/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2011 by Clement Burin des Roziers * * clement.burin-des-roziers@hikob.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include #include /* stm32lx flash register locations */ #define FLASH_ACR 0x00 #define FLASH_PECR 0x04 #define FLASH_PDKEYR 0x08 #define FLASH_PEKEYR 0x0C #define FLASH_PRGKEYR 0x10 #define FLASH_OPTKEYR 0x14 #define FLASH_SR 0x18 #define FLASH_OBR 0x1C #define FLASH_WRPR 0x20 /* FLASH_ACR bites */ #define FLASH_ACR__LATENCY (1<<0) #define FLASH_ACR__PRFTEN (1<<1) #define FLASH_ACR__ACC64 (1<<2) #define FLASH_ACR__SLEEP_PD (1<<3) #define FLASH_ACR__RUN_PD (1<<4) /* FLASH_PECR bits */ #define FLASH_PECR__PELOCK (1<<0) #define FLASH_PECR__PRGLOCK (1<<1) #define FLASH_PECR__OPTLOCK (1<<2) #define FLASH_PECR__PROG (1<<3) #define FLASH_PECR__DATA (1<<4) #define FLASH_PECR__FTDW (1<<8) #define FLASH_PECR__ERASE (1<<9) #define FLASH_PECR__FPRG (1<<10) #define FLASH_PECR__EOPIE (1<<16) #define FLASH_PECR__ERRIE (1<<17) #define FLASH_PECR__OBL_LAUNCH (1<<18) /* FLASH_SR bits */ #define FLASH_SR__BSY (1<<0) #define FLASH_SR__EOP (1<<1) #define FLASH_SR__ENDHV (1<<2) #define FLASH_SR__READY (1<<3) #define FLASH_SR__WRPERR (1<<8) #define FLASH_SR__PGAERR (1<<9) #define FLASH_SR__SIZERR (1<<10) #define FLASH_SR__OPTVERR (1<<11) /* Unlock keys */ #define PEKEY1 0x89ABCDEF #define PEKEY2 0x02030405 #define PRGKEY1 0x8C9DAEBF #define PRGKEY2 0x13141516 #define OPTKEY1 0xFBEAD9C8 #define OPTKEY2 0x24252627 /* other registers */ #define DBGMCU_IDCODE 0xE0042000 #define DBGMCU_IDCODE_L0 0x40015800 /* Constants */ #define FLASH_SECTOR_SIZE 4096 #define FLASH_BANK0_ADDRESS 0x08000000 /* option bytes */ #define OPTION_BYTES_ADDRESS 0x1FF80000 #define OPTION_BYTE_0_PR1 0x015500AA #define OPTION_BYTE_0_PR0 0x01FF0011 static int stm32lx_unlock_program_memory(struct flash_bank *bank); static int stm32lx_lock_program_memory(struct flash_bank *bank); static int stm32lx_enable_write_half_page(struct flash_bank *bank); static int stm32lx_erase_sector(struct flash_bank *bank, int sector); static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank); static int stm32lx_mass_erase(struct flash_bank *bank); static int stm32lx_wait_status_busy(struct flash_bank *bank, int timeout); struct stm32lx_rev { uint16_t rev; const char *str; }; struct stm32lx_part_info { uint16_t id; const char *device_str; const struct stm32lx_rev *revs; size_t num_revs; unsigned int page_size; unsigned int pages_per_sector; uint16_t max_flash_size_kb; uint16_t first_bank_size_kb; /* used when has_dual_banks is true */ bool has_dual_banks; uint32_t flash_base; /* Flash controller registers location */ uint32_t fsize_base; /* Location of FSIZE register */ }; struct stm32lx_flash_bank { int probed; uint32_t idcode; uint32_t user_bank_size; uint32_t flash_base; const struct stm32lx_part_info *part_info; }; static const struct stm32lx_rev stm32_416_revs[] = { { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1018, "X" }, { 0x1038, "W" }, { 0x1078, "V" }, }; static const struct stm32lx_rev stm32_417_revs[] = { { 0x1000, "A" }, { 0x1008, "Z" }, }; static const struct stm32lx_rev stm32_427_revs[] = { { 0x1018, "A" }, }; static const struct stm32lx_rev stm32_436_revs[] = { { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, }; static const struct stm32lx_part_info stm32lx_parts[] = { { .id = 0x416, .revs = stm32_416_revs, .num_revs = ARRAY_SIZE(stm32_416_revs), .device_str = "STM32L1xx (Low/Medium Density)", .page_size = 256, .pages_per_sector = 16, .max_flash_size_kb = 128, .has_dual_banks = false, .flash_base = 0x40023C00, .fsize_base = 0x1FF8004C, }, { .id = 0x417, .revs = stm32_417_revs, .num_revs = ARRAY_SIZE(stm32_417_revs), .device_str = "STM32L0xx", .page_size = 128, .pages_per_sector = 32, .max_flash_size_kb = 64, .has_dual_banks = false, .flash_base = 0x40022000, .fsize_base = 0x1FF8007C, }, { .id = 0x427, .revs = stm32_427_revs, .num_revs = ARRAY_SIZE(stm32_427_revs), .device_str = "STM32L1xx (Medium+ Density)", .page_size = 256, .pages_per_sector = 16, .max_flash_size_kb = 256, .first_bank_size_kb = 192, .has_dual_banks = true, .flash_base = 0x40023C00, .fsize_base = 0x1FF800CC, }, { .id = 0x436, .revs = stm32_436_revs, .num_revs = ARRAY_SIZE(stm32_436_revs), .device_str = "STM32L1xx (Medium+/High Density)", .page_size = 256, .pages_per_sector = 16, .max_flash_size_kb = 384, .first_bank_size_kb = 192, .has_dual_banks = true, .flash_base = 0x40023C00, .fsize_base = 0x1FF800CC, }, { .id = 0x437, .device_str = "STM32L1xx (Medium+/High Density)", .page_size = 256, .pages_per_sector = 16, .max_flash_size_kb = 512, .first_bank_size_kb = 256, .has_dual_banks = true, .flash_base = 0x40023C00, .fsize_base = 0x1FF800CC, }, }; /* flash bank stm32lx 0 0 */ FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command) { struct stm32lx_flash_bank *stm32lx_info; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; /* Create the bank structure */ stm32lx_info = calloc(1, sizeof(*stm32lx_info)); /* Check allocation */ if (stm32lx_info == NULL) { LOG_ERROR("failed to allocate bank structure"); return ERROR_FAIL; } bank->driver_priv = stm32lx_info; stm32lx_info->probed = 0; stm32lx_info->user_bank_size = bank->size; /* the stm32l erased value is 0x00 */ bank->default_padded_value = 0x00; return ERROR_OK; } COMMAND_HANDLER(stm32lx_handle_mass_erase_command) { int i; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; retval = stm32lx_mass_erase(bank); if (retval == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_erased = 1; command_print(CMD_CTX, "stm32lx mass erase complete"); } else { command_print(CMD_CTX, "stm32lx mass erase failed"); } return retval; } static int stm32lx_protect_check(struct flash_bank *bank) { int retval; struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t wrpr; /* * Read the WRPR word, and check each bit (corresponding to each * flash sector */ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR, &wrpr); if (retval != ERROR_OK) return retval; for (int i = 0; i < bank->num_sectors; i++) { if (wrpr & (1 << i)) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } return ERROR_OK; } static int stm32lx_erase(struct flash_bank *bank, int first, int last) { int retval; /* * It could be possible to do a mass erase if all sectors must be * erased, but it is not implemented yet. */ if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first == 0) && (last == (bank->num_sectors - 1))) return stm32lx_mass_erase(bank); /* * Loop over the selected sectors and erase them */ for (int i = first; i <= last; i++) { retval = stm32lx_erase_sector(bank, i); if (retval != ERROR_OK) return retval; bank->sectors[i].is_erased = 1; } return ERROR_OK; } static int stm32lx_protect(struct flash_bank *bank, int set, int first, int last) { LOG_WARNING("protection of the STM32L flash is not implemented"); return ERROR_OK; } static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t hp_nb = stm32lx_info->part_info->page_size / 2; uint32_t buffer_size = 16384; struct working_area *write_algorithm; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[3]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; /* see contib/loaders/flash/stm32lx.S for src */ static const uint8_t stm32lx_flash_write_code[] = { /* write_word: */ 0x00, 0x23, /* movs r3, #0 */ 0x04, 0xe0, /* b test_done */ /* write_word: */ 0x51, 0xf8, 0x04, 0xcb, /* ldr ip, [r1], #4 */ 0x40, 0xf8, 0x04, 0xcb, /* str ip, [r0], #4 */ 0x01, 0x33, /* adds r3, #1 */ /* test_done: */ 0x93, 0x42, /* cmp r3, r2 */ 0xf8, 0xd3, /* bcc write_word */ 0x00, 0xbe, /* bkpt 0 */ }; /* Make sure we're performing a half-page aligned write. */ if (count % hp_nb) { LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count); return ERROR_FAIL; } /* flash write code */ if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code), &write_algorithm) != ERROR_OK) { LOG_DEBUG("no working area for block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; /* Write the flashing code */ retval = target_write_buffer(target, write_algorithm->address, sizeof(stm32lx_flash_write_code), stm32lx_flash_write_code); if (retval != ERROR_OK) { target_free_working_area(target, write_algorithm); return retval; } /* Allocate half pages memory */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { if (buffer_size > 1024) buffer_size -= 1024; else buffer_size /= 2; if (buffer_size <= stm32lx_info->part_info->page_size) { /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_OUT); init_reg_param(®_params[1], "r1", 32, PARAM_OUT); init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* Enable half-page write */ retval = stm32lx_enable_write_half_page(bank); if (retval != ERROR_OK) { target_free_working_area(target, source); target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); return retval; } struct armv7m_common *armv7m = target_to_armv7m(target); if (armv7m == NULL) { /* something is very wrong if armv7m is NULL */ LOG_ERROR("unable to get armv7m target"); return retval; } /* save any DEMCR flags and configure target to catch any Hard Faults */ uint32_t demcr_save = armv7m->demcr; armv7m->demcr = VC_HARDERR; /* Loop while there are bytes to write */ while (count > 0) { uint32_t this_count; this_count = (count > buffer_size) ? buffer_size : count; /* Write the next half pages */ retval = target_write_buffer(target, source->address, this_count, buffer); if (retval != ERROR_OK) break; /* 4: Store useful information in the registers */ /* the destination address of the copy (R0) */ buf_set_u32(reg_params[0].value, 0, 32, address); /* The source address of the copy (R1) */ buf_set_u32(reg_params[1].value, 0, 32, source->address); /* The length of the copy (R2) */ buf_set_u32(reg_params[2].value, 0, 32, this_count / 4); /* 5: Execute the bunch of code */ retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params) / sizeof(*reg_params), reg_params, write_algorithm->address, 0, 10000, &armv7m_info); if (retval != ERROR_OK) break; /* check for Hard Fault */ if (armv7m->exception_number == 3) break; /* 6: Wait while busy */ retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) break; buffer += this_count; address += this_count; count -= this_count; } /* restore previous flags */ armv7m->demcr = demcr_save; if (armv7m->exception_number == 3) { /* the stm32l15x devices seem to have an issue when blank. * if a ram loader is executed on a blank device it will * Hard Fault, this issue does not happen for a already programmed device. * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3). * The workaround of handling the Hard Fault exception does work, but makes the * loader more complicated, as a compromise we manually write the pages, programming time * is reduced by 50% using this slower method. */ LOG_WARNING("couldn't use loader, falling back to page memory writes"); while (count > 0) { uint32_t this_count; this_count = (count > hp_nb) ? hp_nb : count; /* Write the next half pages */ retval = target_write_buffer(target, address, this_count, buffer); if (retval != ERROR_OK) break; /* Wait while busy */ retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) break; buffer += this_count; address += this_count; count -= this_count; } } if (retval == ERROR_OK) retval = stm32lx_lock_program_memory(bank); target_free_working_area(target, source); target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); return retval; } static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t hp_nb = stm32lx_info->part_info->page_size / 2; uint32_t halfpages_number; uint32_t bytes_remaining = 0; uint32_t address = bank->base + offset; uint32_t bytes_written = 0; int retval, retval2; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset & 0x3) { LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } retval = stm32lx_unlock_program_memory(bank); if (retval != ERROR_OK) return retval; /* first we need to write any unaligned head bytes upto * the next 128 byte page */ if (offset % hp_nb) bytes_remaining = MIN(count, hp_nb - (offset % hp_nb)); while (bytes_remaining > 0) { uint8_t value[4] = {0xff, 0xff, 0xff, 0xff}; /* copy remaining bytes into the write buffer */ uint32_t bytes_to_write = MIN(4, bytes_remaining); memcpy(value, buffer + bytes_written, bytes_to_write); retval = target_write_buffer(target, address, 4, value); if (retval != ERROR_OK) goto reset_pg_and_lock; bytes_written += bytes_to_write; bytes_remaining -= bytes_to_write; address += 4; retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) goto reset_pg_and_lock; } offset += bytes_written; count -= bytes_written; /* this should always pass this check here */ assert((offset % hp_nb) == 0); /* calculate half pages */ halfpages_number = count / hp_nb; if (halfpages_number) { retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number); if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* attempt slow memory writes */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); halfpages_number = 0; } else { if (retval != ERROR_OK) return ERROR_FAIL; } } /* write any remaining bytes */ uint32_t page_bytes_written = hp_nb * halfpages_number; bytes_written += page_bytes_written; address += page_bytes_written; bytes_remaining = count - page_bytes_written; retval = stm32lx_unlock_program_memory(bank); if (retval != ERROR_OK) return retval; while (bytes_remaining > 0) { uint8_t value[4] = {0xff, 0xff, 0xff, 0xff}; /* copy remaining bytes into the write buffer */ uint32_t bytes_to_write = MIN(4, bytes_remaining); memcpy(value, buffer + bytes_written, bytes_to_write); retval = target_write_buffer(target, address, 4, value); if (retval != ERROR_OK) goto reset_pg_and_lock; bytes_written += bytes_to_write; bytes_remaining -= bytes_to_write; address += 4; retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) goto reset_pg_and_lock; } reset_pg_and_lock: retval2 = stm32lx_lock_program_memory(bank); if (retval == ERROR_OK) retval = retval2; return retval; } static int stm32lx_read_id_code(struct target *target, uint32_t *id) { /* read stm32 device id register */ int retval = target_read_u32(target, DBGMCU_IDCODE, id); if (retval != ERROR_OK) return retval; /* STM32L0 parts will have 0 there, try reading the L0's location for * DBG_IDCODE in case this is an L0 part. */ if (*id == 0) retval = target_read_u32(target, DBGMCU_IDCODE_L0, id); return retval; } static int stm32lx_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int i; uint16_t flash_size_in_kb; uint32_t device_id; uint32_t base_address = FLASH_BANK0_ADDRESS; uint32_t second_bank_base; stm32lx_info->probed = 0; stm32lx_info->part_info = NULL; int retval = stm32lx_read_id_code(bank->target, &device_id); if (retval != ERROR_OK) return retval; stm32lx_info->idcode = device_id; LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id); for (unsigned int n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) { if ((device_id & 0xfff) == stm32lx_parts[n].id) stm32lx_info->part_info = &stm32lx_parts[n]; } if (!stm32lx_info->part_info) { LOG_WARNING("Cannot identify target as a STM32L family."); return ERROR_FAIL; } stm32lx_info->flash_base = stm32lx_info->part_info->flash_base; /* Get the flash size from target. */ retval = target_read_u16(target, stm32lx_info->part_info->fsize_base, &flash_size_in_kb); /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K * or 256K, respectively. Please see RM0038 r8 or newer and refer to * section 30.1.1. */ if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) { if (flash_size_in_kb == 0) flash_size_in_kb = 384; else if (flash_size_in_kb == 1) flash_size_in_kb = 256; } /* Failed reading flash size or flash size invalid (early silicon), * default to max target family */ if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash", stm32lx_info->part_info->max_flash_size_kb); flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb; } else if (flash_size_in_kb > stm32lx_info->part_info->max_flash_size_kb) { LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash", flash_size_in_kb, stm32lx_info->part_info->max_flash_size_kb, stm32lx_info->part_info->max_flash_size_kb); flash_size_in_kb = stm32lx_info->part_info->max_flash_size_kb; } if (stm32lx_info->part_info->has_dual_banks) { /* Use the configured base address to determine if this is the first or second flash bank. * Verify that the base address is reasonably correct and determine the flash bank size */ second_bank_base = base_address + stm32lx_info->part_info->first_bank_size_kb * 1024; if (bank->base == second_bank_base) { /* This is the second bank */ base_address = second_bank_base; flash_size_in_kb = flash_size_in_kb - stm32lx_info->part_info->first_bank_size_kb; } else if (bank->base == 0 || bank->base == base_address) { /* This is the first bank */ flash_size_in_kb = stm32lx_info->part_info->first_bank_size_kb; } else { LOG_WARNING("STM32L flash bank base address config is incorrect." " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32, bank->base, base_address, second_bank_base); return ERROR_FAIL; } LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32, bank->bank_number, flash_size_in_kb, base_address); } else { LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address); } /* if the user sets the size manually then ignore the probed value * this allows us to work around devices that have a invalid flash size register value */ if (stm32lx_info->user_bank_size) { flash_size_in_kb = stm32lx_info->user_bank_size / 1024; LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb); } /* calculate numbers of sectors (4kB per sector) */ int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE; if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } bank->size = flash_size_in_kb * 1024; bank->base = base_address; bank->num_sectors = num_sectors; bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors); if (bank->sectors == NULL) { LOG_ERROR("failed to allocate bank sectors"); return ERROR_FAIL; } for (i = 0; i < num_sectors; i++) { bank->sectors[i].offset = i * FLASH_SECTOR_SIZE; bank->sectors[i].size = FLASH_SECTOR_SIZE; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } stm32lx_info->probed = 1; return ERROR_OK; } static int stm32lx_auto_probe(struct flash_bank *bank) { struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; if (stm32lx_info->probed) return ERROR_OK; return stm32lx_probe(bank); } static int stm32lx_erase_check(struct flash_bank *bank) { struct target *target = bank->target; const int buffer_size = 4096; int i; uint32_t nBytes; int retval = ERROR_OK; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } uint8_t *buffer = malloc(buffer_size); if (buffer == NULL) { LOG_ERROR("failed to allocate read buffer"); return ERROR_FAIL; } for (i = 0; i < bank->num_sectors; i++) { uint32_t j; bank->sectors[i].is_erased = 1; /* Loop chunk by chunk over the sector */ for (j = 0; j < bank->sectors[i].size; j += buffer_size) { uint32_t chunk; chunk = buffer_size; if (chunk > (j - bank->sectors[i].size)) chunk = (j - bank->sectors[i].size); retval = target_read_memory(target, bank->base + bank->sectors[i].offset + j, 4, chunk / 4, buffer); if (retval != ERROR_OK) break; for (nBytes = 0; nBytes < chunk; nBytes++) { if (buffer[nBytes] != 0x00) { bank->sectors[i].is_erased = 0; break; } } } if (retval != ERROR_OK) break; } free(buffer); return retval; } /* This method must return a string displaying information about the bank */ static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size) { struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; if (!stm32lx_info->probed) { int retval = stm32lx_probe(bank); if (retval != ERROR_OK) { snprintf(buf, buf_size, "Unable to find bank information."); return retval; } } const struct stm32lx_part_info *info = stm32lx_info->part_info; if (info) { const char *rev_str = NULL; uint16_t rev_id = stm32lx_info->idcode >> 16; for (unsigned int i = 0; i < info->num_revs; i++) if (rev_id == info->revs[i].rev) rev_str = info->revs[i].str; if (rev_str != NULL) { snprintf(buf, buf_size, "%s - Rev: %s", stm32lx_info->part_info->device_str, rev_str); } else { snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", stm32lx_info->part_info->device_str, rev_id); } return ERROR_OK; } else { snprintf(buf, buf_size, "Cannot identify target as a STM32Lx"); return ERROR_FAIL; } } static const struct command_registration stm32lx_exec_command_handlers[] = { { .name = "mass_erase", .handler = stm32lx_handle_mass_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire flash device. including available EEPROM", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration stm32lx_command_handlers[] = { { .name = "stm32lx", .mode = COMMAND_ANY, .help = "stm32lx flash command group", .usage = "", .chain = stm32lx_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver stm32lx_flash = { .name = "stm32lx", .commands = stm32lx_command_handlers, .flash_bank_command = stm32lx_flash_bank_command, .erase = stm32lx_erase, .protect = stm32lx_protect, .write = stm32lx_write, .read = default_flash_read, .probe = stm32lx_probe, .auto_probe = stm32lx_auto_probe, .erase_check = stm32lx_erase_check, .protect_check = stm32lx_protect_check, .info = stm32lx_get_info, }; /* Static methods implementation */ static int stm32lx_unlock_program_memory(struct flash_bank *bank) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* * Unlocking the program memory is done by unlocking the PECR, * then by writing the 2 PRGKEY to the PRGKEYR register */ /* check flash is not already unlocked */ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; if ((reg32 & FLASH_PECR__PRGLOCK) == 0) return ERROR_OK; /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2); if (retval != ERROR_OK) return retval; /* Make sure it worked */ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; if (reg32 & FLASH_PECR__PELOCK) { LOG_ERROR("PELOCK is not cleared :("); return ERROR_FLASH_OPERATION_FAILED; } retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR, PRGKEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR, PRGKEY2); if (retval != ERROR_OK) return retval; /* Make sure it worked */ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; if (reg32 & FLASH_PECR__PRGLOCK) { LOG_ERROR("PRGLOCK is not cleared :("); return ERROR_FLASH_OPERATION_FAILED; } return ERROR_OK; } static int stm32lx_enable_write_half_page(struct flash_bank *bank) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /** * Unlock the program memory, then set the FPRG bit in the PECR register. */ retval = stm32lx_unlock_program_memory(bank); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__FPRG; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PROG; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32); return retval; } static int stm32lx_lock_program_memory(struct flash_bank *bank) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* To lock the program memory, simply set the lock bit and lock PECR */ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PRGLOCK; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; reg32 |= FLASH_PECR__PELOCK; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32lx_erase_sector(struct flash_bank *bank, int sector) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages), * first unlock the memory, loop over the pages of this sector * and write 0x0 to its first word. */ retval = stm32lx_unlock_program_memory(bank); if (retval != ERROR_OK) return retval; for (int page = 0; page < (int)stm32lx_info->part_info->pages_per_sector; page++) { reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32); if (retval != ERROR_OK) return retval; retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) return retval; uint32_t addr = bank->base + bank->sectors[sector].offset + (page * stm32lx_info->part_info->page_size); retval = target_write_u32(target, addr, 0x0); if (retval != ERROR_OK) return retval; retval = stm32lx_wait_until_bsy_clear(bank); if (retval != ERROR_OK) return retval; } retval = stm32lx_lock_program_memory(bank); if (retval != ERROR_OK) return retval; return ERROR_OK; } static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status); } static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; uint32_t status; int retval = ERROR_OK; int timeout = 100; /* wait for busy to clear */ for (;;) { retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, &status); if (retval != ERROR_OK) return retval; if ((status & FLASH_SR__BSY) == 0) break; if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; } alive_sleep(1); } if (status & FLASH_SR__WRPERR) { LOG_ERROR("access denied / write protected"); retval = ERROR_FAIL; } if (status & FLASH_SR__PGAERR) { LOG_ERROR("invalid program address"); retval = ERROR_FAIL; } return retval; } static int stm32lx_unlock_options_bytes(struct flash_bank *bank) { struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; int retval; uint32_t reg32; /* * Unlocking the options bytes is done by unlocking the PECR, * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register */ /* check flash is not already unlocked */ retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; if ((reg32 & FLASH_PECR__OPTLOCK) == 0) return ERROR_OK; if ((reg32 & FLASH_PECR__PELOCK) != 0) { retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2); if (retval != ERROR_OK) return retval; } /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */ retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32lx_wait_status_busy(struct flash_bank *bank, int timeout) { struct target *target = bank->target; uint32_t status; int retval = ERROR_OK; struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv; /* wait for busy to clear */ for (;;) { retval = stm32lx_get_flash_status(bank, &status); if (retval != ERROR_OK) return retval; LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_SR__BSY) == 0) break; if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; } alive_sleep(1); } if (status & FLASH_SR__WRPERR) { LOG_ERROR("stm32lx device protected"); retval = ERROR_FAIL; } /* Clear but report errors */ if (status & FLASH_SR__OPTVERR) { /* If this operation fails, we ignore it and report the original retval */ target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR); } return retval; } static int stm32lx_mass_erase(struct flash_bank *bank) { int retval; struct target *target = bank->target; struct stm32lx_flash_bank *stm32lx_info = NULL; uint32_t reg32; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } stm32lx_info = bank->driver_priv; retval = stm32lx_unlock_options_bytes(bank); if (retval != ERROR_OK) return retval; /* mass erase flash memory, write 0x015500AA option byte address 0*/ /* pass the RDP privilege to 1 */ retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1); /* restore the RDP privilege to 0 */ retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0); /* the mass erase occur when the privilege go back to 0 */ retval = stm32lx_wait_status_busy(bank, 30000); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, ®32); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; }