/*************************************************************************** * Copyright (C) 2005, 2007 by Dominic Rath * * Dominic.Rath@gmx.de * * Copyright (C) 2009 Michael Schwingen * * michael@schwingen.org * * Copyright (C) 2010 Øyvind Harboe * * Copyright (C) 2010 by Antonio Borneo * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include "cfi.h" #include "non_cfi.h" #include #include #include #define CFI_MAX_BUS_WIDTH 4 #define CFI_MAX_CHIP_WIDTH 4 /* defines internal maximum size for code fragment in cfi_intel_write_block() */ #define CFI_MAX_INTEL_CODESIZE 256 static struct cfi_unlock_addresses cfi_unlock_addresses[] = { [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa }, [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa }, }; /* CFI fixups foward declarations */ static void cfi_fixup_0002_erase_regions(struct flash_bank *flash, void *param); static void cfi_fixup_0002_unlock_addresses(struct flash_bank *flash, void *param); static void cfi_fixup_reversed_erase_regions(struct flash_bank *flash, void *param); /* fixup after reading cmdset 0002 primary query table */ static const struct cfi_fixup cfi_0002_fixups[] = { {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL}, {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */ {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]}, {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]}, {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL}, {0, 0, NULL, NULL} }; /* fixup after reading cmdset 0001 primary query table */ static const struct cfi_fixup cfi_0001_fixups[] = { {0, 0, NULL, NULL} }; static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups) { struct cfi_flash_bank *cfi_info = bank->driver_priv; const struct cfi_fixup *f; for (f = fixups; f->fixup; f++) { if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) && ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id))) { f->fixup(bank, f->param); } } } /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */ static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) { struct cfi_flash_bank *cfi_info = bank->driver_priv; if (cfi_info->x16_as_x8) offset *= 2; /* while the sector list isn't built, only accesses to sector 0 work */ if (sector == 0) return bank->base + offset * bank->bus_width; else { if (!bank->sectors) { LOG_ERROR("BUG: sector list not yet built"); exit(-1); } return bank->base + bank->sectors[sector].offset + offset * bank->bus_width; } } static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf) { int i; /* clear whole buffer, to ensure bits that exceed the bus_width * are set to zero */ for (i = 0; i < CFI_MAX_BUS_WIDTH; i++) cmd_buf[i] = 0; if (bank->target->endianness == TARGET_LITTLE_ENDIAN) { for (i = bank->bus_width; i > 0; i--) { *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd; } } else { for (i = 1; i <= bank->bus_width; i++) { *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd; } } } static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address) { uint8_t command[CFI_MAX_BUS_WIDTH]; cfi_command(bank, cmd, command); return target_write_memory(bank->target, address, bank->bus_width, 1, command); } /* read unsigned 8-bit value from the bank * flash banks are expected to be made of similar chips * the query result should be the same for all */ static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val) { struct target *target = bank->target; uint8_t data[CFI_MAX_BUS_WIDTH]; int retval; retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data); if (retval != ERROR_OK) return retval; if (bank->target->endianness == TARGET_LITTLE_ENDIAN) *val = data[0]; else *val = data[bank->bus_width - 1]; return ERROR_OK; } /* read unsigned 8-bit value from the bank * in case of a bank made of multiple chips, * the individual values are ORed */ static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val) { struct target *target = bank->target; uint8_t data[CFI_MAX_BUS_WIDTH]; int i; int retval; retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data); if (retval != ERROR_OK) return retval; if (bank->target->endianness == TARGET_LITTLE_ENDIAN) { for (i = 0; i < bank->bus_width / bank->chip_width; i++) data[0] |= data[i]; *val = data[0]; } else { uint8_t value = 0; for (i = 0; i < bank->bus_width / bank->chip_width; i++) value |= data[bank->bus_width - 1 - i]; *val = value; } return ERROR_OK; } static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val) { struct target *target = bank->target; struct cfi_flash_bank *cfi_info = bank->driver_priv; uint8_t data[CFI_MAX_BUS_WIDTH * 2]; int retval; if (cfi_info->x16_as_x8) { uint8_t i; for (i = 0;i < 2;i++) { retval = target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1, &data[i * bank->bus_width]); if (retval != ERROR_OK) return retval; } } else { retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data); if (retval != ERROR_OK) return retval; } if (bank->target->endianness == TARGET_LITTLE_ENDIAN) *val = data[0] | data[bank->bus_width] << 8; else *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8; return ERROR_OK; } static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val) { struct target *target = bank->target; struct cfi_flash_bank *cfi_info = bank->driver_priv; uint8_t data[CFI_MAX_BUS_WIDTH * 4]; int retval; if (cfi_info->x16_as_x8) { uint8_t i; for (i = 0;i < 4;i++) { retval = target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1, &data[i * bank->bus_width]); if (retval != ERROR_OK) return retval; } } else { retval = target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data); if (retval != ERROR_OK) return retval; } if (bank->target->endianness == TARGET_LITTLE_ENDIAN) *val = data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24; else *val = data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 | data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24; return ERROR_OK; } static int cfi_reset(struct flash_bank *bank) { struct cfi_flash_bank *cfi_info = bank->driver_priv; int retval = ERROR_OK; if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } if (cfi_info->manufacturer == 0x20 && (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) { /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state * so we send an extra 0xF0 reset to fix the bug */ if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK) { return retval; } } return retval; } static void cfi_intel_clear_status_register(struct flash_bank *bank) { struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("BUG: attempted to clear status register while target wasn't halted"); exit(-1); } cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0)); } static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val) { uint8_t status; int retval = ERROR_OK; for (;;) { if (timeout-- < 0) { LOG_ERROR("timeout while waiting for WSM to become ready"); return ERROR_FAIL; } retval = cfi_get_u8(bank, 0, 0x0, &status); if (retval != ERROR_OK) return retval; if (status & 0x80) break; alive_sleep(1); } /* mask out bit 0 (reserved) */ status = status & 0xfe; LOG_DEBUG("status: 0x%x", status); if (status != 0x80) { LOG_ERROR("status register: 0x%x", status); if (status & 0x2) LOG_ERROR("Block Lock-Bit Detected, Operation Abort"); if (status & 0x4) LOG_ERROR("Program suspended"); if (status & 0x8) LOG_ERROR("Low Programming Voltage Detected, Operation Aborted"); if (status & 0x10) LOG_ERROR("Program Error / Error in Setting Lock-Bit"); if (status & 0x20) LOG_ERROR("Error in Block Erasure or Clear Lock-Bits"); if (status & 0x40) LOG_ERROR("Block Erase Suspended"); cfi_intel_clear_status_register(bank); retval = ERROR_FAIL; } *val = status; return retval; } static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout) { uint8_t status, oldstatus; struct cfi_flash_bank *cfi_info = bank->driver_priv; int retval; retval = cfi_get_u8(bank, 0, 0x0, &oldstatus); if (retval != ERROR_OK) return retval; do { retval = cfi_get_u8(bank, 0, 0x0, &status); if (retval != ERROR_OK) return retval; if ((status ^ oldstatus) & 0x40) { if (status & cfi_info->status_poll_mask & 0x20) { retval = cfi_get_u8(bank, 0, 0x0, &oldstatus); if (retval != ERROR_OK) return retval; retval = cfi_get_u8(bank, 0, 0x0, &status); if (retval != ERROR_OK) return retval; if ((status ^ oldstatus) & 0x40) { LOG_ERROR("dq5 timeout, status: 0x%x", status); return(ERROR_FLASH_OPERATION_FAILED); } else { LOG_DEBUG("status: 0x%x", status); return(ERROR_OK); } } } else { /* no toggle: finished, OK */ LOG_DEBUG("status: 0x%x", status); return(ERROR_OK); } oldstatus = status; alive_sleep(1); } while (timeout-- > 0); LOG_ERROR("timeout, status: 0x%x", status); return(ERROR_FLASH_BUSY); } static int cfi_read_intel_pri_ext(struct flash_bank *bank) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_intel_pri_ext *pri_ext; if (cfi_info->pri_ext) free(cfi_info->pri_ext); pri_ext = malloc(sizeof(struct cfi_intel_pri_ext)); if (pri_ext == NULL) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } cfi_info->pri_ext = pri_ext; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]); if (retval != ERROR_OK) return retval; if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) { if ((retval = cfi_reset(bank)) != ERROR_OK) { return retval; } LOG_ERROR("Could not read bank flash bank information"); return ERROR_FLASH_BANK_INVALID; } retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version); if (retval != ERROR_OK) return retval; LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support); if (retval != ERROR_OK) return retval; retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask); if (retval != ERROR_OK) return retval; LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: " "0x%x, blk_status_reg_mask: 0x%x", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask); retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal); if (retval != ERROR_OK) return retval; LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x", (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f, (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f); retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields); if (retval != ERROR_OK) return retval; if (pri_ext->num_protection_fields != 1) { LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields); } retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size); if (retval != ERROR_OK) return retval; LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, " "factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size); return ERROR_OK; } static int cfi_read_spansion_pri_ext(struct flash_bank *bank) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext; if (cfi_info->pri_ext) free(cfi_info->pri_ext); pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext)); if (pri_ext == NULL) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } cfi_info->pri_ext = pri_ext; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]); if (retval != ERROR_OK) return retval; if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) { if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("Could not read spansion bank information"); return ERROR_FLASH_BANK_INVALID; } retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version); if (retval != ERROR_OK) return retval; LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom); if (retval != ERROR_OK) return retval; LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt); LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, " "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect, pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps); LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode); LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x", (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f, (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f); LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom); /* default values for implementation specific workarounds */ pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1; pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2; pri_ext->_reversed_geometry = 0; return ERROR_OK; } static int cfi_read_atmel_pri_ext(struct flash_bank *bank) { int retval; struct cfi_atmel_pri_ext atmel_pri_ext; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext; if (cfi_info->pri_ext) free(cfi_info->pri_ext); pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext)); if (pri_ext == NULL) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion, * but a different primary extended query table. * We read the atmel table, and prepare a valid AMD/Spansion query table. */ memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext)); cfi_info->pri_ext = pri_ext; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]); if (retval != ERROR_OK) return retval; if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I')) { if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("Could not read atmel bank information"); return ERROR_FLASH_BANK_INVALID; } pri_ext->pri[0] = atmel_pri_ext.pri[0]; pri_ext->pri[1] = atmel_pri_ext.pri[1]; pri_ext->pri[2] = atmel_pri_ext.pri[2]; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version); if (retval != ERROR_OK) return retval; LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version); pri_ext->major_version = atmel_pri_ext.major_version; pri_ext->minor_version = atmel_pri_ext.minor_version; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode); if (retval != ERROR_OK) return retval; LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x", atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode); if (atmel_pri_ext.features & 0x02) pri_ext->EraseSuspend = 2; if (atmel_pri_ext.bottom_boot) pri_ext->TopBottom = 2; else pri_ext->TopBottom = 3; pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1; pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2; return ERROR_OK; } static int cfi_read_0002_pri_ext(struct flash_bank *bank) { struct cfi_flash_bank *cfi_info = bank->driver_priv; if (cfi_info->manufacturer == CFI_MFR_ATMEL) { return cfi_read_atmel_pri_ext(bank); } else { return cfi_read_spansion_pri_ext(bank); } } static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size) { int printed; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n"); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n", (pri_ext->SiliconRevision) >> 2, (pri_ext->SiliconRevision) & 0x03); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n", pri_ext->EraseSuspend, pri_ext->BlkProt); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n", (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f, (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f); return ERROR_OK; } static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size) { int printed; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext; printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n"); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", " "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n", (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f, (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, " "factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size); return ERROR_OK; } /* flash_bank cfi [options] */ FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command) { struct cfi_flash_bank *cfi_info; if (CMD_ARGC < 6) { LOG_WARNING("incomplete flash_bank cfi configuration"); return ERROR_FLASH_BANK_INVALID; } /* both widths must: * - not exceed max value; * - not be null; * - be equal to a power of 2. * bus must be wide enought to hold one chip */ if ((bank->chip_width > CFI_MAX_CHIP_WIDTH) || (bank->bus_width > CFI_MAX_BUS_WIDTH) || (bank->chip_width == 0) || (bank->bus_width == 0) || (bank->chip_width & (bank->chip_width - 1)) || (bank->bus_width & (bank->bus_width - 1)) || (bank->chip_width > bank->bus_width)) { LOG_ERROR("chip and bus width have to specified in bytes"); return ERROR_FLASH_BANK_INVALID; } cfi_info = malloc(sizeof(struct cfi_flash_bank)); cfi_info->probed = 0; cfi_info->erase_region_info = NULL; cfi_info->pri_ext = NULL; bank->driver_priv = cfi_info; cfi_info->write_algorithm = NULL; cfi_info->x16_as_x8 = 0; cfi_info->jedec_probe = 0; cfi_info->not_cfi = 0; for (unsigned i = 6; i < CMD_ARGC; i++) { if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0) { cfi_info->x16_as_x8 = 1; } else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0) { cfi_info->jedec_probe = 1; } } cfi_info->write_algorithm = NULL; /* bank wasn't probed yet */ cfi_info->qry[0] = 0xff; return ERROR_OK; } static int cfi_intel_erase(struct flash_bank *bank, int first, int last) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; int i; cfi_intel_clear_status_register(bank); for (i = first; i <= last; i++) { if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } uint8_t status; retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ), &status); if (retval != ERROR_OK) return retval; if (status == 0x80) bank->sectors[i].is_erased = 1; else { if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base); return ERROR_FLASH_OPERATION_FAILED; } } return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0)); } static int cfi_spansion_erase(struct flash_bank *bank, int first, int last) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; int i; for (i = first; i <= last; i++) { if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK) { bank->sectors[i].is_erased = 1; } else { if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base); return ERROR_FLASH_OPERATION_FAILED; } } return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0)); } static int cfi_erase(struct flash_bank *bank, int first, int last) { struct cfi_flash_bank *cfi_info = bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { return ERROR_FLASH_SECTOR_INVALID; } if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_erase(bank, first, last); break; case 2: return cfi_spansion_erase(bank, first, last); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_OK; } static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext; int retry = 0; int i; /* if the device supports neither legacy lock/unlock (bit 3) nor * instant individual block locking (bit 5). */ if (!(pri_ext->feature_support & 0x28)) { LOG_ERROR("lock/unlock not supported on flash"); return ERROR_FLASH_OPERATION_FAILED; } cfi_intel_clear_status_register(bank); for (i = first; i <= last; i++) { if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } if (set) { if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } bank->sectors[i].is_protected = 1; } else { if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } bank->sectors[i].is_protected = 0; } /* instant individual block locking doesn't require reading of the status register */ if (!(pri_ext->feature_support & 0x20)) { /* Clear lock bits operation may take up to 1.4s */ uint8_t status; retval = cfi_intel_wait_status_busy(bank, 1400, &status); if (retval != ERROR_OK) return retval; } else { uint8_t block_status; /* read block lock bit, to verify status */ if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK) { return retval; } retval = cfi_get_u8(bank, i, 0x2, &block_status); if (retval != ERROR_OK) return retval; if ((block_status & 0x1) != set) { LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status); if ((retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55))) != ERROR_OK) { return retval; } uint8_t status; retval = cfi_intel_wait_status_busy(bank, 10, &status); if (retval != ERROR_OK) return retval; if (retry > 10) return ERROR_FLASH_OPERATION_FAILED; else { i--; retry++; } } } } /* if the device doesn't support individual block lock bits set/clear, * all blocks have been unlocked in parallel, so we set those that should be protected */ if ((!set) && (!(pri_ext->feature_support & 0x20))) { /* FIX!!! this code path is broken!!! * * The correct approach is: * * 1. read out current protection status * * 2. override read out protection status w/unprotected. * * 3. re-protect what should be protected. * */ for (i = 0; i < bank->num_sectors; i++) { if (bank->sectors[i].is_protected == 1) { cfi_intel_clear_status_register(bank); if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK) { return retval; } uint8_t status; retval = cfi_intel_wait_status_busy(bank, 100, &status); if (retval != ERROR_OK) return retval; } } } return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0)); } static int cfi_protect(struct flash_bank *bank, int set, int first, int last) { struct cfi_flash_bank *cfi_info = bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { LOG_ERROR("Invalid sector range"); return ERROR_FLASH_SECTOR_INVALID; } if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_protect(bank, set, first, last); break; default: LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id); return ERROR_FAIL; } } /* Convert code image to target endian */ /* FIXME create general block conversion fcts in target.c?) */ static void cfi_fix_code_endian(struct target *target, uint8_t *dest, const uint32_t *src, uint32_t count) { uint32_t i; for (i = 0; i< count; i++) { target_buffer_set_u32(target, dest, *src); dest += 4; src++; } } static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd) { struct target *target = bank->target; uint8_t buf[CFI_MAX_BUS_WIDTH]; cfi_command(bank, cmd, buf); switch (bank->bus_width) { case 1 : return buf[0]; break; case 2 : return target_buffer_get_u16(target, buf); break; case 4 : return target_buffer_get_u32(target, buf); break; default : LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width); return 0; } } static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count) { struct cfi_flash_bank *cfi_info = bank->driver_priv; struct target *target = bank->target; struct reg_param reg_params[7]; struct arm_algorithm armv4_5_info; struct working_area *source; uint32_t buffer_size = 32768; uint32_t write_command_val, busy_pattern_val, error_pattern_val; /* algorithm register usage: * r0: source address (in RAM) * r1: target address (in Flash) * r2: count * r3: flash write command * r4: status byte (returned to host) * r5: busy test pattern * r6: error test pattern */ static const uint32_t word_32_code[] = { 0xe4904004, /* loop: ldr r4, [r0], #4 */ 0xe5813000, /* str r3, [r1] */ 0xe5814000, /* str r4, [r1] */ 0xe5914000, /* busy: ldr r4, [r1] */ 0xe0047005, /* and r7, r4, r5 */ 0xe1570005, /* cmp r7, r5 */ 0x1afffffb, /* bne busy */ 0xe1140006, /* tst r4, r6 */ 0x1a000003, /* bne done */ 0xe2522001, /* subs r2, r2, #1 */ 0x0a000001, /* beq done */ 0xe2811004, /* add r1, r1 #4 */ 0xeafffff2, /* b loop */ 0xeafffffe /* done: b -2 */ }; static const uint32_t word_16_code[] = { 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */ 0xe1c130b0, /* strh r3, [r1] */ 0xe1c140b0, /* strh r4, [r1] */ 0xe1d140b0, /* busy ldrh r4, [r1] */ 0xe0047005, /* and r7, r4, r5 */ 0xe1570005, /* cmp r7, r5 */ 0x1afffffb, /* bne busy */ 0xe1140006, /* tst r4, r6 */ 0x1a000003, /* bne done */ 0xe2522001, /* subs r2, r2, #1 */ 0x0a000001, /* beq done */ 0xe2811002, /* add r1, r1 #2 */ 0xeafffff2, /* b loop */ 0xeafffffe /* done: b -2 */ }; static const uint32_t word_8_code[] = { 0xe4d04001, /* loop: ldrb r4, [r0], #1 */ 0xe5c13000, /* strb r3, [r1] */ 0xe5c14000, /* strb r4, [r1] */ 0xe5d14000, /* busy ldrb r4, [r1] */ 0xe0047005, /* and r7, r4, r5 */ 0xe1570005, /* cmp r7, r5 */ 0x1afffffb, /* bne busy */ 0xe1140006, /* tst r4, r6 */ 0x1a000003, /* bne done */ 0xe2522001, /* subs r2, r2, #1 */ 0x0a000001, /* beq done */ 0xe2811001, /* add r1, r1 #1 */ 0xeafffff2, /* b loop */ 0xeafffffe /* done: b -2 */ }; uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE]; const uint32_t *target_code_src; uint32_t target_code_size; int retval = ERROR_OK; cfi_intel_clear_status_register(bank); armv4_5_info.common_magic = ARM_COMMON_MAGIC; armv4_5_info.core_mode = ARM_MODE_SVC; armv4_5_info.core_state = ARM_STATE_ARM; /* If we are setting up the write_algorith, we need target_code_src */ /* if not we only need target_code_size. */ /* However, we don't want to create multiple code paths, so we */ /* do the unecessary evaluation of target_code_src, which the */ /* compiler will probably nicely optimize away if not needed */ /* prepare algorithm code for target endian */ switch (bank->bus_width) { case 1 : target_code_src = word_8_code; target_code_size = sizeof(word_8_code); break; case 2 : target_code_src = word_16_code; target_code_size = sizeof(word_16_code); break; case 4 : target_code_src = word_32_code; target_code_size = sizeof(word_32_code); break; default: LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* flash write code */ if (!cfi_info->write_algorithm) { if (target_code_size > sizeof(target_code)) { LOG_WARNING("Internal error - target code buffer to small. " "Increase CFI_MAX_INTEL_CODESIZE and recompile."); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4); /* Get memory for block write handler */ retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm); if (retval != ERROR_OK) { LOG_WARNING("No working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; /* write algorithm code to working area */ retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code); if (retval != ERROR_OK) { LOG_ERROR("Unable to write block write code to target"); goto cleanup; } } /* Get a workspace buffer for the data to flash starting with 32k size. Half size until buffer would be smaller 256 Bytem then fail back */ /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { LOG_WARNING("no large enough working area available, can't do block memory writes"); retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; goto cleanup; } }; /* setup algo registers */ init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_OUT); init_reg_param(®_params[4], "r4", 32, PARAM_IN); init_reg_param(®_params[5], "r5", 32, PARAM_OUT); init_reg_param(®_params[6], "r6", 32, PARAM_OUT); /* prepare command and status register patterns */ write_command_val = cfi_command_val(bank, 0x40); busy_pattern_val = cfi_command_val(bank, 0x80); error_pattern_val = cfi_command_val(bank, 0x7e); LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size); /* Programming main loop */ while (count > 0) { uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count; uint32_t wsm_error; if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK) { goto cleanup; } buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width); buf_set_u32(reg_params[3].value, 0, 32, write_command_val); buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val); buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val); LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address); /* Execute algorithm, assume breakpoint for last instruction */ retval = target_run_algorithm(target, 0, NULL, 7, reg_params, cfi_info->write_algorithm->address, cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t), 10000, /* 10s should be enough for max. 32k of data */ &armv4_5_info); /* On failure try a fall back to direct word writes */ if (retval != ERROR_OK) { cfi_intel_clear_status_register(bank); LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report."); retval = ERROR_FLASH_OPERATION_FAILED; /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */ /* FIXME To allow fall back or recovery, we must save the actual status * somewhere, so that a higher level code can start recovery. */ goto cleanup; } /* Check return value from algo code */ wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val; if (wsm_error) { /* read status register (outputs debug inforation) */ uint8_t status; cfi_intel_wait_status_busy(bank, 100, &status); cfi_intel_clear_status_register(bank); retval = ERROR_FLASH_OPERATION_FAILED; goto cleanup; } buffer += thisrun_count; address += thisrun_count; count -= thisrun_count; keep_alive(); } /* free up resources */ cleanup: if (source) target_free_working_area(target, source); if (cfi_info->write_algorithm) { target_free_working_area(target, cfi_info->write_algorithm); cfi_info->write_algorithm = NULL; } destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); destroy_reg_param(®_params[5]); destroy_reg_param(®_params[6]); return retval; } static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count) { struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; struct target *target = bank->target; struct reg_param reg_params[10]; struct arm_algorithm armv4_5_info; struct working_area *source; uint32_t buffer_size = 32768; uint32_t status; int retval = ERROR_OK; /* input parameters - */ /* R0 = source address */ /* R1 = destination address */ /* R2 = number of writes */ /* R3 = flash write command */ /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */ /* output parameters - */ /* R5 = 0x80 ok 0x00 bad */ /* temp registers - */ /* R6 = value read from flash to test status */ /* R7 = holding register */ /* unlock registers - */ /* R8 = unlock1_addr */ /* R9 = unlock1_cmd */ /* R10 = unlock2_addr */ /* R11 = unlock2_cmd */ static const uint32_t word_32_code[] = { /* 00008100 : */ 0xe4905004, /* ldr r5, [r0], #4 */ 0xe5889000, /* str r9, [r8] */ 0xe58ab000, /* str r11, [r10] */ 0xe5883000, /* str r3, [r8] */ 0xe5815000, /* str r5, [r1] */ 0xe1a00000, /* nop */ /* */ /* 00008110 : */ 0xe5916000, /* ldr r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000007, /* beq 8140 ; b if DQ7 == Data7 */ 0xe0166124, /* ands r6, r6, r4, lsr #2 */ 0x0afffff9, /* beq 8110 ; b if DQ5 low */ 0xe5916000, /* ldr r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000001, /* beq 8140 ; b if DQ7 == Data7 */ 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */ 0x1a000004, /* bne 8154 */ /* */ /* 00008140 : */ 0xe2522001, /* subs r2, r2, #1 ; 0x1 */ 0x03a05080, /* moveq r5, #128 ; 0x80 */ 0x0a000001, /* beq 8154 */ 0xe2811004, /* add r1, r1, #4 ; 0x4 */ 0xeaffffe8, /* b 8100 */ /* */ /* 00008154 : */ 0xeafffffe /* b 8154 */ }; static const uint32_t word_16_code[] = { /* 00008158 : */ 0xe0d050b2, /* ldrh r5, [r0], #2 */ 0xe1c890b0, /* strh r9, [r8] */ 0xe1cab0b0, /* strh r11, [r10] */ 0xe1c830b0, /* strh r3, [r8] */ 0xe1c150b0, /* strh r5, [r1] */ 0xe1a00000, /* nop (mov r0,r0) */ /* */ /* 00008168 : */ 0xe1d160b0, /* ldrh r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000007, /* beq 8198 */ 0xe0166124, /* ands r6, r6, r4, lsr #2 */ 0x0afffff9, /* beq 8168 */ 0xe1d160b0, /* ldrh r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000001, /* beq 8198 */ 0xe3a05000, /* mov r5, #0 ; 0x0 */ 0x1a000004, /* bne 81ac */ /* */ /* 00008198 : */ 0xe2522001, /* subs r2, r2, #1 ; 0x1 */ 0x03a05080, /* moveq r5, #128 ; 0x80 */ 0x0a000001, /* beq 81ac */ 0xe2811002, /* add r1, r1, #2 ; 0x2 */ 0xeaffffe8, /* b 8158 */ /* */ /* 000081ac : */ 0xeafffffe /* b 81ac */ }; static const uint32_t word_16_code_dq7only[] = { /* : */ 0xe0d050b2, /* ldrh r5, [r0], #2 */ 0xe1c890b0, /* strh r9, [r8] */ 0xe1cab0b0, /* strh r11, [r10] */ 0xe1c830b0, /* strh r3, [r8] */ 0xe1c150b0, /* strh r5, [r1] */ 0xe1a00000, /* nop (mov r0,r0) */ /* */ /* : */ 0xe1d160b0, /* ldrh r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe2177080, /* ands r7, #0x80 */ 0x1afffffb, /* bne 8168 */ /* */ 0xe2522001, /* subs r2, r2, #1 ; 0x1 */ 0x03a05080, /* moveq r5, #128 ; 0x80 */ 0x0a000001, /* beq 81ac */ 0xe2811002, /* add r1, r1, #2 ; 0x2 */ 0xeafffff0, /* b 8158 */ /* */ /* 000081ac : */ 0xeafffffe /* b 81ac */ }; static const uint32_t word_8_code[] = { /* 000081b0 : */ 0xe4d05001, /* ldrb r5, [r0], #1 */ 0xe5c89000, /* strb r9, [r8] */ 0xe5cab000, /* strb r11, [r10] */ 0xe5c83000, /* strb r3, [r8] */ 0xe5c15000, /* strb r5, [r1] */ 0xe1a00000, /* nop (mov r0,r0) */ /* */ /* 000081c0 : */ 0xe5d16000, /* ldrb r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000007, /* beq 81f0 */ 0xe0166124, /* ands r6, r6, r4, lsr #2 */ 0x0afffff9, /* beq 81c0 */ 0xe5d16000, /* ldrb r6, [r1] */ 0xe0257006, /* eor r7, r5, r6 */ 0xe0147007, /* ands r7, r4, r7 */ 0x0a000001, /* beq 81f0 */ 0xe3a05000, /* mov r5, #0 ; 0x0 */ 0x1a000004, /* bne 8204 */ /* */ /* 000081f0 : */ 0xe2522001, /* subs r2, r2, #1 ; 0x1 */ 0x03a05080, /* moveq r5, #128 ; 0x80 */ 0x0a000001, /* beq 8204 */ 0xe2811001, /* add r1, r1, #1 ; 0x1 */ 0xeaffffe8, /* b 81b0 */ /* */ /* 00008204 : */ 0xeafffffe /* b 8204 */ }; armv4_5_info.common_magic = ARM_COMMON_MAGIC; armv4_5_info.core_mode = ARM_MODE_SVC; armv4_5_info.core_state = ARM_STATE_ARM; int target_code_size; const uint32_t *target_code_src; switch (bank->bus_width) { case 1 : target_code_src = word_8_code; target_code_size = sizeof(word_8_code); break; case 2 : /* Check for DQ5 support */ if( cfi_info->status_poll_mask & (1 << 5) ) { target_code_src = word_16_code; target_code_size = sizeof(word_16_code); } else { /* No DQ5 support. Use DQ7 DATA# polling only. */ target_code_src = word_16_code_dq7only; target_code_size = sizeof(word_16_code_dq7only); } break; case 4 : target_code_src = word_32_code; target_code_size = sizeof(word_32_code); break; default: LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } /* flash write code */ if (!cfi_info->write_algorithm) { uint8_t *target_code; /* convert bus-width dependent algorithm code to correct endiannes */ target_code = malloc(target_code_size); if (target_code == NULL) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4); /* allocate working area */ retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm); if (retval != ERROR_OK) { free(target_code); return retval; } /* write algorithm code to working area */ if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code)) != ERROR_OK) { free(target_code); return retval; } free(target_code); } /* the following code still assumes target code is fixed 24*4 bytes */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* if we already allocated the writing code, but failed to get a * buffer, free the algorithm */ if (cfi_info->write_algorithm) target_free_working_area(target, cfi_info->write_algorithm); LOG_WARNING("not enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } }; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_OUT); init_reg_param(®_params[4], "r4", 32, PARAM_OUT); init_reg_param(®_params[5], "r5", 32, PARAM_IN); init_reg_param(®_params[6], "r8", 32, PARAM_OUT); init_reg_param(®_params[7], "r9", 32, PARAM_OUT); init_reg_param(®_params[8], "r10", 32, PARAM_OUT); init_reg_param(®_params[9], "r11", 32, PARAM_OUT); while (count > 0) { uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count; retval = target_write_buffer(target, source->address, thisrun_count, buffer); if (retval != ERROR_OK) { break; } buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width); buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0)); buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80)); buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1)); buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa); buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2)); buf_set_u32(reg_params[9].value, 0, 32, 0x55555555); retval = target_run_algorithm(target, 0, NULL, 10, reg_params, cfi_info->write_algorithm->address, cfi_info->write_algorithm->address + ((target_code_size) - 4), 10000, &armv4_5_info); if (retval != ERROR_OK) { break; } status = buf_get_u32(reg_params[5].value, 0, 32); if (status != 0x80) { LOG_ERROR("flash write block failed status: 0x%" PRIx32 , status); retval = ERROR_FLASH_OPERATION_FAILED; break; } buffer += thisrun_count; address += thisrun_count; count -= thisrun_count; } target_free_all_working_areas(target); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); destroy_reg_param(®_params[5]); destroy_reg_param(®_params[6]); destroy_reg_param(®_params[7]); destroy_reg_param(®_params[8]); destroy_reg_param(®_params[9]); return retval; } static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct target *target = bank->target; cfi_intel_clear_status_register(bank); if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK) { return retval; } uint8_t status; retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max), &status); if (retval != 0x80) { if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32, bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct target *target = bank->target; /* Calculate buffer size and boundary mask */ /* buffersize is (buffer size per chip) * (number of chips) */ /* bufferwsize is buffersize in words */ uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width); uint32_t buffermask = buffersize-1; uint32_t bufferwsize = buffersize / bank->bus_width; /* Check for valid range */ if (address & buffermask) { LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size); return ERROR_FLASH_OPERATION_FAILED; } /* Check for valid size */ if (wordcount > bufferwsize) { LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize); return ERROR_FLASH_OPERATION_FAILED; } /* Write to flash buffer */ cfi_intel_clear_status_register(bank); /* Initiate buffer operation _*/ if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK) { return retval; } uint8_t status; retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max), &status); if (retval != ERROR_OK) return retval; if (status != 0x80) { if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32, bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } /* Write buffer wordcount-1 and data words */ if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK) { return retval; } /* Commit write operation */ if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK) { return retval; } retval = cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max), &status); if (retval != ERROR_OK) return retval; if (status != 0x80) { if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; struct target *target = bank->target; if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK) { return retval; } if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK) { if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct target *target = bank->target; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; /* Calculate buffer size and boundary mask */ /* buffersize is (buffer size per chip) * (number of chips) */ /* bufferwsize is buffersize in words */ uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width); uint32_t buffermask = buffersize-1; uint32_t bufferwsize = buffersize / bank->bus_width; /* Check for valid range */ if (address & buffermask) { LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size); return ERROR_FLASH_OPERATION_FAILED; } /* Check for valid size */ if (wordcount > bufferwsize) { LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize); return ERROR_FLASH_OPERATION_FAILED; } // Unlock if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK) { return retval; } // Buffer load command if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK) { return retval; } /* Write buffer wordcount-1 and data words */ if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK) { return retval; } if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK) { return retval; } /* Commit write operation */ if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK) { return retval; } if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK) { if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK) { return retval; } LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32, bank->base, address, bufferwsize); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address) { struct cfi_flash_bank *cfi_info = bank->driver_priv; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_write_word(bank, word, address); break; case 2: return cfi_spansion_write_word(bank, word, address); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_FLASH_OPERATION_FAILED; } static int cfi_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address) { struct cfi_flash_bank *cfi_info = bank->driver_priv; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_write_words(bank, word, wordcount, address); break; case 2: return cfi_spansion_write_words(bank, word, wordcount, address); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_FLASH_OPERATION_FAILED; } static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct cfi_flash_bank *cfi_info = bank->driver_priv; struct target *target = bank->target; uint32_t address = bank->base + offset; uint32_t read_p; int align; /* number of unaligned bytes */ uint8_t current_word[CFI_MAX_BUS_WIDTH]; int i; int retval; LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", (int)count, (unsigned)offset); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset + count > bank->size) return ERROR_FLASH_DST_OUT_OF_BANK; if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; /* start at the first byte of the first word (bus_width size) */ read_p = address & ~(bank->bus_width - 1); if ((align = address - read_p) != 0) { LOG_INFO("Fixup %d unaligned read head bytes", align); /* read a complete word from flash */ if ((retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word)) != ERROR_OK) return retval; /* take only bytes we need */ for (i = align; (i < bank->bus_width) && (count > 0); i++, count--) *buffer++ = current_word[i]; read_p += bank->bus_width; } align = count / bank->bus_width; if (align) { if ((retval = target_read_memory(target, read_p, bank->bus_width, align, buffer)) != ERROR_OK) return retval; read_p += align * bank->bus_width; buffer += align * bank->bus_width; count -= align * bank->bus_width; } if (count) { LOG_INFO("Fixup %d unaligned read tail bytes", count); /* read a complete word from flash */ if ((retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word)) != ERROR_OK) return retval; /* take only bytes we need */ for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--) *buffer++ = current_word[i]; } return ERROR_OK; } static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct cfi_flash_bank *cfi_info = bank->driver_priv; struct target *target = bank->target; uint32_t address = bank->base + offset; /* address of first byte to be programmed */ uint32_t write_p; int align; /* number of unaligned bytes */ int blk_count; /* number of bus_width bytes for block copy */ uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */ int i; int retval; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset + count > bank->size) return ERROR_FLASH_DST_OUT_OF_BANK; if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; /* start at the first byte of the first word (bus_width size) */ write_p = address & ~(bank->bus_width - 1); if ((align = address - write_p) != 0) { LOG_INFO("Fixup %d unaligned head bytes", align); /* read a complete word from flash */ if ((retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word)) != ERROR_OK) return retval; /* replace only bytes that must be written */ for (i = align; (i < bank->bus_width) && (count > 0); i++, count--) current_word[i] = *buffer++; retval = cfi_write_word(bank, current_word, write_p); if (retval != ERROR_OK) return retval; write_p += bank->bus_width; } /* handle blocks of bus_size aligned bytes */ blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */ switch (cfi_info->pri_id) { /* try block writes (fails without working area) */ case 1: case 3: retval = cfi_intel_write_block(bank, buffer, write_p, blk_count); break; case 2: retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); retval = ERROR_FLASH_OPERATION_FAILED; break; } if (retval == ERROR_OK) { /* Increment pointers and decrease count on succesful block write */ buffer += blk_count; write_p += blk_count; count -= blk_count; } else { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* Calculate buffer size and boundary mask */ /* buffersize is (buffer size per chip) * (number of chips) */ /* bufferwsize is buffersize in words */ uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width); uint32_t buffermask = buffersize-1; uint32_t bufferwsize = buffersize / bank->bus_width; /* fall back to memory writes */ while (count >= (uint32_t)bank->bus_width) { int fallback; if ((write_p & 0xff) == 0) { LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count); } fallback = 1; if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask)) { retval = cfi_write_words(bank, buffer, bufferwsize, write_p); if (retval == ERROR_OK) { buffer += buffersize; write_p += buffersize; count -= buffersize; fallback = 0; } } /* try the slow way? */ if (fallback) { for (i = 0; i < bank->bus_width; i++) current_word[i] = *buffer++; retval = cfi_write_word(bank, current_word, write_p); if (retval != ERROR_OK) return retval; write_p += bank->bus_width; count -= bank->bus_width; } } } else return retval; } /* return to read array mode, so we can read from flash again for padding */ if ((retval = cfi_reset(bank)) != ERROR_OK) { return retval; } /* handle unaligned tail bytes */ if (count > 0) { LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count); /* read a complete word from flash */ if ((retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word)) != ERROR_OK) return retval; /* replace only bytes that must be written */ for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--) current_word[i] = *buffer++; retval = cfi_write_word(bank, current_word, write_p); if (retval != ERROR_OK) return retval; } /* return to read array mode */ return cfi_reset(bank); } static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param) { (void) param; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; pri_ext->_reversed_geometry = 1; } static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param) { int i; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; (void) param; if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) { LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device"); for (i = 0; i < cfi_info->num_erase_regions / 2; i++) { int j = (cfi_info->num_erase_regions - 1) - i; uint32_t swap; swap = cfi_info->erase_region_info[i]; cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j]; cfi_info->erase_region_info[j] = swap; } } } static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param) { struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; struct cfi_unlock_addresses *unlock_addresses = param; pri_ext->_unlock1 = unlock_addresses->unlock1; pri_ext->_unlock2 = unlock_addresses->unlock2; } static int cfi_query_string(struct flash_bank *bank, int address) { struct cfi_flash_bank *cfi_info = bank->driver_priv; int retval; if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK) { return retval; } retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]); if (retval != ERROR_OK) return retval; LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]); if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) { if ((retval = cfi_reset(bank)) != ERROR_OK) { return retval; } LOG_ERROR("Could not probe bank: no QRY"); return ERROR_FLASH_BANK_INVALID; } return ERROR_OK; } static int cfi_probe(struct flash_bank *bank) { struct cfi_flash_bank *cfi_info = bank->driver_priv; struct target *target = bank->target; int num_sectors = 0; int i; int sector = 0; uint32_t unlock1 = 0x555; uint32_t unlock2 = 0x2aa; int retval; uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH]; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } cfi_info->probed = 0; if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } if(cfi_info->erase_region_info) { free(cfi_info->erase_region_info); cfi_info->erase_region_info = NULL; } /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses, * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa */ if (cfi_info->jedec_probe) { unlock1 = 0x5555; unlock2 = 0x2aaa; } /* switch to read identifier codes mode ("AUTOSELECT") */ if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK) { return retval; } if ((retval = target_read_memory(target, flash_address(bank, 0, 0x00), bank->bus_width, 1, value_buf0)) != ERROR_OK) { return retval; } if ((retval = target_read_memory(target, flash_address(bank, 0, 0x01), bank->bus_width, 1, value_buf1)) != ERROR_OK) { return retval; } switch (bank->chip_width) { case 1: cfi_info->manufacturer = *value_buf0; cfi_info->device_id = *value_buf1; break; case 2: cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0); cfi_info->device_id = target_buffer_get_u16(target, value_buf1); break; case 4: cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0); cfi_info->device_id = target_buffer_get_u32(target, value_buf1); break; default: LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory", bank->chip_width); return ERROR_FLASH_OPERATION_FAILED; } LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id); /* switch back to read array mode */ if ((retval = cfi_reset(bank)) != ERROR_OK) { return retval; } /* check device/manufacturer ID for known non-CFI flashes. */ cfi_fixup_non_cfi(bank); /* query only if this is a CFI compatible flash, * otherwise the relevant info has already been filled in */ if (cfi_info->not_cfi == 0) { /* enter CFI query mode * according to JEDEC Standard No. 68.01, * a single bus sequence with address = 0x55, data = 0x98 should put * the device into CFI query mode. * * SST flashes clearly violate this, and we will consider them incompatbile for now */ retval = cfi_query_string(bank, 0x55); if (retval != ERROR_OK) { /* * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should * be harmless enough: * * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html */ LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY."); retval = cfi_query_string(bank, 0x555); } if (retval != ERROR_OK) return retval; retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id); if (retval != ERROR_OK) return retval; retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr); if (retval != ERROR_OK) return retval; retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id); if (retval != ERROR_OK) return retval; retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr); if (retval != ERROR_OK) return retval; LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: " "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr); retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max); if (retval != ERROR_OK) return retval; LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x", (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f, (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f, (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f, (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f); LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, " "typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ, 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ); LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, " "max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ), (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ), (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ), (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ)); uint8_t data; retval = cfi_query_u8(bank, 0, 0x27, &data); if (retval != ERROR_OK) return retval; cfi_info->dev_size = 1 << data; retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc); if (retval != ERROR_OK) return retval; retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size); if (retval != ERROR_OK) return retval; retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions); if (retval != ERROR_OK) return retval; LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size)); if (cfi_info->num_erase_regions) { cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info) * cfi_info->num_erase_regions); for (i = 0; i < cfi_info->num_erase_regions; i++) { retval = cfi_query_u32(bank, 0, 0x2d + (4 * i), &cfi_info->erase_region_info[i]); if (retval != ERROR_OK) return retval; LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "", i, (cfi_info->erase_region_info[i] & 0xffff) + 1, (cfi_info->erase_region_info[i] >> 16) * 256); } } else { cfi_info->erase_region_info = NULL; } /* We need to read the primary algorithm extended query table before calculating * the sector layout to be able to apply fixups */ switch (cfi_info->pri_id) { /* Intel command set (standard and extended) */ case 0x0001: case 0x0003: cfi_read_intel_pri_ext(bank); break; /* AMD/Spansion, Atmel, ... command set */ case 0x0002: cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */ cfi_read_0002_pri_ext(bank); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } /* return to read array mode * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command */ if ((retval = cfi_reset(bank)) != ERROR_OK) { return retval; } } /* end CFI case */ /* apply fixups depending on the primary command set */ switch (cfi_info->pri_id) { /* Intel command set (standard and extended) */ case 0x0001: case 0x0003: cfi_fixup(bank, cfi_0001_fixups); break; /* AMD/Spansion, Atmel, ... command set */ case 0x0002: cfi_fixup(bank, cfi_0002_fixups); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) { LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size); } if (cfi_info->num_erase_regions == 0) { /* a device might have only one erase block, spanning the whole device */ bank->num_sectors = 1; bank->sectors = malloc(sizeof(struct flash_sector)); bank->sectors[sector].offset = 0x0; bank->sectors[sector].size = bank->size; bank->sectors[sector].is_erased = -1; bank->sectors[sector].is_protected = -1; } else { uint32_t offset = 0; for (i = 0; i < cfi_info->num_erase_regions; i++) { num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1; } bank->num_sectors = num_sectors; bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors); for (i = 0; i < cfi_info->num_erase_regions; i++) { uint32_t j; for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) { bank->sectors[sector].offset = offset; bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width; offset += bank->sectors[sector].size; bank->sectors[sector].is_erased = -1; bank->sectors[sector].is_protected = -1; sector++; } } if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) { LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \ (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset); } } cfi_info->probed = 1; return ERROR_OK; } static int cfi_auto_probe(struct flash_bank *bank) { struct cfi_flash_bank *cfi_info = bank->driver_priv; if (cfi_info->probed) return ERROR_OK; return cfi_probe(bank); } static int cfi_intel_protect_check(struct flash_bank *bank) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext; int i; /* check if block lock bits are supported on this device */ if (!(pri_ext->blk_status_reg_mask & 0x1)) return ERROR_FLASH_OPERATION_FAILED; if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK) { return retval; } for (i = 0; i < bank->num_sectors; i++) { uint8_t block_status; retval = cfi_get_u8(bank, i, 0x2, &block_status); if (retval != ERROR_OK) return retval; if (block_status & 1) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0)); } static int cfi_spansion_protect_check(struct flash_bank *bank) { int retval; struct cfi_flash_bank *cfi_info = bank->driver_priv; struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext; int i; if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK) { return retval; } if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK) { return retval; } for (i = 0; i < bank->num_sectors; i++) { uint8_t block_status; retval = cfi_get_u8(bank, i, 0x2, &block_status); if (retval != ERROR_OK) return retval; if (block_status & 1) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0)); } static int cfi_protect_check(struct flash_bank *bank) { struct cfi_flash_bank *cfi_info = bank->driver_priv; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (cfi_info->qry[0] != 'Q') return ERROR_FLASH_BANK_NOT_PROBED; switch (cfi_info->pri_id) { case 1: case 3: return cfi_intel_protect_check(bank); break; case 2: return cfi_spansion_protect_check(bank); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } return ERROR_OK; } static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size) { int printed; struct cfi_flash_bank *cfi_info = bank->driver_priv; if (cfi_info->qry[0] == 0xff) { printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n"); return ERROR_OK; } if (cfi_info->not_cfi == 0) printed = snprintf(buf, buf_size, "\ncfi information:\n"); else printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n"); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n", cfi_info->manufacturer, cfi_info->device_id); buf += printed; buf_size -= printed; if (cfi_info->not_cfi == 0) { printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: " "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, " "Vpp min: %u.%x, Vpp max: %u.%x\n", (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f, (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f, (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f, (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "typ. word write timeout: %u, " "typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ, 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "max. word write timeout: %u, " "max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ), (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ), (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ), (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ)); buf += printed; buf_size -= printed; printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, " "max buffer write size: %x\n", cfi_info->dev_size, cfi_info->interface_desc, 1 << cfi_info->max_buf_write_size); buf += printed; buf_size -= printed; switch (cfi_info->pri_id) { case 1: case 3: cfi_intel_info(bank, buf, buf_size); break; case 2: cfi_spansion_info(bank, buf, buf_size); break; default: LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id); break; } } return ERROR_OK; } struct flash_driver cfi_flash = { .name = "cfi", .flash_bank_command = cfi_flash_bank_command, .erase = cfi_erase, .protect = cfi_protect, .write = cfi_write, .read = cfi_read, .probe = cfi_probe, .auto_probe = cfi_auto_probe, /* FIXME: access flash at bus_width size */ .erase_check = default_flash_blank_check, .protect_check = cfi_protect_check, .info = get_cfi_info, };