/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by John McCarthy * * jgmcc@magma.ca * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include #define PIC32MX_MANUF_ID 0x029 /* pic32mx memory locations */ #define PIC32MX_PHYS_RAM 0x00000000 #define PIC32MX_PHYS_PGM_FLASH 0x1D000000 #define PIC32MX_PHYS_PERIPHERALS 0x1F800000 #define PIC32MX_PHYS_BOOT_FLASH 0x1FC00000 /* * Translate Virtual and Physical addresses. * Note: These macros only work for KSEG0/KSEG1 addresses. */ #define Virt2Phys(v) ((v) & 0x1FFFFFFF) /* pic32mx configuration register locations */ #define PIC32MX_DEVCFG0_1_2 0xBFC00BFC #define PIC32MX_DEVCFG0 0xBFC02FFC #define PIC32MX_DEVCFG1 0xBFC02FF8 #define PIC32MX_DEVCFG2 0xBFC02FF4 #define PIC32MX_DEVCFG3 0xBFC02FF0 #define PIC32MX_DEVID 0xBF80F220 #define PIC32MX_BMXPFMSZ 0xBF882060 #define PIC32MX_BMXBOOTSZ 0xBF882070 #define PIC32MX_BMXDRMSZ 0xBF882040 /* pic32mx flash controller register locations */ #define PIC32MX_NVMCON 0xBF80F400 #define PIC32MX_NVMCONCLR 0xBF80F404 #define PIC32MX_NVMCONSET 0xBF80F408 #define PIC32MX_NVMCONINV 0xBF80F40C #define NVMCON_NVMWR (1 << 15) #define NVMCON_NVMWREN (1 << 14) #define NVMCON_NVMERR (1 << 13) #define NVMCON_LVDERR (1 << 12) #define NVMCON_LVDSTAT (1 << 11) #define NVMCON_OP_PFM_ERASE 0x5 #define NVMCON_OP_PAGE_ERASE 0x4 #define NVMCON_OP_ROW_PROG 0x3 #define NVMCON_OP_WORD_PROG 0x1 #define NVMCON_OP_NOP 0x0 #define PIC32MX_NVMKEY 0xBF80F410 #define PIC32MX_NVMADDR 0xBF80F420 #define PIC32MX_NVMADDRCLR 0xBF80F424 #define PIC32MX_NVMADDRSET 0xBF80F428 #define PIC32MX_NVMADDRINV 0xBF80F42C #define PIC32MX_NVMDATA 0xBF80F430 #define PIC32MX_NVMSRCADDR 0xBF80F440 /* flash unlock keys */ #define NVMKEY1 0xAA996655 #define NVMKEY2 0x556699AA #define MX_1_2 1 /* PIC32mx1xx/2xx */ struct pic32mx_flash_bank { struct working_area *write_algorithm; int probed; int dev_type; /* Default 0. 1 for Pic32MX1XX/2XX variant */ }; /* * DEVID values as per PIC32MX Flash Programming Specification Rev J */ static const struct pic32mx_devs_s { uint32_t devid; const char *name; } pic32mx_devs[] = { {0x04A07053, "110F016B"}, {0x04A09053, "110F016C"}, {0x04A0B053, "110F016D"}, {0x04A06053, "120F032B"}, {0x04A08053, "120F032C"}, {0x04A0A053, "120F032D"}, {0x04D07053, "130F064B"}, {0x04D09053, "130F064C"}, {0x04D0B053, "130F064D"}, {0x04D06053, "150F128B"}, {0x04D08053, "150F128C"}, {0x04D0A053, "150F128D"}, {0x04A01053, "210F016B"}, {0x04A03053, "210F016C"}, {0x04A05053, "210F016D"}, {0x04A00053, "220F032B"}, {0x04A02053, "220F032C"}, {0x04A04053, "220F032D"}, {0x04D01053, "230F064B"}, {0x04D03053, "230F064C"}, {0x04D05053, "230F064D"}, {0x04D00053, "250F128B"}, {0x04D02053, "250F128C"}, {0x04D04053, "250F128D"}, {0x00938053, "360F512L"}, {0x00934053, "360F256L"}, {0x0092D053, "340F128L"}, {0x0092A053, "320F128L"}, {0x00916053, "340F512H"}, {0x00912053, "340F256H"}, {0x0090D053, "340F128H"}, {0x0090A053, "320F128H"}, {0x00906053, "320F064H"}, {0x00902053, "320F032H"}, {0x00978053, "460F512L"}, {0x00974053, "460F256L"}, {0x0096D053, "440F128L"}, {0x00952053, "440F256H"}, {0x00956053, "440F512H"}, {0x0094D053, "440F128H"}, {0x00942053, "420F032H"}, {0x04307053, "795F512L"}, {0x0430E053, "795F512H"}, {0x04306053, "775F512L"}, {0x0430D053, "775F512H"}, {0x04312053, "775F256L"}, {0x04303053, "775F256H"}, {0x04417053, "764F128L"}, {0x0440B053, "764F128H"}, {0x04341053, "695F512L"}, {0x04325053, "695F512H"}, {0x04311053, "675F512L"}, {0x0430C053, "675F512H"}, {0x04305053, "675F256L"}, {0x0430B053, "675F256H"}, {0x04413053, "664F128L"}, {0x04407053, "664F128H"}, {0x04411053, "664F064L"}, {0x04405053, "664F064H"}, {0x0430F053, "575F512L"}, {0x04309053, "575F512H"}, {0x04333053, "575F256L"}, {0x04317053, "575F256H"}, {0x0440F053, "564F128L"}, {0x04403053, "564F128H"}, {0x0440D053, "564F064L"}, {0x04401053, "564F064H"}, {0x04400053, "534F064H"}, {0x0440C053, "534F064L"}, {0x00000000, NULL} }; /* flash bank pic32mx 0 0 */ FLASH_BANK_COMMAND_HANDLER(pic32mx_flash_bank_command) { struct pic32mx_flash_bank *pic32mx_info; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; pic32mx_info = malloc(sizeof(struct pic32mx_flash_bank)); bank->driver_priv = pic32mx_info; pic32mx_info->write_algorithm = NULL; pic32mx_info->probed = 0; pic32mx_info->dev_type = 0; return ERROR_OK; } static uint32_t pic32mx_get_flash_status(struct flash_bank *bank) { struct target *target = bank->target; uint32_t status; target_read_u32(target, PIC32MX_NVMCON, &status); return status; } static uint32_t pic32mx_wait_status_busy(struct flash_bank *bank, int timeout) { uint32_t status; /* wait for busy to clear */ while (((status = pic32mx_get_flash_status(bank)) & NVMCON_NVMWR) && (timeout-- > 0)) { LOG_DEBUG("status: 0x%" PRIx32, status); alive_sleep(1); } if (timeout <= 0) LOG_DEBUG("timeout: status: 0x%" PRIx32, status); return status; } static int pic32mx_nvm_exec(struct flash_bank *bank, uint32_t op, uint32_t timeout) { struct target *target = bank->target; uint32_t status; target_write_u32(target, PIC32MX_NVMCON, NVMCON_NVMWREN | op); /* unlock flash registers */ target_write_u32(target, PIC32MX_NVMKEY, NVMKEY1); target_write_u32(target, PIC32MX_NVMKEY, NVMKEY2); /* start operation */ target_write_u32(target, PIC32MX_NVMCONSET, NVMCON_NVMWR); status = pic32mx_wait_status_busy(bank, timeout); /* lock flash registers */ target_write_u32(target, PIC32MX_NVMCONCLR, NVMCON_NVMWREN); return status; } static int pic32mx_protect_check(struct flash_bank *bank) { struct target *target = bank->target; struct pic32mx_flash_bank *pic32mx_info = bank->driver_priv; uint32_t config0_address; uint32_t devcfg0; int s; int num_pages; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (pic32mx_info->dev_type == MX_1_2) config0_address = PIC32MX_DEVCFG0_1_2; else config0_address = PIC32MX_DEVCFG0; target_read_u32(target, config0_address, &devcfg0); if ((devcfg0 & (1 << 28)) == 0) /* code protect bit */ num_pages = 0xffff; /* All pages protected */ else if (Virt2Phys(bank->base) == PIC32MX_PHYS_BOOT_FLASH) { if (devcfg0 & (1 << 24)) num_pages = 0; /* All pages unprotected */ else num_pages = 0xffff; /* All pages protected */ } else /* pgm flash */ num_pages = (~devcfg0 >> 12) & 0xff; for (s = 0; s < bank->num_sectors && s < num_pages; s++) bank->sectors[s].is_protected = 1; for (; s < bank->num_sectors; s++) bank->sectors[s].is_protected = 0; return ERROR_OK; } static int pic32mx_erase(struct flash_bank *bank, int first, int last) { struct target *target = bank->target; int i; uint32_t status; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first == 0) && (last == (bank->num_sectors - 1)) && (Virt2Phys(bank->base) == PIC32MX_PHYS_PGM_FLASH)) { /* this will only erase the Program Flash (PFM), not the Boot Flash (BFM) * we need to use the MTAP to perform a full erase */ LOG_DEBUG("Erasing entire program flash"); status = pic32mx_nvm_exec(bank, NVMCON_OP_PFM_ERASE, 50); if (status & NVMCON_NVMERR) return ERROR_FLASH_OPERATION_FAILED; if (status & NVMCON_LVDERR) return ERROR_FLASH_OPERATION_FAILED; return ERROR_OK; } for (i = first; i <= last; i++) { target_write_u32(target, PIC32MX_NVMADDR, Virt2Phys(bank->base + bank->sectors[i].offset)); status = pic32mx_nvm_exec(bank, NVMCON_OP_PAGE_ERASE, 10); if (status & NVMCON_NVMERR) return ERROR_FLASH_OPERATION_FAILED; if (status & NVMCON_LVDERR) return ERROR_FLASH_OPERATION_FAILED; bank->sectors[i].is_erased = 1; } return ERROR_OK; } static int pic32mx_protect(struct flash_bank *bank, int set, int first, int last) { struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } return ERROR_OK; } /* see contib/loaders/flash/pic32mx.s for src */ static uint32_t pic32mx_flash_write_code[] = { /* write: */ 0x3C08AA99, /* lui $t0, 0xaa99 */ 0x35086655, /* ori $t0, 0x6655 */ 0x3C095566, /* lui $t1, 0x5566 */ 0x352999AA, /* ori $t1, 0x99aa */ 0x3C0ABF80, /* lui $t2, 0xbf80 */ 0x354AF400, /* ori $t2, 0xf400 */ 0x340B4003, /* ori $t3, $zero, 0x4003 */ 0x340C8000, /* ori $t4, $zero, 0x8000 */ /* write_row: */ 0x2CD30080, /* sltiu $s3, $a2, 128 */ 0x16600008, /* bne $s3, $zero, write_word */ 0x340D4000, /* ori $t5, $zero, 0x4000 */ 0xAD450020, /* sw $a1, 32($t2) */ 0xAD440040, /* sw $a0, 64($t2) */ 0x04110016, /* bal progflash */ 0x24840200, /* addiu $a0, $a0, 512 */ 0x24A50200, /* addiu $a1, $a1, 512 */ 0x1000FFF7, /* beq $zero, $zero, write_row */ 0x24C6FF80, /* addiu $a2, $a2, -128 */ /* write_word: */ 0x3C15A000, /* lui $s5, 0xa000 */ 0x36B50000, /* ori $s5, $s5, 0x0 */ 0x00952025, /* or $a0, $a0, $s5 */ 0x10000008, /* beq $zero, $zero, next_word */ 0x340B4001, /* ori $t3, $zero, 0x4001 */ /* prog_word: */ 0x8C940000, /* lw $s4, 0($a0) */ 0xAD540030, /* sw $s4, 48($t2) */ 0xAD450020, /* sw $a1, 32($t2) */ 0x04110009, /* bal progflash */ 0x24840004, /* addiu $a0, $a0, 4 */ 0x24A50004, /* addiu $a1, $a1, 4 */ 0x24C6FFFF, /* addiu $a2, $a2, -1 */ /* next_word: */ 0x14C0FFF8, /* bne $a2, $zero, prog_word */ 0x00000000, /* nop */ /* done: */ 0x10000002, /* beq $zero, $zero, exit */ 0x24040000, /* addiu $a0, $zero, 0 */ /* error: */ 0x26240000, /* addiu $a0, $s1, 0 */ /* exit: */ 0x7000003F, /* sdbbp */ /* progflash: */ 0xAD4B0000, /* sw $t3, 0($t2) */ 0xAD480010, /* sw $t0, 16($t2) */ 0xAD490010, /* sw $t1, 16($t2) */ 0xAD4C0008, /* sw $t4, 8($t2) */ /* waitflash: */ 0x8D500000, /* lw $s0, 0($t2) */ 0x020C8024, /* and $s0, $s0, $t4 */ 0x1600FFFD, /* bne $s0, $zero, waitflash */ 0x00000000, /* nop */ 0x00000000, /* nop */ 0x00000000, /* nop */ 0x00000000, /* nop */ 0x00000000, /* nop */ 0x8D510000, /* lw $s1, 0($t2) */ 0x30113000, /* andi $s1, $zero, 0x3000 */ 0x1620FFEF, /* bne $s1, $zero, error */ 0xAD4D0004, /* sw $t5, 4($t2) */ 0x03E00008, /* jr $ra */ 0x00000000 /* nop */ }; static int pic32mx_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; uint32_t buffer_size = 16384; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[3]; int retval = ERROR_OK; struct pic32mx_flash_bank *pic32mx_info = bank->driver_priv; struct mips32_algorithm mips32_info; /* flash write code */ if (target_alloc_working_area(target, sizeof(pic32mx_flash_write_code), &pic32mx_info->write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; /* Change values for counters and row size, depending on variant */ if (pic32mx_info->dev_type == MX_1_2) { /* 128 byte row */ pic32mx_flash_write_code[8] = 0x2CD30020; pic32mx_flash_write_code[14] = 0x24840080; pic32mx_flash_write_code[15] = 0x24A50080; pic32mx_flash_write_code[17] = 0x24C6FFE0; } else { /* 512 byte row */ pic32mx_flash_write_code[8] = 0x2CD30080; pic32mx_flash_write_code[14] = 0x24840200; pic32mx_flash_write_code[15] = 0x24A50200; pic32mx_flash_write_code[17] = 0x24C6FF80; } retval = target_write_buffer(target, pic32mx_info->write_algorithm->address, sizeof(pic32mx_flash_write_code), (uint8_t *)pic32mx_flash_write_code); if (retval != ERROR_OK) return retval; /* memory buffer */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* if we already allocated the writing code, but failed to get a * buffer, free the algorithm */ if (pic32mx_info->write_algorithm) target_free_working_area(target, pic32mx_info->write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } }; mips32_info.common_magic = MIPS32_COMMON_MAGIC; mips32_info.isa_mode = MIPS32_ISA_MIPS32; init_reg_param(®_params[0], "a0", 32, PARAM_IN_OUT); init_reg_param(®_params[1], "a1", 32, PARAM_OUT); init_reg_param(®_params[2], "a2", 32, PARAM_OUT); while (count > 0) { uint32_t status; uint32_t thisrun_count = (count > (buffer_size / 4)) ? (buffer_size / 4) : count; retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer); if (retval != ERROR_OK) break; buf_set_u32(reg_params[0].value, 0, 32, Virt2Phys(source->address)); buf_set_u32(reg_params[1].value, 0, 32, Virt2Phys(address)); buf_set_u32(reg_params[2].value, 0, 32, thisrun_count); retval = target_run_algorithm(target, 0, NULL, 3, reg_params, pic32mx_info->write_algorithm->address, 0, 10000, &mips32_info); if (retval != ERROR_OK) { LOG_ERROR("error executing pic32mx flash write algorithm"); retval = ERROR_FLASH_OPERATION_FAILED; break; } status = buf_get_u32(reg_params[0].value, 0, 32); if (status & NVMCON_NVMERR) { LOG_ERROR("Flash write error NVMERR (status = 0x%08" PRIx32 ")", status); retval = ERROR_FLASH_OPERATION_FAILED; break; } if (status & NVMCON_LVDERR) { LOG_ERROR("Flash write error LVDERR (status = 0x%08" PRIx32 ")", status); retval = ERROR_FLASH_OPERATION_FAILED; break; } buffer += thisrun_count * 4; address += thisrun_count * 4; count -= thisrun_count; } target_free_working_area(target, source); target_free_working_area(target, pic32mx_info->write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); return retval; } static int pic32mx_write_word(struct flash_bank *bank, uint32_t address, uint32_t word) { struct target *target = bank->target; target_write_u32(target, PIC32MX_NVMADDR, Virt2Phys(address)); target_write_u32(target, PIC32MX_NVMDATA, word); return pic32mx_nvm_exec(bank, NVMCON_OP_WORD_PROG, 5); } static int pic32mx_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { uint32_t words_remaining = (count / 4); uint32_t bytes_remaining = (count & 0x00000003); uint32_t address = bank->base + offset; uint32_t bytes_written = 0; uint32_t status; int retval; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } LOG_DEBUG("writing to flash at address 0x%08" PRIx32 " at offset 0x%8.8" PRIx32 " count: 0x%8.8" PRIx32 "", bank->base, offset, count); if (offset & 0x3) { LOG_WARNING("offset 0x%" PRIx32 "breaks required 4-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } /* multiple words (4-byte) to be programmed? */ if (words_remaining > 0) { /* try using a block write */ retval = pic32mx_write_block(bank, buffer, offset, words_remaining); if (retval != ERROR_OK) { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single dword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); } else if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("flash writing failed"); return retval; } } else { buffer += words_remaining * 4; address += words_remaining * 4; words_remaining = 0; } } while (words_remaining > 0) { uint32_t value; memcpy(&value, buffer + bytes_written, sizeof(uint32_t)); status = pic32mx_write_word(bank, address, value); if (status & NVMCON_NVMERR) { LOG_ERROR("Flash write error NVMERR (status = 0x%08" PRIx32 ")", status); return ERROR_FLASH_OPERATION_FAILED; } if (status & NVMCON_LVDERR) { LOG_ERROR("Flash write error LVDERR (status = 0x%08" PRIx32 ")", status); return ERROR_FLASH_OPERATION_FAILED; } bytes_written += 4; words_remaining--; address += 4; } if (bytes_remaining) { uint32_t value = 0xffffffff; memcpy(&value, buffer + bytes_written, bytes_remaining); status = pic32mx_write_word(bank, address, value); if (status & NVMCON_NVMERR) { LOG_ERROR("Flash write error NVMERR (status = 0x%08" PRIx32 ")", status); return ERROR_FLASH_OPERATION_FAILED; } if (status & NVMCON_LVDERR) { LOG_ERROR("Flash write error LVDERR (status = 0x%08" PRIx32 ")", status); return ERROR_FLASH_OPERATION_FAILED; } } return ERROR_OK; } static int pic32mx_probe(struct flash_bank *bank) { struct target *target = bank->target; struct pic32mx_flash_bank *pic32mx_info = bank->driver_priv; struct mips32_common *mips32 = target->arch_info; struct mips_ejtag *ejtag_info = &mips32->ejtag_info; int i; uint32_t num_pages = 0; uint32_t device_id; int page_size; pic32mx_info->probed = 0; device_id = ejtag_info->idcode; LOG_INFO("device id = 0x%08" PRIx32 " (manuf 0x%03x dev 0x%04x, ver 0x%02x)", device_id, (unsigned)((device_id >> 1) & 0x7ff), (unsigned)((device_id >> 12) & 0xffff), (unsigned)((device_id >> 28) & 0xf)); if (((device_id >> 1) & 0x7ff) != PIC32MX_MANUF_ID) { LOG_WARNING("Cannot identify target as a PIC32MX family."); return ERROR_FLASH_OPERATION_FAILED; } /* Check for PIC32mx1xx/2xx */ for (i = 0; pic32mx_devs[i].name != NULL; i++) { if (pic32mx_devs[i].devid == (device_id & 0x0fffffff)) { if ((*(pic32mx_devs[i].name) == '1') || (*(pic32mx_devs[i].name) == '2')) pic32mx_info->dev_type = MX_1_2; break; } } if (pic32mx_info->dev_type == MX_1_2) page_size = 1024; else page_size = 4096; if (Virt2Phys(bank->base) == PIC32MX_PHYS_BOOT_FLASH) { /* 0x1FC00000: Boot flash size */ #if 0 /* for some reason this register returns 8k for the boot bank size * this does not match the docs, so for now set the boot bank at a * fixed 12k */ if (target_read_u32(target, PIC32MX_BMXBOOTSZ, &num_pages) != ERROR_OK) { LOG_WARNING("PIC32MX flash size failed, probe inaccurate - assuming 12k flash"); num_pages = (12 * 1024); } #else /* fixed 12k boot bank - see comments above */ if (pic32mx_info->dev_type == MX_1_2) num_pages = (3 * 1024); else num_pages = (12 * 1024); #endif } else { /* read the flash size from the device */ if (target_read_u32(target, PIC32MX_BMXPFMSZ, &num_pages) != ERROR_OK) { if (pic32mx_info->dev_type == MX_1_2) { LOG_WARNING("PIC32MX flash size failed, probe inaccurate - assuming 32k flash"); num_pages = (32 * 1024); } else { LOG_WARNING("PIC32MX flash size failed, probe inaccurate - assuming 512k flash"); num_pages = (512 * 1024); } } } LOG_INFO("flash size = %" PRId32 "kbytes", num_pages / 1024); if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } /* calculate numbers of pages */ num_pages /= page_size; bank->size = (num_pages * page_size); bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); for (i = 0; i < (int)num_pages; i++) { bank->sectors[i].offset = i * page_size; bank->sectors[i].size = page_size; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } pic32mx_info->probed = 1; return ERROR_OK; } static int pic32mx_auto_probe(struct flash_bank *bank) { struct pic32mx_flash_bank *pic32mx_info = bank->driver_priv; if (pic32mx_info->probed) return ERROR_OK; return pic32mx_probe(bank); } static int pic32mx_info(struct flash_bank *bank, char *buf, int buf_size) { struct target *target = bank->target; struct mips32_common *mips32 = target->arch_info; struct mips_ejtag *ejtag_info = &mips32->ejtag_info; uint32_t device_id; int printed = 0, i; device_id = ejtag_info->idcode; if (((device_id >> 1) & 0x7ff) != PIC32MX_MANUF_ID) { snprintf(buf, buf_size, "Cannot identify target as a PIC32MX family (manufacturer 0x%03d != 0x%03d)\n", (unsigned)((device_id >> 1) & 0x7ff), PIC32MX_MANUF_ID); return ERROR_FLASH_OPERATION_FAILED; } for (i = 0; pic32mx_devs[i].name != NULL; i++) { if (pic32mx_devs[i].devid == (device_id & 0x0fffffff)) { printed = snprintf(buf, buf_size, "PIC32MX%s", pic32mx_devs[i].name); break; } } if (pic32mx_devs[i].name == NULL) printed = snprintf(buf, buf_size, "Unknown"); buf += printed; buf_size -= printed; snprintf(buf, buf_size, " Ver: 0x%02x", (unsigned)((device_id >> 28) & 0xf)); return ERROR_OK; } COMMAND_HANDLER(pic32mx_handle_pgm_word_command) { uint32_t address, value; int status, res; if (CMD_ARGC != 3) return ERROR_COMMAND_SYNTAX_ERROR; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 2, &bank); if (ERROR_OK != retval) return retval; if (address < bank->base || address >= (bank->base + bank->size)) { command_print(CMD_CTX, "flash address '%s' is out of bounds", CMD_ARGV[0]); return ERROR_OK; } res = ERROR_OK; status = pic32mx_write_word(bank, address, value); if (status & NVMCON_NVMERR) res = ERROR_FLASH_OPERATION_FAILED; if (status & NVMCON_LVDERR) res = ERROR_FLASH_OPERATION_FAILED; if (res == ERROR_OK) command_print(CMD_CTX, "pic32mx pgm word complete"); else command_print(CMD_CTX, "pic32mx pgm word failed (status = 0x%x)", status); return ERROR_OK; } COMMAND_HANDLER(pic32mx_handle_unlock_command) { uint32_t mchip_cmd; struct target *target = NULL; struct mips_m4k_common *mips_m4k; struct mips_ejtag *ejtag_info; int timeout = 10; if (CMD_ARGC < 1) { command_print(CMD_CTX, "pic32mx unlock "); return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; target = bank->target; mips_m4k = target_to_m4k(target); ejtag_info = &mips_m4k->mips32.ejtag_info; /* we have to use the MTAP to perform a full erase */ mips_ejtag_set_instr(ejtag_info, MTAP_SW_MTAP); mips_ejtag_set_instr(ejtag_info, MTAP_COMMAND); /* first check status of device */ mchip_cmd = MCHP_STATUS; mips_ejtag_drscan_8(ejtag_info, &mchip_cmd); if (mchip_cmd & (1 << 7)) { /* device is not locked */ command_print(CMD_CTX, "pic32mx is already unlocked, erasing anyway"); } /* unlock/erase device */ mips_ejtag_drscan_8_out(ejtag_info, MCHP_ASERT_RST); mips_ejtag_drscan_8_out(ejtag_info, MCHP_ERASE); do { mchip_cmd = MCHP_STATUS; mips_ejtag_drscan_8(ejtag_info, &mchip_cmd); if (timeout-- == 0) { LOG_DEBUG("timeout waiting for unlock: 0x%" PRIx32 "", mchip_cmd); break; } alive_sleep(1); } while ((mchip_cmd & (1 << 2)) || (!(mchip_cmd & (1 << 3)))); mips_ejtag_drscan_8_out(ejtag_info, MCHP_DE_ASSERT_RST); /* select ejtag tap */ mips_ejtag_set_instr(ejtag_info, MTAP_SW_ETAP); command_print(CMD_CTX, "pic32mx unlocked.\n" "INFO: a reset or power cycle is required " "for the new settings to take effect."); return ERROR_OK; } static const struct command_registration pic32mx_exec_command_handlers[] = { { .name = "pgm_word", .usage = " ", .handler = pic32mx_handle_pgm_word_command, .mode = COMMAND_EXEC, .help = "program a word", }, { .name = "unlock", .handler = pic32mx_handle_unlock_command, .mode = COMMAND_EXEC, .usage = "[bank_id]", .help = "Unlock/Erase entire device.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration pic32mx_command_handlers[] = { { .name = "pic32mx", .mode = COMMAND_ANY, .help = "pic32mx flash command group", .usage = "", .chain = pic32mx_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver pic32mx_flash = { .name = "pic32mx", .commands = pic32mx_command_handlers, .flash_bank_command = pic32mx_flash_bank_command, .erase = pic32mx_erase, .protect = pic32mx_protect, .write = pic32mx_write, .read = default_flash_read, .probe = pic32mx_probe, .auto_probe = pic32mx_auto_probe, .erase_check = default_flash_mem_blank_check, .protect_check = pic32mx_protect_check, .info = pic32mx_info, };