/*************************************************************************** * Copyright (C) 2010 Serge Vakulenko * * serge@vak.ru * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #if IS_CYGWIN == 1 #include "windows.h" #undef LOG_ERROR #endif /* project specific includes */ #include #include #include #include "libusb1_common.h" /* system includes */ #include #include #include #include #include /* * Sync bit bang mode is implemented as described in FTDI Application * Note AN232R-01: "Bit Bang Modes for the FT232R and FT245R". */ /* * USB endpoints. */ #define IN_EP 0x02 #define OUT_EP 0x81 /* Requests */ #define SIO_RESET 0 /* Reset the port */ #define SIO_MODEM_CTRL 1 /* Set the modem control register */ #define SIO_SET_FLOW_CTRL 2 /* Set flow control register */ #define SIO_SET_BAUD_RATE 3 /* Set baud rate */ #define SIO_SET_DATA 4 /* Set the data characteristics of the port */ #define SIO_POLL_MODEM_STATUS 5 #define SIO_SET_EVENT_CHAR 6 #define SIO_SET_ERROR_CHAR 7 #define SIO_SET_LATENCY_TIMER 9 #define SIO_GET_LATENCY_TIMER 10 #define SIO_SET_BITMODE 11 #define SIO_READ_PINS 12 #define SIO_READ_EEPROM 0x90 #define SIO_WRITE_EEPROM 0x91 #define SIO_ERASE_EEPROM 0x92 #define FT232R_BUF_SIZE_EXTRA 4096 static char *ft232r_serial_desc; static uint16_t ft232r_vid = 0x0403; /* FTDI */ static uint16_t ft232r_pid = 0x6001; /* FT232R */ static jtag_libusb_device_handle *adapter; static uint8_t *ft232r_output; static size_t ft232r_output_len; /** * FT232R GPIO bit number to RS232 name */ #define FT232R_BIT_COUNT 8 static char *ft232r_bit_name_array[FT232R_BIT_COUNT] = { "TXD", /* 0: pin 1 TCK output */ "RXD", /* 1: pin 5 TDI output */ "RTS", /* 2: pin 3 TDO input */ "CTS", /* 3: pin 11 TMS output */ "DTR", /* 4: pin 2 /TRST output */ "DSR", /* 5: pin 9 unused */ "DCD", /* 6: pin 10 /SYSRST output */ "RI" /* 7: pin 6 unused */ }; static int tck_gpio; /* initialized to 0 by default */ static int tdi_gpio = 1; static int tdo_gpio = 2; static int tms_gpio = 3; static int ntrst_gpio = 4; static int nsysrst_gpio = 6; static size_t ft232r_buf_size = FT232R_BUF_SIZE_EXTRA; /** 0xFFFF disables restore by default, after exit serial port will not work. * 0x15 sets TXD RTS DTR as outputs, after exit serial port will continue to work. */ static uint16_t ft232r_restore_bitmode = 0xFFFF; /** * Perform sync bitbang output/input transaction. * Before call, an array ft232r_output[] should be filled with data to send. * Counter ft232r_output_len contains the number of bytes to send. * On return, received data is put back to array ft232r_output[]. */ static int ft232r_send_recv(void) { /* FIFO TX buffer has 128 bytes. * FIFO RX buffer has 256 bytes. * First two bytes of received packet contain contain modem * and line status and are ignored. * Unfortunately, transfer sizes bigger than 64 bytes * frequently cause hang ups. */ assert(ft232r_output_len > 0); size_t total_written = 0; size_t total_read = 0; int rxfifo_free = 128; while (total_read < ft232r_output_len) { /* Write */ int bytes_to_write = ft232r_output_len - total_written; if (bytes_to_write > 64) bytes_to_write = 64; if (bytes_to_write > rxfifo_free) bytes_to_write = rxfifo_free; if (bytes_to_write) { int n = jtag_libusb_bulk_write(adapter, IN_EP, (char *) ft232r_output + total_written, bytes_to_write, 1000); if (n == 0) { LOG_ERROR("usb bulk write failed"); return ERROR_JTAG_DEVICE_ERROR; } total_written += n; rxfifo_free -= n; } /* Read */ uint8_t reply[64]; int n = jtag_libusb_bulk_read(adapter, OUT_EP, (char *) reply, sizeof(reply), 1000); if (n == 0) { LOG_ERROR("usb bulk read failed"); return ERROR_JTAG_DEVICE_ERROR; } if (n > 2) { /* Copy data, ignoring first 2 bytes. */ memcpy(ft232r_output + total_read, reply + 2, n - 2); int bytes_read = n - 2; total_read += bytes_read; rxfifo_free += bytes_read; if (total_read > total_written) { LOG_ERROR("read more bytes than wrote"); return ERROR_JTAG_DEVICE_ERROR; } } } ft232r_output_len = 0; return ERROR_OK; } void ft232r_increase_buf_size(size_t new_buf_size) { uint8_t *new_buf_ptr; if (new_buf_size >= ft232r_buf_size) { new_buf_size += FT232R_BUF_SIZE_EXTRA; new_buf_ptr = realloc(ft232r_output, new_buf_size); if (new_buf_ptr != NULL) { ft232r_output = new_buf_ptr; ft232r_buf_size = new_buf_size; } } } /** * Add one TCK/TMS/TDI sample to send buffer. */ static void ft232r_write(int tck, int tms, int tdi) { unsigned out_value = (1<= ft232r_buf_size) { /* FIXME: should we just execute queue here? */ LOG_ERROR("ft232r_write: buffer overflow"); return; } ft232r_output[ft232r_output_len++] = out_value; } /** * Control /TRST and /SYSRST pins. * Perform immediate bitbang transaction. */ static void ft232r_reset(int trst, int srst) { unsigned out_value = (1<= ft232r_buf_size) { /* FIXME: should we just execute queue here? */ LOG_ERROR("ft232r_write: buffer overflow"); return; } ft232r_output[ft232r_output_len++] = out_value; ft232r_send_recv(); } static int ft232r_speed(int divisor) { int baud = (divisor == 0) ? 3000000 : (divisor == 1) ? 2000000 : 3000000 / divisor; LOG_DEBUG("ft232r_speed(%d) rate %d bits/sec", divisor, baud); if (jtag_libusb_control_transfer(adapter, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT, SIO_SET_BAUD_RATE, divisor, 0, 0, 0, 1000) != 0) { LOG_ERROR("cannot set baud rate"); return ERROR_JTAG_DEVICE_ERROR; } return ERROR_OK; } static int ft232r_init(void) { uint16_t avids[] = {ft232r_vid, 0}; uint16_t apids[] = {ft232r_pid, 0}; if (jtag_libusb_open(avids, apids, ft232r_serial_desc, &adapter)) { LOG_ERROR("ft232r not found: vid=%04x, pid=%04x, serial=%s\n", ft232r_vid, ft232r_pid, (ft232r_serial_desc == NULL) ? "[any]" : ft232r_serial_desc); return ERROR_JTAG_INIT_FAILED; } if (ft232r_restore_bitmode == 0xFFFF) /* serial port will not be restored after jtag: */ libusb_detach_kernel_driver(adapter, 0); else /* serial port will be restored after jtag: */ libusb_set_auto_detach_kernel_driver(adapter, 1); /* 1: DONT_DETACH_SIO_MODULE */ if (jtag_libusb_claim_interface(adapter, 0)) { LOG_ERROR("unable to claim interface"); return ERROR_JTAG_INIT_FAILED; } /* Reset the device. */ if (jtag_libusb_control_transfer(adapter, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT, SIO_RESET, 0, 0, 0, 0, 1000) != 0) { LOG_ERROR("unable to reset device"); return ERROR_JTAG_INIT_FAILED; } /* Sync bit bang mode. */ if (jtag_libusb_control_transfer(adapter, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT, SIO_SET_BITMODE, (1< 2500) *divisor = 0; /* Special case: 3 MHz */ else if (khz > 1700) *divisor = 1; /* Special case: 2 MHz */ else { *divisor = (2*3000 / khz + 1) / 2; if (*divisor > 0x3FFF) *divisor = 0x3FFF; } return ERROR_OK; } static char *ft232r_bit_number_to_name(int bit) { if (bit >= 0 && bit < FT232R_BIT_COUNT) return ft232r_bit_name_array[bit]; return "?"; } static int ft232r_bit_name_to_number(const char *name) { int i; if (name[0] >= '0' && name[0] <= '9' && name[1] == '\0') { i = atoi(name); if (i >= 0 && i < FT232R_BIT_COUNT) return i; } for (i = 0; i < FT232R_BIT_COUNT; i++) if (strcasecmp(name, ft232r_bit_name_array[i]) == 0) return i; return -1; } COMMAND_HANDLER(ft232r_handle_serial_desc_command) { if (CMD_ARGC == 1) ft232r_serial_desc = strdup(CMD_ARGV[0]); else LOG_ERROR("require exactly one argument to " "ft232r_serial_desc "); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_vid_pid_command) { if (CMD_ARGC > 2) { LOG_WARNING("ignoring extra IDs in ft232r_vid_pid " "(maximum is 1 pair)"); CMD_ARGC = 2; } if (CMD_ARGC == 2) { COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], ft232r_vid); COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], ft232r_pid); } else LOG_WARNING("incomplete ft232r_vid_pid configuration"); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_jtag_nums_command) { if (CMD_ARGC == 4) { tck_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]); tms_gpio = ft232r_bit_name_to_number(CMD_ARGV[1]); tdi_gpio = ft232r_bit_name_to_number(CMD_ARGV[2]); tdo_gpio = ft232r_bit_name_to_number(CMD_ARGV[3]); } else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tck_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tms_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tdi_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tdo_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R nums: TCK = %d %s, TMS = %d %s, TDI = %d %s, TDO = %d %s", tck_gpio, ft232r_bit_number_to_name(tck_gpio), tms_gpio, ft232r_bit_number_to_name(tms_gpio), tdi_gpio, ft232r_bit_number_to_name(tdi_gpio), tdo_gpio, ft232r_bit_number_to_name(tdo_gpio)); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_tck_num_command) { if (CMD_ARGC == 1) tck_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]); else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tck_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R num: TCK = %d %s", tck_gpio, ft232r_bit_number_to_name(tck_gpio)); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_tms_num_command) { if (CMD_ARGC == 1) tms_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]); else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tms_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R num: TMS = %d %s", tms_gpio, ft232r_bit_number_to_name(tms_gpio)); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_tdo_num_command) { if (CMD_ARGC == 1) tdo_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]); else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tdo_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R num: TDO = %d %s", tdo_gpio, ft232r_bit_number_to_name(tdo_gpio)); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_tdi_num_command) { if (CMD_ARGC == 1) tdi_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]); else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; if (tdi_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R num: TDI = %d %s", tdi_gpio, ft232r_bit_number_to_name(tdi_gpio)); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_trst_num_command) { if (CMD_ARGC == 1) ntrst_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]); else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; if (ntrst_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R num: TRST = %d %s", ntrst_gpio, ft232r_bit_number_to_name(ntrst_gpio)); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_srst_num_command) { if (CMD_ARGC == 1) nsysrst_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]); else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; if (nsysrst_gpio < 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R num: SRST = %d %s", nsysrst_gpio, ft232r_bit_number_to_name(nsysrst_gpio)); return ERROR_OK; } COMMAND_HANDLER(ft232r_handle_restore_serial_command) { if (CMD_ARGC == 1) COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], ft232r_restore_bitmode); else if (CMD_ARGC != 0) return ERROR_COMMAND_SYNTAX_ERROR; command_print(CMD_CTX, "FT232R restore serial: 0x%04X (%s)", ft232r_restore_bitmode, ft232r_restore_bitmode == 0xFFFF ? "disabled" : "enabled"); return ERROR_OK; } static const struct command_registration ft232r_command_handlers[] = { { .name = "ft232r_serial_desc", .handler = ft232r_handle_serial_desc_command, .mode = COMMAND_CONFIG, .help = "USB serial descriptor of the adapter", .usage = "serial string", }, { .name = "ft232r_vid_pid", .handler = ft232r_handle_vid_pid_command, .mode = COMMAND_CONFIG, .help = "USB VID and PID of the adapter", .usage = "vid pid", }, { .name = "ft232r_jtag_nums", .handler = ft232r_handle_jtag_nums_command, .mode = COMMAND_CONFIG, .help = "gpio numbers for tck, tms, tdi, tdo. (in that order)", .usage = "<0-7|TXD-RI> <0-7|TXD-RI> <0-7|TXD-RI> <0-7|TXD-RI>", }, { .name = "ft232r_tck_num", .handler = ft232r_handle_tck_num_command, .mode = COMMAND_CONFIG, .help = "gpio number for tck.", .usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>", }, { .name = "ft232r_tms_num", .handler = ft232r_handle_tms_num_command, .mode = COMMAND_CONFIG, .help = "gpio number for tms.", .usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>", }, { .name = "ft232r_tdo_num", .handler = ft232r_handle_tdo_num_command, .mode = COMMAND_CONFIG, .help = "gpio number for tdo.", .usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>", }, { .name = "ft232r_tdi_num", .handler = ft232r_handle_tdi_num_command, .mode = COMMAND_CONFIG, .help = "gpio number for tdi.", .usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>", }, { .name = "ft232r_srst_num", .handler = ft232r_handle_srst_num_command, .mode = COMMAND_CONFIG, .help = "gpio number for srst.", .usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>", }, { .name = "ft232r_trst_num", .handler = ft232r_handle_trst_num_command, .mode = COMMAND_CONFIG, .help = "gpio number for trst.", .usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>", }, { .name = "ft232r_restore_serial", .handler = ft232r_handle_restore_serial_command, .mode = COMMAND_CONFIG, .help = "bitmode control word that restores serial port.", .usage = "bitmode_control_word", }, COMMAND_REGISTRATION_DONE }; /* * Synchronous bitbang protocol implementation. */ static void syncbb_end_state(tap_state_t state) { if (tap_is_state_stable(state)) tap_set_end_state(state); else { LOG_ERROR("BUG: %i is not a valid end state", state); exit(-1); } } static void syncbb_state_move(int skip) { int i = 0, tms = 0; uint8_t tms_scan = tap_get_tms_path(tap_get_state(), tap_get_end_state()); int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state()); for (i = skip; i < tms_count; i++) { tms = (tms_scan >> i) & 1; ft232r_write(0, tms, 0); ft232r_write(1, tms, 0); } ft232r_write(0, tms, 0); tap_set_state(tap_get_end_state()); } /** * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG * (or SWD) state machine. */ static int syncbb_execute_tms(struct jtag_command *cmd) { unsigned num_bits = cmd->cmd.tms->num_bits; const uint8_t *bits = cmd->cmd.tms->bits; DEBUG_JTAG_IO("TMS: %d bits", num_bits); int tms = 0; for (unsigned i = 0; i < num_bits; i++) { tms = ((bits[i/8] >> (i % 8)) & 1); ft232r_write(0, tms, 0); ft232r_write(1, tms, 0); } ft232r_write(0, tms, 0); return ERROR_OK; } static void syncbb_path_move(struct pathmove_command *cmd) { int num_states = cmd->num_states; int state_count; int tms = 0; state_count = 0; while (num_states) { if (tap_state_transition(tap_get_state(), false) == cmd->path[state_count]) { tms = 0; } else if (tap_state_transition(tap_get_state(), true) == cmd->path[state_count]) { tms = 1; } else { LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(tap_get_state()), tap_state_name(cmd->path[state_count])); exit(-1); } ft232r_write(0, tms, 0); ft232r_write(1, tms, 0); tap_set_state(cmd->path[state_count]); state_count++; num_states--; } ft232r_write(0, tms, 0); tap_set_end_state(tap_get_state()); } static void syncbb_runtest(int num_cycles) { int i; tap_state_t saved_end_state = tap_get_end_state(); /* only do a state_move when we're not already in IDLE */ if (tap_get_state() != TAP_IDLE) { syncbb_end_state(TAP_IDLE); syncbb_state_move(0); } /* execute num_cycles */ for (i = 0; i < num_cycles; i++) { ft232r_write(0, 0, 0); ft232r_write(1, 0, 0); } ft232r_write(0, 0, 0); /* finish in end_state */ syncbb_end_state(saved_end_state); if (tap_get_state() != tap_get_end_state()) syncbb_state_move(0); } /** * Function syncbb_stableclocks * issues a number of clock cycles while staying in a stable state. * Because the TMS value required to stay in the RESET state is a 1, whereas * the TMS value required to stay in any of the other stable states is a 0, * this function checks the current stable state to decide on the value of TMS * to use. */ static void syncbb_stableclocks(int num_cycles) { int tms = (tap_get_state() == TAP_RESET ? 1 : 0); int i; /* send num_cycles clocks onto the cable */ for (i = 0; i < num_cycles; i++) { ft232r_write(1, tms, 0); ft232r_write(0, tms, 0); } } static void syncbb_scan(bool ir_scan, enum scan_type type, uint8_t *buffer, int scan_size) { tap_state_t saved_end_state = tap_get_end_state(); int bit_cnt, bit0_index; if (!((!ir_scan && (tap_get_state() == TAP_DRSHIFT)) || (ir_scan && (tap_get_state() == TAP_IRSHIFT)))) { if (ir_scan) syncbb_end_state(TAP_IRSHIFT); else syncbb_end_state(TAP_DRSHIFT); syncbb_state_move(0); syncbb_end_state(saved_end_state); } bit0_index = ft232r_output_len; for (bit_cnt = 0; bit_cnt < scan_size; bit_cnt++) { int tms = (bit_cnt == scan_size-1) ? 1 : 0; int tdi; int bytec = bit_cnt/8; int bcval = 1 << (bit_cnt % 8); /* if we're just reading the scan, but don't care about the output * default to outputting 'low', this also makes valgrind traces more readable, * as it removes the dependency on an uninitialised value */ tdi = 0; if ((type != SCAN_IN) && (buffer[bytec] & bcval)) tdi = 1; ft232r_write(0, tms, tdi); ft232r_write(1, tms, tdi); } if (tap_get_state() != tap_get_end_state()) { /* we *KNOW* the above loop transitioned out of * the shift state, so we skip the first state * and move directly to the end state. */ syncbb_state_move(1); } ft232r_send_recv(); if (type != SCAN_OUT) for (bit_cnt = 0; bit_cnt < scan_size; bit_cnt++) { int bytec = bit_cnt/8; int bcval = 1 << (bit_cnt % 8); int val = ft232r_output[bit0_index + bit_cnt*2 + 1]; if (val & (1<type) { case JTAG_RESET: LOG_DEBUG_IO("reset trst: %i srst %i", cmd->cmd.reset->trst, cmd->cmd.reset->srst); if ((cmd->cmd.reset->trst == 1) || (cmd->cmd.reset->srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST))) { tap_set_state(TAP_RESET); } ft232r_reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst); break; case JTAG_RUNTEST: LOG_DEBUG_IO("runtest %i cycles, end in %s", cmd->cmd.runtest->num_cycles, tap_state_name(cmd->cmd.runtest->end_state)); syncbb_end_state(cmd->cmd.runtest->end_state); syncbb_runtest(cmd->cmd.runtest->num_cycles); break; case JTAG_STABLECLOCKS: /* this is only allowed while in a stable state. A check for a stable * state was done in jtag_add_clocks() */ syncbb_stableclocks(cmd->cmd.stableclocks->num_cycles); break; case JTAG_TLR_RESET: /* renamed from JTAG_STATEMOVE */ LOG_DEBUG_IO("statemove end in %s", tap_state_name(cmd->cmd.statemove->end_state)); syncbb_end_state(cmd->cmd.statemove->end_state); syncbb_state_move(0); break; case JTAG_PATHMOVE: LOG_DEBUG_IO("pathmove: %i states, end in %s", cmd->cmd.pathmove->num_states, tap_state_name(cmd->cmd.pathmove->path[cmd->cmd.pathmove->num_states - 1])); syncbb_path_move(cmd->cmd.pathmove); break; case JTAG_SCAN: LOG_DEBUG_IO("%s scan end in %s", (cmd->cmd.scan->ir_scan) ? "IR" : "DR", tap_state_name(cmd->cmd.scan->end_state)); syncbb_end_state(cmd->cmd.scan->end_state); scan_size = jtag_build_buffer(cmd->cmd.scan, &buffer); type = jtag_scan_type(cmd->cmd.scan); syncbb_scan(cmd->cmd.scan->ir_scan, type, buffer, scan_size); if (jtag_read_buffer(buffer, cmd->cmd.scan) != ERROR_OK) retval = ERROR_JTAG_QUEUE_FAILED; if (buffer) free(buffer); break; case JTAG_SLEEP: LOG_DEBUG_IO("sleep %" PRIi32, cmd->cmd.sleep->us); jtag_sleep(cmd->cmd.sleep->us); break; case JTAG_TMS: retval = syncbb_execute_tms(cmd); break; default: LOG_ERROR("BUG: unknown JTAG command type encountered"); exit(-1); } if (ft232r_output_len > 0) ft232r_send_recv(); cmd = cmd->next; } /* ft232r_blink(0);*/ return retval; } struct jtag_interface ft232r_interface = { .name = "ft232r", .commands = ft232r_command_handlers, .transports = jtag_only, .supported = DEBUG_CAP_TMS_SEQ, .execute_queue = syncbb_execute_queue, .speed = ft232r_speed, .init = ft232r_init, .quit = ft232r_quit, .speed_div = ft232r_speed_div, .khz = ft232r_khz, };