/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2011 by Andreas Fritiofson * * andreas.fritiofson@gmail.com * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include /* stm32x register locations */ #define FLASH_REG_BASE_B0 0x40022000 #define FLASH_REG_BASE_B1 0x40022040 #define STM32_FLASH_ACR 0x00 #define STM32_FLASH_KEYR 0x04 #define STM32_FLASH_OPTKEYR 0x08 #define STM32_FLASH_SR 0x0C #define STM32_FLASH_CR 0x10 #define STM32_FLASH_AR 0x14 #define STM32_FLASH_OBR 0x1C #define STM32_FLASH_WRPR 0x20 /* TODO: Check if code using these really should be hard coded to bank 0. * There are valid cases, on dual flash devices the protection of the * second bank is done on the bank0 reg's. */ #define STM32_FLASH_ACR_B0 0x40022000 #define STM32_FLASH_KEYR_B0 0x40022004 #define STM32_FLASH_OPTKEYR_B0 0x40022008 #define STM32_FLASH_SR_B0 0x4002200C #define STM32_FLASH_CR_B0 0x40022010 #define STM32_FLASH_AR_B0 0x40022014 #define STM32_FLASH_OBR_B0 0x4002201C #define STM32_FLASH_WRPR_B0 0x40022020 /* option byte location */ #define STM32_OB_RDP 0x1FFFF800 #define STM32_OB_USER 0x1FFFF802 #define STM32_OB_DATA0 0x1FFFF804 #define STM32_OB_DATA1 0x1FFFF806 #define STM32_OB_WRP0 0x1FFFF808 #define STM32_OB_WRP1 0x1FFFF80A #define STM32_OB_WRP2 0x1FFFF80C #define STM32_OB_WRP3 0x1FFFF80E /* FLASH_CR register bits */ #define FLASH_PG (1 << 0) #define FLASH_PER (1 << 1) #define FLASH_MER (1 << 2) #define FLASH_OPTPG (1 << 4) #define FLASH_OPTER (1 << 5) #define FLASH_STRT (1 << 6) #define FLASH_LOCK (1 << 7) #define FLASH_OPTWRE (1 << 9) /* FLASH_SR register bits */ #define FLASH_BSY (1 << 0) #define FLASH_PGERR (1 << 2) #define FLASH_WRPRTERR (1 << 4) #define FLASH_EOP (1 << 5) /* STM32_FLASH_OBR bit definitions (reading) */ #define OPT_ERROR 0 #define OPT_READOUT 1 #define OPT_RDWDGSW 2 #define OPT_RDRSTSTOP 3 #define OPT_RDRSTSTDBY 4 #define OPT_BFB2 5 /* dual flash bank only */ /* register unlock keys */ #define KEY1 0x45670123 #define KEY2 0xCDEF89AB struct stm32x_options { uint16_t RDP; uint16_t user_options; uint16_t protection[4]; }; struct stm32x_flash_bank { struct stm32x_options option_bytes; struct working_area *write_algorithm; int ppage_size; int probed; bool has_dual_banks; /* used to access dual flash bank stm32xl */ uint32_t register_base; }; static int stm32x_mass_erase(struct flash_bank *bank); /* flash bank stm32x 0 0 */ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command) { struct stm32x_flash_bank *stm32x_info; if (CMD_ARGC < 6) { return ERROR_COMMAND_SYNTAX_ERROR; } stm32x_info = malloc(sizeof(struct stm32x_flash_bank)); bank->driver_priv = stm32x_info; stm32x_info->write_algorithm = NULL; stm32x_info->probed = 0; stm32x_info->has_dual_banks = false; stm32x_info->register_base = FLASH_REG_BASE_B0; return ERROR_OK; } static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; return reg + stm32x_info->register_base; } static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status) { struct target *target = bank->target; return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status); } static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) { struct target *target = bank->target; uint32_t status; int retval = ERROR_OK; /* wait for busy to clear */ for (;;) { retval = stm32x_get_flash_status(bank, &status); if (retval != ERROR_OK) return retval; LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_BSY) == 0) break; if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; } alive_sleep(1); } if (status & FLASH_WRPRTERR) { LOG_ERROR("stm32x device protected"); retval = ERROR_FAIL; } if (status & FLASH_PGERR) { LOG_ERROR("stm32x device programming failed"); retval = ERROR_FAIL; } /* Clear but report errors */ if (status & (FLASH_WRPRTERR | FLASH_PGERR)) { /* If this operation fails, we ignore it and report the original * retval */ target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR | FLASH_PGERR); } return retval; } int stm32x_check_operation_supported(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; /* if we have a dual flash bank device then * we need to perform option byte stuff on bank0 only */ if (stm32x_info->register_base != FLASH_REG_BASE_B0) { LOG_ERROR("Option Byte Operation's must use bank0"); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int stm32x_read_options(struct flash_bank *bank) { uint32_t optiondata; struct stm32x_flash_bank *stm32x_info = NULL; struct target *target = bank->target; stm32x_info = bank->driver_priv; /* read current option bytes */ int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata); if (retval != ERROR_OK) return retval; stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07); stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5; if (optiondata & (1 << OPT_READOUT)) LOG_INFO("Device Security Bit Set"); /* each bit refers to a 4bank protection */ retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata); if (retval != ERROR_OK) return retval; stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata; stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8); stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16); stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24); return ERROR_OK; } static int stm32x_erase_options(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = NULL; struct target *target = bank->target; stm32x_info = bank->driver_priv; /* read current options */ stm32x_read_options(bank); /* unlock flash registers */ int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2); if (retval != ERROR_OK) return retval; /* unlock option flash registers */ retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2); if (retval != ERROR_OK) return retval; /* erase option bytes */ retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 10); if (retval != ERROR_OK) return retval; /* clear readout protection and complementary option bytes * this will also force a device unlock if set */ stm32x_info->option_bytes.RDP = 0x5AA5; return ERROR_OK; } static int stm32x_write_options(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = NULL; struct target *target = bank->target; stm32x_info = bank->driver_priv; /* unlock flash registers */ int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2); if (retval != ERROR_OK) return retval; /* unlock option flash registers */ retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2); if (retval != ERROR_OK) return retval; /* program option bytes */ retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE); if (retval != ERROR_OK) return retval; /* write user option byte */ retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 10); if (retval != ERROR_OK) return retval; /* write protection byte 1 */ retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 10); if (retval != ERROR_OK) return retval; /* write protection byte 2 */ retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 10); if (retval != ERROR_OK) return retval; /* write protection byte 3 */ retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 10); if (retval != ERROR_OK) return retval; /* write protection byte 4 */ retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 10); if (retval != ERROR_OK) return retval; /* write readout protection bit */ retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 10); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_protect_check(struct flash_bank *bank) { struct target *target = bank->target; struct stm32x_flash_bank *stm32x_info = bank->driver_priv; uint32_t protection; int i, s; int num_bits; int set; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } int retval = stm32x_check_operation_supported(bank); if (ERROR_OK != retval) return retval; /* medium density - each bit refers to a 4bank protection * high density - each bit refers to a 2bank protection */ retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection); if (retval != ERROR_OK) return retval; /* medium density - each protection bit is for 4 * 1K pages * high density - each protection bit is for 2 * 2K pages */ num_bits = (bank->num_sectors / stm32x_info->ppage_size); if (stm32x_info->ppage_size == 2) { /* high density flash/connectivity line protection */ set = 1; if (protection & (1 << 31)) set = 0; /* bit 31 controls sector 62 - 255 protection for high density * bit 31 controls sector 62 - 127 protection for connectivity line */ for (s = 62; s < bank->num_sectors; s++) { bank->sectors[s].is_protected = set; } if (bank->num_sectors > 61) num_bits = 31; for (i = 0; i < num_bits; i++) { set = 1; if (protection & (1 << i)) set = 0; for (s = 0; s < stm32x_info->ppage_size; s++) bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set; } } else { /* low/medium density flash protection */ for (i = 0; i < num_bits; i++) { set = 1; if (protection & (1 << i)) set = 0; for (s = 0; s < stm32x_info->ppage_size; s++) bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set; } } return ERROR_OK; } static int stm32x_erase(struct flash_bank *bank, int first, int last) { struct target *target = bank->target; int i; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first == 0) && (last == (bank->num_sectors - 1))) { return stm32x_mass_erase(bank); } /* unlock flash registers */ int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) return retval; for (i = first; i <= last; i++) { retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR), bank->base + bank->sectors[i].offset); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 100); if (retval != ERROR_OK) return retval; bank->sectors[i].is_erased = 1; } retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) { struct stm32x_flash_bank *stm32x_info = NULL; struct target *target = bank->target; uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF}; int i, reg, bit; int status; uint32_t protection; stm32x_info = bank->driver_priv; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } int retval = stm32x_check_operation_supported(bank); if (ERROR_OK != retval) return retval; if ((first % stm32x_info->ppage_size) != 0) { LOG_WARNING("aligned start protect sector to a %d sector boundary", stm32x_info->ppage_size); first = first - (first % stm32x_info->ppage_size); } if (((last + 1) % stm32x_info->ppage_size) != 0) { LOG_WARNING("aligned end protect sector to a %d sector boundary", stm32x_info->ppage_size); last++; last = last - (last % stm32x_info->ppage_size); last--; } /* medium density - each bit refers to a 4bank protection * high density - each bit refers to a 2bank protection */ retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection); if (retval != ERROR_OK) return retval; prot_reg[0] = (uint16_t)protection; prot_reg[1] = (uint16_t)(protection >> 8); prot_reg[2] = (uint16_t)(protection >> 16); prot_reg[3] = (uint16_t)(protection >> 24); if (stm32x_info->ppage_size == 2) { /* high density flash */ /* bit 7 controls sector 62 - 255 protection */ if (last > 61) { if (set) prot_reg[3] &= ~(1 << 7); else prot_reg[3] |= (1 << 7); } if (first > 61) first = 62; if (last > 61) last = 61; for (i = first; i <= last; i++) { reg = (i / stm32x_info->ppage_size) / 8; bit = (i / stm32x_info->ppage_size) - (reg * 8); if (set) prot_reg[reg] &= ~(1 << bit); else prot_reg[reg] |= (1 << bit); } } else { /* medium density flash */ for (i = first; i <= last; i++) { reg = (i / stm32x_info->ppage_size) / 8; bit = (i / stm32x_info->ppage_size) - (reg * 8); if (set) prot_reg[reg] &= ~(1 << bit); else prot_reg[reg] |= (1 << bit); } } if ((status = stm32x_erase_options(bank)) != ERROR_OK) return status; stm32x_info->option_bytes.protection[0] = prot_reg[0]; stm32x_info->option_bytes.protection[1] = prot_reg[1]; stm32x_info->option_bytes.protection[2] = prot_reg[2]; stm32x_info->option_bytes.protection[3] = prot_reg[3]; return stm32x_write_options(bank); } static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; struct target *target = bank->target; uint32_t buffer_size = 16384; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[5]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; /* see contrib/loaders/flash/stm32f1x.S for src */ static const uint8_t stm32x_flash_write_code[] = { /* #define STM32_FLASH_CR_OFFSET 0x10 */ /* #define STM32_FLASH_SR_OFFSET 0x0C */ /* wait_fifo: */ 0x16, 0x68, /* ldr r6, [r2, #0] */ 0x00, 0x2e, /* cmp r6, #0 */ 0x1a, 0xd0, /* beq exit */ 0x55, 0x68, /* ldr r5, [r2, #4] */ 0xb5, 0x42, /* cmp r5, r6 */ 0xf9, 0xd0, /* beq wait_fifo */ 0x01, 0x26, /* movs r6, #1 */ 0x06, 0x61, /* str r6, [r0, #STM32_FLASH_CR_OFFSET] */ 0x35, 0xf8, 0x02, 0x6b, /* ldrh r6, [r5], #2 */ 0x24, 0xf8, 0x02, 0x6b, /* strh r6, [r4], #2 */ /* busy: */ 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */ 0x16, 0xf0, 0x01, 0x0f, /* tst r6, #1 */ 0xfb, 0xd1, /* bne busy */ 0x16, 0xf0, 0x14, 0x0f, /* tst r6, #0x14 */ 0x07, 0xd1, /* bne error */ 0x9d, 0x42, /* cmp r5, r3 */ 0x28, 0xbf, /* it cs */ 0x02, 0xf1, 0x08, 0x05, /* addcs r5, r2, #8 */ 0x55, 0x60, /* str r5, [r2, #4] */ 0x01, 0x39, /* subs r1, r1, #1 */ 0x19, 0xb1, /* cbz r1, exit */ 0xe4, 0xe7, /* b wait_fifo */ /* error: */ 0x00, 0x20, /* movs r0, #0 */ 0xc2, 0xf8, 0x02, 0x00, /* str r0, [r2, #2] */ /* exit: */ 0x30, 0x46, /* mov r0, r6 */ 0x00, 0xbe, /* bkpt #0 */ }; /* flash write code */ if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &stm32x_info->write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address, sizeof(stm32x_flash_write_code), (uint8_t*)stm32x_flash_write_code)) != ERROR_OK) return retval; /* memory buffer */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; buffer_size &= ~3UL; // Make sure it's 4 byte aligned if (buffer_size <= 256) { /* if we already allocated the writing code, but failed to get a * buffer, free the algorithm */ if (stm32x_info->write_algorithm) target_free_working_area(target, stm32x_info->write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } }; /* Set up working area. First word is write pointer, second word is read pointer, * rest is fifo data area. */ uint32_t wp_addr = source->address; uint32_t rp_addr = source->address + 4; uint32_t fifo_start_addr = source->address + 8; uint32_t fifo_end_addr = source->address + source->size; uint32_t wp = fifo_start_addr; uint32_t rp = fifo_start_addr; retval = target_write_u32(target, wp_addr, wp); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, rp_addr, rp); if (retval != ERROR_OK) return retval; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer start */ init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* buffer end */ init_reg_param(®_params[4], "r4", 32, PARAM_IN_OUT); /* target address */ buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base); buf_set_u32(reg_params[1].value, 0, 32, count); buf_set_u32(reg_params[2].value, 0, 32, source->address); buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size); buf_set_u32(reg_params[4].value, 0, 32, address); armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARMV7M_MODE_ANY; /* Start up algorithm on target and let it idle while writing the first chunk */ if ((retval = target_start_algorithm(target, 0, NULL, 5, reg_params, stm32x_info->write_algorithm->address, 0, &armv7m_info)) != ERROR_OK) { LOG_ERROR("error starting stm32x flash write algorithm"); goto cleanup; } while (count > 0) { retval = target_read_u32(target, rp_addr, &rp); if (retval != ERROR_OK) { LOG_ERROR("failed to get read pointer"); break; } LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp); if (rp == 0) { LOG_ERROR("flash write algorithm aborted by target"); retval = ERROR_FLASH_OPERATION_FAILED; break; } if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr) { LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp); break; } /* Count the number of bytes available in the fifo without * crossing the wrap around. Make sure to not fill it completely, * because that would make wp == rp and that's the empty condition. */ uint32_t thisrun_bytes; if (rp > wp) thisrun_bytes = rp - wp - 2; else if (rp > fifo_start_addr) thisrun_bytes = fifo_end_addr - wp; else thisrun_bytes = fifo_end_addr - wp - 2; if (thisrun_bytes == 0) { /* Throttle polling a bit if transfer is (much) faster than flash * programming. The exact delay shouldn't matter as long as it's * less than buffer size / flash speed. This is very unlikely to * run when using high latency connections such as USB. */ alive_sleep(10); continue; } /* Limit to the amount of data we actually want to write */ if (thisrun_bytes > count * 2) thisrun_bytes = count * 2; /* Write data to fifo */ retval = target_write_buffer(target, wp, thisrun_bytes, buffer); if (retval != ERROR_OK) break; /* Update counters and wrap write pointer */ buffer += thisrun_bytes; count -= thisrun_bytes / 2; wp += thisrun_bytes; if (wp >= fifo_end_addr) wp = fifo_start_addr; /* Store updated write pointer to target */ retval = target_write_u32(target, wp_addr, wp); if (retval != ERROR_OK) break; } if (retval != ERROR_OK) { /* abort flash write algorithm on target */ target_write_u32(target, wp_addr, 0); } int retval2; if ((retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params, 0, 10000, &armv7m_info)) != ERROR_OK) { LOG_ERROR("error waiting for stm32x flash write algorithm"); retval = retval2; } if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("flash write failed at address 0x%"PRIx32, buf_get_u32(reg_params[4].value, 0, 32)); if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) { LOG_ERROR("flash memory not erased before writing"); /* Clear but report errors */ target_write_u32(target, STM32_FLASH_SR_B0, FLASH_PGERR); } if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) { LOG_ERROR("flash memory write protected"); /* Clear but report errors */ target_write_u32(target, STM32_FLASH_SR_B0, FLASH_WRPRTERR); } } cleanup: target_free_working_area(target, source); target_free_working_area(target, stm32x_info->write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); return retval; } static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; uint32_t words_remaining = (count / 2); uint32_t bytes_remaining = (count & 0x00000001); uint32_t address = bank->base + offset; uint32_t bytes_written = 0; int retval; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset & 0x1) { LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } /* unlock flash registers */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) return retval; /* multiple half words (2-byte) to be programmed? */ if (words_remaining > 0) { /* try using a block write */ if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK) { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single dword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); } } else { buffer += words_remaining * 2; address += words_remaining * 2; words_remaining = 0; } } if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)) return retval; while (words_remaining > 0) { uint16_t value; memcpy(&value, buffer + bytes_written, sizeof(uint16_t)); retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, address, value); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 5); if (retval != ERROR_OK) return retval; bytes_written += 2; words_remaining--; address += 2; } if (bytes_remaining) { uint16_t value = 0xffff; memcpy(&value, buffer + bytes_written, bytes_remaining); retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG); if (retval != ERROR_OK) return retval; retval = target_write_u16(target, address, value); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 5); if (retval != ERROR_OK) return retval; } return target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK); } static int stm32x_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stm32x_flash_bank *stm32x_info = bank->driver_priv; int i; uint16_t flash_size_in_kb; uint32_t device_id; int page_size; uint32_t base_address = 0x08000000; stm32x_info->probed = 0; stm32x_info->register_base = FLASH_REG_BASE_B0; /* read stm32 device id register */ int retval = target_read_u32(target, 0xE0042000, &device_id); if (retval != ERROR_OK) return retval; LOG_INFO("device id = 0x%08" PRIx32 "", device_id); /* get flash size from target. */ retval = target_read_u16(target, 0x1FFFF7E0, &flash_size_in_kb); if (retval != ERROR_OK) { LOG_WARNING("failed reading flash size, default to max target family"); /* failed reading flash size, default to max target family */ flash_size_in_kb = 0xffff; } if ((device_id & 0x7ff) == 0x410) { /* medium density - we have 1k pages * 4 pages for a protection area */ page_size = 1024; stm32x_info->ppage_size = 4; /* check for early silicon */ if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revA */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); flash_size_in_kb = 128; } } else if ((device_id & 0x7ff) == 0x412) { /* low density - we have 1k pages * 4 pages for a protection area */ page_size = 1024; stm32x_info->ppage_size = 4; /* check for early silicon */ if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revA */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash"); flash_size_in_kb = 32; } } else if ((device_id & 0x7ff) == 0x414) { /* high density - we have 2k pages * 2 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 2; /* check for early silicon */ if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revZ */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash"); flash_size_in_kb = 512; } } else if ((device_id & 0x7ff) == 0x418) { /* connectivity line density - we have 2k pages * 2 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 2; /* check for early silicon */ if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revZ */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash"); flash_size_in_kb = 256; } } else if ((device_id & 0x7ff) == 0x420) { /* value line density - we have 1k pages * 4 pages for a protection area */ page_size = 1024; stm32x_info->ppage_size = 4; /* check for early silicon */ if (flash_size_in_kb == 0xffff) { /* number of sectors may be incorrrect on early silicon */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); flash_size_in_kb = 128; } } else if ((device_id & 0x7ff) == 0x428) { /* value line High density - we have 2k pages * 4 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 4; /* check for early silicon */ if (flash_size_in_kb == 0xffff) { /* number of sectors may be incorrrect on early silicon */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); flash_size_in_kb = 128; } } else if ((device_id & 0x7ff) == 0x430) { /* xl line density - we have 2k pages * 2 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 2; stm32x_info->has_dual_banks = true; /* check for early silicon */ if (flash_size_in_kb == 0xffff) { /* number of sectors may be incorrrect on early silicon */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash"); flash_size_in_kb = 1024; } /* split reported size into matching bank */ if (bank->base != 0x08080000) { /* bank 0 will be fixed 512k */ flash_size_in_kb = 512; } else { flash_size_in_kb -= 512; /* bank1 also uses a register offset */ stm32x_info->register_base = FLASH_REG_BASE_B1; base_address = 0x08080000; } } else { LOG_WARNING("Cannot identify target as a STM32 family."); return ERROR_FAIL; } LOG_INFO("flash size = %dkbytes", flash_size_in_kb); /* did we assign flash size? */ assert(flash_size_in_kb != 0xffff); /* calculate numbers of pages */ int num_pages = flash_size_in_kb * 1024 / page_size; /* check that calculation result makes sense */ assert(num_pages > 0); if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } bank->base = base_address; bank->size = (num_pages * page_size); bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); for (i = 0; i < num_pages; i++) { bank->sectors[i].offset = i * page_size; bank->sectors[i].size = page_size; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } stm32x_info->probed = 1; return ERROR_OK; } static int stm32x_auto_probe(struct flash_bank *bank) { struct stm32x_flash_bank *stm32x_info = bank->driver_priv; if (stm32x_info->probed) return ERROR_OK; return stm32x_probe(bank); } #if 0 COMMAND_HANDLER(stm32x_handle_part_id_command) { return ERROR_OK; } #endif static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) { struct target *target = bank->target; uint32_t device_id; int printed; /* read stm32 device id register */ int retval = target_read_u32(target, 0xE0042000, &device_id); if (retval != ERROR_OK) return retval; if ((device_id & 0x7ff) == 0x410) { printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: "); buf += printed; buf_size -= printed; switch (device_id >> 16) { case 0x0000: snprintf(buf, buf_size, "A"); break; case 0x2000: snprintf(buf, buf_size, "B"); break; case 0x2001: snprintf(buf, buf_size, "Z"); break; case 0x2003: snprintf(buf, buf_size, "Y"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else if ((device_id & 0x7ff) == 0x412) { printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: "); buf += printed; buf_size -= printed; switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else if ((device_id & 0x7ff) == 0x414) { printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: "); buf += printed; buf_size -= printed; switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; case 0x1001: snprintf(buf, buf_size, "Z"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else if ((device_id & 0x7ff) == 0x418) { printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: "); buf += printed; buf_size -= printed; switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; case 0x1001: snprintf(buf, buf_size, "Z"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else if ((device_id & 0x7ff) == 0x420) { printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: "); buf += printed; buf_size -= printed; switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; case 0x1001: snprintf(buf, buf_size, "Z"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else if ((device_id & 0x7ff) == 0x428) { printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: "); buf += printed; buf_size -= printed; switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; case 0x1001: snprintf(buf, buf_size, "Z"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else if ((device_id & 0x7ff) == 0x430) { printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: "); buf += printed; buf_size -= printed; switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; default: snprintf(buf, buf_size, "unknown"); break; } } else { snprintf(buf, buf_size, "Cannot identify target as a stm32x\n"); return ERROR_FAIL; } return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_lock_command) { struct target *target = NULL; struct stm32x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (ERROR_OK != retval) return retval; if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to erase options"); return ERROR_OK; } /* set readout protection */ stm32x_info->option_bytes.RDP = 0; if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to lock device"); return ERROR_OK; } command_print(CMD_CTX, "stm32x locked"); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_unlock_command) { struct target *target = NULL; if (CMD_ARGC < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (ERROR_OK != retval) return retval; if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to unlock device"); return ERROR_OK; } if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to lock device"); return ERROR_OK; } command_print(CMD_CTX, "stm32x unlocked.\n" "INFO: a reset or power cycle is required " "for the new settings to take effect."); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_options_read_command) { uint32_t optionbyte; struct target *target = NULL; struct stm32x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (ERROR_OK != retval) return retval; retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte); if (retval != ERROR_OK) return retval; command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte); if (buf_get_u32((uint8_t*)&optionbyte, OPT_ERROR, 1)) command_print(CMD_CTX, "Option Byte Complement Error"); if (buf_get_u32((uint8_t*)&optionbyte, OPT_READOUT, 1)) command_print(CMD_CTX, "Readout Protection On"); else command_print(CMD_CTX, "Readout Protection Off"); if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDWDGSW, 1)) command_print(CMD_CTX, "Software Watchdog"); else command_print(CMD_CTX, "Hardware Watchdog"); if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTOP, 1)) command_print(CMD_CTX, "Stop: No reset generated"); else command_print(CMD_CTX, "Stop: Reset generated"); if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTDBY, 1)) command_print(CMD_CTX, "Standby: No reset generated"); else command_print(CMD_CTX, "Standby: Reset generated"); if (stm32x_info->has_dual_banks) { if (buf_get_u32((uint8_t*)&optionbyte, OPT_BFB2, 1)) command_print(CMD_CTX, "Boot: Bank 0"); else command_print(CMD_CTX, "Boot: Bank 1"); } return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_options_write_command) { struct target *target = NULL; struct stm32x_flash_bank *stm32x_info = NULL; uint16_t optionbyte = 0xF8; if (CMD_ARGC < 4) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; stm32x_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_check_operation_supported(bank); if (ERROR_OK != retval) return retval; /* REVISIT: ignores some options which we will display... * and doesn't insist on the specified syntax. */ /* OPT_RDWDGSW */ if (strcmp(CMD_ARGV[1], "SWWDG") == 0) { optionbyte |= (1 << 0); } else /* REVISIT must be "HWWDG" then ... */ { optionbyte &= ~(1 << 0); } /* OPT_RDRSTSTOP */ if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0) { optionbyte |= (1 << 1); } else /* REVISIT must be "RSTSTNDBY" then ... */ { optionbyte &= ~(1 << 1); } /* OPT_RDRSTSTDBY */ if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0) { optionbyte |= (1 << 2); } else /* REVISIT must be "RSTSTOP" then ... */ { optionbyte &= ~(1 << 2); } if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) { /* OPT_BFB2 */ if (strcmp(CMD_ARGV[4], "BOOT0") == 0) { optionbyte |= (1 << 3); } else { optionbyte &= ~(1 << 3); } } if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to erase options"); return ERROR_OK; } stm32x_info->option_bytes.user_options = optionbyte; if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to write options"); return ERROR_OK; } command_print(CMD_CTX, "stm32x write options complete.\n" "INFO: a reset or power cycle is required " "for the new settings to take effect."); return ERROR_OK; } static int stm32x_mass_erase(struct flash_bank *bank) { struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* unlock option flash registers */ int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2); if (retval != ERROR_OK) return retval; /* mass erase flash memory */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_STRT); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 100); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_mass_erase_command) { int i; if (CMD_ARGC < 1) { return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; retval = stm32x_mass_erase(bank); if (retval == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) { bank->sectors[i].is_erased = 1; } command_print(CMD_CTX, "stm32x mass erase complete"); } else { command_print(CMD_CTX, "stm32x mass erase failed"); } return retval; } static const struct command_registration stm32x_exec_command_handlers[] = { { .name = "lock", .handler = stm32x_handle_lock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Lock entire flash device.", }, { .name = "unlock", .handler = stm32x_handle_unlock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Unlock entire protected flash device.", }, { .name = "mass_erase", .handler = stm32x_handle_mass_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire flash device.", }, { .name = "options_read", .handler = stm32x_handle_options_read_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Read and display device option byte.", }, { .name = "options_write", .handler = stm32x_handle_options_write_command, .mode = COMMAND_EXEC, .usage = "bank_id ('SWWDG'|'HWWDG') " "('RSTSTNDBY'|'NORSTSTNDBY') " "('RSTSTOP'|'NORSTSTOP')", .help = "Replace bits in device option byte.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration stm32x_command_handlers[] = { { .name = "stm32f1x", .mode = COMMAND_ANY, .help = "stm32f1x flash command group", .chain = stm32x_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver stm32f1x_flash = { .name = "stm32f1x", .commands = stm32x_command_handlers, .flash_bank_command = stm32x_flash_bank_command, .erase = stm32x_erase, .protect = stm32x_protect, .write = stm32x_write, .read = default_flash_read, .probe = stm32x_probe, .auto_probe = stm32x_auto_probe, .erase_check = default_flash_mem_blank_check, .protect_check = stm32x_protect_check, .info = get_stm32x_info, };