/*************************************************************************** * Copyright (C) 2011 by Mathias Kuester * * kesmtp@freenet.de * * * * Copyright (C) 2011 sleep(5) ltd * * tomas@sleepfive.com * * * * Copyright (C) 2012 by Christopher D. Kilgour * * techie at whiterocker.com * * * * Copyright (C) 2013 Nemui Trinomius * * nemuisan_kawausogasuki@live.jp * * * * Copyright (C) 2015 Tomas Vanek * * vanekt@fbl.cz * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "jtag/interface.h" #include "imp.h" #include #include #include #include #include #include /* * Implementation Notes * * The persistent memories in the Kinetis chip families K10 through * K70 are all manipulated with the Flash Memory Module. Some * variants call this module the FTFE, others call it the FTFL. To * indicate that both are considered here, we use FTFX. * * Within the module, according to the chip variant, the persistent * memory is divided into what Freescale terms Program Flash, FlexNVM, * and FlexRAM. All chip variants have Program Flash. Some chip * variants also have FlexNVM and FlexRAM, which always appear * together. * * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map * each block to a separate bank. Each block size varies by chip and * may be determined by the read-only SIM_FCFG1 register. The sector * size within each bank/block varies by chip, and may be 1, 2 or 4k. * The sector size may be different for flash and FlexNVM. * * The first half of the flash (1 or 2 blocks) is always Program Flash * and always starts at address 0x00000000. The "PFLSH" flag, bit 23 * of the read-only SIM_FCFG2 register, determines whether the second * half of the flash is also Program Flash or FlexNVM+FlexRAM. When * PFLSH is set, the second from the first half. When PFLSH is clear, * the second half of flash is FlexNVM and always starts at address * 0x10000000. FlexRAM, which is also present when PFLSH is clear, * always starts at address 0x14000000. * * The Flash Memory Module provides a register set where flash * commands are loaded to perform flash operations like erase and * program. Different commands are available depending on whether * Program Flash or FlexNVM/FlexRAM is being manipulated. Although * the commands used are quite consistent between flash blocks, the * parameters they accept differ according to the flash sector size. * */ /* Addressess */ #define FCF_ADDRESS 0x00000400 #define FCF_FPROT 0x8 #define FCF_FSEC 0xc #define FCF_FOPT 0xd #define FCF_FDPROT 0xf #define FCF_SIZE 0x10 #define FLEXRAM 0x14000000 #define MSCM_OCMDR0 0x40001400 #define FMC_PFB01CR 0x4001f004 #define FTFx_FSTAT 0x40020000 #define FTFx_FCNFG 0x40020001 #define FTFx_FCCOB3 0x40020004 #define FTFx_FPROT3 0x40020010 #define FTFx_FDPROT 0x40020017 #define SIM_BASE 0x40047000 #define SIM_BASE_KL28 0x40074000 #define SIM_COPC 0x40048100 /* SIM_COPC does not exist on devices with changed SIM_BASE */ #define WDOG_BASE 0x40052000 #define WDOG32_KE1X 0x40052000 #define WDOG32_KL28 0x40076000 #define SMC_PMCTRL 0x4007E001 #define SMC_PMSTAT 0x4007E003 #define SMC32_PMCTRL 0x4007E00C #define SMC32_PMSTAT 0x4007E014 #define MCM_PLACR 0xF000300C /* Offsets */ #define SIM_SOPT1_OFFSET 0x0000 #define SIM_SDID_OFFSET 0x1024 #define SIM_FCFG1_OFFSET 0x104c #define SIM_FCFG2_OFFSET 0x1050 #define WDOG_STCTRLH_OFFSET 0 #define WDOG32_CS_OFFSET 0 /* Values */ #define PM_STAT_RUN 0x01 #define PM_STAT_VLPR 0x04 #define PM_CTRL_RUNM_RUN 0x00 /* Commands */ #define FTFx_CMD_BLOCKSTAT 0x00 #define FTFx_CMD_SECTSTAT 0x01 #define FTFx_CMD_LWORDPROG 0x06 #define FTFx_CMD_SECTERASE 0x09 #define FTFx_CMD_SECTWRITE 0x0b #define FTFx_CMD_MASSERASE 0x44 #define FTFx_CMD_PGMPART 0x80 #define FTFx_CMD_SETFLEXRAM 0x81 /* The older Kinetis K series uses the following SDID layout : * Bit 31-16 : 0 * Bit 15-12 : REVID * Bit 11-7 : DIEID * Bit 6-4 : FAMID * Bit 3-0 : PINID * * The newer Kinetis series uses the following SDID layout : * Bit 31-28 : FAMID * Bit 27-24 : SUBFAMID * Bit 23-20 : SERIESID * Bit 19-16 : SRAMSIZE * Bit 15-12 : REVID * Bit 6-4 : Reserved (0) * Bit 3-0 : PINID * * We assume that if bits 31-16 are 0 then it's an older * K-series MCU. */ #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF #define KINETIS_SDID_DIEID_MASK 0x00000F80 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */ #define KINETIS_SDID_DIEID_K22FN256 0x00000A80 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80 #define KINETIS_SDID_DIEID_K24FN256 0x00000700 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */ /* We can't rely solely on the FAMID field to determine the MCU * type since some FAMID values identify multiple MCUs with * different flash sector sizes (K20 and K22 for instance). * Therefore we combine it with the DIEID bits which may possibly * break if Freescale bumps the DIEID for a particular MCU. */ #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0 #define KINETIS_K_SDID_K10_M50 0x00000000 #define KINETIS_K_SDID_K10_M72 0x00000080 #define KINETIS_K_SDID_K10_M100 0x00000100 #define KINETIS_K_SDID_K10_M120 0x00000180 #define KINETIS_K_SDID_K11 0x00000220 #define KINETIS_K_SDID_K12 0x00000200 #define KINETIS_K_SDID_K20_M50 0x00000010 #define KINETIS_K_SDID_K20_M72 0x00000090 #define KINETIS_K_SDID_K20_M100 0x00000110 #define KINETIS_K_SDID_K20_M120 0x00000190 #define KINETIS_K_SDID_K21_M50 0x00000230 #define KINETIS_K_SDID_K21_M120 0x00000330 #define KINETIS_K_SDID_K22_M50 0x00000210 #define KINETIS_K_SDID_K22_M120 0x00000310 #define KINETIS_K_SDID_K30_M72 0x000000A0 #define KINETIS_K_SDID_K30_M100 0x00000120 #define KINETIS_K_SDID_K40_M72 0x000000B0 #define KINETIS_K_SDID_K40_M100 0x00000130 #define KINETIS_K_SDID_K50_M72 0x000000E0 #define KINETIS_K_SDID_K51_M72 0x000000F0 #define KINETIS_K_SDID_K53 0x00000170 #define KINETIS_K_SDID_K60_M100 0x00000140 #define KINETIS_K_SDID_K60_M150 0x000001C0 #define KINETIS_K_SDID_K70_M150 0x000001D0 #define KINETIS_SDID_SERIESID_MASK 0x00F00000 #define KINETIS_SDID_SERIESID_K 0x00000000 #define KINETIS_SDID_SERIESID_KL 0x00100000 #define KINETIS_SDID_SERIESID_KE 0x00200000 #define KINETIS_SDID_SERIESID_KW 0x00500000 #define KINETIS_SDID_SERIESID_KV 0x00600000 #define KINETIS_SDID_SUBFAMID_SHIFT 24 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000 #define KINETIS_SDID_FAMILYID_SHIFT 28 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000 #define KINETIS_SDID_FAMILYID_K0X 0x00000000 #define KINETIS_SDID_FAMILYID_K1X 0x10000000 #define KINETIS_SDID_FAMILYID_K2X 0x20000000 #define KINETIS_SDID_FAMILYID_K3X 0x30000000 #define KINETIS_SDID_FAMILYID_K4X 0x40000000 #define KINETIS_SDID_FAMILYID_K5X 0x50000000 #define KINETIS_SDID_FAMILYID_K6X 0x60000000 #define KINETIS_SDID_FAMILYID_K7X 0x70000000 #define KINETIS_SDID_FAMILYID_K8X 0x80000000 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000 /* The field originally named DIEID has new name/meaning on KE1x */ #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK #define KINETIS_SDID_PROJECTID_KE1xF 0x00000080 #define KINETIS_SDID_PROJECTID_KE1xZ 0x00000100 struct kinetis_flash_bank { struct kinetis_chip *k_chip; bool probed; unsigned bank_number; /* bank number in particular chip */ struct flash_bank *bank; uint32_t sector_size; uint32_t protection_size; uint32_t prog_base; /* base address for FTFx operations */ /* usually same as bank->base for pflash, differs for FlexNVM */ uint32_t protection_block; /* number of first protection block in this bank */ enum { FC_AUTO = 0, FC_PFLASH, FC_FLEX_NVM, FC_FLEX_RAM, } flash_class; }; #define KINETIS_MAX_BANKS 4u struct kinetis_chip { struct target *target; bool probed; uint32_t sim_sdid; uint32_t sim_fcfg1; uint32_t sim_fcfg2; uint32_t fcfg2_maxaddr0_shifted; uint32_t fcfg2_maxaddr1_shifted; unsigned num_pflash_blocks, num_nvm_blocks; unsigned pflash_sector_size, nvm_sector_size; unsigned max_flash_prog_size; uint32_t pflash_base; uint32_t pflash_size; uint32_t nvm_base; uint32_t nvm_size; /* whole FlexNVM */ uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */ uint32_t progr_accel_ram; uint32_t sim_base; enum { FS_PROGRAM_SECTOR = 1, FS_PROGRAM_LONGWORD = 2, FS_PROGRAM_PHRASE = 4, /* Unsupported */ FS_NO_CMD_BLOCKSTAT = 0x40, FS_WIDTH_256BIT = 0x80, FS_ECC = 0x100, } flash_support; enum { KINETIS_CACHE_NONE, KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */ KINETIS_CACHE_L, /* invalidate using MCM->PLACR */ KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */ } cache_type; enum { KINETIS_WDOG_NONE, KINETIS_WDOG_K, KINETIS_WDOG_COP, KINETIS_WDOG32_KE1X, KINETIS_WDOG32_KL28, } watchdog_type; enum { KINETIS_SMC, KINETIS_SMC32, } sysmodectrlr_type; char name[40]; unsigned num_banks; struct kinetis_flash_bank banks[KINETIS_MAX_BANKS]; }; struct kinetis_type { uint32_t sdid; char *name; }; static const struct kinetis_type kinetis_types_old[] = { { KINETIS_K_SDID_K10_M50, "MK10D%s5" }, { KINETIS_K_SDID_K10_M72, "MK10D%s7" }, { KINETIS_K_SDID_K10_M100, "MK10D%s10" }, { KINETIS_K_SDID_K10_M120, "MK10F%s12" }, { KINETIS_K_SDID_K11, "MK11D%s5" }, { KINETIS_K_SDID_K12, "MK12D%s5" }, { KINETIS_K_SDID_K20_M50, "MK20D%s5" }, { KINETIS_K_SDID_K20_M72, "MK20D%s7" }, { KINETIS_K_SDID_K20_M100, "MK20D%s10" }, { KINETIS_K_SDID_K20_M120, "MK20F%s12" }, { KINETIS_K_SDID_K21_M50, "MK21D%s5" }, { KINETIS_K_SDID_K21_M120, "MK21F%s12" }, { KINETIS_K_SDID_K22_M50, "MK22D%s5" }, { KINETIS_K_SDID_K22_M120, "MK22F%s12" }, { KINETIS_K_SDID_K30_M72, "MK30D%s7" }, { KINETIS_K_SDID_K30_M100, "MK30D%s10" }, { KINETIS_K_SDID_K40_M72, "MK40D%s7" }, { KINETIS_K_SDID_K40_M100, "MK40D%s10" }, { KINETIS_K_SDID_K50_M72, "MK50D%s7" }, { KINETIS_K_SDID_K51_M72, "MK51D%s7" }, { KINETIS_K_SDID_K53, "MK53D%s10" }, { KINETIS_K_SDID_K60_M100, "MK60D%s10" }, { KINETIS_K_SDID_K60_M150, "MK60F%s15" }, { KINETIS_K_SDID_K70_M150, "MK70F%s15" }, }; #define MDM_AP 1 #define MDM_REG_STAT 0x00 #define MDM_REG_CTRL 0x04 #define MDM_REG_ID 0xfc #define MDM_STAT_FMEACK (1<<0) #define MDM_STAT_FREADY (1<<1) #define MDM_STAT_SYSSEC (1<<2) #define MDM_STAT_SYSRES (1<<3) #define MDM_STAT_FMEEN (1<<5) #define MDM_STAT_BACKDOOREN (1<<6) #define MDM_STAT_LPEN (1<<7) #define MDM_STAT_VLPEN (1<<8) #define MDM_STAT_LLSMODEXIT (1<<9) #define MDM_STAT_VLLSXMODEXIT (1<<10) #define MDM_STAT_CORE_HALTED (1<<16) #define MDM_STAT_CORE_SLEEPDEEP (1<<17) #define MDM_STAT_CORESLEEPING (1<<18) #define MDM_CTRL_FMEIP (1<<0) #define MDM_CTRL_DBG_DIS (1<<1) #define MDM_CTRL_DBG_REQ (1<<2) #define MDM_CTRL_SYS_RES_REQ (1<<3) #define MDM_CTRL_CORE_HOLD_RES (1<<4) #define MDM_CTRL_VLLSX_DBG_REQ (1<<5) #define MDM_CTRL_VLLSX_DBG_ACK (1<<6) #define MDM_CTRL_VLLSX_STAT_ACK (1<<7) #define MDM_ACCESS_TIMEOUT 500 /* msec */ static bool allow_fcf_writes; static uint8_t fcf_fopt = 0xff; static bool fcf_fopt_configured; static bool create_banks; struct flash_driver kinetis_flash; static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count); static int kinetis_probe_chip(struct kinetis_chip *k_chip); static int kinetis_auto_probe(struct flash_bank *bank); static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value) { int retval; LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value); retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value); if (retval != ERROR_OK) { LOG_DEBUG("MDM: failed to queue a write request"); return retval; } retval = dap_run(dap); if (retval != ERROR_OK) { LOG_DEBUG("MDM: dap_run failed"); return retval; } return ERROR_OK; } static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result) { int retval; retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result); if (retval != ERROR_OK) { LOG_DEBUG("MDM: failed to queue a read request"); return retval; } retval = dap_run(dap); if (retval != ERROR_OK) { LOG_DEBUG("MDM: dap_run failed"); return retval; } LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result); return ERROR_OK; } static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg, uint32_t mask, uint32_t value, uint32_t timeout_ms) { uint32_t val; int retval; int64_t ms_timeout = timeval_ms() + timeout_ms; do { retval = kinetis_mdm_read_register(dap, reg, &val); if (retval != ERROR_OK || (val & mask) == value) return retval; alive_sleep(1); } while (timeval_ms() < ms_timeout); LOG_DEBUG("MDM: polling timed out"); return ERROR_FAIL; } /* * This command can be used to break a watchdog reset loop when * connecting to an unsecured target. Unlike other commands, halt will * automatically retry as it does not know how far into the boot process * it is when the command is called. */ COMMAND_HANDLER(kinetis_mdm_halt) { struct target *target = get_current_target(CMD_CTX); struct cortex_m_common *cortex_m = target_to_cm(target); struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; int retval; int tries = 0; uint32_t stat; int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT; if (!dap) { LOG_ERROR("Cannot perform halt with a high-level adapter"); return ERROR_FAIL; } while (true) { tries++; kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES); alive_sleep(1); retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat); if (retval != ERROR_OK) { LOG_DEBUG("MDM: failed to read MDM_REG_STAT"); continue; } /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of * reset with flash ready and without security */ if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES)) == (MDM_STAT_FREADY | MDM_STAT_SYSRES)) break; if (timeval_ms() >= ms_timeout) { LOG_ERROR("MDM: halt timed out"); return ERROR_FAIL; } } LOG_DEBUG("MDM: halt succeded after %d attempts.", tries); target_poll(target); /* enable polling in case kinetis_check_flash_security_status disabled it */ jtag_poll_set_enabled(true); alive_sleep(100); target->reset_halt = true; target->type->assert_reset(target); retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); if (retval != ERROR_OK) { LOG_ERROR("MDM: failed to clear MDM_REG_CTRL"); return retval; } target->type->deassert_reset(target); return ERROR_OK; } COMMAND_HANDLER(kinetis_mdm_reset) { struct target *target = get_current_target(CMD_CTX); struct cortex_m_common *cortex_m = target_to_cm(target); struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; int retval; if (!dap) { LOG_ERROR("Cannot perform reset with a high-level adapter"); return ERROR_FAIL; } retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ); if (retval != ERROR_OK) { LOG_ERROR("MDM: failed to write MDM_REG_CTRL"); return retval; } retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500); if (retval != ERROR_OK) { LOG_ERROR("MDM: failed to assert reset"); return retval; } retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); if (retval != ERROR_OK) { LOG_ERROR("MDM: failed to clear MDM_REG_CTRL"); return retval; } return ERROR_OK; } /* * This function implements the procedure to mass erase the flash via * SWD/JTAG on Kinetis K and L series of devices as it is described in * AN4835 "Production Flash Programming Best Practices for Kinetis K- * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop, * the core remains halted after this function completes as suggested * by the application note. */ COMMAND_HANDLER(kinetis_mdm_mass_erase) { struct target *target = get_current_target(CMD_CTX); struct cortex_m_common *cortex_m = target_to_cm(target); struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; if (!dap) { LOG_ERROR("Cannot perform mass erase with a high-level adapter"); return ERROR_FAIL; } int retval; /* * ... Power on the processor, or if power has already been * applied, assert the RESET pin to reset the processor. For * devices that do not have a RESET pin, write the System * Reset Request bit in the MDM-AP control register after * establishing communication... */ /* assert SRST if configured */ bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST; if (has_srst) adapter_assert_reset(); retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ); if (retval != ERROR_OK && !has_srst) { LOG_ERROR("MDM: failed to assert reset"); goto deassert_reset_and_exit; } /* * ... Read the MDM-AP status register repeatedly and wait for * stable conditions suitable for mass erase: * - mass erase is enabled * - flash is ready * - reset is finished * * Mass erase is started as soon as all conditions are met in 32 * subsequent status reads. * * In case of not stable conditions (RESET/WDOG loop in secured device) * the user is asked for manual pressing of RESET button * as a last resort. */ int cnt_mass_erase_disabled = 0; int cnt_ready = 0; int64_t ms_start = timeval_ms(); bool man_reset_requested = false; do { uint32_t stat = 0; int64_t ms_elapsed = timeval_ms() - ms_start; if (!man_reset_requested && ms_elapsed > 100) { LOG_INFO("MDM: Press RESET button now if possible."); man_reset_requested = true; } if (ms_elapsed > 3000) { LOG_ERROR("MDM: waiting for mass erase conditions timed out."); LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset."); LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry."); goto deassert_reset_and_exit; } retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat); if (retval != ERROR_OK) { cnt_ready = 0; continue; } if (!(stat & MDM_STAT_FMEEN)) { cnt_ready = 0; cnt_mass_erase_disabled++; if (cnt_mass_erase_disabled > 10) { LOG_ERROR("MDM: mass erase is disabled"); goto deassert_reset_and_exit; } continue; } if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY) cnt_ready++; else cnt_ready = 0; } while (cnt_ready < 32); /* * ... Write the MDM-AP control register to set the Flash Mass * Erase in Progress bit. This will start the mass erase * process... */ retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP); if (retval != ERROR_OK) { LOG_ERROR("MDM: failed to start mass erase"); goto deassert_reset_and_exit; } /* * ... Read the MDM-AP control register until the Flash Mass * Erase in Progress bit clears... * Data sheed defines erase time <3.6 sec/512kB flash block. * The biggest device has 4 pflash blocks => timeout 16 sec. */ retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000); if (retval != ERROR_OK) { LOG_ERROR("MDM: mass erase timeout"); goto deassert_reset_and_exit; } target_poll(target); /* enable polling in case kinetis_check_flash_security_status disabled it */ jtag_poll_set_enabled(true); alive_sleep(100); target->reset_halt = true; target->type->assert_reset(target); /* * ... Negate the RESET signal or clear the System Reset Request * bit in the MDM-AP control register. */ retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); if (retval != ERROR_OK) LOG_ERROR("MDM: failed to clear MDM_REG_CTRL"); target->type->deassert_reset(target); return retval; deassert_reset_and_exit: kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0); if (has_srst) adapter_deassert_reset(); return retval; } static const uint32_t kinetis_known_mdm_ids[] = { 0x001C0000, /* Kinetis-K Series */ 0x001C0020, /* Kinetis-L/M/V/E Series */ 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */ }; /* * This function implements the procedure to connect to * SWD/JTAG on Kinetis K and L series of devices as it is described in * AN4835 "Production Flash Programming Best Practices for Kinetis K- * and L-series MCUs" Section 4.1.1 */ COMMAND_HANDLER(kinetis_check_flash_security_status) { struct target *target = get_current_target(CMD_CTX); struct cortex_m_common *cortex_m = target_to_cm(target); struct adiv5_dap *dap = cortex_m->armv7m.arm.dap; if (!dap) { LOG_WARNING("Cannot check flash security status with a high-level adapter"); return ERROR_OK; } if (!dap->ops) return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */ uint32_t val; int retval; /* * ... The MDM-AP ID register can be read to verify that the * connection is working correctly... */ retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val); if (retval != ERROR_OK) { LOG_ERROR("MDM: failed to read ID register"); return ERROR_OK; } if (val == 0) return ERROR_OK; /* dap not yet initialised */ bool found = false; for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) { if (val == kinetis_known_mdm_ids[i]) { found = true; break; } } if (!found) LOG_WARNING("MDM: unknown ID %08" PRIX32, val); /* * ... Read the System Security bit to determine if security is enabled. * If System Security = 0, then proceed. If System Security = 1, then * communication with the internals of the processor, including the * flash, will not be possible without issuing a mass erase command or * unsecuring the part through other means (backdoor key unlock)... */ retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val); if (retval != ERROR_OK) { LOG_ERROR("MDM: failed to read MDM_REG_STAT"); return ERROR_OK; } /* * System Security bit is also active for short time during reset. * If a MCU has blank flash and runs in RESET/WDOG loop, * System Security bit is active most of time! * We should observe Flash Ready bit and read status several times * to avoid false detection of secured MCU */ int secured_score = 0, flash_not_ready_score = 0; if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) { uint32_t stats[32]; int i; for (i = 0; i < 32; i++) { stats[i] = MDM_STAT_FREADY; dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]); } retval = dap_run(dap); if (retval != ERROR_OK) { LOG_DEBUG("MDM: dap_run failed when validating secured state"); return ERROR_OK; } for (i = 0; i < 32; i++) { if (stats[i] & MDM_STAT_SYSSEC) secured_score++; if (!(stats[i] & MDM_STAT_FREADY)) flash_not_ready_score++; } } if (flash_not_ready_score <= 8 && secured_score > 24) { jtag_poll_set_enabled(false); LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********"); LOG_WARNING("**** ****"); LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****"); LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****"); LOG_WARNING("**** interface will NOT work. In order to restore its ****"); LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****"); LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****"); LOG_WARNING("**** ****"); LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********"); } else if (flash_not_ready_score > 24) { jtag_poll_set_enabled(false); LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****"); LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****"); LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****"); LOG_WARNING("**** and configured, use 'reset halt' ****"); LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****"); LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****"); } else { LOG_INFO("MDM: Chip is unsecured. Continuing."); jtag_poll_set_enabled(true); } return ERROR_OK; } static struct kinetis_chip *kinetis_get_chip(struct target *target) { struct flash_bank *bank_iter; struct kinetis_flash_bank *k_bank; /* iterate over all kinetis banks */ for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) { if (bank_iter->driver != &kinetis_flash || bank_iter->target != target) continue; k_bank = bank_iter->driver_priv; if (!k_bank) continue; if (k_bank->k_chip) return k_bank->k_chip; } return NULL; } static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[]) { int i; for (i = 0; i < argc; i++) { if (strcmp(argv[i], "-sim-base") == 0) { if (i + 1 < argc) k_chip->sim_base = strtoul(argv[++i], NULL, 0); } else LOG_ERROR("Unsupported flash bank option %s", argv[i]); } return ERROR_OK; } FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command) { struct target *target = bank->target; struct kinetis_chip *k_chip; struct kinetis_flash_bank *k_bank; int retval; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; LOG_INFO("add flash_bank kinetis %s", bank->name); k_chip = kinetis_get_chip(target); if (k_chip == NULL) { k_chip = calloc(sizeof(struct kinetis_chip), 1); if (k_chip == NULL) { LOG_ERROR("No memory"); return ERROR_FAIL; } k_chip->target = target; /* only the first defined bank can define chip options */ retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6); if (retval != ERROR_OK) return retval; } if (k_chip->num_banks >= KINETIS_MAX_BANKS) { LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS); return ERROR_FAIL; } bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]); k_bank->k_chip = k_chip; k_bank->bank_number = k_chip->num_banks; k_bank->bank = bank; k_chip->num_banks++; return ERROR_OK; } static void kinetis_free_driver_priv(struct flash_bank *bank) { struct kinetis_flash_bank *k_bank = bank->driver_priv; if (k_bank == NULL) return; struct kinetis_chip *k_chip = k_bank->k_chip; if (k_chip == NULL) return; k_chip->num_banks--; if (k_chip->num_banks == 0) free(k_chip); } static int kinetis_create_missing_banks(struct kinetis_chip *k_chip) { unsigned bank_idx; unsigned num_blocks; struct kinetis_flash_bank *k_bank; struct flash_bank *bank; char base_name[69], name[80], num[4]; char *class, *p; num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks; if (num_blocks > KINETIS_MAX_BANKS) { LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS); return ERROR_FAIL; } bank = k_chip->banks[0].bank; if (bank && bank->name) { strncpy(base_name, bank->name, sizeof(base_name) - 1); base_name[sizeof(base_name) - 1] = '\0'; p = strstr(base_name, ".pflash"); if (p) { *p = '\0'; if (k_chip->num_pflash_blocks > 1) { /* rename first bank if numbering is needed */ snprintf(name, sizeof(name), "%s.pflash0", base_name); free(bank->name); bank->name = strdup(name); } } } else { strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1); base_name[sizeof(base_name) - 1] = '\0'; p = strstr(base_name, ".cpu"); if (p) *p = '\0'; } for (bank_idx = 1; bank_idx < num_blocks; bank_idx++) { k_bank = &(k_chip->banks[bank_idx]); bank = k_bank->bank; if (bank) continue; num[0] = '\0'; if (bank_idx < k_chip->num_pflash_blocks) { class = "pflash"; if (k_chip->num_pflash_blocks > 1) snprintf(num, sizeof(num), "%u", bank_idx); } else { class = "flexnvm"; if (k_chip->num_nvm_blocks > 1) snprintf(num, sizeof(num), "%u", bank_idx - k_chip->num_pflash_blocks); } bank = calloc(sizeof(struct flash_bank), 1); if (bank == NULL) return ERROR_FAIL; bank->target = k_chip->target; bank->driver = &kinetis_flash; bank->default_padded_value = bank->erased_value = 0xff; snprintf(name, sizeof(name), "%s.%s%s", base_name, class, num); bank->name = strdup(name); bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]); k_bank->k_chip = k_chip; k_bank->bank_number = bank_idx; k_bank->bank = bank; if (k_chip->num_banks <= bank_idx) k_chip->num_banks = bank_idx + 1; flash_bank_add(bank); } return ERROR_OK; } static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base) { struct working_area *wdog_algorithm; struct armv7m_algorithm armv7m_info; struct reg_param reg_params[1]; int retval; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = target_alloc_working_area(target, code_size, &wdog_algorithm); if (retval != ERROR_OK) return retval; retval = target_write_buffer(target, wdog_algorithm->address, code_size, code); if (retval == ERROR_OK) { armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_IN); buf_set_u32(reg_params[0].value, 0, 32, wdog_base); retval = target_run_algorithm(target, 0, NULL, 1, reg_params, wdog_algorithm->address, wdog_algorithm->address + code_size - 2, 500, &armv7m_info); destroy_reg_param(®_params[0]); if (retval != ERROR_OK) LOG_ERROR("Error executing Kinetis WDOG unlock algorithm"); } target_free_working_area(target, wdog_algorithm); return retval; } /* Disable the watchdog on Kinetis devices * Standard Kx WDOG peripheral checks timing and therefore requires to run algo. */ static int kinetis_disable_wdog_kx(struct target *target) { const uint32_t wdog_base = WDOG_BASE; uint16_t wdog; int retval; static const uint8_t kinetis_unlock_wdog_code[] = { #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc" }; retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog); if (retval != ERROR_OK) return retval; if ((wdog & 0x1) == 0) { /* watchdog already disabled */ return ERROR_OK; } LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog); retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base); if (retval != ERROR_OK) return retval; retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog); if (retval != ERROR_OK) return retval; LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog); return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK; } static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base) { uint32_t wdog_cs; int retval; static const uint8_t kinetis_unlock_wdog_code[] = { #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc" }; retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs); if (retval != ERROR_OK) return retval; if ((wdog_cs & 0x80) == 0) return ERROR_OK; /* watchdog already disabled */ LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs); retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs); if (retval != ERROR_OK) return retval; if ((wdog_cs & 0x80) == 0) return ERROR_OK; /* watchdog disabled successfully */ LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs); return ERROR_FAIL; } static int kinetis_disable_wdog(struct kinetis_chip *k_chip) { struct target *target = k_chip->target; uint8_t sim_copc; int retval; if (!k_chip->probed) { retval = kinetis_probe_chip(k_chip); if (retval != ERROR_OK) return retval; } switch (k_chip->watchdog_type) { case KINETIS_WDOG_K: return kinetis_disable_wdog_kx(target); case KINETIS_WDOG_COP: retval = target_read_u8(target, SIM_COPC, &sim_copc); if (retval != ERROR_OK) return retval; if ((sim_copc & 0xc) == 0) return ERROR_OK; /* watchdog already disabled */ LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc); retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc); if (retval != ERROR_OK) return retval; retval = target_read_u8(target, SIM_COPC, &sim_copc); if (retval != ERROR_OK) return retval; if ((sim_copc & 0xc) == 0) return ERROR_OK; /* watchdog disabled successfully */ LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc); return ERROR_FAIL; case KINETIS_WDOG32_KE1X: return kinetis_disable_wdog32(target, WDOG32_KE1X); case KINETIS_WDOG32_KL28: return kinetis_disable_wdog32(target, WDOG32_KL28); default: return ERROR_OK; } } COMMAND_HANDLER(kinetis_disable_wdog_handler) { int result; struct target *target = get_current_target(CMD_CTX); struct kinetis_chip *k_chip = kinetis_get_chip(target); if (k_chip == NULL) return ERROR_FAIL; if (CMD_ARGC > 0) return ERROR_COMMAND_SYNTAX_ERROR; result = kinetis_disable_wdog(k_chip); return result; } static int kinetis_ftfx_decode_error(uint8_t fstat) { if (fstat & 0x20) { LOG_ERROR("Flash operation failed, illegal command"); return ERROR_FLASH_OPER_UNSUPPORTED; } else if (fstat & 0x10) LOG_ERROR("Flash operation failed, protection violated"); else if (fstat & 0x40) LOG_ERROR("Flash operation failed, read collision"); else if (fstat & 0x80) return ERROR_OK; else LOG_ERROR("Flash operation timed out"); return ERROR_FLASH_OPERATION_FAILED; } static int kinetis_ftfx_clear_error(struct target *target) { /* reset error flags */ return target_write_u8(target, FTFx_FSTAT, 0x70); } static int kinetis_ftfx_prepare(struct target *target) { int result, i; uint8_t fstat; /* wait until busy */ for (i = 0; i < 50; i++) { result = target_read_u8(target, FTFx_FSTAT, &fstat); if (result != ERROR_OK) return result; if (fstat & 0x80) break; } if ((fstat & 0x80) == 0) { LOG_ERROR("Flash controller is busy"); return ERROR_FLASH_OPERATION_FAILED; } if (fstat != 0x80) { /* reset error flags */ result = kinetis_ftfx_clear_error(target); } return result; } /* Kinetis Program-LongWord Microcodes */ static const uint8_t kinetis_flash_write_code[] = { #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc" }; /* Program LongWord Block Write */ static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t wcount) { struct target *target = bank->target; uint32_t buffer_size = 2048; /* Default minimum value */ struct working_area *write_algorithm; struct working_area *source; struct kinetis_flash_bank *k_bank = bank->driver_priv; uint32_t address = k_bank->prog_base + offset; uint32_t end_address; struct reg_param reg_params[5]; struct armv7m_algorithm armv7m_info; int retval; uint8_t fstat; /* Increase buffer_size if needed */ if (buffer_size < (target->working_area_size/2)) buffer_size = (target->working_area_size/2); /* allocate working area with flash programming code */ if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code), &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } retval = target_write_buffer(target, write_algorithm->address, sizeof(kinetis_flash_write_code), kinetis_flash_write_code); if (retval != ERROR_OK) return retval; /* memory buffer */ while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 4; if (buffer_size <= 256) { /* free working area, write algorithm already allocated */ target_free_working_area(target, write_algorithm); LOG_WARNING("No large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* address */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* word count */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); init_reg_param(®_params[3], "r3", 32, PARAM_OUT); init_reg_param(®_params[4], "r4", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, address); buf_set_u32(reg_params[1].value, 0, 32, wcount); buf_set_u32(reg_params[2].value, 0, 32, source->address); buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size); buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT); retval = target_run_flash_async_algorithm(target, buffer, wcount, 4, 0, NULL, 5, reg_params, source->address, source->size, write_algorithm->address, 0, &armv7m_info); if (retval == ERROR_FLASH_OPERATION_FAILED) { end_address = buf_get_u32(reg_params[0].value, 0, 32); LOG_ERROR("Error writing flash at %08" PRIx32, end_address); retval = target_read_u8(target, FTFx_FSTAT, &fstat); if (retval == ERROR_OK) { retval = kinetis_ftfx_decode_error(fstat); /* reset error flags */ target_write_u8(target, FTFx_FSTAT, 0x70); } } else if (retval != ERROR_OK) LOG_ERROR("Error executing kinetis Flash programming algorithm"); target_free_working_area(target, source); target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); return retval; } static int kinetis_protect(struct flash_bank *bank, int set, int first, int last) { int i; if (allow_fcf_writes) { LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!"); return ERROR_FAIL; } if (!bank->prot_blocks || bank->num_prot_blocks == 0) { LOG_ERROR("No protection possible for current bank!"); return ERROR_FLASH_BANK_INVALID; } for (i = first; i < bank->num_prot_blocks && i <= last; i++) bank->prot_blocks[i].is_protected = set; LOG_INFO("Protection bits will be written at the next FCF sector erase or write."); LOG_INFO("Do not issue 'flash info' command until protection is written,"); LOG_INFO("doing so would re-read protection status from MCU."); return ERROR_OK; } static int kinetis_protect_check(struct flash_bank *bank) { struct kinetis_flash_bank *k_bank = bank->driver_priv; int result; int i, b; uint32_t fprot; if (k_bank->flash_class == FC_PFLASH) { /* read protection register */ result = target_read_u32(bank->target, FTFx_FPROT3, &fprot); if (result != ERROR_OK) return result; /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */ } else if (k_bank->flash_class == FC_FLEX_NVM) { uint8_t fdprot; /* read protection register */ result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot); if (result != ERROR_OK) return result; fprot = fdprot; } else { LOG_ERROR("Protection checks for FlexRAM not supported"); return ERROR_FLASH_BANK_INVALID; } b = k_bank->protection_block; for (i = 0; i < bank->num_prot_blocks; i++) { if ((fprot >> b) & 1) bank->prot_blocks[i].is_protected = 0; else bank->prot_blocks[i].is_protected = 1; b++; } return ERROR_OK; } static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf) { uint32_t fprot = 0xffffffff; uint8_t fsec = 0xfe; /* set MCU unsecure */ uint8_t fdprot = 0xff; int i; unsigned bank_idx; unsigned num_blocks; uint32_t pflash_bit; uint8_t dflash_bit; struct flash_bank *bank_iter; struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; memset(fcf, 0xff, FCF_SIZE); pflash_bit = 1; dflash_bit = 1; /* iterate over all kinetis banks */ /* current bank is bank 0, it contains FCF */ num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks; for (bank_idx = 0; bank_idx < num_blocks; bank_idx++) { k_bank = &(k_chip->banks[bank_idx]); bank_iter = k_bank->bank; if (bank_iter == NULL) { LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplette", bank_idx); continue; } kinetis_auto_probe(bank_iter); if (k_bank->flash_class == FC_PFLASH) { for (i = 0; i < bank_iter->num_prot_blocks; i++) { if (bank_iter->prot_blocks[i].is_protected == 1) fprot &= ~pflash_bit; pflash_bit <<= 1; } } else if (k_bank->flash_class == FC_FLEX_NVM) { for (i = 0; i < bank_iter->num_prot_blocks; i++) { if (bank_iter->prot_blocks[i].is_protected == 1) fdprot &= ~dflash_bit; dflash_bit <<= 1; } } } target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot); fcf[FCF_FSEC] = fsec; fcf[FCF_FOPT] = fcf_fopt; fcf[FCF_FDPROT] = fdprot; return ERROR_OK; } static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr, uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7, uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb, uint8_t *ftfx_fstat) { uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd, fccob7, fccob6, fccob5, fccob4, fccobb, fccoba, fccob9, fccob8}; int result; uint8_t fstat; int64_t ms_timeout = timeval_ms() + 250; result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command); if (result != ERROR_OK) return result; /* start command */ result = target_write_u8(target, FTFx_FSTAT, 0x80); if (result != ERROR_OK) return result; /* wait for done */ do { result = target_read_u8(target, FTFx_FSTAT, &fstat); if (result != ERROR_OK) return result; if (fstat & 0x80) break; } while (timeval_ms() < ms_timeout); if (ftfx_fstat) *ftfx_fstat = fstat; if ((fstat & 0xf0) != 0x80) { LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X", fstat, command[3], command[2], command[1], command[0], command[7], command[6], command[5], command[4], command[11], command[10], command[9], command[8]); return kinetis_ftfx_decode_error(fstat); } return ERROR_OK; } static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat) { int result; uint32_t stat32; struct target *target = k_chip->target; switch (k_chip->sysmodectrlr_type) { case KINETIS_SMC: result = target_read_u8(target, SMC_PMSTAT, pmstat); return result; case KINETIS_SMC32: result = target_read_u32(target, SMC32_PMSTAT, &stat32); if (result == ERROR_OK) *pmstat = stat32 & 0xff; return result; } return ERROR_FAIL; } static int kinetis_check_run_mode(struct kinetis_chip *k_chip) { int result, i; uint8_t pmstat; struct target *target; if (k_chip == NULL) { LOG_ERROR("Chip not probed."); return ERROR_FAIL; } target = k_chip->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } result = kinetis_read_pmstat(k_chip, &pmstat); if (result != ERROR_OK) return result; if (pmstat == PM_STAT_RUN) return ERROR_OK; if (pmstat == PM_STAT_VLPR) { /* It is safe to switch from VLPR to RUN mode without changing clock */ LOG_INFO("Switching from VLPR to RUN mode."); switch (k_chip->sysmodectrlr_type) { case KINETIS_SMC: result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN); break; case KINETIS_SMC32: result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN); break; } if (result != ERROR_OK) return result; for (i = 100; i; i--) { result = kinetis_read_pmstat(k_chip, &pmstat); if (result != ERROR_OK) return result; if (pmstat == PM_STAT_RUN) return ERROR_OK; } } LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat); LOG_ERROR("Issue a 'reset init' command."); return ERROR_TARGET_NOT_HALTED; } static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip) { struct target *target = k_chip->target; switch (k_chip->cache_type) { case KINETIS_CACHE_K: target_write_u8(target, FMC_PFB01CR + 2, 0xf0); /* Set CINV_WAY bits - request invalidate of all cache ways */ /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */ break; case KINETIS_CACHE_L: target_write_u8(target, MCM_PLACR + 1, 0x04); /* set bit CFCC - Clear Flash Controller Cache */ break; case KINETIS_CACHE_MSCM: target_write_u32(target, MSCM_OCMDR0, 0x30); /* disable data prefetch and flash speculate */ break; default: break; } } static int kinetis_erase(struct flash_bank *bank, int first, int last) { int result, i; struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; result = kinetis_check_run_mode(k_chip); if (result != ERROR_OK) return result; /* reset error flags */ result = kinetis_ftfx_prepare(bank->target); if (result != ERROR_OK) return result; if ((first > bank->num_sectors) || (last > bank->num_sectors)) return ERROR_FLASH_OPERATION_FAILED; /* * FIXME: TODO: use the 'Erase Flash Block' command if the * requested erase is PFlash or NVM and encompasses the entire * block. Should be quicker. */ for (i = first; i <= last; i++) { /* set command and sector address */ result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset, 0, 0, 0, 0, 0, 0, 0, 0, NULL); if (result != ERROR_OK) { LOG_WARNING("erase sector %d failed", i); return ERROR_FLASH_OPERATION_FAILED; } bank->sectors[i].is_erased = 1; if (k_bank->prog_base == 0 && bank->sectors[i].offset <= FCF_ADDRESS && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) { if (allow_fcf_writes) { LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device"); LOG_WARNING("until correct FCF is programmed or MCU gets security lock."); } else { uint8_t fcf_buffer[FCF_SIZE]; kinetis_fill_fcf(bank, fcf_buffer); result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE); if (result != ERROR_OK) LOG_WARNING("Flash Configuration Field write failed"); bank->sectors[i].is_erased = 0; } } } kinetis_invalidate_flash_cache(k_bank->k_chip); return ERROR_OK; } static int kinetis_make_ram_ready(struct target *target) { int result; uint8_t ftfx_fcnfg; /* check if ram ready */ result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg); if (result != ERROR_OK) return result; if (ftfx_fcnfg & (1 << 1)) return ERROR_OK; /* ram ready */ /* make flex ram available */ result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, NULL); if (result != ERROR_OK) return ERROR_FLASH_OPERATION_FAILED; /* check again */ result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg); if (result != ERROR_OK) return result; if (ftfx_fcnfg & (1 << 1)) return ERROR_OK; /* ram ready */ return ERROR_FLASH_OPERATION_FAILED; } static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { int result = ERROR_OK; struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; uint8_t *buffer_aligned = NULL; /* * Kinetis uses different terms for the granularity of * sector writes, e.g. "phrase" or "128 bits". We use * the generic term "chunk". The largest possible * Kinetis "chunk" is 16 bytes (128 bits). */ uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8; uint32_t prog_size_bytes = k_chip->max_flash_prog_size; while (count > 0) { uint32_t size = prog_size_bytes - offset % prog_size_bytes; uint32_t align_begin = offset % prog_section_chunk_bytes; uint32_t align_end; uint32_t size_aligned; uint16_t chunk_count; uint8_t ftfx_fstat; if (size > count) size = count; align_end = (align_begin + size) % prog_section_chunk_bytes; if (align_end) align_end = prog_section_chunk_bytes - align_end; size_aligned = align_begin + size + align_end; chunk_count = size_aligned / prog_section_chunk_bytes; if (size != size_aligned) { /* aligned section: the first, the last or the only */ if (!buffer_aligned) buffer_aligned = malloc(prog_size_bytes); memset(buffer_aligned, 0xff, size_aligned); memcpy(buffer_aligned + align_begin, buffer, size); result = target_write_memory(bank->target, k_chip->progr_accel_ram, 4, size_aligned / 4, buffer_aligned); LOG_DEBUG("section @ %08" PRIx32 " aligned begin %" PRIu32 ", end %" PRIu32, bank->base + offset, align_begin, align_end); } else result = target_write_memory(bank->target, k_chip->progr_accel_ram, 4, size_aligned / 4, buffer); LOG_DEBUG("write section @ %08" PRIx32 " with length %" PRIu32 " bytes", bank->base + offset, size); if (result != ERROR_OK) { LOG_ERROR("target_write_memory failed"); break; } /* execute section-write command */ result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE, k_bank->prog_base + offset - align_begin, chunk_count>>8, chunk_count, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result != ERROR_OK) { LOG_ERROR("Error writing section at %08" PRIx32, bank->base + offset); break; } if (ftfx_fstat & 0x01) { LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset); if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE && (k_chip->flash_support & FS_WIDTH_256BIT)) { LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error"); LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly)."); LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF"); LOG_ERROR("or set 'kinetis fcf_source write'"); } } buffer += size; offset += size; count -= size; } free(buffer_aligned); return result; } static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { int result, fallback = 0; struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) { /* fallback to longword write */ fallback = 1; LOG_INFO("This device supports Program Longword execution only."); } else { result = kinetis_make_ram_ready(bank->target); if (result != ERROR_OK) { fallback = 1; LOG_WARNING("FlexRAM not ready, fallback to slow longword write."); } } LOG_DEBUG("flash write @ %08" PRIx32, bank->base + offset); if (fallback == 0) { /* program section command */ kinetis_write_sections(bank, buffer, offset, count); } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) { /* program longword command, not supported in FTFE */ uint8_t *new_buffer = NULL; /* check word alignment */ if (offset & 0x3) { LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } if (count & 0x3) { uint32_t old_count = count; count = (old_count | 3) + 1; new_buffer = malloc(count); if (new_buffer == NULL) { LOG_ERROR("odd number of bytes to write and no memory " "for padding buffer"); return ERROR_FAIL; } LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " " "and padding with 0xff", old_count, count); memset(new_buffer + old_count, 0xff, count - old_count); buffer = memcpy(new_buffer, buffer, old_count); } uint32_t words_remaining = count / 4; kinetis_disable_wdog(k_chip); /* try using a block write */ result = kinetis_write_block(bank, buffer, offset, words_remaining); if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single word accesses */ LOG_WARNING("couldn't use block writes, falling back to single " "memory accesses"); while (words_remaining) { uint8_t ftfx_fstat; LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset)); result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, k_bank->prog_base + offset, buffer[3], buffer[2], buffer[1], buffer[0], 0, 0, 0, 0, &ftfx_fstat); if (result != ERROR_OK) { LOG_ERROR("Error writing longword at %08" PRIx32, bank->base + offset); break; } if (ftfx_fstat & 0x01) LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset); buffer += 4; offset += 4; words_remaining--; } } free(new_buffer); } else { LOG_ERROR("Flash write strategy not implemented"); return ERROR_FLASH_OPERATION_FAILED; } kinetis_invalidate_flash_cache(k_chip); return result; } static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { int result; bool set_fcf = false; bool fcf_in_data_valid = false; int sect = 0; struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; uint8_t fcf_buffer[FCF_SIZE]; uint8_t fcf_current[FCF_SIZE]; uint8_t fcf_in_data[FCF_SIZE]; result = kinetis_check_run_mode(k_chip); if (result != ERROR_OK) return result; /* reset error flags */ result = kinetis_ftfx_prepare(bank->target); if (result != ERROR_OK) return result; if (k_bank->prog_base == 0 && !allow_fcf_writes) { if (bank->sectors[1].offset <= FCF_ADDRESS) sect = 1; /* 1kb sector, FCF in 2nd sector */ if (offset < bank->sectors[sect].offset + bank->sectors[sect].size && offset + count > bank->sectors[sect].offset) set_fcf = true; /* write to any part of sector with FCF */ } if (set_fcf) { kinetis_fill_fcf(bank, fcf_buffer); fcf_in_data_valid = offset <= FCF_ADDRESS && offset + count >= FCF_ADDRESS + FCF_SIZE; if (fcf_in_data_valid) { memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE); if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer, 4)) { fcf_in_data_valid = false; LOG_INFO("Flash protection requested in programmed file differs from current setting."); } if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) { fcf_in_data_valid = false; LOG_INFO("Data flash protection requested in programmed file differs from current setting."); } if ((fcf_in_data[FCF_FSEC] & 3) != 2) { fcf_in_data_valid = false; LOG_INFO("Device security requested in programmed file!"); } else if (k_chip->flash_support & FS_ECC && fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) { fcf_in_data_valid = false; LOG_INFO("Strange unsecure mode 0x%02" PRIx8 "requested in programmed file!", fcf_in_data[FCF_FSEC]); } if ((k_chip->flash_support & FS_ECC || fcf_fopt_configured) && fcf_in_data[FCF_FOPT] != fcf_fopt) { fcf_in_data_valid = false; LOG_INFO("FOPT requested in programmed file differs from current setting."); } if (!fcf_in_data_valid) LOG_INFO("Expect verify errors at FCF (0x408-0x40f)."); } } if (set_fcf && !fcf_in_data_valid) { if (offset < FCF_ADDRESS) { /* write part preceding FCF */ result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset); if (result != ERROR_OK) return result; } result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current); if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0) set_fcf = false; if (set_fcf) { /* write FCF if differs from flash - eliminate multiple writes */ result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE); if (result != ERROR_OK) return result; } LOG_WARNING("Flash Configuration Field written."); LOG_WARNING("Reset or power off the device to make settings effective."); if (offset + count > FCF_ADDRESS + FCF_SIZE) { uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset; /* write part after FCF */ result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta); } return result; } else { /* no FCF fiddling, normal write */ return kinetis_write_inner(bank, buffer, offset, count); } } static int kinetis_probe_chip(struct kinetis_chip *k_chip) { int result; uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart; uint8_t fcfg2_pflsh; uint32_t ee_size = 0; uint32_t pflash_size_k, nvm_size_k, dflash_size_k; uint32_t pflash_size_m; unsigned num_blocks = 0; unsigned maxaddr_shift = 13; struct target *target = k_chip->target; unsigned familyid = 0, subfamid = 0; unsigned cpu_mhz = 120; unsigned idx; bool use_nvm_marking = false; char flash_marking[12], nvm_marking[2]; char name[40]; k_chip->probed = false; k_chip->pflash_sector_size = 0; k_chip->pflash_base = 0; k_chip->nvm_base = 0x10000000; k_chip->progr_accel_ram = FLEXRAM; name[0] = '\0'; if (k_chip->sim_base) result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid); else { result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid); if (result == ERROR_OK) k_chip->sim_base = SIM_BASE; else { result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid); if (result == ERROR_OK) k_chip->sim_base = SIM_BASE_KL28; } } if (result != ERROR_OK) return result; if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) { /* older K-series MCU */ uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK; k_chip->cache_type = KINETIS_CACHE_K; k_chip->watchdog_type = KINETIS_WDOG_K; switch (mcu_type) { case KINETIS_K_SDID_K10_M50: case KINETIS_K_SDID_K20_M50: /* 1kB sectors */ k_chip->pflash_sector_size = 1<<10; k_chip->nvm_sector_size = 1<<10; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR; break; case KINETIS_K_SDID_K10_M72: case KINETIS_K_SDID_K20_M72: case KINETIS_K_SDID_K30_M72: case KINETIS_K_SDID_K30_M100: case KINETIS_K_SDID_K40_M72: case KINETIS_K_SDID_K40_M100: case KINETIS_K_SDID_K50_M72: /* 2kB sectors, 1kB FlexNVM sectors */ k_chip->pflash_sector_size = 2<<10; k_chip->nvm_sector_size = 1<<10; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR; k_chip->max_flash_prog_size = 1<<10; break; case KINETIS_K_SDID_K10_M100: case KINETIS_K_SDID_K20_M100: case KINETIS_K_SDID_K11: case KINETIS_K_SDID_K12: case KINETIS_K_SDID_K21_M50: case KINETIS_K_SDID_K22_M50: case KINETIS_K_SDID_K51_M72: case KINETIS_K_SDID_K53: case KINETIS_K_SDID_K60_M100: /* 2kB sectors */ k_chip->pflash_sector_size = 2<<10; k_chip->nvm_sector_size = 2<<10; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR; break; case KINETIS_K_SDID_K21_M120: case KINETIS_K_SDID_K22_M120: /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */ k_chip->pflash_sector_size = 4<<10; k_chip->max_flash_prog_size = 1<<10; k_chip->nvm_sector_size = 4<<10; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; break; case KINETIS_K_SDID_K10_M120: case KINETIS_K_SDID_K20_M120: case KINETIS_K_SDID_K60_M150: case KINETIS_K_SDID_K70_M150: /* 4kB sectors */ k_chip->pflash_sector_size = 4<<10; k_chip->nvm_sector_size = 4<<10; num_blocks = 4; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; break; default: LOG_ERROR("Unsupported K-family FAMID"); } for (idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) { if (kinetis_types_old[idx].sdid == mcu_type) { strcpy(name, kinetis_types_old[idx].name); use_nvm_marking = true; break; } } } else { /* Newer K-series or KL series MCU */ familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT; subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT; switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) { case KINETIS_SDID_SERIESID_K: use_nvm_marking = true; k_chip->cache_type = KINETIS_CACHE_K; k_chip->watchdog_type = KINETIS_WDOG_K; switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) { case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2: /* K02FN64, K02FN128: FTFA, 2kB sectors */ k_chip->pflash_sector_size = 2<<10; num_blocks = 1; k_chip->flash_support = FS_PROGRAM_LONGWORD; cpu_mhz = 100; break; case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: { /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */ uint32_t sopt1; result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1); if (result != ERROR_OK) return result; if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) && ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) { /* MK24FN1M */ k_chip->pflash_sector_size = 4<<10; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; k_chip->max_flash_prog_size = 1<<10; subfamid = 4; /* errata 1N83J fix */ break; } if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) { /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */ k_chip->pflash_sector_size = 2<<10; /* autodetect 1 or 2 blocks */ k_chip->flash_support = FS_PROGRAM_LONGWORD; break; } LOG_ERROR("Unsupported Kinetis K22 DIEID"); break; } case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4: k_chip->pflash_sector_size = 4<<10; if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) { /* K24FN256 - smaller pflash with FTFA */ num_blocks = 1; k_chip->flash_support = FS_PROGRAM_LONGWORD; break; } /* K24FN1M without errata 7534 */ num_blocks = 2; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; k_chip->max_flash_prog_size = 1<<10; break; case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */ case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */ subfamid += 2; /* errata 7534 fix */ /* fallthrough */ case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3: /* K63FN1M0 */ case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4: /* K64FN1M0, K64FX512 */ k_chip->pflash_sector_size = 4<<10; k_chip->nvm_sector_size = 4<<10; k_chip->max_flash_prog_size = 1<<10; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; break; case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6: /* K26FN2M0 */ case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6: /* K66FN2M0, K66FX1M0 */ k_chip->pflash_sector_size = 4<<10; k_chip->nvm_sector_size = 4<<10; k_chip->max_flash_prog_size = 1<<10; num_blocks = 4; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC; cpu_mhz = 180; break; case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7: /* K27FN2M0 */ case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8: /* K28FN2M0 */ k_chip->pflash_sector_size = 4<<10; k_chip->max_flash_prog_size = 1<<10; num_blocks = 4; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC; cpu_mhz = 150; break; case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0: case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1: case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2: /* K80FN256, K81FN256, K82FN256 */ k_chip->pflash_sector_size = 4<<10; num_blocks = 1; k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT; cpu_mhz = 150; break; case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1: case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2: /* KL81Z128, KL82Z128 */ k_chip->pflash_sector_size = 2<<10; num_blocks = 1; k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT; k_chip->cache_type = KINETIS_CACHE_L; use_nvm_marking = false; snprintf(name, sizeof(name), "MKL8%uZ%%s7", subfamid); break; default: LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID"); } if (name[0] == '\0') snprintf(name, sizeof(name), "MK%u%uF%%s%u", familyid, subfamid, cpu_mhz / 10); break; case KINETIS_SDID_SERIESID_KL: /* KL-series */ k_chip->pflash_sector_size = 1<<10; k_chip->nvm_sector_size = 1<<10; /* autodetect 1 or 2 blocks */ k_chip->flash_support = FS_PROGRAM_LONGWORD; k_chip->cache_type = KINETIS_CACHE_L; k_chip->watchdog_type = KINETIS_WDOG_COP; cpu_mhz = 48; switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) { case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3: case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3: subfamid = 7; break; case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8: cpu_mhz = 72; k_chip->pflash_sector_size = 2<<10; num_blocks = 2; k_chip->watchdog_type = KINETIS_WDOG32_KL28; k_chip->sysmodectrlr_type = KINETIS_SMC32; break; } snprintf(name, sizeof(name), "MKL%u%uZ%%s%u", familyid, subfamid, cpu_mhz / 10); break; case KINETIS_SDID_SERIESID_KW: /* Newer KW-series (all KW series except KW2xD, KW01Z) */ cpu_mhz = 48; switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) { case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0: /* KW40Z */ case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0: /* KW30Z */ case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0: /* KW20Z */ /* FTFA, 1kB sectors */ k_chip->pflash_sector_size = 1<<10; k_chip->nvm_sector_size = 1<<10; /* autodetect 1 or 2 blocks */ k_chip->flash_support = FS_PROGRAM_LONGWORD; k_chip->cache_type = KINETIS_CACHE_L; k_chip->watchdog_type = KINETIS_WDOG_COP; break; case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1: /* KW41Z */ case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1: /* KW31Z */ case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1: /* KW21Z */ /* FTFA, 2kB sectors */ k_chip->pflash_sector_size = 2<<10; k_chip->nvm_sector_size = 2<<10; /* autodetect 1 or 2 blocks */ k_chip->flash_support = FS_PROGRAM_LONGWORD; k_chip->cache_type = KINETIS_CACHE_L; k_chip->watchdog_type = KINETIS_WDOG_COP; break; default: LOG_ERROR("Unsupported KW FAMILYID SUBFAMID"); } snprintf(name, sizeof(name), "MKW%u%uZ%%s%u", familyid, subfamid, cpu_mhz / 10); break; case KINETIS_SDID_SERIESID_KV: /* KV-series */ k_chip->watchdog_type = KINETIS_WDOG_K; switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) { case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0: /* KV10: FTFA, 1kB sectors */ k_chip->pflash_sector_size = 1<<10; num_blocks = 1; k_chip->flash_support = FS_PROGRAM_LONGWORD; k_chip->cache_type = KINETIS_CACHE_L; strcpy(name, "MKV10Z%s7"); break; case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1: /* KV11: FTFA, 2kB sectors */ k_chip->pflash_sector_size = 2<<10; num_blocks = 1; k_chip->flash_support = FS_PROGRAM_LONGWORD; k_chip->cache_type = KINETIS_CACHE_L; strcpy(name, "MKV11Z%s7"); break; case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0: /* KV30: FTFA, 2kB sectors, 1 block */ case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1: /* KV31: FTFA, 2kB sectors, 2 blocks */ k_chip->pflash_sector_size = 2<<10; /* autodetect 1 or 2 blocks */ k_chip->flash_support = FS_PROGRAM_LONGWORD; k_chip->cache_type = KINETIS_CACHE_K; break; case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2: case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4: case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6: /* KV4x: FTFA, 4kB sectors */ k_chip->pflash_sector_size = 4<<10; num_blocks = 1; k_chip->flash_support = FS_PROGRAM_LONGWORD; k_chip->cache_type = KINETIS_CACHE_K; cpu_mhz = 168; break; case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6: case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8: /* KV5x: FTFE, 8kB sectors */ k_chip->pflash_sector_size = 8<<10; k_chip->max_flash_prog_size = 1<<10; num_blocks = 1; maxaddr_shift = 14; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC; k_chip->pflash_base = 0x10000000; k_chip->progr_accel_ram = 0x18000000; cpu_mhz = 240; break; default: LOG_ERROR("Unsupported KV FAMILYID SUBFAMID"); } if (name[0] == '\0') snprintf(name, sizeof(name), "MKV%u%uF%%s%u", familyid, subfamid, cpu_mhz / 10); break; case KINETIS_SDID_SERIESID_KE: /* KE1x-series */ k_chip->watchdog_type = KINETIS_WDOG32_KE1X; switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) { case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xZ: case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1xZ: /* KE1xZ: FTFE, 2kB sectors */ k_chip->pflash_sector_size = 2<<10; k_chip->nvm_sector_size = 2<<10; k_chip->max_flash_prog_size = 1<<9; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; k_chip->cache_type = KINETIS_CACHE_L; cpu_mhz = 72; snprintf(name, sizeof(name), "MKE%u%uZ%%s%u", familyid, subfamid, cpu_mhz / 10); break; case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xF: case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1xF: case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1xF: /* KE1xF: FTFE, 4kB sectors */ k_chip->pflash_sector_size = 4<<10; k_chip->nvm_sector_size = 2<<10; k_chip->max_flash_prog_size = 1<<10; num_blocks = 2; k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR; k_chip->cache_type = KINETIS_CACHE_MSCM; cpu_mhz = 168; snprintf(name, sizeof(name), "MKE%u%uF%%s%u", familyid, subfamid, cpu_mhz / 10); break; default: LOG_ERROR("Unsupported KE FAMILYID SUBFAMID"); } break; default: LOG_ERROR("Unsupported K-series"); } } if (k_chip->pflash_sector_size == 0) { LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid); return ERROR_FLASH_OPER_UNSUPPORTED; } result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1); if (result != ERROR_OK) return result; result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2); if (result != ERROR_OK) return result; LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid, k_chip->sim_fcfg1, k_chip->sim_fcfg2); fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f); fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f); fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f); fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f); fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01); k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift; k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift; if (num_blocks == 0) num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1; else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) { /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup * Do not adjust block count in this case! */ num_blocks = 1; LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1"); } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) { num_blocks = 2; LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2"); } /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */ if (!fcfg2_pflsh) { switch (fcfg1_nvmsize) { case 0x03: case 0x05: case 0x07: case 0x09: case 0x0b: k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1)); break; case 0x0f: if (k_chip->pflash_sector_size >= 4<<10) k_chip->nvm_size = 512<<10; else /* K20_100 */ k_chip->nvm_size = 256<<10; break; default: k_chip->nvm_size = 0; break; } switch (fcfg1_eesize) { case 0x00: case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: case 0x07: case 0x08: case 0x09: ee_size = (16 << (10 - fcfg1_eesize)); break; default: ee_size = 0; break; } switch (fcfg1_depart) { case 0x01: case 0x02: case 0x03: case 0x04: case 0x05: case 0x06: k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart); break; case 0x07: case 0x08: k_chip->dflash_size = 0; break; case 0x09: case 0x0a: case 0x0b: case 0x0c: case 0x0d: k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7); break; default: k_chip->dflash_size = k_chip->nvm_size; break; } } switch (fcfg1_pfsize) { case 0x00: k_chip->pflash_size = 8192; break; case 0x01: case 0x03: case 0x05: case 0x07: case 0x09: case 0x0b: case 0x0d: k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1)); break; case 0x0f: /* a peculiar case: Freescale states different sizes for 0xf * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3 * K02P64M100SFARM 128 KB ... duplicate of code 0x7 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd * K26P169M180SF5RM 2048 KB ... the only unique value * fcfg2_maxaddr0 seems to be the only clue to pflash_size * Checking fcfg2_maxaddr0 in bank probe is pointless then */ if (fcfg2_pflsh) k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks; else k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2; if (k_chip->pflash_size != 2048<<10) LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", k_chip->pflash_size>>10); break; default: k_chip->pflash_size = 0; break; } if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) { k_chip->max_flash_prog_size = k_chip->pflash_sector_size; /* Program section size is equal to sector size by default */ } if (fcfg2_pflsh) { k_chip->num_pflash_blocks = num_blocks; k_chip->num_nvm_blocks = 0; } else { k_chip->num_pflash_blocks = (num_blocks + 1) / 2; k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks; } if (use_nvm_marking) { nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N'; nvm_marking[1] = '\0'; } else nvm_marking[0] = '\0'; pflash_size_k = k_chip->pflash_size / 1024; pflash_size_m = pflash_size_k / 1024; if (pflash_size_m) snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m); else snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k); snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking); LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks); LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k); if (k_chip->num_nvm_blocks) { nvm_size_k = k_chip->nvm_size / 1024; dflash_size_k = k_chip->dflash_size / 1024; LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM", k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size); } k_chip->probed = true; if (create_banks) kinetis_create_missing_banks(k_chip); return ERROR_OK; } static int kinetis_probe(struct flash_bank *bank) { int result, i; uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1; unsigned num_blocks, first_nvm_bank; uint32_t size_k; struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; k_bank->probed = false; if (!k_chip->probed) { result = kinetis_probe_chip(k_chip); if (result != ERROR_OK) return result; } num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks; first_nvm_bank = k_chip->num_pflash_blocks; if (k_bank->bank_number < k_chip->num_pflash_blocks) { /* pflash, banks start at address zero */ k_bank->flash_class = FC_PFLASH; bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks); bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number; k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number; k_bank->sector_size = k_chip->pflash_sector_size; /* pflash is divided into 32 protection areas for * parts with more than 32K of PFlash. For parts with * less the protection unit is set to 1024 bytes */ k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024); bank->num_prot_blocks = bank->size / k_bank->protection_size; k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number; size_k = bank->size / 1024; LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %u", k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size); } else if (k_bank->bank_number < num_blocks) { /* nvm, banks start at address 0x10000000 */ unsigned nvm_ord = k_bank->bank_number - first_nvm_bank; uint32_t limit; k_bank->flash_class = FC_FLEX_NVM; bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks; bank->base = k_chip->nvm_base + bank->size * nvm_ord; k_bank->prog_base = 0x00800000 + bank->size * nvm_ord; k_bank->sector_size = k_chip->nvm_sector_size; if (k_chip->dflash_size == 0) { k_bank->protection_size = 0; } else { for (i = k_chip->dflash_size; ~i & 1; i >>= 1) ; if (i == 1) k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */ else k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */ } bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks; k_bank->protection_block = bank->num_prot_blocks * nvm_ord; /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */ if (k_chip->dflash_size > bank->size * nvm_ord) limit = k_chip->dflash_size - bank->size * nvm_ord; else limit = 0; if (bank->size > limit) { bank->size = limit; LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup", k_bank->bank_number, limit); } size_k = bank->size / 1024; LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %u", k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size); } else { LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device", k_bank->bank_number, num_blocks); return ERROR_FLASH_BANK_INVALID; } fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01); fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f); fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f); if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size) LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed," " please report to OpenOCD mailing list", fcfg2_maxaddr0); if (fcfg2_pflsh) { if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size) LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed," " please report to OpenOCD mailing list", fcfg2_maxaddr1); } else { if (k_bank->bank_number == first_nvm_bank && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size) LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed," " please report to OpenOCD mailing list", fcfg2_maxaddr1); } if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } if (bank->prot_blocks) { free(bank->prot_blocks); bank->prot_blocks = NULL; } if (k_bank->sector_size == 0) { LOG_ERROR("Unknown sector size for bank %d", bank->bank_number); return ERROR_FLASH_BANK_INVALID; } bank->num_sectors = bank->size / k_bank->sector_size; if (bank->num_sectors > 0) { /* FlexNVM bank can be used for EEPROM backup therefore zero sized */ bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors); if (!bank->sectors) return ERROR_FAIL; bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks); if (!bank->prot_blocks) return ERROR_FAIL; } else { bank->num_prot_blocks = 0; } k_bank->probed = true; return ERROR_OK; } static int kinetis_auto_probe(struct flash_bank *bank) { struct kinetis_flash_bank *k_bank = bank->driver_priv; if (k_bank && k_bank->probed) return ERROR_OK; return kinetis_probe(bank); } static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size) { const char *bank_class_names[] = { "(ANY)", "PFlash", "FlexNVM", "FlexRAM" }; struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; uint32_t size_k = bank->size / 1024; snprintf(buf, buf_size, "%s %s: %" PRIu32 "k %s bank %s at 0x%08" PRIx32, bank->driver->name, k_chip->name, size_k, bank_class_names[k_bank->flash_class], bank->name, bank->base); return ERROR_OK; } static int kinetis_blank_check(struct flash_bank *bank) { struct kinetis_flash_bank *k_bank = bank->driver_priv; struct kinetis_chip *k_chip = k_bank->k_chip; int result; /* suprisingly blank check does not work in VLPR and HSRUN modes */ result = kinetis_check_run_mode(k_chip); if (result != ERROR_OK) return result; /* reset error flags */ result = kinetis_ftfx_prepare(bank->target); if (result != ERROR_OK) return result; if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) { bool block_dirty = true; bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT); uint8_t ftfx_fstat; if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) { uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f); /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */ if (fcfg1_depart != 0xf && fcfg1_depart != 0) use_block_cmd = false; } if (use_block_cmd) { /* check if whole bank is blank */ result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, k_bank->prog_base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result != ERROR_OK) kinetis_ftfx_clear_error(bank->target); else if ((ftfx_fstat & 0x01) == 0) block_dirty = false; } if (block_dirty) { /* the whole bank is not erased, check sector-by-sector */ int i; for (i = 0; i < bank->num_sectors; i++) { /* normal margin */ result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT, k_bank->prog_base + bank->sectors[i].offset, 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat); if (result == ERROR_OK) { bank->sectors[i].is_erased = !(ftfx_fstat & 0x01); } else { LOG_DEBUG("Ignoring errored PFlash sector blank-check"); kinetis_ftfx_clear_error(bank->target); bank->sectors[i].is_erased = -1; } } } else { /* the whole bank is erased, update all sectors */ int i; for (i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_erased = 1; } } else { LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } COMMAND_HANDLER(kinetis_nvm_partition) { int result; unsigned bank_idx; unsigned num_blocks, first_nvm_bank; unsigned long par, log2 = 0, ee1 = 0, ee2 = 0; enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO; bool enable; uint8_t load_flex_ram = 1; uint8_t ee_size_code = 0x3f; uint8_t flex_nvm_partition_code = 0; uint8_t ee_split = 3; struct target *target = get_current_target(CMD_CTX); struct kinetis_chip *k_chip; uint32_t sim_fcfg1; k_chip = kinetis_get_chip(target); if (CMD_ARGC >= 2) { if (strcmp(CMD_ARGV[0], "dataflash") == 0) sz_type = DF_SIZE; else if (strcmp(CMD_ARGV[0], "eebkp") == 0) sz_type = EEBKP_SIZE; par = strtoul(CMD_ARGV[1], NULL, 10); while (par >> (log2 + 3)) log2++; } switch (sz_type) { case SHOW_INFO: if (k_chip == NULL) { LOG_ERROR("Chip not probed."); return ERROR_FAIL; } result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1); if (result != ERROR_OK) return result; flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f); switch (flex_nvm_partition_code) { case 0: command_print(CMD_CTX, "No EEPROM backup, data flash only"); break; case 1: case 2: case 3: case 4: case 5: case 6: command_print(CMD_CTX, "EEPROM backup %d KB", 4 << flex_nvm_partition_code); break; case 8: command_print(CMD_CTX, "No data flash, EEPROM backup only"); break; case 0x9: case 0xA: case 0xB: case 0xC: case 0xD: case 0xE: command_print(CMD_CTX, "data flash %d KB", 4 << (flex_nvm_partition_code & 7)); break; case 0xf: command_print(CMD_CTX, "No EEPROM backup, data flash only (DEPART not set)"); break; default: command_print(CMD_CTX, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code); } return ERROR_OK; case DF_SIZE: flex_nvm_partition_code = 0x8 | log2; break; case EEBKP_SIZE: flex_nvm_partition_code = log2; break; } if (CMD_ARGC == 3) ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2; else if (CMD_ARGC >= 4) { ee1 = strtoul(CMD_ARGV[2], NULL, 10); ee2 = strtoul(CMD_ARGV[3], NULL, 10); } enable = ee1 + ee2 > 0; if (enable) { for (log2 = 2; ; log2++) { if (ee1 + ee2 == (16u << 10) >> log2) break; if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) { LOG_ERROR("Unsupported EEPROM size"); return ERROR_FLASH_OPERATION_FAILED; } } if (ee1 * 3 == ee2) ee_split = 1; else if (ee1 * 7 == ee2) ee_split = 0; else if (ee1 != ee2) { LOG_ERROR("Unsupported EEPROM sizes ratio"); return ERROR_FLASH_OPERATION_FAILED; } ee_size_code = log2 | ee_split << 4; } if (CMD_ARGC >= 5) COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable); if (enable) load_flex_ram = 0; LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8, flex_nvm_partition_code, ee_size_code); result = kinetis_check_run_mode(k_chip); if (result != ERROR_OK) return result; /* reset error flags */ result = kinetis_ftfx_prepare(target); if (result != ERROR_OK) return result; result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram, ee_size_code, flex_nvm_partition_code, 0, 0, 0, 0, 0, 0, NULL); if (result != ERROR_OK) return result; command_print(CMD_CTX, "FlexNVM partition set. Please reset MCU."); if (k_chip) { first_nvm_bank = k_chip->num_pflash_blocks; num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks; for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++) k_chip->banks[bank_idx].probed = false; /* re-probe before next use */ k_chip->probed = false; } command_print(CMD_CTX, "FlexNVM banks will be re-probed to set new data flash size."); return ERROR_OK; } COMMAND_HANDLER(kinetis_fcf_source_handler) { if (CMD_ARGC > 1) return ERROR_COMMAND_SYNTAX_ERROR; if (CMD_ARGC == 1) { if (strcmp(CMD_ARGV[0], "write") == 0) allow_fcf_writes = true; else if (strcmp(CMD_ARGV[0], "protection") == 0) allow_fcf_writes = false; else return ERROR_COMMAND_SYNTAX_ERROR; } if (allow_fcf_writes) { command_print(CMD_CTX, "Arbitrary Flash Configuration Field writes enabled."); command_print(CMD_CTX, "Protection info writes to FCF disabled."); LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device."); } else { command_print(CMD_CTX, "Protection info writes to Flash Configuration Field enabled."); command_print(CMD_CTX, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device."); } return ERROR_OK; } COMMAND_HANDLER(kinetis_fopt_handler) { if (CMD_ARGC > 1) return ERROR_COMMAND_SYNTAX_ERROR; if (CMD_ARGC == 1) { fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0); fcf_fopt_configured = true; } else { command_print(CMD_CTX, "FCF_FOPT 0x%02" PRIx8, fcf_fopt); } return ERROR_OK; } COMMAND_HANDLER(kinetis_create_banks_handler) { if (CMD_ARGC > 0) return ERROR_COMMAND_SYNTAX_ERROR; create_banks = true; return ERROR_OK; } static const struct command_registration kinetis_security_command_handlers[] = { { .name = "check_security", .mode = COMMAND_EXEC, .help = "Check status of device security lock", .usage = "", .handler = kinetis_check_flash_security_status, }, { .name = "halt", .mode = COMMAND_EXEC, .help = "Issue a halt via the MDM-AP", .usage = "", .handler = kinetis_mdm_halt, }, { .name = "mass_erase", .mode = COMMAND_EXEC, .help = "Issue a complete flash erase via the MDM-AP", .usage = "", .handler = kinetis_mdm_mass_erase, }, { .name = "reset", .mode = COMMAND_EXEC, .help = "Issue a reset via the MDM-AP", .usage = "", .handler = kinetis_mdm_reset, }, COMMAND_REGISTRATION_DONE }; static const struct command_registration kinetis_exec_command_handlers[] = { { .name = "mdm", .mode = COMMAND_ANY, .help = "MDM-AP command group", .usage = "", .chain = kinetis_security_command_handlers, }, { .name = "disable_wdog", .mode = COMMAND_EXEC, .help = "Disable the watchdog timer", .usage = "", .handler = kinetis_disable_wdog_handler, }, { .name = "nvm_partition", .mode = COMMAND_EXEC, .help = "Show/set data flash or EEPROM backup size in kilobytes," " set two EEPROM sizes in bytes and FlexRAM loading during reset", .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']", .handler = kinetis_nvm_partition, }, { .name = "fcf_source", .mode = COMMAND_EXEC, .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF" " Mode 'protection' is safe from unwanted locking of the device.", .usage = "['protection'|'write']", .handler = kinetis_fcf_source_handler, }, { .name = "fopt", .mode = COMMAND_EXEC, .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode", .usage = "[num]", .handler = kinetis_fopt_handler, }, { .name = "create_banks", .mode = COMMAND_CONFIG, .help = "Driver creates additional banks if device with two/four flash blocks is probed", .handler = kinetis_create_banks_handler, }, COMMAND_REGISTRATION_DONE }; static const struct command_registration kinetis_command_handler[] = { { .name = "kinetis", .mode = COMMAND_ANY, .help = "Kinetis flash controller commands", .usage = "", .chain = kinetis_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver kinetis_flash = { .name = "kinetis", .commands = kinetis_command_handler, .flash_bank_command = kinetis_flash_bank_command, .erase = kinetis_erase, .protect = kinetis_protect, .write = kinetis_write, .read = default_flash_read, .probe = kinetis_probe, .auto_probe = kinetis_auto_probe, .erase_check = kinetis_blank_check, .protect_check = kinetis_protect_check, .info = kinetis_info, .free_driver_priv = kinetis_free_driver_priv, };