/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2011 by Andreas Fritiofson * * andreas.fritiofson@gmail.com * * * * Copyright (C) 2014 by Tomas Vanek (PSoC 4 support derived from STM32) * * vanekt@fbl.cz * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include #include /* device documets: PSoC(R) 4: PSoC 4200 Family Datasheet Document Number: 001-87197 Rev. *B Revised August 29, 2013 PSoC 4100/4200 Family PSoC(R) 4 Architecture TRM Document No. 001-85634 Rev. *C March 25, 2014 PSoC(R) 4 Registers TRM Spec. Document No. 001-85847 Rev. *A June 25, 2013 CY8C41xx, CY8C42xx Programming Specifications Document No. 001-81799 Rev. *C March 4, 2014 */ /* register locations */ #define PSOC4_CPUSS_SYSREQ 0x40000004 #define PSOC4_CPUSS_SYSARG 0x40000008 #define PSOC4_TEST_MODE 0x40030014 #define PSOC4_SPCIF_GEOMETRY 0x400E0000 #define PSOC4_SFLASH_MACRO 0x0ffff000 /* constants */ #define PSOC4_SROM_KEY1 0xb6 #define PSOC4_SROM_KEY2 0xd3 #define PSOC4_SROM_SYSREQ_BIT (1<<31) #define PSOC4_SROM_HMASTER_BIT (1<<30) #define PSOC4_SROM_PRIVILEGED_BIT (1<<28) #define PSOC4_SROM_STATUS_SUCCEEDED 0xa0000000 #define PSOC4_SROM_STATUS_FAILED 0xf0000000 #define PSOC4_CMD_GET_SILICON_ID 0 #define PSOC4_CMD_LOAD_LATCH 4 #define PSOC4_CMD_WRITE_ROW 5 #define PSOC4_CMD_PROGRAM_ROW 6 #define PSOC4_CMD_ERASE_ALL 0xa #define PSOC4_CMD_CHECKSUM 0xb #define PSOC4_CMD_WRITE_PROTECTION 0xd #define PSOC4_CHIP_PROT_VIRGIN 0x0 #define PSOC4_CHIP_PROT_OPEN 0x1 #define PSOC4_CHIP_PROT_PROTECTED 0x2 #define PSOC4_CHIP_PROT_KILL 0x4 struct psoc4_chip_details { uint16_t id; const char *type; const char *package; uint32_t flash_size_in_kb; }; /* list of PSoC 4 chips * flash_size_in_kb is not necessary as it can be decoded from SPCIF_GEOMETRY */ const struct psoc4_chip_details psoc4_devices[] = { /* 4200 series */ { 0x04A6, "CY8C4245PVI-482", "SSOP-28", .flash_size_in_kb = 32 }, { 0x04B6, "CY8C4245LQI-483", "QFN-40", .flash_size_in_kb = 32 }, { 0x04C8, "CY8C4245AXI-483", "TQFP-44", .flash_size_in_kb = 32 }, { 0x04FB, "CY8C4245AXI-473", "TQFP-44", .flash_size_in_kb = 32 }, { 0x04F0, "CY8C4244PVI-432", "SSOP-28", .flash_size_in_kb = 16 }, { 0x04F1, "CY8C4244PVI-442", "SSOP-28", .flash_size_in_kb = 16 }, { 0x04F6, "CY8C4244LQI-443", "QFN-40", .flash_size_in_kb = 16 }, { 0x04FA, "CY8C4244AXI-443", "TQFP-44", .flash_size_in_kb = 16 }, /* 4100 series */ { 0x0410, "CY8C4124PVI-432", "SSOP-28", .flash_size_in_kb = 16 }, { 0x0411, "CY8C4124PVI-442", "SSOP-28", .flash_size_in_kb = 16 }, { 0x0416, "CY8C4124LQI-443", "QFN-40", .flash_size_in_kb = 16 }, { 0x041A, "CY8C4124AXI-443", "TQFP-44", .flash_size_in_kb = 16 }, { 0x041B, "CY8C4125AXI-473", "TQFP-44", .flash_size_in_kb = 32 }, { 0x0412, "CY8C4125PVI-482", "SSOP-28", .flash_size_in_kb = 32 }, { 0x0417, "CY8C4125LQI-483", "QFN-40", .flash_size_in_kb = 32 }, { 0x041C, "CY8C4125AXI-483", "TQFP-44", .flash_size_in_kb = 32 }, }; struct psoc4_flash_bank { uint32_t row_size; uint32_t user_bank_size; int probed; uint32_t silicon_id; uint8_t chip_protection; uint8_t cmd_program_row; }; static const struct psoc4_chip_details *psoc4_details_by_id(uint32_t silicon_id) { const struct psoc4_chip_details *p = psoc4_devices; unsigned int i; uint16_t id = silicon_id >> 16; /* ignore die revision */ for (i = 0; i < sizeof(psoc4_devices)/sizeof(psoc4_devices[0]); i++, p++) { if (p->id == id) return p; } LOG_DEBUG("Unknown PSoC 4 device silicon id 0x%08" PRIx32 ".", silicon_id); return NULL; } static const char *psoc4_decode_chip_protection(uint8_t protection) { switch (protection) { case PSOC4_CHIP_PROT_VIRGIN: return "protection VIRGIN"; case PSOC4_CHIP_PROT_OPEN: return "protection open"; case PSOC4_CHIP_PROT_PROTECTED: return "PROTECTED"; case PSOC4_CHIP_PROT_KILL: return "protection KILL"; default: LOG_WARNING("Unknown protection state 0x%02" PRIx8 "", protection); return ""; } } /* flash bank psoc 0 0 */ FLASH_BANK_COMMAND_HANDLER(psoc4_flash_bank_command) { struct psoc4_flash_bank *psoc4_info; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; psoc4_info = calloc(1, sizeof(struct psoc4_flash_bank)); bank->driver_priv = psoc4_info; psoc4_info->user_bank_size = bank->size; return ERROR_OK; } /* PSoC 4 system ROM request * Setting SROM_SYSREQ_BIT in CPUSS_SYSREQ register runs NMI service * in sysrem ROM. Algorithm just waits for NMI to finish. * When sysreq_params_size == 0 only one parameter is passed in CPUSS_SYSARG register. * Otherwise address of memory parameter block is set in CPUSS_SYSARG * and the first parameter is written to the first word of parameter block */ static int psoc4_sysreq(struct target *target, uint8_t cmd, uint16_t cmd_param, uint32_t *sysreq_params, uint32_t sysreq_params_size) { struct working_area *sysreq_wait_algorithm; struct working_area *sysreq_mem; struct reg_param reg_params[1]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; uint32_t param1 = PSOC4_SROM_KEY1 | ((PSOC4_SROM_KEY2 + cmd) << 8) | (cmd_param << 16); static uint8_t psoc4_sysreq_wait_code[] = { /* system request NMI is served immediately after algo run now we are done: break */ 0x00, 0xbe, /* bkpt 0 */ }; const int code_words = (sizeof(psoc4_sysreq_wait_code) + 3) / 4; /* stack must be aligned */ const int stack_size = 196; /* tested stack sizes on PSoC 4: ERASE_ALL 144 PROGRAM_ROW 112 other sysreq 68 */ /* allocate area for sysreq wait code and stack */ if (target_alloc_working_area(target, code_words * 4 + stack_size, &sysreq_wait_algorithm) != ERROR_OK) { LOG_DEBUG("no working area for sysreq code"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; /* Write the code */ retval = target_write_buffer(target, sysreq_wait_algorithm->address, sizeof(psoc4_sysreq_wait_code), psoc4_sysreq_wait_code); if (retval != ERROR_OK) { /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ goto cleanup_algo; } if (sysreq_params_size) { /* Allocate memory for sysreq_params */ retval = target_alloc_working_area(target, sysreq_params_size, &sysreq_mem); if (retval != ERROR_OK) { LOG_WARNING("no working area for sysreq parameters"); /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; goto cleanup_algo; } /* Write sysreq_params */ sysreq_params[0] = param1; retval = target_write_buffer(target, sysreq_mem->address, sysreq_params_size, (uint8_t *)sysreq_params); if (retval != ERROR_OK) goto cleanup_mem; /* Set address of sysreq parameters block */ retval = target_write_u32(target, PSOC4_CPUSS_SYSARG, sysreq_mem->address); if (retval != ERROR_OK) goto cleanup_mem; } else { /* Sysreq without memory block of parameters */ /* Set register parameter */ retval = target_write_u32(target, PSOC4_CPUSS_SYSARG, param1); if (retval != ERROR_OK) goto cleanup_mem; } armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; /* sysreq stack */ init_reg_param(®_params[0], "sp", 32, PARAM_OUT); buf_set_u32(reg_params[0].value, 0, 32, sysreq_wait_algorithm->address + sysreq_wait_algorithm->size); struct armv7m_common *armv7m = target_to_armv7m(target); if (armv7m == NULL) { /* something is very wrong if armv7m is NULL */ LOG_ERROR("unable to get armv7m target"); goto cleanup; } /* Set SROM request */ retval = target_write_u32(target, PSOC4_CPUSS_SYSREQ, PSOC4_SROM_SYSREQ_BIT | PSOC4_SROM_HMASTER_BIT | cmd); if (retval != ERROR_OK) goto cleanup; /* Execute wait code */ retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params) / sizeof(*reg_params), reg_params, sysreq_wait_algorithm->address, 0, 1000, &armv7m_info); if (retval != ERROR_OK) LOG_ERROR("sysreq wait code execution failed"); cleanup: destroy_reg_param(®_params[0]); cleanup_mem: if (sysreq_params_size) target_free_working_area(target, sysreq_mem); cleanup_algo: target_free_working_area(target, sysreq_wait_algorithm); return retval; } /* helper routine to get silicon ID from a PSoC 4 chip */ static int psoc4_get_silicon_id(struct target *target, uint32_t *silicon_id, uint8_t *protection) { uint32_t params = PSOC4_SROM_KEY1 | ((PSOC4_SROM_KEY2 + PSOC4_CMD_GET_SILICON_ID) << 8); uint32_t part0, part1; int retval = psoc4_sysreq(target, PSOC4_CMD_GET_SILICON_ID, 0, NULL, 0); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, PSOC4_CPUSS_SYSARG, &part0); if (retval != ERROR_OK) return retval; if (part0 == params) { LOG_ERROR("sysreq silicon id request not served"); return ERROR_FAIL; } retval = target_read_u32(target, PSOC4_CPUSS_SYSREQ, &part1); if (retval != ERROR_OK) return retval; uint32_t silicon = ((part0 & 0xffff) << 16) | (((part0 >> 16) & 0xff) << 8) | (part1 & 0xff); uint8_t prot = (part1 >> 12) & 0xff; if (silicon_id) *silicon_id = silicon; if (protection) *protection = prot; LOG_DEBUG("silicon id: 0x%08" PRIx32 "", silicon); LOG_DEBUG("protection: 0x%02" PRIx8 "", prot); return retval; } static int psoc4_protect_check(struct flash_bank *bank) { struct target *target = bank->target; struct psoc4_flash_bank *psoc4_info = bank->driver_priv; uint32_t prot_addr = PSOC4_SFLASH_MACRO; uint32_t protection; int i, s; int num_bits; int retval = ERROR_OK; num_bits = bank->num_sectors; for (i = 0; i < num_bits; i += 32) { retval = target_read_u32(target, prot_addr, &protection); if (retval != ERROR_OK) return retval; prot_addr += 4; for (s = 0; s < 32; s++) { if (i + s >= num_bits) break; bank->sectors[i + s].is_protected = (protection & (1 << s)) ? 1 : 0; } } retval = psoc4_get_silicon_id(target, NULL, &(psoc4_info->chip_protection)); return retval; } static int psoc4_mass_erase(struct flash_bank *bank) { struct target *target = bank->target; int i; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* Call "Erase All" system ROM API */ uint32_t param; int retval = psoc4_sysreq(target, PSOC4_CMD_ERASE_ALL, 0, ¶m, sizeof(param)); if (retval == ERROR_OK) /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_erased = 1; return retval; } static int psoc4_erase(struct flash_bank *bank, int first, int last) { struct psoc4_flash_bank *psoc4_info = bank->driver_priv; if (psoc4_info->cmd_program_row == PSOC4_CMD_WRITE_ROW) { LOG_INFO("Autoerase enabled, erase command ignored"); return ERROR_OK; } if ((first == 0) && (last == (bank->num_sectors - 1))) return psoc4_mass_erase(bank); LOG_ERROR("Only mass erase available"); return ERROR_FAIL; } static int psoc4_protect(struct flash_bank *bank, int set, int first, int last) { struct target *target = bank->target; struct psoc4_flash_bank *psoc4_info = bank->driver_priv; if (psoc4_info->probed == 0) return ERROR_FAIL; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } uint32_t *sysrq_buffer = NULL; int retval; int num_bits = bank->num_sectors; const int param_sz = 8; int prot_sz = num_bits / 8; int chip_prot = PSOC4_CHIP_PROT_OPEN; int flash_macro = 0; /* PSoC 42xx has only macro 0 */ int i; sysrq_buffer = calloc(1, param_sz + prot_sz); if (sysrq_buffer == NULL) { LOG_ERROR("no memory for row buffer"); return ERROR_FAIL; } for (i = first; i < num_bits && i <= last; i++) bank->sectors[i].is_protected = set; uint32_t *p = sysrq_buffer + 2; for (i = 0; i < num_bits; i++) { if (bank->sectors[i].is_protected) p[i / 32] |= 1 << (i % 32); } /* Call "Load Latch" system ROM API */ sysrq_buffer[1] = prot_sz - 1; retval = psoc4_sysreq(target, PSOC4_CMD_LOAD_LATCH, 0, /* Byte number in latch from what to write */ sysrq_buffer, param_sz + psoc4_info->row_size); if (retval != ERROR_OK) goto cleanup; /* Call "Write Protection" system ROM API */ retval = psoc4_sysreq(target, PSOC4_CMD_WRITE_PROTECTION, chip_prot | (flash_macro << 8), NULL, 0); cleanup: if (retval != ERROR_OK) psoc4_protect_check(bank); if (sysrq_buffer) free(sysrq_buffer); return retval; } COMMAND_HANDLER(psoc4_handle_flash_autoerase_command) { if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; struct psoc4_flash_bank *psoc4_info = bank->driver_priv; bool enable = psoc4_info->cmd_program_row == PSOC4_CMD_WRITE_ROW; if (CMD_ARGC >= 2) COMMAND_PARSE_ON_OFF(CMD_ARGV[1], enable); if (enable) { psoc4_info->cmd_program_row = PSOC4_CMD_WRITE_ROW; LOG_INFO("Flash auto-erase enabled, non mass erase commands will be ignored."); } else { psoc4_info->cmd_program_row = PSOC4_CMD_PROGRAM_ROW; LOG_INFO("Flash auto-erase disabled. Use psoc mass_erase before flash programming."); } return retval; } static int psoc4_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct psoc4_flash_bank *psoc4_info = bank->driver_priv; struct target *target = bank->target; uint32_t *sysrq_buffer = NULL; int retval = ERROR_OK; const int param_sz = 8; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset & 0x1) { LOG_ERROR("offset 0x%08" PRIx32 " breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } sysrq_buffer = malloc(param_sz + psoc4_info->row_size); if (sysrq_buffer == NULL) { LOG_ERROR("no memory for row buffer"); return ERROR_FAIL; } uint8_t *row_buffer = (uint8_t *)sysrq_buffer + param_sz; uint32_t row_num = offset / psoc4_info->row_size; uint32_t row_offset = offset - row_num * psoc4_info->row_size; if (row_offset) memset(row_buffer, 0, row_offset); bool save_poll = jtag_poll_get_enabled(); jtag_poll_set_enabled(false); while (count) { uint32_t chunk_size = psoc4_info->row_size - row_offset; if (chunk_size > count) { chunk_size = count; memset(row_buffer + chunk_size, 0, psoc4_info->row_size - chunk_size); } memcpy(row_buffer + row_offset, buffer, chunk_size); LOG_DEBUG("offset / row: 0x%08" PRIx32 " / %" PRIu32 ", size %" PRIu32 "", offset, row_offset, chunk_size); /* Call "Load Latch" system ROM API */ sysrq_buffer[1] = psoc4_info->row_size - 1; retval = psoc4_sysreq(target, PSOC4_CMD_LOAD_LATCH, 0, /* Byte number in latch from what to write */ sysrq_buffer, param_sz + psoc4_info->row_size); if (retval != ERROR_OK) goto cleanup; /* Call "Program Row" or "Write Row" system ROM API */ uint32_t sysrq_param; retval = psoc4_sysreq(target, psoc4_info->cmd_program_row, row_num & 0xffff, &sysrq_param, sizeof(sysrq_param)); if (retval != ERROR_OK) goto cleanup; buffer += chunk_size; row_num++; row_offset = 0; count -= chunk_size; } cleanup: jtag_poll_set_enabled(save_poll); if (sysrq_buffer) free(sysrq_buffer); return retval; } static int psoc4_probe(struct flash_bank *bank) { struct psoc4_flash_bank *psoc4_info = bank->driver_priv; struct target *target = bank->target; uint32_t flash_size_in_kb = 0; uint32_t max_flash_size_in_kb; uint32_t cpu_id; uint32_t silicon_id; uint32_t row_size; uint32_t base_address = 0x00000000; uint8_t protection; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } psoc4_info->probed = 0; psoc4_info->cmd_program_row = PSOC4_CMD_PROGRAM_ROW; /* Get the CPUID from the ARM Core * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */ int retval = target_read_u32(target, 0xE000ED00, &cpu_id); if (retval != ERROR_OK) return retval; LOG_DEBUG("cpu id = 0x%08" PRIx32 "", cpu_id); /* set page size, protection granularity and max flash size depending on family */ switch ((cpu_id >> 4) & 0xFFF) { case 0xc20: /* M0 -> PSoC4 */ row_size = 128; max_flash_size_in_kb = 32; break; default: LOG_WARNING("Cannot identify target as a PSoC 4 family."); return ERROR_FAIL; } uint32_t spcif_geometry; retval = target_read_u32(target, PSOC4_SPCIF_GEOMETRY, &spcif_geometry); if (retval == ERROR_OK) { row_size = 128 * ((spcif_geometry >> 22) & 3); flash_size_in_kb = (spcif_geometry & 0xffff) * 256 / 1024; LOG_INFO("SPCIF geometry: %" PRIu32 " kb flash, row %" PRIu32 " bytes.", flash_size_in_kb, row_size); } /* Early revisions of ST-Link v2 have some problem reading PSOC4_SPCIF_GEOMETRY and an error is reported late. Dummy read gets this error. */ uint32_t dummy; target_read_u32(target, PSOC4_CPUSS_SYSREQ, &dummy); /* get silicon ID from target. */ retval = psoc4_get_silicon_id(target, &silicon_id, &protection); if (retval != ERROR_OK) return retval; const struct psoc4_chip_details *details = psoc4_details_by_id(silicon_id); if (details) { LOG_INFO("%s device detected.", details->type); if (flash_size_in_kb == 0) flash_size_in_kb = details->flash_size_in_kb; else if (flash_size_in_kb != details->flash_size_in_kb) LOG_ERROR("Flash size mismatch"); } psoc4_info->row_size = row_size; psoc4_info->silicon_id = silicon_id; psoc4_info->chip_protection = protection; /* failed reading flash size or flash size invalid (early silicon), * default to max target family */ if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { LOG_WARNING("PSoC 4 flash size failed, probe inaccurate - assuming %" PRIu32 " k flash", max_flash_size_in_kb); flash_size_in_kb = max_flash_size_in_kb; } /* if the user sets the size manually then ignore the probed value * this allows us to work around devices that have a invalid flash size register value */ if (psoc4_info->user_bank_size) { LOG_INFO("ignoring flash probed value, using configured bank size"); flash_size_in_kb = psoc4_info->user_bank_size / 1024; } LOG_INFO("flash size = %" PRIu32 " kbytes", flash_size_in_kb); /* did we assign flash size? */ assert(flash_size_in_kb != 0xffff); /* calculate numbers of pages */ uint32_t num_rows = flash_size_in_kb * 1024 / row_size; /* check that calculation result makes sense */ assert(num_rows > 0); if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } bank->base = base_address; bank->size = num_rows * row_size; bank->num_sectors = num_rows; bank->sectors = malloc(sizeof(struct flash_sector) * num_rows); uint32_t i; for (i = 0; i < num_rows; i++) { bank->sectors[i].offset = i * row_size; bank->sectors[i].size = row_size; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } LOG_INFO("flash bank set %" PRIu32 " rows", num_rows); psoc4_info->probed = 1; return ERROR_OK; } static int psoc4_auto_probe(struct flash_bank *bank) { struct psoc4_flash_bank *psoc4_info = bank->driver_priv; if (psoc4_info->probed) return ERROR_OK; return psoc4_probe(bank); } static int get_psoc4_info(struct flash_bank *bank, char *buf, int buf_size) { struct psoc4_flash_bank *psoc4_info = bank->driver_priv; int printed = 0; if (psoc4_info->probed == 0) return ERROR_FAIL; const struct psoc4_chip_details *details = psoc4_details_by_id(psoc4_info->silicon_id); if (details) { uint32_t chip_revision = psoc4_info->silicon_id & 0xffff; printed = snprintf(buf, buf_size, "PSoC 4 %s rev 0x%04" PRIx32 " package %s", details->type, chip_revision, details->package); } else printed = snprintf(buf, buf_size, "PSoC 4 silicon id 0x%08" PRIx32 "", psoc4_info->silicon_id); buf += printed; buf_size -= printed; const char *prot_txt = psoc4_decode_chip_protection(psoc4_info->chip_protection); uint32_t size_in_kb = bank->size / 1024; snprintf(buf, buf_size, " flash %" PRIu32 " kb %s", size_in_kb, prot_txt); return ERROR_OK; } COMMAND_HANDLER(psoc4_handle_mass_erase_command) { if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; retval = psoc4_mass_erase(bank); if (retval == ERROR_OK) command_print(CMD_CTX, "psoc mass erase complete"); else command_print(CMD_CTX, "psoc mass erase failed"); return retval; } static const struct command_registration psoc4_exec_command_handlers[] = { { .name = "mass_erase", .handler = psoc4_handle_mass_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire flash device.", }, { .name = "flash_autoerase", .handler = psoc4_handle_flash_autoerase_command, .mode = COMMAND_EXEC, .usage = "bank_id on|off", .help = "Set autoerase mode for flash bank.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration psoc4_command_handlers[] = { { .name = "psoc4", .mode = COMMAND_ANY, .help = "PSoC 4 flash command group", .usage = "", .chain = psoc4_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver psoc4_flash = { .name = "psoc4", .commands = psoc4_command_handlers, .flash_bank_command = psoc4_flash_bank_command, .erase = psoc4_erase, .protect = psoc4_protect, .write = psoc4_write, .read = default_flash_read, .probe = psoc4_probe, .auto_probe = psoc4_auto_probe, .erase_check = default_flash_blank_check, .protect_check = psoc4_protect_check, .info = get_psoc4_info, };