", set ? "" : "un", i); return res; } } return ERROR_OK; } static int sam4l_erase(struct flash_bank *bank, int first, int last) { int ret; struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!chip->probed) { if (sam4l_probe(bank) != ERROR_OK) return ERROR_FLASH_BANK_NOT_PROBED; } /* Make sure the pages make sense. */ if (first >= bank->num_sectors || last >= bank->num_sectors) { LOG_ERROR("Erase range %d - %d not valid (%d sectors total)", first, last, bank->num_sectors); return ERROR_FAIL; } /* Erase */ if ((first == 0) && ((last + 1) == bank->num_sectors)) { LOG_DEBUG("Erasing the whole chip"); ret = sam4l_flash_command(bank->target, SAM4L_FCMD_EA, -1); if (ret != ERROR_OK) { LOG_ERROR("Erase All failed"); return ret; } } else { LOG_DEBUG("Erasing sectors %d through %d...\n", first, last); /* For each sector... */ for (int i = first; i <= last; i++) { /* For each page in that sector... */ for (int j = 0; j < chip->pages_per_sector; j++) { int pn = i * chip->pages_per_sector + j; bool is_erased = false; /* Issue the page erase */ ret = sam4l_flash_command(bank->target, SAM4L_FCMD_EP, pn); if (ret != ERROR_OK) { LOG_ERROR("Erasing page %d failed", pn); return ret; } ret = sam4l_check_page_erased(bank, pn, &is_erased); if (ret != ERROR_OK) return ret; if (!is_erased) { LOG_DEBUG("Page %d was not erased.", pn); return ERROR_FAIL; } } /* This sector is definitely erased. */ bank->sectors[i].is_erased = 1; } } return ERROR_OK; } /* Write an entire page from host buffer 'buf' to page-aligned 'address' in the * Flash. */ static int sam4l_write_page(struct sam4l_info *chip, struct target *target, uint32_t address, uint8_t *buf) { int res; /* Clear the page buffer before we write to it */ res = sam4l_flash_command(target, SAM4L_FCMD_CPB, -1); if (res != ERROR_OK) { LOG_ERROR("%s: can't clear page buffer", __func__); return res; } /* Write the modified page back to the target's page buffer */ res = target_write_memory(target, address, 4, chip->page_size / 4, buf); if (res != ERROR_OK) { LOG_ERROR("%s: %d", __func__, __LINE__); return res; } /* Commit the page contents to Flash: erase the current page and then * write it out. */ res = sam4l_flash_command(target, SAM4L_FCMD_EP, -1); if (res != ERROR_OK) return res; res = sam4l_flash_command(target, SAM4L_FCMD_WP, -1); return res; } /* Write partial contents into page-aligned 'address' on the Flash from host * buffer 'buf' by writing 'nb' of 'buf' at 'offset' into the Flash page. */ static int sam4l_write_page_partial(struct sam4l_info *chip, struct flash_bank *bank, uint32_t address, uint8_t *buf, uint32_t page_offset, uint32_t nb) { int res; uint8_t *pg = malloc(chip->page_size); if (!pg) return ERROR_FAIL; assert(page_offset + nb < chip->page_size); assert((address % chip->page_size) == 0); /* Retrieve the full page contents from Flash */ res = target_read_memory(bank->target, address, 4, chip->page_size / 4, pg); if (res != ERROR_OK) { free(pg); return res; } /* Insert our partial page over the data from Flash */ memcpy(pg + (page_offset % chip->page_size), buf, nb); /* Write the page back out */ res = sam4l_write_page(chip, bank->target, address, pg); free(pg); return res; } static int sam4l_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { int res; uint32_t nb = 0; struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!chip->probed) { if (sam4l_probe(bank) != ERROR_OK) return ERROR_FLASH_BANK_NOT_PROBED; } if (offset % chip->page_size) { /* We're starting at an unaligned offset so we'll write a partial page * comprising that offset and up to the end of that page. */ nb = chip->page_size - (offset % chip->page_size); if (nb > count) nb = count; } else if (count < chip->page_size) { /* We're writing an aligned but partial page. */ nb = count; } if (nb > 0) { res = sam4l_write_page_partial(chip, bank, (offset / chip->page_size) * chip->page_size + bank->base, buffer, offset % chip->page_size, nb); if (res != ERROR_OK) return res; /* We're done with the page contents */ count -= nb; offset += nb; } /* There's at least one aligned page to write out. */ if (count >= chip->page_size) { int np = count / chip->page_size + ((count % chip->page_size) ? 1 : 0); for (int i = 0; i < np; i++) { if (count >= chip->page_size) { res = sam4l_write_page(chip, bank->target, bank->base + (i * chip->page_size), buffer + (i * chip->page_size)); /* Advance one page */ offset += chip->page_size; count -= chip->page_size; } else { res = sam4l_write_page_partial(chip, bank, bank->base + (i * chip->page_size), buffer + (i * chip->page_size), 0, count); /* We're done after this. */ offset += count; count = 0; } if (res != ERROR_OK) return res; } } return ERROR_OK; } COMMAND_HANDLER(sam4l_handle_info_command) { return ERROR_OK; } static const struct command_registration at91sam4l_exec_command_handlers[] = { { .name = "info", .handler = sam4l_handle_info_command, .mode = COMMAND_EXEC, .help = "Print information about the current at91sam4l chip" "and its flash configuration.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration at91sam4l_command_handlers[] = { { .name = "at91sam4l", .mode = COMMAND_ANY, .help = "at91sam4l flash command group", .usage = "", .chain = at91sam4l_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver at91sam4l_flash = { .name = "at91sam4l", .commands = at91sam4l_command_handlers, .flash_bank_command = sam4l_flash_bank_command, .erase = sam4l_erase, .protect = sam4l_protect, .write = sam4l_write, .read = default_flash_read, .probe = sam4l_probe, .auto_probe = sam4l_probe, .erase_check = default_flash_blank_check, .protect_check = sam4l_protect_check, };