// SPDX-License-Identifier: GPL-2.0-or-later /*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2011 by Andreas Fritiofson * * andreas.fritiofson@gmail.com * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "imp.h" #include #include #include /* stm32x register locations */ #define FLASH_REG_BASE_B0 0x40022000 #define FLASH_REG_BASE_B1 0x40022040 #define STM32_FLASH_ACR 0x00 #define STM32_FLASH_KEYR 0x04 #define STM32_FLASH_OPTKEYR 0x08 #define STM32_FLASH_SR 0x0C #define STM32_FLASH_CR 0x10 #define STM32_FLASH_AR 0x14 #define STM32_FLASH_OBR 0x1C #define STM32_FLASH_WRPR 0x20 /* TODO: Check if code using these really should be hard coded to bank 0. * There are valid cases, on dual flash devices the protection of the * second bank is done on the bank0 reg's. */ #define STM32_FLASH_ACR_B0 0x40022000 #define STM32_FLASH_KEYR_B0 0x40022004 #define STM32_FLASH_OPTKEYR_B0 0x40022008 #define STM32_FLASH_SR_B0 0x4002200C #define STM32_FLASH_CR_B0 0x40022010 #define STM32_FLASH_AR_B0 0x40022014 #define STM32_FLASH_OBR_B0 0x4002201C #define STM32_FLASH_WRPR_B0 0x40022020 /* option byte location */ #define STM32_OB_RDP 0x1FFFF800 #define STM32_OB_USER 0x1FFFF802 #define STM32_OB_DATA0 0x1FFFF804 #define STM32_OB_DATA1 0x1FFFF806 #define STM32_OB_WRP0 0x1FFFF808 #define STM32_OB_WRP1 0x1FFFF80A #define STM32_OB_WRP2 0x1FFFF80C #define STM32_OB_WRP3 0x1FFFF80E /* FLASH_CR register bits */ #define FLASH_PG (1 << 0) #define FLASH_PER (1 << 1) #define FLASH_MER (1 << 2) #define FLASH_OPTPG (1 << 4) #define FLASH_OPTER (1 << 5) #define FLASH_STRT (1 << 6) #define FLASH_LOCK (1 << 7) #define FLASH_OPTWRE (1 << 9) #define FLASH_OBL_LAUNCH (1 << 13) /* except stm32f1x series */ /* FLASH_SR register bits */ #define FLASH_BSY (1 << 0) #define FLASH_PGERR (1 << 2) #define FLASH_WRPRTERR (1 << 4) #define FLASH_EOP (1 << 5) /* STM32_FLASH_OBR bit definitions (reading) */ #define OPT_ERROR 0 #define OPT_READOUT 1 #define OPT_RDWDGSW 2 #define OPT_RDRSTSTOP 3 #define OPT_RDRSTSTDBY 4 #define OPT_BFB2 5 /* dual flash bank only */ /* register unlock keys */ #define KEY1 0x45670123 #define KEY2 0xCDEF89AB /* timeout values */ #define FLASH_WRITE_TIMEOUT 10 #define FLASH_ERASE_TIMEOUT 100 struct stm32x_options { uint8_t rdp; uint8_t user; uint16_t data; uint32_t protection; }; struct stm32x_flash_bank { struct stm32x_options option_bytes; int ppage_size; bool probed; bool has_dual_banks; /* used to access dual flash bank stm32xl */ bool can_load_options; uint32_t register_base; uint8_t default_rdp; int user_data_offset; int option_offset; uint32_t user_bank_size; }; static int stm32x_mass_erase(struct flash_bank *bank); static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t address, uint32_t hwords_count); /* flash bank stm32x 0 0 */ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command) { struct stm32x_flash_bank *stm32x_info; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; stm32x_info = malloc(sizeof(struct stm32x_flash_bank)); bank->driver_priv = stm32x_info; stm32x_info->probed = false; stm32x_info->has_dual_banks = false; stm32x_info->can_load_options = false; stm32x_info->register_base = FLASH_REG_BASE_B0; stm32x_info->user_bank_size = bank->size; /* The flash write must be aligned to a halfword boundary */ bank->write_start_alignment = bank->write_end_alignment = 2; return ERROR_OK; } static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; return reg + stm32x_info->register_base; } static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status) { struct target *target = bank->target; return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status); } static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) { struct target *target = bank->target; uint32_t status; int retval = ERROR_OK; /* wait for busy to clear */ for (;;) { retval = stm32x_get_flash_status(bank, &status); if (retval != ERROR_OK) return retval; LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_BSY) == 0) break; if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FLASH_BUSY; } alive_sleep(1); } if (status & FLASH_WRPRTERR) { LOG_ERROR("stm32x device protected"); retval = ERROR_FLASH_PROTECTED; } if (status & FLASH_PGERR) { LOG_ERROR("stm32x device programming failed / flash not erased"); retval = ERROR_FLASH_OPERATION_FAILED; } /* Clear but report errors */ if (status & (FLASH_WRPRTERR | FLASH_PGERR)) { /* If this operation fails, we ignore it and report the original * retval */ target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR | FLASH_PGERR); } return retval; } static int stm32x_check_operation_supported(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; /* if we have a dual flash bank device then * we need to perform option byte stuff on bank0 only */ if (stm32x_info->register_base != FLASH_REG_BASE_B0) { LOG_ERROR("Option byte operations must use bank 0"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int stm32x_read_options(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; struct target *target = bank->target; uint32_t option_bytes; int retval; /* read user and read protection option bytes, user data option bytes */ retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes); if (retval != ERROR_OK) return retval; stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp; stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff; stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff; /* read write protection option bytes */ retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_erase_options(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; struct target *target = bank->target; /* read current options */ stm32x_read_options(bank); /* unlock flash registers */ int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2); if (retval != ERROR_OK) goto flash_lock; /* unlock option flash registers */ retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1); if (retval != ERROR_OK) goto flash_lock; retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2); if (retval != ERROR_OK) goto flash_lock; /* erase option bytes */ retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE); if (retval != ERROR_OK) goto flash_lock; retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE); if (retval != ERROR_OK) goto flash_lock; retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) goto flash_lock; /* clear read protection option byte * this will also force a device unlock if set */ stm32x_info->option_bytes.rdp = stm32x_info->default_rdp; return ERROR_OK; flash_lock: target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK); return retval; } static int stm32x_write_options(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = NULL; struct target *target = bank->target; stm32x_info = bank->driver_priv; /* unlock flash registers */ int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2); if (retval != ERROR_OK) goto flash_lock; /* unlock option flash registers */ retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1); if (retval != ERROR_OK) goto flash_lock; retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2); if (retval != ERROR_OK) goto flash_lock; /* program option bytes */ retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE); if (retval != ERROR_OK) goto flash_lock; uint8_t opt_bytes[16]; target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp); target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user); target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff); target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff); target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff); target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff); target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff); target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff); /* Block write is preferred in favour of operation with ancient ST-Link * firmwares without 16-bit memory access. See * 480: flash: stm32f1x: write option bytes using the loader * https://review.openocd.org/c/openocd/+/480 */ retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2); flash_lock: { int retval2 = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK); if (retval == ERROR_OK) retval = retval2; } return retval; } static int stm32x_protect_check(struct flash_bank *bank) { struct target *target = bank->target; uint32_t protection; int retval = stm32x_check_operation_supported(bank); if (retval != ERROR_OK) return retval; /* medium density - each bit refers to a 4 sector protection block * high density - each bit refers to a 2 sector protection block * bit 31 refers to all remaining sectors in a bank */ retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection); if (retval != ERROR_OK) return retval; for (unsigned int i = 0; i < bank->num_prot_blocks; i++) bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1; return ERROR_OK; } static int stm32x_erase(struct flash_bank *bank, unsigned int first, unsigned int last) { struct target *target = bank->target; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first == 0) && (last == (bank->num_sectors - 1))) return stm32x_mass_erase(bank); /* unlock flash registers */ int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) goto flash_lock; for (unsigned int i = first; i <= last; i++) { retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER); if (retval != ERROR_OK) goto flash_lock; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR), bank->base + bank->sectors[i].offset); if (retval != ERROR_OK) goto flash_lock; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT); if (retval != ERROR_OK) goto flash_lock; retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) goto flash_lock; } flash_lock: { int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); if (retval == ERROR_OK) retval = retval2; } return retval; } static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last) { struct target *target = bank->target; struct stm32x_flash_bank *stm32x_info = bank->driver_priv; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } int retval = stm32x_check_operation_supported(bank); if (retval != ERROR_OK) return retval; retval = stm32x_erase_options(bank); if (retval != ERROR_OK) { LOG_ERROR("stm32x failed to erase options"); return retval; } for (unsigned int i = first; i <= last; i++) { if (set) stm32x_info->option_bytes.protection &= ~(1 << i); else stm32x_info->option_bytes.protection |= (1 << i); } return stm32x_write_options(bank); } static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buffer, uint32_t address, uint32_t hwords_count) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; struct target *target = bank->target; uint32_t buffer_size; struct working_area *write_algorithm; struct working_area *source; struct armv7m_algorithm armv7m_info; int retval; static const uint8_t stm32x_flash_write_code[] = { #include "../../../contrib/loaders/flash/stm32/stm32f1x.inc" }; /* flash write code */ if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } retval = target_write_buffer(target, write_algorithm->address, sizeof(stm32x_flash_write_code), stm32x_flash_write_code); if (retval != ERROR_OK) { target_free_working_area(target, write_algorithm); return retval; } /* memory buffer */ buffer_size = target_get_working_area_avail(target); buffer_size = MIN(hwords_count * 2 + 8, MAX(buffer_size, 256)); /* Normally we allocate all available working area. * MIN shrinks buffer_size if the size of the written block is smaller. * MAX prevents using async algo if the available working area is smaller * than 256, the following allocation fails with * ERROR_TARGET_RESOURCE_NOT_AVAILABLE and slow flashing takes place. */ retval = target_alloc_working_area(target, buffer_size, &source); /* Allocated size is always 32-bit word aligned */ if (retval != ERROR_OK) { target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); /* target_alloc_working_area() may return ERROR_FAIL if area backup fails: * convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE */ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } struct reg_param reg_params[5]; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer start */ init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* buffer end */ init_reg_param(®_params[4], "r4", 32, PARAM_IN_OUT); /* target address */ buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base); buf_set_u32(reg_params[1].value, 0, 32, hwords_count); buf_set_u32(reg_params[2].value, 0, 32, source->address); buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size); buf_set_u32(reg_params[4].value, 0, 32, address); armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; retval = target_run_flash_async_algorithm(target, buffer, hwords_count, 2, 0, NULL, ARRAY_SIZE(reg_params), reg_params, source->address, source->size, write_algorithm->address, 0, &armv7m_info); if (retval == ERROR_FLASH_OPERATION_FAILED) { /* Actually we just need to check for programming errors * stm32x_wait_status_busy also reports error and clears status bits. * * Target algo returns flash status in r0 only if properly finished. * It is safer to re-read status register. */ int retval2 = stm32x_wait_status_busy(bank, 5); if (retval2 != ERROR_OK) retval = retval2; LOG_ERROR("flash write failed just before address 0x%"PRIx32, buf_get_u32(reg_params[4].value, 0, 32)); } for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++) destroy_reg_param(®_params[i]); target_free_working_area(target, source); target_free_working_area(target, write_algorithm); return retval; } static int stm32x_write_block_riscv(struct flash_bank *bank, const uint8_t *buffer, uint32_t address, uint32_t hwords_count) { struct target *target = bank->target; uint32_t buffer_size; struct working_area *write_algorithm; struct working_area *source; static const uint8_t gd32vf103_flash_write_code[] = { #include "../../../contrib/loaders/flash/gd32vf103/gd32vf103.inc" }; /* flash write code */ if (target_alloc_working_area(target, sizeof(gd32vf103_flash_write_code), &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } int retval = target_write_buffer(target, write_algorithm->address, sizeof(gd32vf103_flash_write_code), gd32vf103_flash_write_code); if (retval != ERROR_OK) { target_free_working_area(target, write_algorithm); return retval; } /* memory buffer */ buffer_size = target_get_working_area_avail(target); buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256)); retval = target_alloc_working_area(target, buffer_size, &source); /* Allocated size is always word aligned */ if (retval != ERROR_OK) { target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); /* target_alloc_working_area() may return ERROR_FAIL if area backup fails: * convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE */ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } struct reg_param reg_params[4]; init_reg_param(®_params[0], "a0", 32, PARAM_OUT); /* poiner to FLASH_SR */ init_reg_param(®_params[1], "a1", 32, PARAM_OUT); /* count (halfword-16bit) */ init_reg_param(®_params[2], "a2", 32, PARAM_OUT); /* buffer start */ init_reg_param(®_params[3], "a3", 32, PARAM_IN_OUT); /* target address */ while (hwords_count > 0) { uint32_t thisrun_hwords = source->size / 2; /* Limit to the amount of data we actually want to write */ if (thisrun_hwords > hwords_count) thisrun_hwords = hwords_count; /* Write data to buffer */ retval = target_write_buffer(target, source->address, thisrun_hwords * 2, buffer); if (retval != ERROR_OK) break; buf_set_u32(reg_params[0].value, 0, 32, stm32x_get_flash_reg(bank, STM32_FLASH_SR)); buf_set_u32(reg_params[1].value, 0, 32, thisrun_hwords); buf_set_u32(reg_params[2].value, 0, 32, source->address); buf_set_u32(reg_params[3].value, 0, 32, address); retval = target_run_algorithm(target, 0, NULL, ARRAY_SIZE(reg_params), reg_params, write_algorithm->address, write_algorithm->address + sizeof(gd32vf103_flash_write_code) - 4, 10000, NULL); if (retval != ERROR_OK) { LOG_ERROR("Failed to execute algorithm at 0x%" TARGET_PRIxADDR ": %d", write_algorithm->address, retval); break; } /* Actually we just need to check for programming errors * stm32x_wait_status_busy also reports error and clears status bits */ retval = stm32x_wait_status_busy(bank, 5); if (retval != ERROR_OK) { LOG_ERROR("flash write failed at address 0x%"PRIx32, buf_get_u32(reg_params[3].value, 0, 32)); break; } /* Update counters */ buffer += thisrun_hwords * 2; address += thisrun_hwords * 2; hwords_count -= thisrun_hwords; } for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++) destroy_reg_param(®_params[i]); target_free_working_area(target, source); target_free_working_area(target, write_algorithm); return retval; } /** Writes a block to flash either using target algorithm * or use fallback, host controlled halfword-by-halfword access. * Flash controller must be unlocked before this call. */ static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t address, uint32_t hwords_count) { struct target *target = bank->target; /* The flash write must be aligned to a halfword boundary. * The flash infrastructure ensures it, do just a security check */ assert(address % 2 == 0); int retval; struct arm *arm = target_to_arm(target); if (is_arm(arm)) { /* try using a block write - on ARM architecture or... */ retval = stm32x_write_block_async(bank, buffer, address, hwords_count); } else { /* ... RISC-V architecture */ retval = stm32x_write_block_riscv(bank, buffer, address, hwords_count); } if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single halfword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); while (hwords_count > 0) { retval = target_write_memory(target, address, 2, 1, buffer); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 5); if (retval != ERROR_OK) return retval; hwords_count--; buffer += 2; address += 2; } } return retval; } static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* The flash write must be aligned to a halfword boundary. * The flash infrastructure ensures it, do just a security check */ assert(offset % 2 == 0); assert(count % 2 == 0); int retval, retval2; /* unlock flash registers */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) goto reset_pg_and_lock; /* enable flash programming */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG); if (retval != ERROR_OK) goto reset_pg_and_lock; /* write to flash */ retval = stm32x_write_block(bank, buffer, bank->base + offset, count / 2); reset_pg_and_lock: retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); if (retval == ERROR_OK) retval = retval2; return retval; } struct stm32x_property_addr { uint32_t device_id; uint32_t flash_size; }; static int stm32x_get_property_addr(struct target *target, struct stm32x_property_addr *addr) { if (!target_was_examined(target)) { LOG_ERROR("Target not examined yet"); return ERROR_TARGET_NOT_EXAMINED; } switch (cortex_m_get_impl_part(target)) { case CORTEX_M0_PARTNO: /* STM32F0x devices */ case CORTEX_M0P_PARTNO: /* APM32F0x devices */ addr->device_id = 0x40015800; addr->flash_size = 0x1FFFF7CC; return ERROR_OK; case CORTEX_M3_PARTNO: /* STM32F1x devices */ addr->device_id = 0xE0042000; addr->flash_size = 0x1FFFF7E0; return ERROR_OK; case CORTEX_M4_PARTNO: /* STM32F3x devices */ addr->device_id = 0xE0042000; addr->flash_size = 0x1FFFF7CC; return ERROR_OK; case CORTEX_M23_PARTNO: /* GD32E23x devices */ addr->device_id = 0x40015800; addr->flash_size = 0x1FFFF7E0; return ERROR_OK; case CORTEX_M_PARTNO_INVALID: /* Check for GD32VF103 with RISC-V CPU */ if (strcmp(target_type_name(target), "riscv") == 0 && target_address_bits(target) == 32) { /* There is nothing like arm common_magic in riscv_info_t * check text name of target and if target is 32-bit */ addr->device_id = 0xE0042000; addr->flash_size = 0x1FFFF7E0; return ERROR_OK; } /* fallthrough */ default: LOG_ERROR("Cannot identify target as a stm32x"); return ERROR_FAIL; } } static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id) { struct target *target = bank->target; struct stm32x_property_addr addr; int retval = stm32x_get_property_addr(target, &addr); if (retval != ERROR_OK) return retval; return target_read_u32(target, addr.device_id, device_id); } static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb) { struct target *target = bank->target; struct stm32x_property_addr addr; int retval = stm32x_get_property_addr(target, &addr); if (retval != ERROR_OK) return retval; return target_read_u16(target, addr.flash_size, flash_size_in_kb); } static int stm32x_probe(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; uint16_t flash_size_in_kb; uint16_t max_flash_size_in_kb; uint32_t dbgmcu_idcode; int page_size; uint32_t base_address = 0x08000000; stm32x_info->probed = false; stm32x_info->register_base = FLASH_REG_BASE_B0; stm32x_info->user_data_offset = 10; stm32x_info->option_offset = 0; /* default factory read protection level 0 */ stm32x_info->default_rdp = 0xA5; /* read stm32 device id register */ int retval = stm32x_get_device_id(bank, &dbgmcu_idcode); if (retval != ERROR_OK) return retval; LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode); uint16_t device_id = dbgmcu_idcode & 0xfff; uint16_t rev_id = dbgmcu_idcode >> 16; /* set page size, protection granularity and max flash size depending on family */ switch (device_id) { case 0x440: /* stm32f05x */ page_size = 1024; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 64; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; case 0x444: /* stm32f03x */ case 0x445: /* stm32f04x */ page_size = 1024; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 32; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; case 0x448: /* stm32f07x */ page_size = 2048; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 128; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; case 0x442: /* stm32f09x */ page_size = 2048; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 256; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; case 0x410: /* stm32f1x medium-density */ page_size = 1024; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 128; /* GigaDevice GD32F1x0 & GD32F3x0 & GD32E23x series devices share DEV_ID with STM32F101/2/3 medium-density line, however they use a REV_ID different from any STM32 device. The main difference is another offset of user option bits (like WDG_SW, nRST_STOP, nRST_STDBY) in option byte register (FLASH_OBR/FMC_OBSTAT 0x4002201C). This caused problems e.g. during flash block programming because of unexpected active hardware watchog. */ switch (rev_id) { case 0x1303: /* gd32f1x0 */ stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; max_flash_size_in_kb = 64; stm32x_info->can_load_options = true; break; case 0x1704: /* gd32f3x0 */ stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->can_load_options = true; break; case 0x1906: /* gd32vf103 */ break; case 0x1909: /* gd32e23x */ stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; max_flash_size_in_kb = 64; stm32x_info->can_load_options = true; break; } break; case 0x412: /* stm32f1x low-density */ page_size = 1024; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 32; break; case 0x414: /* stm32f1x high-density */ page_size = 2048; stm32x_info->ppage_size = 2; max_flash_size_in_kb = 512; break; case 0x418: /* stm32f1x connectivity */ page_size = 2048; stm32x_info->ppage_size = 2; max_flash_size_in_kb = 256; break; case 0x430: /* stm32f1 XL-density (dual flash banks) */ page_size = 2048; stm32x_info->ppage_size = 2; max_flash_size_in_kb = 1024; stm32x_info->has_dual_banks = true; break; case 0x420: /* stm32f100xx low- and medium-density value line */ page_size = 1024; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 128; break; case 0x428: /* stm32f100xx high-density value line */ page_size = 2048; stm32x_info->ppage_size = 4; max_flash_size_in_kb = 512; break; case 0x422: /* stm32f302/3xb/c */ page_size = 2048; stm32x_info->ppage_size = 2; max_flash_size_in_kb = 256; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; case 0x446: /* stm32f303xD/E */ page_size = 2048; stm32x_info->ppage_size = 2; max_flash_size_in_kb = 512; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; case 0x432: /* stm32f37x */ page_size = 2048; stm32x_info->ppage_size = 2; max_flash_size_in_kb = 256; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; case 0x438: /* stm32f33x */ case 0x439: /* stm32f302x6/8 */ page_size = 2048; stm32x_info->ppage_size = 2; max_flash_size_in_kb = 64; stm32x_info->user_data_offset = 16; stm32x_info->option_offset = 6; stm32x_info->default_rdp = 0xAA; stm32x_info->can_load_options = true; break; default: LOG_WARNING("Cannot identify target as a STM32 family."); return ERROR_FAIL; } /* get flash size from target. */ retval = stm32x_get_flash_size(bank, &flash_size_in_kb); /* failed reading flash size or flash size invalid (early silicon), * default to max target family */ if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash", max_flash_size_in_kb); flash_size_in_kb = max_flash_size_in_kb; } if (stm32x_info->has_dual_banks) { /* split reported size into matching bank */ if (bank->base != 0x08080000) { /* bank 0 will be fixed 512k */ flash_size_in_kb = 512; } else { flash_size_in_kb -= 512; /* bank1 also uses a register offset */ stm32x_info->register_base = FLASH_REG_BASE_B1; base_address = 0x08080000; } } /* if the user sets the size manually then ignore the probed value * this allows us to work around devices that have a invalid flash size register value */ if (stm32x_info->user_bank_size) { LOG_INFO("ignoring flash probed value, using configured bank size"); flash_size_in_kb = stm32x_info->user_bank_size / 1024; } LOG_INFO("flash size = %d KiB", flash_size_in_kb); /* did we assign flash size? */ assert(flash_size_in_kb != 0xffff); /* calculate numbers of pages */ int num_pages = flash_size_in_kb * 1024 / page_size; /* check that calculation result makes sense */ assert(num_pages > 0); free(bank->sectors); bank->sectors = NULL; free(bank->prot_blocks); bank->prot_blocks = NULL; bank->base = base_address; bank->size = (num_pages * page_size); bank->num_sectors = num_pages; bank->sectors = alloc_block_array(0, page_size, num_pages); if (!bank->sectors) return ERROR_FAIL; /* calculate number of write protection blocks */ int num_prot_blocks = num_pages / stm32x_info->ppage_size; if (num_prot_blocks > 32) num_prot_blocks = 32; bank->num_prot_blocks = num_prot_blocks; bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks); if (!bank->prot_blocks) return ERROR_FAIL; if (num_prot_blocks == 32) bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size; stm32x_info->probed = true; return ERROR_OK; } static int stm32x_auto_probe(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; if (stm32x_info->probed) return ERROR_OK; return stm32x_probe(bank); } #if 0 COMMAND_HANDLER(stm32x_handle_part_id_command) { return ERROR_OK; } #endif static const char *get_stm32f0_revision(uint16_t rev_id) { const char *rev_str = NULL; switch (rev_id) { case 0x1000: rev_str = "1.0"; break; case 0x2000: rev_str = "2.0"; break; } return rev_str; } static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd) { uint32_t dbgmcu_idcode; /* read stm32 device id register */ int retval = stm32x_get_device_id(bank, &dbgmcu_idcode); if (retval != ERROR_OK) return retval; uint16_t device_id = dbgmcu_idcode & 0xfff; uint16_t rev_id = dbgmcu_idcode >> 16; const char *device_str; const char *rev_str = NULL; switch (device_id) { case 0x410: device_str = "STM32F10x (Medium Density)"; switch (rev_id) { case 0x0000: rev_str = "A"; break; case 0x1303: /* gd32f1x0 */ device_str = "GD32F1x0"; break; case 0x1704: /* gd32f3x0 */ device_str = "GD32F3x0"; break; case 0x1906: device_str = "GD32VF103"; break; case 0x1909: /* gd32e23x */ device_str = "GD32E23x"; break; case 0x2000: rev_str = "B"; break; case 0x2001: rev_str = "Z"; break; case 0x2003: rev_str = "Y"; break; } break; case 0x412: device_str = "STM32F10x (Low Density)"; switch (rev_id) { case 0x1000: rev_str = "A"; break; } break; case 0x414: device_str = "STM32F10x (High Density)"; switch (rev_id) { case 0x1000: rev_str = "A"; break; case 0x1001: rev_str = "Z"; break; case 0x1003: rev_str = "Y"; break; } break; case 0x418: device_str = "STM32F10x (Connectivity)"; switch (rev_id) { case 0x1000: rev_str = "A"; break; case 0x1001: rev_str = "Z"; break; } break; case 0x420: device_str = "STM32F100 (Low/Medium Density)"; switch (rev_id) { case 0x1000: rev_str = "A"; break; case 0x1001: rev_str = "Z"; break; } break; case 0x422: device_str = "STM32F302xB/C"; switch (rev_id) { case 0x1000: rev_str = "A"; break; case 0x1001: rev_str = "Z"; break; case 0x1003: rev_str = "Y"; break; case 0x2000: rev_str = "B"; break; } break; case 0x428: device_str = "STM32F100 (High Density)"; switch (rev_id) { case 0x1000: rev_str = "A"; break; case 0x1001: rev_str = "Z"; break; } break; case 0x430: device_str = "STM32F10x (XL Density)"; switch (rev_id) { case 0x1000: rev_str = "A"; break; } break; case 0x432: device_str = "STM32F37x"; switch (rev_id) { case 0x1000: rev_str = "A"; break; case 0x2000: rev_str = "B"; break; } break; case 0x438: device_str = "STM32F33x"; switch (rev_id) { case 0x1000: rev_str = "A"; break; } break; case 0x439: device_str = "STM32F302x6/8"; switch (rev_id) { case 0x1000: rev_str = "A"; break; case 0x1001: rev_str = "Z"; break; } break; case 0x444: device_str = "STM32F03x"; rev_str = get_stm32f0_revision(rev_id); break; case 0x440: device_str = "STM32F05x"; rev_str = get_stm32f0_revision(rev_id); break; case 0x445: device_str = "STM32F04x"; rev_str = get_stm32f0_revision(rev_id); break; case 0x446: device_str = "STM32F303xD/E"; switch (rev_id) { case 0x1000: rev_str = "A"; break; } break; case 0x448: device_str = "STM32F07x"; rev_str = get_stm32f0_revision(rev_id); break; case 0x442: device_str = "STM32F09x"; rev_str = get_stm32f0_revision(rev_id); break; default: command_print_sameline(cmd, "Cannot identify target as a STM32F0/1/3\n"); return ERROR_FAIL; } if (rev_str) command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str); else command_print_sameline(cmd, "%s - Rev: unknown (0x%04x)", device_str, rev_id); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_lock_command) { struct target *target = NULL; struct stm32x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (retval != ERROR_OK) return retval; stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (retval != ERROR_OK) return retval; if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD, "stm32x failed to erase options"); return ERROR_OK; } /* set readout protection */ stm32x_info->option_bytes.rdp = 0; if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD, "stm32x failed to lock device"); return ERROR_OK; } command_print(CMD, "stm32x locked"); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_unlock_command) { struct target *target = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (retval != ERROR_OK) return retval; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (retval != ERROR_OK) return retval; if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD, "stm32x failed to erase options"); return ERROR_OK; } if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD, "stm32x failed to unlock device"); return ERROR_OK; } command_print(CMD, "stm32x unlocked.\n" "INFO: a reset or power cycle is required " "for the new settings to take effect."); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_options_read_command) { uint32_t optionbyte, protection; struct target *target = NULL; struct stm32x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (retval != ERROR_OK) return retval; stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte); if (retval != ERROR_OK) return retval; uint16_t user_data = optionbyte >> stm32x_info->user_data_offset; retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection); if (retval != ERROR_OK) return retval; if (optionbyte & (1 << OPT_ERROR)) command_print(CMD, "option byte complement error"); command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte); command_print(CMD, "write protection register = 0x%" PRIx32 "", protection); command_print(CMD, "read protection: %s", (optionbyte & (1 << OPT_READOUT)) ? "on" : "off"); /* user option bytes are offset depending on variant */ optionbyte >>= stm32x_info->option_offset; command_print(CMD, "watchdog: %sware", (optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard"); command_print(CMD, "stop mode: %sreset generated upon entry", (optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : ""); command_print(CMD, "standby mode: %sreset generated upon entry", (optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : ""); if (stm32x_info->has_dual_banks) command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1); command_print(CMD, "user data = 0x%02" PRIx16 "", user_data); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_options_write_command) { struct target *target = NULL; struct stm32x_flash_bank *stm32x_info = NULL; uint8_t optionbyte; uint16_t useropt; if (CMD_ARGC < 2) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (retval != ERROR_OK) return retval; stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (retval != ERROR_OK) return retval; retval = stm32x_read_options(bank); if (retval != ERROR_OK) return retval; /* start with current options */ optionbyte = stm32x_info->option_bytes.user; useropt = stm32x_info->option_bytes.data; /* skip over flash bank */ CMD_ARGC--; CMD_ARGV++; while (CMD_ARGC) { if (strcmp("SWWDG", CMD_ARGV[0]) == 0) optionbyte |= (1 << 0); else if (strcmp("HWWDG", CMD_ARGV[0]) == 0) optionbyte &= ~(1 << 0); else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0) optionbyte |= (1 << 1); else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0) optionbyte &= ~(1 << 1); else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0) optionbyte |= (1 << 2); else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0) optionbyte &= ~(1 << 2); else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) { if (CMD_ARGC < 2) return ERROR_COMMAND_SYNTAX_ERROR; COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt); CMD_ARGC--; CMD_ARGV++; } else if (stm32x_info->has_dual_banks) { if (strcmp("BOOT0", CMD_ARGV[0]) == 0) optionbyte |= (1 << 3); else if (strcmp("BOOT1", CMD_ARGV[0]) == 0) optionbyte &= ~(1 << 3); else return ERROR_COMMAND_SYNTAX_ERROR; } else return ERROR_COMMAND_SYNTAX_ERROR; CMD_ARGC--; CMD_ARGV++; } if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD, "stm32x failed to erase options"); return ERROR_OK; } stm32x_info->option_bytes.user = optionbyte; stm32x_info->option_bytes.data = useropt; if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD, "stm32x failed to write options"); return ERROR_OK; } command_print(CMD, "stm32x write options complete.\n" "INFO: %spower cycle is required " "for the new settings to take effect.", stm32x_info->can_load_options ? "'stm32f1x options_load' command or " : ""); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_options_load_command) { if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (retval != ERROR_OK) return retval; struct stm32x_flash_bank *stm32x_info = bank->driver_priv; if (!stm32x_info->can_load_options) { LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is " "required instead."); return ERROR_FAIL; } struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (retval != ERROR_OK) return retval; /* unlock option flash registers */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) { (void)target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); return retval; } /* force re-load of option bytes - generates software reset */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_mass_erase(struct flash_bank *bank) { struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* unlock option flash registers */ int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) goto flash_lock; /* mass erase flash memory */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER); if (retval != ERROR_OK) goto flash_lock; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_STRT); if (retval != ERROR_OK) goto flash_lock; retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); flash_lock: { int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); if (retval == ERROR_OK) retval = retval2; } return retval; } COMMAND_HANDLER(stm32x_handle_mass_erase_command) { if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (retval != ERROR_OK) return retval; retval = stm32x_mass_erase(bank); if (retval == ERROR_OK) command_print(CMD, "stm32x mass erase complete"); else command_print(CMD, "stm32x mass erase failed"); return retval; } static const struct command_registration stm32f1x_exec_command_handlers[] = { { .name = "lock", .handler = stm32x_handle_lock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Lock entire flash device.", }, { .name = "unlock", .handler = stm32x_handle_unlock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Unlock entire protected flash device.", }, { .name = "mass_erase", .handler = stm32x_handle_mass_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire flash device.", }, { .name = "options_read", .handler = stm32x_handle_options_read_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Read and display device option bytes.", }, { .name = "options_write", .handler = stm32x_handle_options_write_command, .mode = COMMAND_EXEC, .usage = "bank_id ('SWWDG'|'HWWDG') " "('RSTSTNDBY'|'NORSTSTNDBY') " "('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)", .help = "Replace bits in device option bytes.", }, { .name = "options_load", .handler = stm32x_handle_options_load_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Force re-load of device option bytes.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration stm32f1x_command_handlers[] = { { .name = "stm32f1x", .mode = COMMAND_ANY, .help = "stm32f1x flash command group", .usage = "", .chain = stm32f1x_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; const struct flash_driver stm32f1x_flash = { .name = "stm32f1x", .commands = stm32f1x_command_handlers, .flash_bank_command = stm32x_flash_bank_command, .erase = stm32x_erase, .protect = stm32x_protect, .write = stm32x_write, .read = default_flash_read, .probe = stm32x_probe, .auto_probe = stm32x_auto_probe, .erase_check = default_flash_blank_check, .protect_check = stm32x_protect_check, .info = get_stm32x_info, .free_driver_priv = default_flash_free_driver_priv, };