/*************************************************************************** * Copyright (C) 2015 by Uwe Bonnes * * bon@elektron.ikp.physik.tu-darmstadt.de * * * * Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics * * tarek.bouchkati@gmail.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include #include "bits.h" /* STM32L4xxx series for reference. * * RM0351 (STM32L4x5/STM32L4x6) * http://www.st.com/resource/en/reference_manual/dm00083560.pdf * * RM0394 (STM32L43x/44x/45x/46x) * http://www.st.com/resource/en/reference_manual/dm00151940.pdf * * RM0432 (STM32L4R/4Sxx) * http://www.st.com/resource/en/reference_manual/dm00310109.pdf * * STM32L476RG Datasheet (for erase timing) * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf * * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices * an option byte is available to map all sectors to the first bank. * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices * handlers do! * * RM0394 devices have a single bank only. * * RM0432 devices have single and dual bank operating modes. * - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte. * - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte. * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode). * * Bank mode is controlled by two different bits in option bytes register. * - for STM32L4R/Sxx * In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode. * In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode. * - for STM32L4P5/Q5x * In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode. * In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode. * */ /* Erase time can be as high as 25ms, 10x this and assume it's toast... */ #define FLASH_ERASE_TIMEOUT 250 /* Flash registers offsets */ #define STM32_FLASH_ACR 0x00 #define STM32_FLASH_KEYR 0x08 #define STM32_FLASH_OPTKEYR 0x0c #define STM32_FLASH_SR 0x10 #define STM32_FLASH_CR 0x14 #define STM32_FLASH_OPTR 0x20 #define STM32_FLASH_WRP1AR 0x2c #define STM32_FLASH_WRP1BR 0x30 #define STM32_FLASH_WRP2AR 0x4c #define STM32_FLASH_WRP2BR 0x50 /* FLASH_CR register bits */ #define FLASH_PG (1 << 0) #define FLASH_PER (1 << 1) #define FLASH_MER1 (1 << 2) #define FLASH_PAGE_SHIFT 3 #define FLASH_CR_BKER (1 << 11) #define FLASH_MER2 (1 << 15) #define FLASH_STRT (1 << 16) #define FLASH_OPTSTRT (1 << 17) #define FLASH_EOPIE (1 << 24) #define FLASH_ERRIE (1 << 25) #define FLASH_OBLLAUNCH (1 << 27) #define FLASH_OPTLOCK (1 << 30) #define FLASH_LOCK (1 << 31) /* FLASH_SR register bits */ #define FLASH_BSY (1 << 16) /* Fast programming not used => related errors not used*/ #define FLASH_PGSERR (1 << 7) /* Programming sequence error */ #define FLASH_SIZERR (1 << 6) /* Size error */ #define FLASH_PGAERR (1 << 5) /* Programming alignment error */ #define FLASH_WRPERR (1 << 4) /* Write protection error */ #define FLASH_PROGERR (1 << 3) /* Programming error */ #define FLASH_OPERR (1 << 1) /* Operation error */ #define FLASH_EOP (1 << 0) /* End of operation */ #define FLASH_ERROR (FLASH_PGSERR | FLASH_SIZERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_PROGERR | FLASH_OPERR) /* register unlock keys */ #define KEY1 0x45670123 #define KEY2 0xCDEF89AB /* option register unlock key */ #define OPTKEY1 0x08192A3B #define OPTKEY2 0x4C5D6E7F #define RDP_LEVEL_0 0xAA #define RDP_LEVEL_1 0xBB #define RDP_LEVEL_2 0xCC /* other registers */ #define DBGMCU_IDCODE 0xE0042000 struct stm32l4_rev { const uint16_t rev; const char *str; }; struct stm32l4_part_info { uint16_t id; const char *device_str; const struct stm32l4_rev *revs; const size_t num_revs; const uint16_t max_flash_size_kb; const bool has_dual_bank; const uint32_t flash_regs_base; const uint32_t fsize_addr; }; struct stm32l4_flash_bank { int probed; uint32_t idcode; int bank1_sectors; bool dual_bank_mode; int hole_sectors; const struct stm32l4_part_info *part_info; }; static const struct stm32l4_rev stm32_415_revs[] = { { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" } }; static const struct stm32l4_rev stm32_435_revs[] = { { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" }, }; static const struct stm32l4_rev stm32_461_revs[] = { { 0x1000, "A" }, { 0x2000, "B" }, }; static const struct stm32l4_rev stm32_462_revs[] = { { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" }, }; static const struct stm32l4_rev stm32_464_revs[] = { { 0x1000, "A" }, }; static const struct stm32l4_rev stm32_470_revs[] = { { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" }, }; static const struct stm32l4_rev stm32_471_revs[] = { { 0x1000, "1" }, }; static const struct stm32l4_rev stm32_495_revs[] = { { 0x2001, "2.1" }, }; static const struct stm32l4_part_info stm32l4_parts[] = { { .id = 0x415, .revs = stm32_415_revs, .num_revs = ARRAY_SIZE(stm32_415_revs), .device_str = "STM32L47/L48xx", .max_flash_size_kb = 1024, .has_dual_bank = true, .flash_regs_base = 0x40022000, .fsize_addr = 0x1FFF75E0, }, { .id = 0x435, .revs = stm32_435_revs, .num_revs = ARRAY_SIZE(stm32_435_revs), .device_str = "STM32L43/L44xx", .max_flash_size_kb = 256, .has_dual_bank = false, .flash_regs_base = 0x40022000, .fsize_addr = 0x1FFF75E0, }, { .id = 0x461, .revs = stm32_461_revs, .num_revs = ARRAY_SIZE(stm32_461_revs), .device_str = "STM32L49/L4Axx", .max_flash_size_kb = 1024, .has_dual_bank = true, .flash_regs_base = 0x40022000, .fsize_addr = 0x1FFF75E0, }, { .id = 0x462, .revs = stm32_462_revs, .num_revs = ARRAY_SIZE(stm32_462_revs), .device_str = "STM32L45/L46xx", .max_flash_size_kb = 512, .has_dual_bank = false, .flash_regs_base = 0x40022000, .fsize_addr = 0x1FFF75E0, }, { .id = 0x464, .revs = stm32_464_revs, .num_revs = ARRAY_SIZE(stm32_464_revs), .device_str = "STM32L41/L42xx", .max_flash_size_kb = 128, .has_dual_bank = false, .flash_regs_base = 0x40022000, .fsize_addr = 0x1FFF75E0, }, { .id = 0x470, .revs = stm32_470_revs, .num_revs = ARRAY_SIZE(stm32_470_revs), .device_str = "STM32L4R/L4Sxx", .max_flash_size_kb = 2048, .has_dual_bank = true, .flash_regs_base = 0x40022000, .fsize_addr = 0x1FFF75E0, }, { .id = 0x471, .revs = stm32_471_revs, .num_revs = ARRAY_SIZE(stm32_471_revs), .device_str = "STM32L4P5/L4Q5x", .max_flash_size_kb = 1024, .has_dual_bank = true, .flash_regs_base = 0x40022000, .fsize_addr = 0x1FFF75E0, }, { .id = 0x495, .revs = stm32_495_revs, .num_revs = ARRAY_SIZE(stm32_495_revs), .device_str = "STM32WB5x", .max_flash_size_kb = 1024, .has_dual_bank = false, .flash_regs_base = 0x58004000, .fsize_addr = 0x1FFF75E0, }, }; /* flash bank stm32l4x 0 0 */ FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command) { struct stm32l4_flash_bank *stm32l4_info; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank)); if (!stm32l4_info) return ERROR_FAIL; /* Checkme: What better error to use?*/ bank->driver_priv = stm32l4_info; /* The flash write must be aligned to a double word (8-bytes) boundary. * Ask the flash infrastructure to ensure required alignment */ bank->write_start_alignment = bank->write_end_alignment = 8; stm32l4_info->probed = 0; return ERROR_OK; } static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset) { struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; return stm32l4_info->part_info->flash_regs_base + reg_offset; } static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value) { return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value); } static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value) { return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value); } static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout) { uint32_t status; int retval = ERROR_OK; /* wait for busy to clear */ for (;;) { retval = stm32l4_read_flash_reg(bank, STM32_FLASH_SR, &status); if (retval != ERROR_OK) return retval; LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_BSY) == 0) break; if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; } alive_sleep(1); } if (status & FLASH_WRPERR) { LOG_ERROR("stm32x device protected"); retval = ERROR_FAIL; } /* Clear but report errors */ if (status & FLASH_ERROR) { if (retval == ERROR_OK) retval = ERROR_FAIL; /* If this operation fails, we ignore it and report the original * retval */ stm32l4_write_flash_reg(bank, STM32_FLASH_SR, status & FLASH_ERROR); } return retval; } static int stm32l4_unlock_reg(struct flash_bank *bank) { uint32_t ctrl; /* first check if not already unlocked * otherwise writing on STM32_FLASH_KEYR will fail */ int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if ((ctrl & FLASH_LOCK) == 0) return ERROR_OK; /* unlock flash registers */ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY1); if (retval != ERROR_OK) return retval; retval = stm32l4_write_flash_reg(bank, STM32_FLASH_KEYR, KEY2); if (retval != ERROR_OK) return retval; retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if (ctrl & FLASH_LOCK) { LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl); return ERROR_TARGET_FAILURE; } return ERROR_OK; } static int stm32l4_unlock_option_reg(struct flash_bank *bank) { uint32_t ctrl; int retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if ((ctrl & FLASH_OPTLOCK) == 0) return ERROR_OK; /* unlock option registers */ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY1); if (retval != ERROR_OK) return retval; retval = stm32l4_write_flash_reg(bank, STM32_FLASH_OPTKEYR, OPTKEY2); if (retval != ERROR_OK) return retval; retval = stm32l4_read_flash_reg(bank, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if (ctrl & FLASH_OPTLOCK) { LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl); return ERROR_TARGET_FAILURE; } return ERROR_OK; } static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset, uint32_t value, uint32_t mask) { uint32_t optiondata; int retval, retval2; retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata); if (retval != ERROR_OK) return retval; retval = stm32l4_unlock_reg(bank); if (retval != ERROR_OK) goto err_lock; retval = stm32l4_unlock_option_reg(bank); if (retval != ERROR_OK) goto err_lock; optiondata = (optiondata & ~mask) | (value & mask); retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata); if (retval != ERROR_OK) goto err_lock; retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OPTSTRT); if (retval != ERROR_OK) goto err_lock; retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); err_lock: retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK | FLASH_OPTLOCK); if (retval != ERROR_OK) return retval; return retval2; } static int stm32l4_protect_check(struct flash_bank *bank) { struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br; stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1AR, &wrp1ar); stm32l4_read_flash_reg(bank, STM32_FLASH_WRP1BR, &wrp1br); stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2AR, &wrp2ar); stm32l4_read_flash_reg(bank, STM32_FLASH_WRP2BR, &wrp2br); const uint8_t wrp1a_start = wrp1ar & 0xFF; const uint8_t wrp1a_end = (wrp1ar >> 16) & 0xFF; const uint8_t wrp1b_start = wrp1br & 0xFF; const uint8_t wrp1b_end = (wrp1br >> 16) & 0xFF; const uint8_t wrp2a_start = wrp2ar & 0xFF; const uint8_t wrp2a_end = (wrp2ar >> 16) & 0xFF; const uint8_t wrp2b_start = wrp2br & 0xFF; const uint8_t wrp2b_end = (wrp2br >> 16) & 0xFF; for (int i = 0; i < bank->num_sectors; i++) { if (i < stm32l4_info->bank1_sectors) { if (((i >= wrp1a_start) && (i <= wrp1a_end)) || ((i >= wrp1b_start) && (i <= wrp1b_end))) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } else { uint8_t snb; snb = i - stm32l4_info->bank1_sectors; if (((snb >= wrp2a_start) && (snb <= wrp2a_end)) || ((snb >= wrp2b_start) && (snb <= wrp2b_end))) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } } return ERROR_OK; } static int stm32l4_erase(struct flash_bank *bank, int first, int last) { struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; int i; int retval, retval2; assert(first < bank->num_sectors); assert(last < bank->num_sectors); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32l4_unlock_reg(bank); if (retval != ERROR_OK) goto err_lock; /* Sector Erase To erase a sector, follow the procedure below: 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the FLASH_SR register 2. Set the PER bit and select the page and bank you wish to erase in the FLASH_CR register 3. Set the STRT bit in the FLASH_CR register 4. Wait for the BSY bit to be cleared */ for (i = first; i <= last; i++) { uint32_t erase_flags; erase_flags = FLASH_PER | FLASH_STRT; if (i >= stm32l4_info->bank1_sectors) { uint8_t snb; snb = i - stm32l4_info->bank1_sectors; erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER; } else erase_flags |= i << FLASH_PAGE_SHIFT; retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, erase_flags); if (retval != ERROR_OK) break; retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) break; bank->sectors[i].is_erased = 1; } err_lock: retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK); if (retval != ERROR_OK) return retval; return retval2; } static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last) { struct target *target = bank->target; struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } int ret = ERROR_OK; /* Bank 2 */ uint32_t reg_value = 0xFF; /* Default to bank un-protected */ if (last >= stm32l4_info->bank1_sectors) { if (set == 1) { uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00; reg_value = ((last & 0xFF) << 16) | begin; } ret = stm32l4_write_option(bank, STM32_FLASH_WRP2AR, reg_value, 0xffffffff); } /* Bank 1 */ reg_value = 0xFF; /* Default to bank un-protected */ if (first < stm32l4_info->bank1_sectors) { if (set == 1) { uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last; reg_value = (end << 16) | (first & 0xFF); } ret = stm32l4_write_option(bank, STM32_FLASH_WRP1AR, reg_value, 0xffffffff); } return ret; } /* Count is in double-words */ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; uint32_t buffer_size = 16384; struct working_area *write_algorithm; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[5]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; static const uint8_t stm32l4_flash_write_code[] = { #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc" }; if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code), &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } retval = target_write_buffer(target, write_algorithm->address, sizeof(stm32l4_flash_write_code), stm32l4_flash_write_code); if (retval != ERROR_OK) { target_free_working_area(target, write_algorithm); return retval; } /* memory buffer */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ target_free_working_area(target, write_algorithm); LOG_WARNING("large enough working area not available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */ init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count (double word-64bit) */ init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* flash regs base */ buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size); buf_set_u32(reg_params[2].value, 0, 32, address); buf_set_u32(reg_params[3].value, 0, 32, count); buf_set_u32(reg_params[4].value, 0, 32, stm32l4_info->part_info->flash_regs_base); retval = target_run_flash_async_algorithm(target, buffer, count, 8, 0, NULL, 5, reg_params, source->address, source->size, write_algorithm->address, 0, &armv7m_info); if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("error executing stm32l4 flash write algorithm"); uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR; if (error & FLASH_WRPERR) LOG_ERROR("flash memory write protected"); if (error != 0) { LOG_ERROR("flash write failed = %08" PRIx32, error); /* Clear but report errors */ stm32l4_write_flash_reg(bank, STM32_FLASH_SR, error); retval = ERROR_FAIL; } } target_free_working_area(target, source); target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); return retval; } static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { int retval, retval2; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* The flash write must be aligned to a double word (8-bytes) boundary. * The flash infrastructure ensures it, do just a security check */ assert(offset % 8 == 0); assert(count % 8 == 0); retval = stm32l4_unlock_reg(bank); if (retval != ERROR_OK) goto err_lock; retval = stm32l4_write_block(bank, buffer, offset, count / 8); err_lock: retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK); if (retval != ERROR_OK) { LOG_ERROR("block write failed"); return retval; } return retval2; } static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id) { int retval = target_read_u32(bank->target, DBGMCU_IDCODE, id); if (retval != ERROR_OK) return retval; return retval; } static int stm32l4_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; const struct stm32l4_part_info *part_info; int i; uint16_t flash_size_in_kb = 0xffff; uint32_t device_id; uint32_t options; stm32l4_info->probed = 0; /* read stm32 device id register */ int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode); if (retval != ERROR_OK) return retval; device_id = stm32l4_info->idcode & 0xFFF; for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) { if (device_id == stm32l4_parts[n].id) stm32l4_info->part_info = &stm32l4_parts[n]; } if (!stm32l4_info->part_info) { LOG_WARNING("Cannot identify target as an STM32 L4 or WB family device."); return ERROR_FAIL; } part_info = stm32l4_info->part_info; char device_info[1024]; retval = bank->driver->info(bank, device_info, sizeof(device_info)); if (retval != ERROR_OK) return retval; LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info); /* get flash size from target. */ retval = target_read_u16(target, part_info->fsize_addr, &flash_size_in_kb); /* failed reading flash size or flash size invalid (early silicon), * default to max target family */ if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0 || flash_size_in_kb > part_info->max_flash_size_kb) { LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash", part_info->max_flash_size_kb); flash_size_in_kb = part_info->max_flash_size_kb; } LOG_INFO("flash size = %dkbytes", flash_size_in_kb); /* did we assign a flash size? */ assert((flash_size_in_kb != 0xffff) && flash_size_in_kb); /* read flash option register */ retval = stm32l4_read_flash_reg(bank, STM32_FLASH_OPTR, &options); if (retval != ERROR_OK) return retval; stm32l4_info->bank1_sectors = 0; stm32l4_info->hole_sectors = 0; int num_pages = 0; int page_size = 0; stm32l4_info->dual_bank_mode = false; switch (device_id) { case 0x415: case 0x461: /* if flash size is max (1M) the device is always dual bank * 0x415: has variants with 512K * 0x461: has variants with 512 and 256 * for these variants: * if DUAL_BANK = 0 -> single bank * else -> dual bank without gap * note: the page size is invariant */ page_size = 2048; num_pages = flash_size_in_kb / 2; stm32l4_info->bank1_sectors = num_pages; /* check DUAL_BANK bit[21] if the flash is less than 1M */ if (flash_size_in_kb == 1024 || (options & BIT(21))) { stm32l4_info->dual_bank_mode = true; stm32l4_info->bank1_sectors = num_pages / 2; } break; case 0x435: case 0x462: case 0x464: /* single bank flash */ page_size = 2048; num_pages = flash_size_in_kb / 2; stm32l4_info->bank1_sectors = num_pages; break; case 0x470: case 0x471: /* STM32L4R/S can be single/dual bank: * if size = 2M check DBANK bit(22) * if size = 1M check DB1M bit(21) * STM32L4P/Q can be single/dual bank * if size = 1M check DBANK bit(22) * if size = 512K check DB512K bit(21) * in single bank configuration the page size is 8K * else (dual bank) the page size is 4K without gap between banks */ page_size = 8192; num_pages = flash_size_in_kb / 8; stm32l4_info->bank1_sectors = num_pages; const bool use_dbank_bit = flash_size_in_kb == part_info->max_flash_size_kb; if ((use_dbank_bit && (options & BIT(22))) || (!use_dbank_bit && (options & BIT(21)))) { stm32l4_info->dual_bank_mode = true; page_size = 4096; num_pages = flash_size_in_kb / 4; stm32l4_info->bank1_sectors = num_pages / 2; } break; case 0x495: /* single bank flash */ page_size = 4096; num_pages = flash_size_in_kb / 4; stm32l4_info->bank1_sectors = num_pages; break; default: LOG_ERROR("unsupported device"); return ERROR_FAIL; } LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single"); const int gap_size = stm32l4_info->hole_sectors * page_size; if (stm32l4_info->dual_bank_mode & gap_size) { LOG_INFO("gap detected starting from %0x08" PRIx32 " to %0x08" PRIx32, 0x8000000 + stm32l4_info->bank1_sectors * page_size, 0x8000000 + stm32l4_info->bank1_sectors * page_size + gap_size); } if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } bank->size = flash_size_in_kb * 1024 + gap_size; bank->base = 0x08000000; bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors); if (bank->sectors == NULL) { LOG_ERROR("failed to allocate bank sectors"); return ERROR_FAIL; } for (i = 0; i < bank->num_sectors; i++) { bank->sectors[i].offset = i * page_size; /* in dual bank configuration, if there is a gap between banks * we fix up the sector offset to consider this gap */ if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors) bank->sectors[i].offset += gap_size; bank->sectors[i].size = page_size; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } stm32l4_info->probed = 1; return ERROR_OK; } static int stm32l4_auto_probe(struct flash_bank *bank) { struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; if (stm32l4_info->probed) return ERROR_OK; return stm32l4_probe(bank); } static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size) { struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; const struct stm32l4_part_info *part_info = stm32l4_info->part_info; if (part_info) { const char *rev_str = NULL; uint16_t rev_id = stm32l4_info->idcode >> 16; for (unsigned int i = 0; i < part_info->num_revs; i++) { if (rev_id == part_info->revs[i].rev) { rev_str = part_info->revs[i].str; if (rev_str != NULL) { snprintf(buf, buf_size, "%s - Rev: %s", part_info->device_str, rev_str); return ERROR_OK; } } } snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", part_info->device_str, rev_id); return ERROR_OK; } else { snprintf(buf, buf_size, "Cannot identify target as an STM32 L4 or WB device"); return ERROR_FAIL; } return ERROR_OK; } static int stm32l4_mass_erase(struct flash_bank *bank) { int retval, retval2; struct target *target = bank->target; struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; uint32_t action = FLASH_MER1; if (stm32l4_info->part_info->has_dual_bank) action |= FLASH_MER2; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32l4_unlock_reg(bank); if (retval != ERROR_OK) goto err_lock; /* mass erase flash memory */ retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10); if (retval != ERROR_OK) goto err_lock; retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action); if (retval != ERROR_OK) goto err_lock; retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, action | FLASH_STRT); if (retval != ERROR_OK) goto err_lock; retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); err_lock: retval2 = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_LOCK); if (retval != ERROR_OK) return retval; return retval2; } COMMAND_HANDLER(stm32l4_handle_mass_erase_command) { int i; if (CMD_ARGC < 1) { command_print(CMD, "stm32l4x mass_erase "); return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; retval = stm32l4_mass_erase(bank); if (retval == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_erased = 1; command_print(CMD, "stm32l4x mass erase complete"); } else { command_print(CMD, "stm32l4x mass erase failed"); } return retval; } COMMAND_HANDLER(stm32l4_handle_option_read_command) { if (CMD_ARGC < 2) { command_print(CMD, "stm32l4x option_read "); return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; uint32_t reg_offset, reg_addr; uint32_t value = 0; reg_offset = strtoul(CMD_ARGV[1], NULL, 16); reg_addr = stm32l4_get_flash_reg(bank, reg_offset); retval = stm32l4_read_flash_reg(bank, reg_offset, &value); if (ERROR_OK != retval) return retval; command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value); return retval; } COMMAND_HANDLER(stm32l4_handle_option_write_command) { if (CMD_ARGC < 3) { command_print(CMD, "stm32l4x option_write [mask]"); return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; uint32_t reg_offset; uint32_t value = 0; uint32_t mask = 0xFFFFFFFF; reg_offset = strtoul(CMD_ARGV[1], NULL, 16); value = strtoul(CMD_ARGV[2], NULL, 16); if (CMD_ARGC > 3) mask = strtoul(CMD_ARGV[3], NULL, 16); command_print(CMD, "%s Option written.\n" "INFO: a reset or power cycle is required " "for the new settings to take effect.", bank->driver->name); retval = stm32l4_write_option(bank, reg_offset, value, mask); return retval; } COMMAND_HANDLER(stm32l4_handle_option_load_command) { if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; retval = stm32l4_unlock_reg(bank); if (ERROR_OK != retval) return retval; retval = stm32l4_unlock_option_reg(bank); if (ERROR_OK != retval) return retval; /* Write the OBLLAUNCH bit in CR -> Cause device "POR" and option bytes reload */ retval = stm32l4_write_flash_reg(bank, STM32_FLASH_CR, FLASH_OBLLAUNCH); command_print(CMD, "stm32l4x option load (POR) completed."); return retval; } COMMAND_HANDLER(stm32l4_handle_lock_command) { struct target *target = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* set readout protection level 1 by erasing the RDP option byte */ if (stm32l4_write_option(bank, STM32_FLASH_OPTR, 0, 0x000000FF) != ERROR_OK) { command_print(CMD, "%s failed to lock device", bank->driver->name); return ERROR_OK; } return ERROR_OK; } COMMAND_HANDLER(stm32l4_handle_unlock_command) { struct target *target = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (stm32l4_write_option(bank, STM32_FLASH_OPTR, RDP_LEVEL_0, 0x000000FF) != ERROR_OK) { command_print(CMD, "%s failed to unlock device", bank->driver->name); return ERROR_OK; } return ERROR_OK; } static const struct command_registration stm32l4_exec_command_handlers[] = { { .name = "lock", .handler = stm32l4_handle_lock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Lock entire flash device.", }, { .name = "unlock", .handler = stm32l4_handle_unlock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Unlock entire protected flash device.", }, { .name = "mass_erase", .handler = stm32l4_handle_mass_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire flash device.", }, { .name = "option_read", .handler = stm32l4_handle_option_read_command, .mode = COMMAND_EXEC, .usage = "bank_id reg_offset", .help = "Read & Display device option bytes.", }, { .name = "option_write", .handler = stm32l4_handle_option_write_command, .mode = COMMAND_EXEC, .usage = "bank_id reg_offset value mask", .help = "Write device option bit fields with provided value.", }, { .name = "option_load", .handler = stm32l4_handle_option_load_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Force re-load of device options (will cause device reset).", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration stm32l4_command_handlers[] = { { .name = "stm32l4x", .mode = COMMAND_ANY, .help = "stm32l4x flash command group", .usage = "", .chain = stm32l4_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; const struct flash_driver stm32l4x_flash = { .name = "stm32l4x", .commands = stm32l4_command_handlers, .flash_bank_command = stm32l4_flash_bank_command, .erase = stm32l4_erase, .protect = stm32l4_protect, .write = stm32l4_write, .read = default_flash_read, .probe = stm32l4_probe, .auto_probe = stm32l4_auto_probe, .erase_check = default_flash_blank_check, .protect_check = stm32l4_protect_check, .info = get_stm32l4_info, .free_driver_priv = default_flash_free_driver_priv, };