/*************************************************************************** * Copyright (C) 2011 by Marc Willam, Holger Wech * * openOCD.fseu(AT)de.fujitsu.com * * * * Copyright (C) 2011 Ronny Strutz * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include #define FLASH_DQ6 0x00000040 /* Data toggle flag bit (TOGG) */ #define FLASH_DQ5 0x00000020 /* Time limit exceeding flag bit (TLOV) */ enum fm3_variant { mb9bfxx1, /* Flash Type '1' */ mb9bfxx2, mb9bfxx3, mb9bfxx4, mb9bfxx5, mb9bfxx6, mb9afxx1, /* Flash Type '2' */ mb9afxx2, mb9afxx3, mb9afxx4, mb9afxx5, mb9afxx6 }; enum fm3_flash_type { fm3_no_flash_type = 0, fm3_flash_type1 = 1, fm3_flash_type2 = 2 }; struct fm3_flash_bank { struct working_area *write_algorithm; enum fm3_variant variant; enum fm3_flash_type flashtype; int probed; }; FLASH_BANK_COMMAND_HANDLER(fm3_flash_bank_command) { struct fm3_flash_bank *fm3_info; if (CMD_ARGC < 6) { LOG_WARNING("incomplete flash_bank fm3 configuration"); return ERROR_FLASH_BANK_INVALID; } fm3_info = malloc(sizeof(struct fm3_flash_bank)); bank->driver_priv = fm3_info; /* Flash type '1' */ if (strcmp(CMD_ARGV[5], "mb9bfxx1.cpu") == 0) { fm3_info->variant = mb9bfxx1; fm3_info->flashtype = fm3_flash_type1; } else if (strcmp(CMD_ARGV[5], "mb9bfxx2.cpu") == 0) { fm3_info->variant = mb9bfxx2; fm3_info->flashtype = fm3_flash_type1; } else if (strcmp(CMD_ARGV[5], "mb9bfxx3.cpu") == 0) { fm3_info->variant = mb9bfxx3; fm3_info->flashtype = fm3_flash_type1; } else if (strcmp(CMD_ARGV[5], "mb9bfxx4.cpu") == 0) { fm3_info->variant = mb9bfxx4; fm3_info->flashtype = fm3_flash_type1; } else if (strcmp(CMD_ARGV[5], "mb9bfxx5.cpu") == 0) { fm3_info->variant = mb9bfxx5; fm3_info->flashtype = fm3_flash_type1; } else if (strcmp(CMD_ARGV[5], "mb9bfxx6.cpu") == 0) { fm3_info->variant = mb9bfxx6; fm3_info->flashtype = fm3_flash_type1; } /* Flash type '2' */ else if (strcmp(CMD_ARGV[5], "mb9afxx1.cpu") == 0) { fm3_info->variant = mb9afxx1; fm3_info->flashtype = fm3_flash_type2; } else if (strcmp(CMD_ARGV[5], "mb9afxx2.cpu") == 0) { fm3_info->variant = mb9afxx2; fm3_info->flashtype = fm3_flash_type2; } else if (strcmp(CMD_ARGV[5], "mb9afxx3.cpu") == 0) { fm3_info->variant = mb9afxx3; fm3_info->flashtype = fm3_flash_type2; } else if (strcmp(CMD_ARGV[5], "mb9afxx4.cpu") == 0) { fm3_info->variant = mb9afxx4; fm3_info->flashtype = fm3_flash_type2; } else if (strcmp(CMD_ARGV[5], "mb9afxx5.cpu") == 0) { fm3_info->variant = mb9afxx5; fm3_info->flashtype = fm3_flash_type2; } else if (strcmp(CMD_ARGV[5], "mb9afxx6.cpu") == 0) { fm3_info->variant = mb9afxx6; fm3_info->flashtype = fm3_flash_type2; } /* unknown Flash type */ else { LOG_ERROR("unknown fm3 variant: %s", CMD_ARGV[5]); free(fm3_info); return ERROR_FLASH_BANK_INVALID; } fm3_info->write_algorithm = NULL; fm3_info->probed = 0; return ERROR_OK; } /* Data polling algorithm */ static int fm3_busy_wait(struct target *target, uint32_t offset, int timeout_ms) { int retval = ERROR_OK; uint16_t state1, state2; int ms = 0; /* While(1) loop exit via "break" and "return" on error */ while(1) { /* dummy-read - see flash manual */ retval = target_read_u16(target, offset, &state1); if (retval != ERROR_OK) return retval; /* Data polling 1 */ retval = target_read_u16(target, offset, &state1); if (retval != ERROR_OK) return retval; /* Data polling 2 */ retval = target_read_u16(target, offset, &state2); if (retval != ERROR_OK) return retval; /* Flash command finished via polled data equal? */ if ( (state1 & FLASH_DQ6) == (state2 & FLASH_DQ6) ) { break; } /* Timeout Flag? */ else if (state1 & FLASH_DQ5) { /* Retry data polling */ /* Data polling 1 */ retval = target_read_u16(target, offset, &state1); if (retval != ERROR_OK) return retval; /* Data polling 2 */ retval = target_read_u16(target, offset, &state2); if (retval != ERROR_OK) return retval; /* Flash command finished via polled data equal? */ if ( (state1 & FLASH_DQ6) != (state2 & FLASH_DQ6) ) { return ERROR_FLASH_OPERATION_FAILED; } /* finish anyway */ break; } usleep(1000); ++ms; /* Polling time exceeded? */ if (ms > timeout_ms) { LOG_ERROR("Polling data reading timed out!"); return ERROR_FLASH_OPERATION_FAILED; } } if (retval == ERROR_OK) LOG_DEBUG("fm3_busy_wait(%x) needs about %d ms", offset, ms); return retval; } static int fm3_erase(struct flash_bank *bank, int first, int last) { struct fm3_flash_bank *fm3_info = bank->driver_priv; struct target *target = bank->target; int retval = ERROR_OK; uint32_t u32DummyRead; int sector, odd; uint32_t u32FlashType; uint32_t u32FlashSeqAddress1; uint32_t u32FlashSeqAddress2; u32FlashType = (uint32_t) fm3_info->flashtype; if (u32FlashType == fm3_flash_type1) { u32FlashSeqAddress1 = 0x00001550; u32FlashSeqAddress2 = 0x00000AA8; } else if (u32FlashType == fm3_flash_type2) { u32FlashSeqAddress1 = 0x00000AA8; u32FlashSeqAddress2 = 0x00000554; } else { LOG_ERROR("Flash/Device type unknown!"); return ERROR_FLASH_OPERATION_FAILED; } if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } LOG_INFO("Fujitsu MB9Bxxx: Sector Erase ... (%d to %d)", first, last); /* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash acccess) */ retval = target_write_u32(target, 0x40000000, 0x0001); if (retval != ERROR_OK) return retval; /* dummy read of FASZR */ retval = target_read_u32(target, 0x40000000, &u32DummyRead); if (retval != ERROR_OK) return retval; for (sector = first ; sector <= last ; sector++) { uint32_t offset = bank->sectors[sector].offset; for (odd = 0; odd < 2 ; odd++) { if (odd) offset += 4; /* Flash unlock sequence */ retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress1, 0x0080); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055); if (retval != ERROR_OK) return retval; /* Sector erase command (0x0030) */ retval = target_write_u16(target, offset, 0x0030); if (retval != ERROR_OK) return retval; retval = fm3_busy_wait(target, offset, 500); if (retval != ERROR_OK) return retval; } bank->sectors[sector].is_erased = 1; } /* FASZR = 0x02, Enables CPU Run Mode (32-bit Flash acccess) */ retval = target_write_u32(target, 0x40000000, 0x0002); if (retval != ERROR_OK) return retval; /* dummy read of FASZR */ retval = target_read_u32(target, 0x40000000, &u32DummyRead); return retval; } static int fm3_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct fm3_flash_bank *fm3_info = bank->driver_priv; struct target *target = bank->target; uint32_t buffer_size = 2048; /* 8192 for MB9Bxx6! */ struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[6]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; uint32_t u32FlashType; uint32_t u32FlashSeqAddress1; uint32_t u32FlashSeqAddress2; u32FlashType = (uint32_t) fm3_info->flashtype; if (u32FlashType == fm3_flash_type1) { u32FlashSeqAddress1 = 0x00001550; u32FlashSeqAddress2 = 0x00000AA8; } else if (u32FlashType == fm3_flash_type2) { u32FlashSeqAddress1 = 0x00000AA8; u32FlashSeqAddress2 = 0x00000554; } else { LOG_ERROR("Flash/Device type unknown!"); return ERROR_FLASH_OPERATION_FAILED; } /* RAMCODE used for fm3 Flash programming: */ /* R0 keeps source start address (u32Source) */ /* R1 keeps target start address (u32Target) */ /* R2 keeps number of halfwords to write (u32Count) */ /* R3 keeps Flash Sequence address 1 (u32FlashSeq1) */ /* R4 keeps Flash Sequence address 2 (u32FlashSeq2) */ /* R5 returns result value (u32FlashResult) */ const uint8_t fm3_flash_write_code[] = { /* fm3_FLASH_IF->FASZ &= 0xFFFD; */ 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */ 0x2D, 0x68, /* LDR R5, [R5] */ 0x4F, 0xF6, 0xFD, 0x76, /* MOVW R6, #0xFFFD */ 0x35, 0x40, /* ANDS R5, R5, R6 */ 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */ 0x35, 0x60, /* STR R5, [R6] */ /* fm3_FLASH_IF->FASZ |= 1; */ 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */ 0x2D, 0x68, /* LDR R5, [R3] */ 0x55, 0xF0, 0x01, 0x05, /* ORRS.W R5, R5, #1 */ 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */ 0x35, 0x60, /* STR R5, [R6] */ /* u32DummyRead = fm3_FLASH_IF->FASZ; */ 0x28, 0x4D, /* LDR.N R5, ??u32DummyRead */ 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */ 0x36, 0x68, /* LDR R6, [R6] */ 0x2E, 0x60, /* STR R6, [R5] */ /* u32FlashResult = FLASH_WRITE_NO_RESULT */ 0x26, 0x4D, /* LDR.N R5, ??u32FlashResult */ 0x00, 0x26, /* MOVS R6, #0 */ 0x2E, 0x60, /* STR R6, [R5] */ /* while ((u32Count > 0 ) */ /* && (u32FlashResult */ /* == FLASH_WRITE_NO_RESULT)) */ 0x01, 0x2A, /* L0: CMP R2, #1 */ 0x2C, 0xDB, /* BLT.N L1 */ 0x24, 0x4D, /* LDR.N R5, ??u32FlashResult */ 0x2D, 0x68, /* LDR R5, [R5] */ 0x00, 0x2D, /* CMP R5, #0 */ 0x28, 0xD1, /* BNE.N L1 */ /* *u32FlashSeq1 = FLASH_WRITE_1; */ 0xAA, 0x25, /* MOVS R5, #0xAA */ 0x1D, 0x60, /* STR R5, [R3] */ /* *u32FlashSeq2 = FLASH_WRITE_2; */ 0x55, 0x25, /* MOVS R5, #0x55 */ 0x25, 0x60, /* STR R5, [R4] */ /* *u32FlashSeq1 = FLASH_WRITE_3; */ 0xA0, 0x25, /* MOVS R5, #0xA0 */ 0x1D, 0x60, /* STRH R5, [R3] */ /* *(volatile uint16_t*)u32Target */ /* = *(volatile uint16_t*)u32Source; */ 0x05, 0x88, /* LDRH R5, [R0] */ 0x0D, 0x80, /* STRH R5, [R1] */ /* while (u32FlashResult */ /* == FLASH_WRITE_NO_RESTULT) */ 0x1E, 0x4D, /* L2: LDR.N R5, ??u32FlashResult */ 0x2D, 0x68, /* LDR R5, [R5] */ 0x00, 0x2D, /* CMP R5, #0 */ 0x11, 0xD1, /* BNE.N L3 */ /* if ((*(volatile uint16_t*)u32Target */ /* & FLASH_DQ5) == FLASH_DQ5) */ 0x0D, 0x88, /* LDRH R5, [R1] */ 0xAD, 0x06, /* LSLS R5, R5, #0x1A */ 0x02, 0xD5, /* BPL.N L4 */ /* u32FlashResult = FLASH_WRITE_TIMEOUT */ 0x1A, 0x4D, /* LDR.N R5, ??u32FlashResult */ 0x02, 0x26, /* MOVS R6, #2 */ 0x2E, 0x60, /* STR R6, [R5] */ /* if ((*(volatile uint16_t *)u32Target */ /* & FLASH_DQ7) */ /* == (*(volatile uint16_t*)u32Source */ /* & FLASH_DQ7)) */ 0x0D, 0x88, /* L4: LDRH R5, [R1] */ 0x15, 0xF0, 0x80, 0x05, /* ANDS.W R5, R5, #0x80 */ 0x06, 0x88, /* LDRH R6, [R0] */ 0x16, 0xF0, 0x80, 0x06, /* ANDS.W R6, R6, #0x80 */ 0xB5, 0x42, /* CMP R5, R6 */ 0xED, 0xD1, /* BNE.N L2 */ /* u32FlashResult = FLASH_WRITE_OKAY */ 0x15, 0x4D, /* LDR.N R5, ??u32FlashResult */ 0x01, 0x26, /* MOVS R6, #1 */ 0x2E, 0x60, /* STR R6, [R5] */ 0xE9, 0xE7, /* B.N L2 */ /* if (u32FlashResult */ /* != FLASH_WRITE_TIMEOUT) */ 0x13, 0x4D, /* LDR.N R5, ??u32FlashResult */ 0x2D, 0x68, /* LDR R5, [R5] */ 0x02, 0x2D, /* CMP R5, #2 */ 0x02, 0xD0, /* BEQ.N L5 */ /* u32FlashResult = FLASH_WRITE_NO_RESULT */ 0x11, 0x4D, /* LDR.N R5, ??u32FlashResult */ 0x00, 0x26, /* MOVS R6, #0 */ 0x2E, 0x60, /* STR R6, [R5] */ /* u32Count--; */ 0x52, 0x1E, /* L5: SUBS R2, R2, #1 */ /* u32Source += 2; */ 0x80, 0x1C, /* ADDS R0, R0, #2 */ /* u32Target += 2; */ 0x89, 0x1C, /* ADDS R1, R1, #2 */ 0xD0, 0xE7, /* B.N L0 */ /* fm3_FLASH_IF->FASZ &= 0xFFFE; */ 0x5F, 0xF0, 0x80, 0x45, /* L1: MOVS.W R5, #(fm3_FLASH_IF->FASZ) */ 0x2D, 0x68, /* LDR R5, [R5] */ 0x4F, 0xF6, 0xFE, 0x76, /* MOVW R6, #0xFFFE */ 0x35, 0x40, /* ANDS R5, R5, R6 */ 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */ 0x35, 0x60, /* STR R5, [R6] */ /* fm3_FLASH_IF->FASZ |= 2; */ 0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */ 0x2D, 0x68, /* LDR R5, [R5] */ 0x55, 0xF0, 0x02, 0x05, /* ORRS.W R5, R5, #2 */ 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */ 0x35, 0x60, /* STR R5, [R6] */ /* u32DummyRead = fm3_FLASH_IF->FASZ; */ 0x04, 0x4D, /* LDR.N R5, ??u32DummyRead */ 0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */ 0x36, 0x68, /* LDR R6, [R6] */ 0x2E, 0x60, /* STR R6, [R5] */ /* copy u32FlashResult to R3 for return */ /* value */ 0xDF, 0xF8, 0x08, 0x50, /* LDR.W R5, ??u32FlashResult */ 0x2D, 0x68, /* LDR R5, [R5] */ /* Breakpoint here */ 0x00, 0xBE, /* BKPT #0 */ /* The following address pointers assume, that the code is running from */ /* address 0x1FFF8008. These address pointers will be patched, if a */ /* different start address in RAM is used (e.g. for Flash type 2)! */ 0x00, 0x80, 0xFF, 0x1F, /* u32DummyRead address in RAM (0x1FFF8000) */ 0x04, 0x80, 0xFF, 0x1F /* u32FlashResult address in RAM (0x1FFF8004) */ }; LOG_INFO("Fujitsu MB9B500: FLASH Write ..."); /* disable HW watchdog */ retval = target_write_u32(target, 0x40011C00, 0x1ACCE551); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, 0x40011C00, 0xE5331AAE); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, 0x40011008, 0x00000000); if (retval != ERROR_OK) return retval; count = count / 2; /* number bytes -> number halfwords */ /* check code alignment */ if (offset & 0x1) { LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } /* allocate working area with flash programming code */ if (target_alloc_working_area(target, sizeof(fm3_flash_write_code), &fm3_info->write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } retval = target_write_buffer(target, fm3_info->write_algorithm->address, sizeof(fm3_flash_write_code), fm3_flash_write_code); if (retval != ERROR_OK) return retval; /* memory buffer */ while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* free working area, if write algorithm already allocated */ if (fm3_info->write_algorithm) { target_free_working_area(target, fm3_info->write_algorithm); } LOG_WARNING("No large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARMV7M_MODE_ANY; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); /* source start address */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* target start address */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* number of halfwords to program */ init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* Flash Sequence address 1 */ init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* Flash Sequence address 1 */ init_reg_param(®_params[5], "r5", 32, PARAM_IN); /* result */ /* write code buffer and use Flash programming code within fm3 */ /* Set breakpoint to 0 with time-out of 1000 ms */ while (count > 0) { uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count; retval = target_write_buffer(target, fm3_info->write_algorithm->address, 8, fm3_flash_write_code); if (retval != ERROR_OK) break; /* Patching 'local variable address' for different RAM addresses */ if (fm3_info->write_algorithm->address != 0x1FFF8008) { /* Algorithm: u32DummyRead: */ retval = target_write_u32(target, (fm3_info->write_algorithm->address) + sizeof(fm3_flash_write_code) - 8, (fm3_info->write_algorithm->address) - 8); if (retval != ERROR_OK) break; /* Algorithm: u32FlashResult: */ retval = target_write_u32(target, (fm3_info->write_algorithm->address) + sizeof(fm3_flash_write_code) - 4, (fm3_info->write_algorithm->address) - 4); if (retval != ERROR_OK) break; } retval = target_write_buffer(target, source->address, thisrun_count * 2, buffer); if (retval != ERROR_OK) break; buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, address); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count); buf_set_u32(reg_params[3].value, 0, 32, u32FlashSeqAddress1); buf_set_u32(reg_params[4].value, 0, 32, u32FlashSeqAddress2); retval = target_run_algorithm(target, 0, NULL, 6, reg_params, fm3_info->write_algorithm->address, 0, 1000, &armv7m_info); if (retval != ERROR_OK) { LOG_ERROR("Error executing fm3 Flash programming algorithm"); retval = ERROR_FLASH_OPERATION_FAILED; break; } if (buf_get_u32(reg_params[5].value, 0, 32) != ERROR_OK) { LOG_ERROR("Fujitsu MB9[A/B]FXXX: Flash programming ERROR (Timeout) \ -> Reg R3: %x", buf_get_u32(reg_params[5].value, 0, 32)); retval = ERROR_FLASH_OPERATION_FAILED; break; } buffer += thisrun_count * 2; address += thisrun_count * 2; count -= thisrun_count; } target_free_working_area(target, source); target_free_working_area(target, fm3_info->write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); destroy_reg_param(®_params[5]); return retval; } static int fm3_probe(struct flash_bank *bank) { struct fm3_flash_bank *fm3_info = bank->driver_priv; uint16_t num_pages; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } num_pages = 6; /* max number of Flash pages for malloc */ fm3_info->probed = 0; bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); bank->base = 0x00000000; num_pages = 2; /* start with smallest Flash pages number */ bank->size = 32 * 1024; /* bytes */ bank->sectors[0].offset = 0; bank->sectors[0].size = 16 * 1024; bank->sectors[0].is_erased = -1; bank->sectors[0].is_protected = -1; bank->sectors[1].offset = 0x4000; bank->sectors[1].size = 16 * 1024; bank->sectors[1].is_erased = -1; bank->sectors[1].is_protected = -1; if ((fm3_info->variant == mb9bfxx1) || (fm3_info->variant == mb9afxx1)) { num_pages = 3; bank->size = 64 * 1024; /* bytes */ bank->num_sectors = num_pages; bank->sectors[2].offset = 0x8000; bank->sectors[2].size = 32 * 1024; bank->sectors[2].is_erased = -1; bank->sectors[2].is_protected = -1; } if ((fm3_info->variant == mb9bfxx2) || (fm3_info->variant == mb9bfxx4) || (fm3_info->variant == mb9bfxx5) || (fm3_info->variant == mb9bfxx6) || (fm3_info->variant == mb9afxx2) || (fm3_info->variant == mb9afxx4) || (fm3_info->variant == mb9afxx5) || (fm3_info->variant == mb9afxx6)) { num_pages = 3; bank->size = 128 * 1024; /* bytes */ bank->num_sectors = num_pages; bank->sectors[2].offset = 0x8000; bank->sectors[2].size = 96 * 1024; bank->sectors[2].is_erased = -1; bank->sectors[2].is_protected = -1; } if ((fm3_info->variant == mb9bfxx4) || (fm3_info->variant == mb9bfxx5) || (fm3_info->variant == mb9bfxx6) || (fm3_info->variant == mb9afxx4) || (fm3_info->variant == mb9afxx5) || (fm3_info->variant == mb9afxx6)) { num_pages = 4; bank->size = 256 * 1024; /* bytes */ bank->num_sectors = num_pages; bank->sectors[3].offset = 0x20000; bank->sectors[3].size = 128 * 1024; bank->sectors[3].is_erased = -1; bank->sectors[3].is_protected = -1; } if ((fm3_info->variant == mb9bfxx5) || (fm3_info->variant == mb9bfxx6) || (fm3_info->variant == mb9afxx5) || (fm3_info->variant == mb9afxx6)) { num_pages = 5; bank->size = 384 * 1024; /* bytes */ bank->num_sectors = num_pages; bank->sectors[4].offset = 0x40000; bank->sectors[4].size = 128 * 1024; bank->sectors[4].is_erased = -1; bank->sectors[4].is_protected = -1; } if ((fm3_info->variant == mb9bfxx6) || (fm3_info->variant == mb9afxx6)) { num_pages = 6; bank->size = 512 * 1024; /* bytes */ bank->num_sectors = num_pages; bank->sectors[5].offset = 0x60000; bank->sectors[5].size = 128 * 1024; bank->sectors[5].is_erased = -1; bank->sectors[5].is_protected = -1; } fm3_info->probed = 1; return ERROR_OK; } static int fm3_auto_probe(struct flash_bank *bank) { struct fm3_flash_bank *fm3_info = bank->driver_priv; if (fm3_info->probed) return ERROR_OK; return fm3_probe(bank); } static int fm3_info_cmd(struct flash_bank *bank, char *buf, int buf_size) { snprintf(buf, buf_size, "Fujitsu fm3 Device does not support Chip-ID (Type unknown)"); return ERROR_OK; } static int fm3_chip_erase(struct flash_bank *bank) { struct target *target = bank->target; struct fm3_flash_bank *fm3_info = bank->driver_priv; int retval = ERROR_OK; uint32_t u32DummyRead; uint32_t u32FlashType; uint32_t u32FlashSeqAddress1; uint32_t u32FlashSeqAddress2; u32FlashType = (uint32_t) fm3_info->flashtype; if (u32FlashType == fm3_flash_type1) { LOG_INFO("*** Erasing mb9bfxxx type"); u32FlashSeqAddress1 = 0x00001550; u32FlashSeqAddress2 = 0x00000AA8; } else if (u32FlashType == fm3_flash_type2) { LOG_INFO("*** Erasing mb9afxxx type"); u32FlashSeqAddress1 = 0x00000AA8; u32FlashSeqAddress2 = 0x00000554; } else { LOG_ERROR("Flash/Device type unknown!"); return ERROR_FLASH_OPERATION_FAILED; } if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } LOG_INFO("Fujitsu MB9[AB]xxx: Chip Erase ... (may take several seconds)"); /* Implement Flash chip erase (mass erase) completely on host */ /* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash access) */ retval = target_write_u32(target, 0x40000000, 0x0001); if (retval != ERROR_OK) return retval; /* dummy read of FASZR */ retval = target_read_u32(target, 0x40000000, &u32DummyRead); if (retval != ERROR_OK) return retval; /* Flash unlock sequence */ retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress1, 0x0080); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055); if (retval != ERROR_OK) return retval; /* Chip Erase command (0x0010) */ retval = target_write_u16(target, u32FlashSeqAddress1, 0x0010); if (retval != ERROR_OK) return retval; retval = fm3_busy_wait(target, u32FlashSeqAddress2, 20000); /* 20s timeout */ if (retval != ERROR_OK) return retval; /* FASZR = 0x02, Re-enables CPU Run Mode (32-bit Flash access) */ retval = target_write_u32(target, 0x40000000, 0x0002); if (retval != ERROR_OK) return retval; /* dummy read of FASZR */ retval = target_read_u32(target, 0x40000000, &u32DummyRead); return retval; } COMMAND_HANDLER(fm3_handle_chip_erase_command) { int i; if (CMD_ARGC < 1) { command_print(CMD_CTX, "fm3 chip_erase "); return ERROR_OK; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; if (fm3_chip_erase(bank) == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_erased = 1; command_print(CMD_CTX, "fm3 chip erase complete"); } else { command_print(CMD_CTX, "fm3 chip erase failed"); } return ERROR_OK; } static const struct command_registration fm3_exec_command_handlers[] = { { .name = "chip_erase", .handler = fm3_handle_chip_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire Flash device.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration fm3_command_handlers[] = { { .name = "fm3", .mode = COMMAND_ANY, .help = "fm3 Flash command group", .chain = fm3_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver fm3_flash = { .name = "fm3", .commands = fm3_command_handlers, .flash_bank_command = fm3_flash_bank_command, .erase = fm3_erase, .write = fm3_write_block, .probe = fm3_probe, .auto_probe = fm3_auto_probe, .erase_check = default_flash_mem_blank_check, .info = fm3_info_cmd, };