/*************************************************************************** * Copyright (C) 2012 by Jan Dakinevich * * jan.dakinevich@gmail.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include "libusb_common.h" struct sequence { int len; void *tms; void *tdo; const void *tdi; struct sequence *next; }; struct queue { struct sequence *head; struct sequence *tail; }; static struct sequence *queue_add_tail(struct queue *queue, int len) { if (len <= 0) { LOG_ERROR("BUG: sequences with zero length are not allowed"); return NULL; } struct sequence *next; next = (struct sequence *)malloc(sizeof(*next)); if (next) { next->tms = calloc(1, DIV_ROUND_UP(len, 8)); if (next->tms) { next->len = len; next->tdo = NULL; next->tdi = NULL; next->next = NULL; if (!queue->head) { /* Queue is empty at the moment */ queue->head = next; } else { /* Queue already contains at least one sequence */ queue->tail->next = next; } queue->tail = next; } else { free(next); next = NULL; } } if (!next) LOG_ERROR("Not enough memory"); return next; } static void queue_drop_head(struct queue *queue) { struct sequence *head = queue->head->next; /* New head */ free(queue->head->tms); free(queue->head); queue->head = head; } static void queue_free(struct queue *queue) { if (queue) { while (queue->head) queue_drop_head(queue); free(queue); } } static struct queue *queue_alloc(void) { struct queue *queue = (struct queue *)malloc(sizeof(struct queue)); if (queue) queue->head = NULL; else LOG_ERROR("Not enough memory"); return queue; } /* Size of usb communnication buffer */ #define OSBDM_USB_BUFSIZE 64 /* Timeout for USB transfer, ms */ #define OSBDM_USB_TIMEOUT 1000 /* Write end point */ #define OSBDM_USB_EP_WRITE 0x01 /* Read end point */ #define OSBDM_USB_EP_READ 0x82 /* Initialize OSBDM device */ #define OSBDM_CMD_INIT 0x11 /* Execute special, not-BDM command. But only this * command is used for JTAG operation */ #define OSBDM_CMD_SPECIAL 0x27 /* Execute JTAG swap (tms/tdi -> tdo) */ #define OSBDM_CMD_SPECIAL_SWAP 0x05 /* Reset control */ #define OSBDM_CMD_SPECIAL_SRST 0x01 /* Maximum bit-length in one swap */ #define OSBDM_SWAP_MAX (((OSBDM_USB_BUFSIZE - 6) / 5) * 16) /* Lists of valid VID/PID pairs */ static const uint16_t osbdm_vid[] = { 0x15a2, 0x15a2, 0x15a2, 0 }; static const uint16_t osbdm_pid[] = { 0x0042, 0x0058, 0x005e, 0 }; struct osbdm { struct jtag_libusb_device_handle *devh; /* USB handle */ uint8_t buffer[OSBDM_USB_BUFSIZE]; /* Data to send and receive */ int count; /* Count data to send and to read */ }; /* osbdm instance */ static struct osbdm osbdm_context; static int osbdm_send_and_recv(struct osbdm *osbdm) { /* Send request */ int count = jtag_libusb_bulk_write(osbdm->devh, OSBDM_USB_EP_WRITE, (char *)osbdm->buffer, osbdm->count, OSBDM_USB_TIMEOUT); if (count != osbdm->count) { LOG_ERROR("OSBDM communnication error: can't write"); return ERROR_FAIL; } /* Save command code for next checking */ uint8_t cmd_saved = osbdm->buffer[0]; /* Reading answer */ osbdm->count = jtag_libusb_bulk_read(osbdm->devh, OSBDM_USB_EP_READ, (char *)osbdm->buffer, OSBDM_USB_BUFSIZE, OSBDM_USB_TIMEOUT); /* Now perform basic checks for data sent by BDM device */ if (osbdm->count < 0) { LOG_ERROR("OSBDM communnication error: can't read"); return ERROR_FAIL; } if (osbdm->count < 2) { LOG_ERROR("OSBDM communnication error: answer too small"); return ERROR_FAIL; } if (osbdm->count != osbdm->buffer[1]) { LOG_ERROR("OSBDM communnication error: answer size mismatch"); return ERROR_FAIL; } if (cmd_saved != osbdm->buffer[0]) { LOG_ERROR("OSBDM communnication error: answer command mismatch"); return ERROR_FAIL; } return ERROR_OK; } static int osbdm_srst(struct osbdm *osbdm, int srst) { osbdm->count = 0; (void)memset(osbdm->buffer, 0, OSBDM_USB_BUFSIZE); /* Composing request */ osbdm->buffer[osbdm->count++] = OSBDM_CMD_SPECIAL; /* Command */ osbdm->buffer[osbdm->count++] = OSBDM_CMD_SPECIAL_SRST; /* Subcommand */ /* Length in bytes - not used */ osbdm->buffer[osbdm->count++] = 0; osbdm->buffer[osbdm->count++] = 0; /* SRST state */ osbdm->buffer[osbdm->count++] = (srst ? 0 : 0x08); /* Sending data */ if (osbdm_send_and_recv(osbdm) != ERROR_OK) return ERROR_FAIL; return ERROR_OK; } static int osbdm_swap(struct osbdm *osbdm, void *tms, void *tdi, void *tdo, int length) { if (length > OSBDM_SWAP_MAX) { LOG_ERROR("BUG: bit sequence too long"); return ERROR_FAIL; } if (length <= 0) { LOG_ERROR("BUG: bit sequence equal or less to 0"); return ERROR_FAIL; } int swap_count = DIV_ROUND_UP(length, 16); /* cleanup */ osbdm->count = 0; (void)memset(osbdm->buffer, 0, OSBDM_USB_BUFSIZE); /* Composing request */ osbdm->buffer[osbdm->count++] = OSBDM_CMD_SPECIAL; /* Command */ osbdm->buffer[osbdm->count++] = OSBDM_CMD_SPECIAL_SWAP; /* Subcommand */ /* Length in bytes - not used */ osbdm->buffer[osbdm->count++] = 0; osbdm->buffer[osbdm->count++] = 0; /* Swap count */ osbdm->buffer[osbdm->count++] = 0; osbdm->buffer[osbdm->count++] = (uint8_t)swap_count; for (int bit_idx = 0; bit_idx < length; ) { /* Bit count in swap */ int bit_count = length - bit_idx; if (bit_count > 16) bit_count = 16; osbdm->buffer[osbdm->count++] = (uint8_t)bit_count; /* Copying TMS and TDI data to output buffer */ uint32_t tms_data = buf_get_u32(tms, bit_idx, bit_count); uint32_t tdi_data = buf_get_u32(tdi, bit_idx, bit_count); osbdm->buffer[osbdm->count++] = (uint8_t)(tdi_data >> 8); osbdm->buffer[osbdm->count++] = (uint8_t)tdi_data; osbdm->buffer[osbdm->count++] = (uint8_t)(tms_data >> 8); osbdm->buffer[osbdm->count++] = (uint8_t)tms_data; /* Next bit offset */ bit_idx += bit_count; } assert(osbdm->count <= OSBDM_USB_BUFSIZE); /* Sending data */ if (osbdm_send_and_recv(osbdm) != ERROR_OK) return ERROR_FAIL; /* Extra check */ if (((osbdm->buffer[2] << 8) | osbdm->buffer[3]) != 2 * swap_count) { LOG_ERROR("OSBDM communnication error: not proper answer to swap command"); return ERROR_FAIL; } /* Copy TDO responce */ uint8_t *buffer = (uint8_t *)osbdm->buffer + 4; for (int bit_idx = 0; bit_idx < length; ) { int bit_count = length - bit_idx; if (bit_count > 16) bit_count = 16; /* Prepare data */ uint32_t tdo_data = 0; tdo_data |= (*buffer++) << 8; tdo_data |= (*buffer++); tdo_data >>= (16 - bit_count); /* Copy TDO to return */ buf_set_u32(tdo, bit_idx, bit_count, tdo_data); bit_idx += bit_count; } return ERROR_OK; } static int osbdm_flush(struct osbdm *osbdm, struct queue* queue) { uint8_t tms[DIV_ROUND_UP(OSBDM_SWAP_MAX, 8)]; uint8_t tdi[DIV_ROUND_UP(OSBDM_SWAP_MAX, 8)]; uint8_t tdo[DIV_ROUND_UP(OSBDM_SWAP_MAX, 8)]; int seq_back_len = 0; while (queue->head) { (void)memset(tms, 0, sizeof(tms)); (void)memset(tdi, 0, sizeof(tdi)); (void)memset(tdo, 0, sizeof(tdo)); int seq_len; int swap_len; struct sequence *seq; /* Copy from queue to tms/tdi streams */ seq = queue->head; seq_len = seq_back_len; swap_len = 0; while (seq && swap_len != OSBDM_SWAP_MAX) { /* Count bit for copy at this iteration. * len should fit into remaining space * in tms/tdo bitstreams */ int len = seq->len - seq_len; if (len > OSBDM_SWAP_MAX - swap_len) len = OSBDM_SWAP_MAX - swap_len; /* Set tms data */ buf_set_buf(seq->tms, seq_len, tms, swap_len, len); /* Set tdi data if they exists */ if (seq->tdi) buf_set_buf(seq->tdi, seq_len, tdi, swap_len, len); swap_len += len; seq_len += len; if (seq_len == seq->len) { seq = seq->next; /* Move to next sequence */ seq_len = 0; } } if (osbdm_swap(osbdm, tms, tdi, tdo, swap_len)) return ERROR_FAIL; /* Copy from tdo stream to queue */ for (int swap_back_len = 0; swap_back_len < swap_len; ) { int len = queue->head->len - seq_back_len; if (len > swap_len - swap_back_len) len = swap_len - swap_back_len; if (queue->head->tdo) buf_set_buf(tdo, swap_back_len, queue->head->tdo, seq_back_len, len); swap_back_len += len; seq_back_len += len; if (seq_back_len == queue->head->len) { queue_drop_head(queue); seq_back_len = 0; } } } return ERROR_OK; } /* Basic operation for opening USB device */ static int osbdm_open(struct osbdm *osbdm) { (void)memset(osbdm, 0, sizeof(*osbdm)); if (jtag_libusb_open(osbdm_vid, osbdm_pid, &osbdm->devh) != ERROR_OK) return ERROR_FAIL; if (jtag_libusb_claim_interface(osbdm->devh, 0) != ERROR_OK) return ERROR_FAIL; return ERROR_OK; } static int osbdm_quit(void) { jtag_libusb_close(osbdm_context.devh); return ERROR_OK; } static int osbdm_add_pathmove( struct queue *queue, tap_state_t *path, int num_states) { assert(num_states <= 32); struct sequence *next = queue_add_tail(queue, num_states); if (!next) { LOG_ERROR("BUG: can't allocate bit sequence"); return ERROR_FAIL; } uint32_t tms = 0; for (int i = 0; i < num_states; i++) { if (tap_state_transition(tap_get_state(), 1) == path[i]) { tms |= (1 << i); } else if (tap_state_transition(tap_get_state(), 0) == path[i]) { tms &= ~(1 << i); /* This line not so needed */ } else { LOG_ERROR("BUG: %s -> %s isn't a valid TAP state transition", tap_state_name(tap_get_state()), tap_state_name(path[i])); return ERROR_FAIL; } tap_set_state(path[i]); } buf_set_u32(next->tms, 0, num_states, tms); tap_set_end_state(tap_get_state()); return ERROR_OK; } static int osbdm_add_statemove( struct queue *queue, tap_state_t new_state, int skip_first) { int len = 0; int tms; tap_set_end_state(new_state); if (tap_get_end_state() == TAP_RESET) { /* Ignore current state */ tms = 0xff; len = 5; } else if (tap_get_state() != tap_get_end_state()) { tms = tap_get_tms_path(tap_get_state(), new_state); len = tap_get_tms_path_len(tap_get_state(), new_state); } if (len && skip_first) { len--; tms >>= 1; } if (len) { struct sequence *next = queue_add_tail(queue, len); if (!next) { LOG_ERROR("BUG: can't allocate bit sequence"); return ERROR_FAIL; } buf_set_u32(next->tms, 0, len, tms); } tap_set_state(tap_get_end_state()); return ERROR_OK; } static int osbdm_add_stableclocks( struct queue *queue, int count) { if (!tap_is_state_stable(tap_get_state())) { LOG_ERROR("BUG: current state (%s) is not stable", tap_state_name(tap_get_state())); return ERROR_FAIL; } struct sequence *next = queue_add_tail(queue, count); if (!next) { LOG_ERROR("BUG: can't allocate bit sequence"); return ERROR_FAIL; } if (tap_get_state() == TAP_RESET) (void)memset(next->tms, 0xff, DIV_ROUND_UP(count, 8)); return ERROR_OK; } static int osbdm_add_tms( struct queue *queue, const uint8_t *tms, int num_bits) { struct sequence *next = queue_add_tail(queue, num_bits); if (!next) { LOG_ERROR("BUG: can't allocate bit sequence"); return ERROR_FAIL; } buf_set_buf(tms, 0, next->tms, 0, num_bits); return ERROR_OK; } static int osbdm_add_scan( struct queue *queue, struct scan_field *fields, int num_fields, tap_state_t end_state, bool ir_scan) { /* Move to desired shift state */ if (ir_scan) { if (tap_get_state() != TAP_IRSHIFT) { if (osbdm_add_statemove(queue, TAP_IRSHIFT, 0) != ERROR_OK) return ERROR_FAIL; } } else { if (tap_get_state() != TAP_DRSHIFT) { if (osbdm_add_statemove(queue, TAP_DRSHIFT, 0) != ERROR_OK) return ERROR_FAIL; } } /* Add scan */ tap_set_end_state(end_state); for (int idx = 0; idx < num_fields; idx++) { struct sequence *next = queue_add_tail(queue, fields[idx].num_bits); if (!next) { LOG_ERROR("Can't allocate bit sequence"); return ERROR_FAIL; } (void)memset(next->tms, 0, DIV_ROUND_UP(fields[idx].num_bits, 8)); next->tdi = fields[idx].out_value; next->tdo = fields[idx].in_value; } /* Move to end state */ if (tap_get_state() != tap_get_end_state()) { /* Exit from IRSHIFT/DRSHIFT */ buf_set_u32(queue->tail->tms, queue->tail->len - 1, 1, 1); /* Move with skip_first flag */ if (osbdm_add_statemove(queue, tap_get_end_state(), 1) != ERROR_OK) return ERROR_FAIL; } return ERROR_OK; } static int osbdm_add_runtest( struct queue *queue, int num_cycles, tap_state_t end_state) { if (osbdm_add_statemove(queue, TAP_IDLE, 0) != ERROR_OK) return ERROR_FAIL; if (osbdm_add_stableclocks(queue, num_cycles) != ERROR_OK) return ERROR_FAIL; if (osbdm_add_statemove(queue, end_state, 0) != ERROR_OK) return ERROR_FAIL; return ERROR_OK; } static int osbdm_execute_command( struct osbdm *osbdm, struct queue *queue, struct jtag_command *cmd) { int retval = ERROR_OK; switch (cmd->type) { case JTAG_RESET: if (cmd->cmd.reset->trst) { LOG_ERROR("BUG: nTRST signal is not supported"); retval = ERROR_FAIL; } else { retval = osbdm_flush(osbdm, queue); if (retval == ERROR_OK) retval = osbdm_srst(osbdm, cmd->cmd.reset->srst); } break; case JTAG_PATHMOVE: retval = osbdm_add_pathmove( queue, cmd->cmd.pathmove->path, cmd->cmd.pathmove->num_states); break; case JTAG_TLR_RESET: retval = osbdm_add_statemove( queue, cmd->cmd.statemove->end_state, 0); break; case JTAG_STABLECLOCKS: retval = osbdm_add_stableclocks( queue, cmd->cmd.stableclocks->num_cycles); break; case JTAG_TMS: retval = osbdm_add_tms( queue, cmd->cmd.tms->bits, cmd->cmd.tms->num_bits); break; case JTAG_SCAN: retval = osbdm_add_scan( queue, cmd->cmd.scan->fields, cmd->cmd.scan->num_fields, cmd->cmd.scan->end_state, cmd->cmd.scan->ir_scan); break; case JTAG_SLEEP: retval = osbdm_flush(osbdm, queue); if (retval == ERROR_OK) jtag_sleep(cmd->cmd.sleep->us); break; case JTAG_RUNTEST: retval = osbdm_add_runtest( queue, cmd->cmd.runtest->num_cycles, cmd->cmd.runtest->end_state); break; default: LOG_ERROR("BUG: unknown JTAG command type encountered"); retval = ERROR_FAIL; break; } return retval; } static int osbdm_execute_queue(void) { int retval = ERROR_OK; struct queue *queue = queue_alloc(); if (!queue) { LOG_ERROR("BUG: can't allocate bit queue"); retval = ERROR_FAIL; } else { struct jtag_command *cmd = jtag_command_queue; while (retval == ERROR_OK && cmd) { retval = osbdm_execute_command(&osbdm_context, queue, cmd); cmd = cmd->next; } if (retval == ERROR_OK) retval = osbdm_flush(&osbdm_context, queue); queue_free(queue); } if (retval != ERROR_OK) { LOG_ERROR("FATAL: can't execute jtag command"); exit(-1); } return retval; } static int osbdm_init(void) { /* Open device */ if (osbdm_open(&osbdm_context) != ERROR_OK) { LOG_ERROR("Can't open OSBDM device"); return ERROR_FAIL; } else { /* Device successfully opened */ LOG_INFO("OSBDM has opened"); } /* Perform initialize command */ osbdm_context.count = 0; osbdm_context.buffer[osbdm_context.count++] = OSBDM_CMD_INIT; if (osbdm_send_and_recv(&osbdm_context) != ERROR_OK) return ERROR_FAIL; return ERROR_OK; } struct jtag_interface osbdm_interface = { .name = "osbdm", .transports = jtag_only, .execute_queue = osbdm_execute_queue, .init = osbdm_init, .quit = osbdm_quit };