/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ /* 2014-12: Addition of the SWD protocol support is based on the initial work * by Paul Fertser and modifications by Jean-Christian de Rivaz. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "bitbang.h" #include #include /** * Function bitbang_stableclocks * issues a number of clock cycles while staying in a stable state. * Because the TMS value required to stay in the RESET state is a 1, whereas * the TMS value required to stay in any of the other stable states is a 0, * this function checks the current stable state to decide on the value of TMS * to use. */ static int bitbang_stableclocks(int num_cycles); static void bitbang_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk); struct bitbang_interface *bitbang_interface; /* DANGER!!!! clock absolutely *MUST* be 0 in idle or reset won't work! * * Set this to 1 and str912 reset halt will fail. * * If someone can submit a patch with an explanation it will be greatly * appreciated, but as far as I can tell (ØH) DCLK is generated upon * clk = 0 in TAP_IDLE. Good luck deducing that from the ARM documentation! * The ARM documentation uses the term "DCLK is asserted while in the TAP_IDLE * state". With hardware there is no such thing as *while* in a state. There * are only edges. So clk => 0 is in fact a very subtle state transition that * happens *while* in the TAP_IDLE state. "#&¤"#¤&"#&"#& * * For "reset halt" the last thing that happens before srst is asserted * is that the breakpoint is set up. If DCLK is not wiggled one last * time before the reset, then the breakpoint is not set up and * "reset halt" will fail to halt. * */ #define CLOCK_IDLE() 0 /* The bitbang driver leaves the TCK 0 when in idle */ static void bitbang_end_state(tap_state_t state) { assert(tap_is_state_stable(state)); tap_set_end_state(state); } static int bitbang_state_move(int skip) { int i = 0, tms = 0; uint8_t tms_scan = tap_get_tms_path(tap_get_state(), tap_get_end_state()); int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state()); for (i = skip; i < tms_count; i++) { tms = (tms_scan >> i) & 1; if (bitbang_interface->write(0, tms, 0) != ERROR_OK) return ERROR_FAIL; if (bitbang_interface->write(1, tms, 0) != ERROR_OK) return ERROR_FAIL; } if (bitbang_interface->write(CLOCK_IDLE(), tms, 0) != ERROR_OK) return ERROR_FAIL; tap_set_state(tap_get_end_state()); return ERROR_OK; } /** * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG * (or SWD) state machine. */ static int bitbang_execute_tms(struct jtag_command *cmd) { unsigned num_bits = cmd->cmd.tms->num_bits; const uint8_t *bits = cmd->cmd.tms->bits; DEBUG_JTAG_IO("TMS: %d bits", num_bits); int tms = 0; for (unsigned i = 0; i < num_bits; i++) { tms = ((bits[i/8] >> (i % 8)) & 1); if (bitbang_interface->write(0, tms, 0) != ERROR_OK) return ERROR_FAIL; if (bitbang_interface->write(1, tms, 0) != ERROR_OK) return ERROR_FAIL; } if (bitbang_interface->write(CLOCK_IDLE(), tms, 0) != ERROR_OK) return ERROR_FAIL; return ERROR_OK; } static int bitbang_path_move(struct pathmove_command *cmd) { int num_states = cmd->num_states; int state_count; int tms = 0; state_count = 0; while (num_states) { if (tap_state_transition(tap_get_state(), false) == cmd->path[state_count]) tms = 0; else if (tap_state_transition(tap_get_state(), true) == cmd->path[state_count]) tms = 1; else { LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(tap_get_state()), tap_state_name(cmd->path[state_count])); exit(-1); } if (bitbang_interface->write(0, tms, 0) != ERROR_OK) return ERROR_FAIL; if (bitbang_interface->write(1, tms, 0) != ERROR_OK) return ERROR_FAIL; tap_set_state(cmd->path[state_count]); state_count++; num_states--; } if (bitbang_interface->write(CLOCK_IDLE(), tms, 0) != ERROR_OK) return ERROR_FAIL; tap_set_end_state(tap_get_state()); return ERROR_OK; } static int bitbang_runtest(int num_cycles) { int i; tap_state_t saved_end_state = tap_get_end_state(); /* only do a state_move when we're not already in IDLE */ if (tap_get_state() != TAP_IDLE) { bitbang_end_state(TAP_IDLE); if (bitbang_state_move(0) != ERROR_OK) return ERROR_FAIL; } /* execute num_cycles */ for (i = 0; i < num_cycles; i++) { if (bitbang_interface->write(0, 0, 0) != ERROR_OK) return ERROR_FAIL; if (bitbang_interface->write(1, 0, 0) != ERROR_OK) return ERROR_FAIL; } if (bitbang_interface->write(CLOCK_IDLE(), 0, 0) != ERROR_OK) return ERROR_FAIL; /* finish in end_state */ bitbang_end_state(saved_end_state); if (tap_get_state() != tap_get_end_state()) if (bitbang_state_move(0) != ERROR_OK) return ERROR_FAIL; return ERROR_OK; } static int bitbang_stableclocks(int num_cycles) { int tms = (tap_get_state() == TAP_RESET ? 1 : 0); int i; /* send num_cycles clocks onto the cable */ for (i = 0; i < num_cycles; i++) { if (bitbang_interface->write(1, tms, 0) != ERROR_OK) return ERROR_FAIL; if (bitbang_interface->write(0, tms, 0) != ERROR_OK) return ERROR_FAIL; } return ERROR_OK; } static int bitbang_scan(bool ir_scan, enum scan_type type, uint8_t *buffer, unsigned scan_size) { tap_state_t saved_end_state = tap_get_end_state(); unsigned bit_cnt; if (!((!ir_scan && (tap_get_state() == TAP_DRSHIFT)) || (ir_scan && (tap_get_state() == TAP_IRSHIFT)))) { if (ir_scan) bitbang_end_state(TAP_IRSHIFT); else bitbang_end_state(TAP_DRSHIFT); if (bitbang_state_move(0) != ERROR_OK) return ERROR_FAIL; bitbang_end_state(saved_end_state); } size_t buffered = 0; for (bit_cnt = 0; bit_cnt < scan_size; bit_cnt++) { int tms = (bit_cnt == scan_size-1) ? 1 : 0; int tdi; int bytec = bit_cnt/8; int bcval = 1 << (bit_cnt % 8); /* if we're just reading the scan, but don't care about the output * default to outputting 'low', this also makes valgrind traces more readable, * as it removes the dependency on an uninitialised value */ tdi = 0; if ((type != SCAN_IN) && (buffer[bytec] & bcval)) tdi = 1; if (bitbang_interface->write(0, tms, tdi) != ERROR_OK) return ERROR_FAIL; if (type != SCAN_OUT) { if (bitbang_interface->buf_size) { if (bitbang_interface->sample() != ERROR_OK) return ERROR_FAIL; buffered++; } else { switch (bitbang_interface->read()) { case BB_LOW: buffer[bytec] &= ~bcval; break; case BB_HIGH: buffer[bytec] |= bcval; break; default: return ERROR_FAIL; } } } if (bitbang_interface->write(1, tms, tdi) != ERROR_OK) return ERROR_FAIL; if (type != SCAN_OUT && bitbang_interface->buf_size && (buffered == bitbang_interface->buf_size || bit_cnt == scan_size - 1)) { for (unsigned i = bit_cnt + 1 - buffered; i <= bit_cnt; i++) { switch (bitbang_interface->read_sample()) { case BB_LOW: buffer[i/8] &= ~(1 << (i % 8)); break; case BB_HIGH: buffer[i/8] |= 1 << (i % 8); break; default: return ERROR_FAIL; } } buffered = 0; } } if (tap_get_state() != tap_get_end_state()) { /* we *KNOW* the above loop transitioned out of * the shift state, so we skip the first state * and move directly to the end state. */ if (bitbang_state_move(1) != ERROR_OK) return ERROR_FAIL; } return ERROR_OK; } int bitbang_execute_queue(void) { struct jtag_command *cmd = jtag_command_queue; /* currently processed command */ int scan_size; enum scan_type type; uint8_t *buffer; int retval; if (!bitbang_interface) { LOG_ERROR("BUG: Bitbang interface called, but not yet initialized"); exit(-1); } /* return ERROR_OK, unless a jtag_read_buffer returns a failed check * that wasn't handled by a caller-provided error handler */ retval = ERROR_OK; if (bitbang_interface->blink) { if (bitbang_interface->blink(1) != ERROR_OK) return ERROR_FAIL; } while (cmd) { switch (cmd->type) { case JTAG_RESET: #ifdef _DEBUG_JTAG_IO_ LOG_DEBUG("reset trst: %i srst %i", cmd->cmd.reset->trst, cmd->cmd.reset->srst); #endif if ((cmd->cmd.reset->trst == 1) || (cmd->cmd.reset->srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST))) tap_set_state(TAP_RESET); if (bitbang_interface->reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst) != ERROR_OK) return ERROR_FAIL; break; case JTAG_RUNTEST: #ifdef _DEBUG_JTAG_IO_ LOG_DEBUG("runtest %i cycles, end in %s", cmd->cmd.runtest->num_cycles, tap_state_name(cmd->cmd.runtest->end_state)); #endif bitbang_end_state(cmd->cmd.runtest->end_state); if (bitbang_runtest(cmd->cmd.runtest->num_cycles) != ERROR_OK) return ERROR_FAIL; break; case JTAG_STABLECLOCKS: /* this is only allowed while in a stable state. A check for a stable * state was done in jtag_add_clocks() */ if (bitbang_stableclocks(cmd->cmd.stableclocks->num_cycles) != ERROR_OK) return ERROR_FAIL; break; case JTAG_TLR_RESET: #ifdef _DEBUG_JTAG_IO_ LOG_DEBUG("statemove end in %s", tap_state_name(cmd->cmd.statemove->end_state)); #endif bitbang_end_state(cmd->cmd.statemove->end_state); if (bitbang_state_move(0) != ERROR_OK) return ERROR_FAIL; break; case JTAG_PATHMOVE: #ifdef _DEBUG_JTAG_IO_ LOG_DEBUG("pathmove: %i states, end in %s", cmd->cmd.pathmove->num_states, tap_state_name(cmd->cmd.pathmove->path[cmd->cmd.pathmove->num_states - 1])); #endif if (bitbang_path_move(cmd->cmd.pathmove) != ERROR_OK) return ERROR_FAIL; break; case JTAG_SCAN: bitbang_end_state(cmd->cmd.scan->end_state); scan_size = jtag_build_buffer(cmd->cmd.scan, &buffer); #ifdef _DEBUG_JTAG_IO_ LOG_DEBUG("%s scan %d bits; end in %s", (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size, tap_state_name(cmd->cmd.scan->end_state)); #endif type = jtag_scan_type(cmd->cmd.scan); if (bitbang_scan(cmd->cmd.scan->ir_scan, type, buffer, scan_size) != ERROR_OK) return ERROR_FAIL; if (jtag_read_buffer(buffer, cmd->cmd.scan) != ERROR_OK) retval = ERROR_JTAG_QUEUE_FAILED; if (buffer) free(buffer); break; case JTAG_SLEEP: #ifdef _DEBUG_JTAG_IO_ LOG_DEBUG("sleep %" PRIi32, cmd->cmd.sleep->us); #endif jtag_sleep(cmd->cmd.sleep->us); break; case JTAG_TMS: retval = bitbang_execute_tms(cmd); break; default: LOG_ERROR("BUG: unknown JTAG command type encountered"); exit(-1); } cmd = cmd->next; } if (bitbang_interface->blink) { if (bitbang_interface->blink(0) != ERROR_OK) return ERROR_FAIL; } return retval; } bool swd_mode; static int queued_retval; static int bitbang_swd_init(void) { LOG_DEBUG("bitbang_swd_init"); swd_mode = true; return ERROR_OK; } static void bitbang_exchange(bool rnw, uint8_t buf[], unsigned int offset, unsigned int bit_cnt) { LOG_DEBUG("bitbang_exchange"); int tdi; for (unsigned int i = offset; i < bit_cnt + offset; i++) { int bytec = i/8; int bcval = 1 << (i % 8); tdi = !rnw && (buf[bytec] & bcval); bitbang_interface->write(0, 0, tdi); if (rnw && buf) { if (bitbang_interface->swdio_read()) buf[bytec] |= bcval; else buf[bytec] &= ~bcval; } bitbang_interface->write(1, 0, tdi); } } int bitbang_swd_switch_seq(enum swd_special_seq seq) { LOG_DEBUG("bitbang_swd_switch_seq"); switch (seq) { case LINE_RESET: LOG_DEBUG("SWD line reset"); bitbang_exchange(false, (uint8_t *)swd_seq_line_reset, 0, swd_seq_line_reset_len); break; case JTAG_TO_SWD: LOG_DEBUG("JTAG-to-SWD"); bitbang_exchange(false, (uint8_t *)swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len); break; case SWD_TO_JTAG: LOG_DEBUG("SWD-to-JTAG"); bitbang_exchange(false, (uint8_t *)swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len); break; default: LOG_ERROR("Sequence %d not supported", seq); return ERROR_FAIL; } return ERROR_OK; } void bitbang_switch_to_swd(void) { LOG_DEBUG("bitbang_switch_to_swd"); bitbang_exchange(false, (uint8_t *)swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len); } static void swd_clear_sticky_errors(void) { bitbang_swd_write_reg(swd_cmd(false, false, DP_ABORT), STKCMPCLR | STKERRCLR | WDERRCLR | ORUNERRCLR, 0); } static void bitbang_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay_clk) { LOG_DEBUG("bitbang_swd_read_reg"); assert(cmd & SWD_CMD_RnW); if (queued_retval != ERROR_OK) { LOG_DEBUG("Skip bitbang_swd_read_reg because queued_retval=%d", queued_retval); return; } for (;;) { uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)]; cmd |= SWD_CMD_START | (1 << 7); bitbang_exchange(false, &cmd, 0, 8); bitbang_interface->swdio_drive(false); bitbang_exchange(true, trn_ack_data_parity_trn, 0, 1 + 3 + 32 + 1 + 1); bitbang_interface->swdio_drive(true); int ack = buf_get_u32(trn_ack_data_parity_trn, 1, 3); uint32_t data = buf_get_u32(trn_ack_data_parity_trn, 1 + 3, 32); int parity = buf_get_u32(trn_ack_data_parity_trn, 1 + 3 + 32, 1); LOG_DEBUG("%s %s %s reg %X = %08"PRIx32, ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK", cmd & SWD_CMD_APnDP ? "AP" : "DP", cmd & SWD_CMD_RnW ? "read" : "write", (cmd & SWD_CMD_A32) >> 1, data); switch (ack) { case SWD_ACK_OK: if (parity != parity_u32(data)) { LOG_DEBUG("Wrong parity detected"); queued_retval = ERROR_FAIL; return; } if (value) *value = data; if (cmd & SWD_CMD_APnDP) bitbang_exchange(true, NULL, 0, ap_delay_clk); return; case SWD_ACK_WAIT: LOG_DEBUG("SWD_ACK_WAIT"); swd_clear_sticky_errors(); break; case SWD_ACK_FAULT: LOG_DEBUG("SWD_ACK_FAULT"); queued_retval = ack; return; default: LOG_DEBUG("No valid acknowledge: ack=%d", ack); queued_retval = ack; return; } } } static void bitbang_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk) { LOG_DEBUG("bitbang_swd_write_reg"); assert(!(cmd & SWD_CMD_RnW)); if (queued_retval != ERROR_OK) { LOG_DEBUG("Skip bitbang_swd_write_reg because queued_retval=%d", queued_retval); return; } for (;;) { uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)]; buf_set_u32(trn_ack_data_parity_trn, 1 + 3 + 1, 32, value); buf_set_u32(trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(value)); cmd |= SWD_CMD_START | (1 << 7); bitbang_exchange(false, &cmd, 0, 8); bitbang_interface->swdio_drive(false); bitbang_exchange(true, trn_ack_data_parity_trn, 0, 1 + 3 + 1); bitbang_interface->swdio_drive(true); bitbang_exchange(false, trn_ack_data_parity_trn, 1 + 3 + 1, 32 + 1); int ack = buf_get_u32(trn_ack_data_parity_trn, 1, 3); LOG_DEBUG("%s %s %s reg %X = %08"PRIx32, ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK", cmd & SWD_CMD_APnDP ? "AP" : "DP", cmd & SWD_CMD_RnW ? "read" : "write", (cmd & SWD_CMD_A32) >> 1, buf_get_u32(trn_ack_data_parity_trn, 1 + 3 + 1, 32)); switch (ack) { case SWD_ACK_OK: if (cmd & SWD_CMD_APnDP) bitbang_exchange(true, NULL, 0, ap_delay_clk); return; case SWD_ACK_WAIT: LOG_DEBUG("SWD_ACK_WAIT"); swd_clear_sticky_errors(); break; case SWD_ACK_FAULT: LOG_DEBUG("SWD_ACK_FAULT"); queued_retval = ack; return; default: LOG_DEBUG("No valid acknowledge: ack=%d", ack); queued_retval = ack; return; } } } static int bitbang_swd_run_queue(void) { LOG_DEBUG("bitbang_swd_run_queue"); /* A transaction must be followed by another transaction or at least 8 idle cycles to * ensure that data is clocked through the AP. */ bitbang_exchange(true, NULL, 0, 8); int retval = queued_retval; queued_retval = ERROR_OK; LOG_DEBUG("SWD queue return value: %02x", retval); return retval; } const struct swd_driver bitbang_swd = { .init = bitbang_swd_init, .switch_seq = bitbang_swd_switch_seq, .read_reg = bitbang_swd_read_reg, .write_reg = bitbang_swd_write_reg, .run = bitbang_swd_run_queue, };