/* * Copyright (C) 2009 by Simon Qian * SimonQian@SimonQian.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* The specification for SVF is available here: * http://www.asset-intertech.com/support/svf.pdf * Below, this document is refered to as the "SVF spec". * * The specification for XSVF is available here: * http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf * Below, this document is refered to as the "XSVF spec". */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "svf.h" #include // SVF command typedef enum { ENDDR, ENDIR, FREQUENCY, HDR, HIR, PIO, PIOMAP, RUNTEST, SDR, SIR, STATE, TDR, TIR, TRST, }svf_command_t; static const char *svf_command_name[14] = { "ENDDR", "ENDIR", "FREQUENCY", "HDR", "HIR", "PIO", "PIOMAP", "RUNTEST", "SDR", "SIR", "STATE", "TDR", "TIR", "TRST" }; typedef enum { TRST_ON, TRST_OFF, TRST_Z, TRST_ABSENT }trst_mode_t; static const char *svf_trst_mode_name[4] = { "ON", "OFF", "Z", "ABSENT" }; struct svf_statemove { tap_state_t from; tap_state_t to; uint32_t num_of_moves; tap_state_t paths[8]; }; /* * These paths are from the SVF specification for the STATE command, to be * used when the STATE command only includes the final state. The first * element of the path is the "from" (current) state, and the last one is * the "to" (target) state. * * All specified paths are the shortest ones in the JTAG spec, and are thus * not (!!) exact matches for the paths used elsewhere in OpenOCD. Note * that PAUSE-to-PAUSE transitions all go through UPDATE and then CAPTURE, * which has specific effects on the various registers; they are not NOPs. * * Paths to RESET are disabled here. As elsewhere in OpenOCD, and in XSVF * and many SVF implementations, we don't want to risk missing that state. * To get to RESET, always we ignore the current state. */ static const struct svf_statemove svf_statemoves[] = { // from to num_of_moves, paths[8] // {TAP_RESET, TAP_RESET, 1, {TAP_RESET}}, {TAP_RESET, TAP_IDLE, 2, {TAP_RESET, TAP_IDLE}}, {TAP_RESET, TAP_DRPAUSE, 6, {TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_RESET, TAP_IRPAUSE, 7, {TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}, // {TAP_IDLE, TAP_RESET, 4, {TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, {TAP_IDLE, TAP_IDLE, 1, {TAP_IDLE}}, {TAP_IDLE, TAP_DRPAUSE, 5, {TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_IDLE, TAP_IRPAUSE, 6, {TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}, // {TAP_DRPAUSE, TAP_RESET, 6, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, {TAP_DRPAUSE, TAP_IDLE, 4, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE}}, {TAP_DRPAUSE, TAP_DRPAUSE, 7, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_DRPAUSE, TAP_IRPAUSE, 8, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}, // {TAP_IRPAUSE, TAP_RESET, 6, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}}, {TAP_IRPAUSE, TAP_IDLE, 4, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_IDLE}}, {TAP_IRPAUSE, TAP_DRPAUSE, 7, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}}, {TAP_IRPAUSE, TAP_IRPAUSE, 8, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}} }; #define XXR_TDI (1 << 0) #define XXR_TDO (1 << 1) #define XXR_MASK (1 << 2) #define XXR_SMASK (1 << 3) struct svf_xxr_para { int len; int data_mask; uint8_t *tdi; uint8_t *tdo; uint8_t *mask; uint8_t *smask; }; struct svf_para { float frequency; tap_state_t ir_end_state; tap_state_t dr_end_state; tap_state_t runtest_run_state; tap_state_t runtest_end_state; trst_mode_t trst_mode; struct svf_xxr_para hir_para; struct svf_xxr_para hdr_para; struct svf_xxr_para tir_para; struct svf_xxr_para tdr_para; struct svf_xxr_para sir_para; struct svf_xxr_para sdr_para; }; static struct svf_para svf_para; static const struct svf_para svf_para_init = { // frequency, ir_end_state, dr_end_state, runtest_run_state, runtest_end_state, trst_mode 0, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TRST_Z, // hir_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // hdr_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // tir_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // tdr_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // sir_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, // sdr_para // {len, data_mask, tdi, tdo, mask, smask}, {0, 0, NULL, NULL, NULL, NULL}, }; struct svf_check_tdo_para { int line_num; // used to record line number of the check operation // so more information could be printed int enabled; // check is enabled or not int buffer_offset; // buffer_offset to buffers int bit_len; // bit length to check }; #define SVF_CHECK_TDO_PARA_SIZE 1024 static struct svf_check_tdo_para *svf_check_tdo_para = NULL; static int svf_check_tdo_para_index = 0; static int svf_read_command_from_file(int fd); static int svf_check_tdo(void); static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len); static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str); static int svf_fd = 0; static char *svf_command_buffer = NULL; static int svf_command_buffer_size = 0; static int svf_line_number = 1; static struct jtag_tap *tap = NULL; #define SVF_MAX_BUFFER_SIZE_TO_COMMIT (4 * 1024) static uint8_t *svf_tdi_buffer = NULL, *svf_tdo_buffer = NULL, *svf_mask_buffer = NULL; static int svf_buffer_index = 0, svf_buffer_size = 0; static int svf_quiet = 0; static void svf_free_xxd_para(struct svf_xxr_para *para) { if (NULL != para) { if (para->tdi != NULL) { free(para->tdi); para->tdi = NULL; } if (para->tdo != NULL) { free(para->tdo); para->tdo = NULL; } if (para->mask != NULL) { free(para->mask); para->mask = NULL; } if (para->smask != NULL) { free(para->smask); para->smask = NULL; } } } static unsigned svf_get_mask_u32(int bitlen) { uint32_t bitmask; if (bitlen < 0) { bitmask = 0; } else if (bitlen >= 32) { bitmask = 0xFFFFFFFF; } else { bitmask = (1 << bitlen) - 1; } return bitmask; } int svf_add_statemove(tap_state_t state_to) { tap_state_t state_from = cmd_queue_cur_state; uint8_t index; /* when resetting, be paranoid and ignore current state */ if (state_to == TAP_RESET) { jtag_add_tlr(); return ERROR_OK; } for (index = 0; index < ARRAY_SIZE(svf_statemoves); index++) { if ((svf_statemoves[index].from == state_from) && (svf_statemoves[index].to == state_to)) { /* recorded path includes current state ... avoid extra TCKs! */ if (svf_statemoves[index].num_of_moves > 1) jtag_add_pathmove(svf_statemoves[index].num_of_moves - 1, svf_statemoves[index].paths + 1); else jtag_add_pathmove(svf_statemoves[index].num_of_moves, svf_statemoves[index].paths); return ERROR_OK; } } LOG_ERROR("SVF: can not move to %s", tap_state_name(state_to)); return ERROR_FAIL; } COMMAND_HANDLER(handle_svf_command) { #define SVF_NUM_OF_OPTIONS 1 int command_num = 0; int ret = ERROR_OK; long long time_ago; if ((CMD_ARGC < 1) || (CMD_ARGC > (1 + SVF_NUM_OF_OPTIONS))) { command_print(CMD_CTX, "usage: svf [quiet]"); return ERROR_FAIL; } // parse variant svf_quiet = 0; for (unsigned i = 1; i < CMD_ARGC; i++) { if (!strcmp(CMD_ARGV[i], "quiet")) { svf_quiet = 1; } else { LOG_ERROR("unknown variant for svf: %s", CMD_ARGV[i]); // no need to free anything now return ERROR_FAIL; } } if ((svf_fd = open(CMD_ARGV[0], O_RDONLY)) < 0) { command_print(CMD_CTX, "file \"%s\" not found", CMD_ARGV[0]); // no need to free anything now return ERROR_FAIL; } LOG_USER("svf processing file: \"%s\"", CMD_ARGV[0]); // get time time_ago = timeval_ms(); // init svf_line_number = 1; svf_command_buffer_size = 0; svf_check_tdo_para_index = 0; svf_check_tdo_para = malloc(sizeof(struct svf_check_tdo_para) * SVF_CHECK_TDO_PARA_SIZE); if (NULL == svf_check_tdo_para) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_buffer_index = 0; // double the buffer size // in case current command cannot be commited, and next command is a bit scan command // here is 32K bits for this big scan command, it should be enough // buffer will be reallocated if buffer size is not enough svf_tdi_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT); if (NULL == svf_tdi_buffer) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_tdo_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT); if (NULL == svf_tdo_buffer) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_mask_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT); if (NULL == svf_mask_buffer) { LOG_ERROR("not enough memory"); ret = ERROR_FAIL; goto free_all; } svf_buffer_size = 2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT; memcpy(&svf_para, &svf_para_init, sizeof(svf_para)); // TAP_RESET jtag_add_tlr(); while (ERROR_OK == svf_read_command_from_file(svf_fd)) { if (ERROR_OK != svf_run_command(CMD_CTX, svf_command_buffer)) { LOG_ERROR("fail to run command at line %d", svf_line_number); ret = ERROR_FAIL; break; } command_num++; } if (ERROR_OK != jtag_execute_queue()) { ret = ERROR_FAIL; } else if (ERROR_OK != svf_check_tdo()) { ret = ERROR_FAIL; } // print time command_print(CMD_CTX, "%lld ms used", timeval_ms() - time_ago); free_all: close(svf_fd); svf_fd = 0; // free buffers if (svf_command_buffer) { free(svf_command_buffer); svf_command_buffer = NULL; svf_command_buffer_size = 0; } if (svf_check_tdo_para) { free(svf_check_tdo_para); svf_check_tdo_para = NULL; svf_check_tdo_para_index = 0; } if (svf_tdi_buffer) { free(svf_tdi_buffer); svf_tdi_buffer = NULL; } if (svf_tdo_buffer) { free(svf_tdo_buffer); svf_tdo_buffer = NULL; } if (svf_mask_buffer) { free(svf_mask_buffer); svf_mask_buffer = NULL; } svf_buffer_index = 0; svf_buffer_size = 0; svf_free_xxd_para(&svf_para.hdr_para); svf_free_xxd_para(&svf_para.hir_para); svf_free_xxd_para(&svf_para.tdr_para); svf_free_xxd_para(&svf_para.tir_para); svf_free_xxd_para(&svf_para.sdr_para); svf_free_xxd_para(&svf_para.sir_para); if (ERROR_OK == ret) { command_print(CMD_CTX, "svf file programmed successfully for %d commands", command_num); } else { command_print(CMD_CTX, "svf file programmed failed"); } return ret; } #define SVFP_CMD_INC_CNT 1024 static int svf_read_command_from_file(int fd) { unsigned char ch; char *tmp_buffer = NULL; int cmd_pos = 0, cmd_ok = 0, slash = 0, comment = 0; while (!cmd_ok && (read(fd, &ch, 1) > 0)) { switch (ch) { case '!': slash = 0; comment = 1; break; case '/': if (++slash == 2) { comment = 1; } break; case ';': slash = 0; if (!comment) { cmd_ok = 1; } break; case '\n': svf_line_number++; case '\r': slash = 0; comment = 0; break; default: if (!comment) { if (cmd_pos >= svf_command_buffer_size - 1) { tmp_buffer = (char*)malloc(svf_command_buffer_size + SVFP_CMD_INC_CNT); // 1 more byte for '\0' if (NULL == tmp_buffer) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } if (svf_command_buffer_size > 0) { memcpy(tmp_buffer, svf_command_buffer, svf_command_buffer_size); } if (svf_command_buffer != NULL) { free(svf_command_buffer); } svf_command_buffer = tmp_buffer; svf_command_buffer_size += SVFP_CMD_INC_CNT; tmp_buffer = NULL; } svf_command_buffer[cmd_pos++] = (char)toupper(ch); } break; } } if (cmd_ok) { svf_command_buffer[cmd_pos] = '\0'; return ERROR_OK; } else { return ERROR_FAIL; } } static int svf_parse_cmd_string(char *str, int len, char **argus, int *num_of_argu) { int pos = 0, num = 0, space_found = 1; while (pos < len) { switch (str[pos]) { case '\n': case '\r': case '!': case '/': LOG_ERROR("fail to parse svf command"); return ERROR_FAIL; break; case ' ': space_found = 1; str[pos] = '\0'; break; default: if (space_found) { argus[num++] = &str[pos]; space_found = 0; } break; } pos++; } *num_of_argu = num; return ERROR_OK; } bool svf_tap_state_is_stable(tap_state_t state) { return (TAP_RESET == state) || (TAP_IDLE == state) || (TAP_DRPAUSE == state) || (TAP_IRPAUSE == state); } static int svf_find_string_in_array(char *str, char **strs, int num_of_element) { int i; for (i = 0; i < num_of_element; i++) { if (!strcmp(str, strs[i])) { return i; } } return 0xFF; } static int svf_adjust_array_length(uint8_t **arr, int orig_bit_len, int new_bit_len) { int new_byte_len = (new_bit_len + 7) >> 3; if ((NULL == *arr) || (((orig_bit_len + 7) >> 3) < ((new_bit_len + 7) >> 3))) { if (*arr != NULL) { free(*arr); *arr = NULL; } *arr = (uint8_t*)malloc(new_byte_len); if (NULL == *arr) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memset(*arr, 0, new_byte_len); } return ERROR_OK; } static int svf_copy_hexstring_to_binary(char *str, uint8_t **bin, int orig_bit_len, int bit_len) { int i, str_len = strlen(str), str_hbyte_len = (bit_len + 3) >> 2; uint8_t ch = 0; if (ERROR_OK != svf_adjust_array_length(bin, orig_bit_len, bit_len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } for (i = 0; i < str_hbyte_len; i++) { ch = 0; while (str_len > 0) { ch = str[--str_len]; if (!isblank(ch)) { if ((ch >= '0') && (ch <= '9')) { ch = ch - '0'; break; } else if ((ch >= 'A') && (ch <= 'F')) { ch = ch - 'A' + 10; break; } else { LOG_ERROR("invalid hex string"); return ERROR_FAIL; } } ch = 0; } // write bin if (i % 2) { // MSB (*bin)[i / 2] |= ch << 4; } else { // LSB (*bin)[i / 2] = 0; (*bin)[i / 2] |= ch; } } // consume optional leading '0' characters while (str_len > 0 && str[str_len - 1] == '0') str_len--; // check valid if (str_len > 0 || (ch & ~((2 << ((bit_len - 1) % 4)) - 1)) != 0) { LOG_ERROR("value execeeds length"); return ERROR_FAIL; } return ERROR_OK; } static int svf_check_tdo(void) { int i, len, index; for (i = 0; i < svf_check_tdo_para_index; i++) { index = svf_check_tdo_para[i].buffer_offset; len = svf_check_tdo_para[i].bit_len; if ((svf_check_tdo_para[i].enabled) && buf_cmp_mask(&svf_tdi_buffer[index], &svf_tdo_buffer[index], &svf_mask_buffer[index], len)) { unsigned bitmask; unsigned received, expected, tapmask; bitmask = svf_get_mask_u32(svf_check_tdo_para[i].bit_len); memcpy(&received, svf_tdi_buffer + index, sizeof(unsigned)); memcpy(&expected, svf_tdo_buffer + index, sizeof(unsigned)); memcpy(&tapmask, svf_mask_buffer + index, sizeof(unsigned)); LOG_ERROR("tdo check error at line %d", svf_check_tdo_para[i].line_num); LOG_ERROR("read = 0x%X, want = 0x%X, mask = 0x%X", received & bitmask, expected & bitmask, tapmask & bitmask); return ERROR_FAIL; } } svf_check_tdo_para_index = 0; return ERROR_OK; } static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len) { if (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE) { LOG_ERROR("toooooo many operation undone"); return ERROR_FAIL; } svf_check_tdo_para[svf_check_tdo_para_index].line_num = svf_line_number; svf_check_tdo_para[svf_check_tdo_para_index].bit_len = bit_len; svf_check_tdo_para[svf_check_tdo_para_index].enabled = enabled; svf_check_tdo_para[svf_check_tdo_para_index].buffer_offset = buffer_offset; svf_check_tdo_para_index++; return ERROR_OK; } static int svf_execute_tap(void) { if (ERROR_OK != jtag_execute_queue()) { return ERROR_FAIL; } else if (ERROR_OK != svf_check_tdo()) { return ERROR_FAIL; } svf_buffer_index = 0; return ERROR_OK; } static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str) { char *argus[256], command; int num_of_argu = 0, i; // tmp variable int i_tmp; // for RUNTEST int run_count; float min_time, max_time; // for XXR struct svf_xxr_para *xxr_para_tmp; uint8_t **pbuffer_tmp; struct scan_field field; // for STATE tap_state_t *path = NULL, state; if (!svf_quiet) { LOG_USER("%s", svf_command_buffer); } if (ERROR_OK != svf_parse_cmd_string(cmd_str, strlen(cmd_str), argus, &num_of_argu)) { return ERROR_FAIL; } /* NOTE: we're a bit loose here, because we ignore case in * TAP state names (instead of insisting on uppercase). */ command = svf_find_string_in_array(argus[0], (char **)svf_command_name, ARRAY_SIZE(svf_command_name)); switch (command) { case ENDDR: case ENDIR: if (num_of_argu != 2) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } i_tmp = tap_state_by_name(argus[1]); if (svf_tap_state_is_stable(i_tmp)) { if (command == ENDIR) { svf_para.ir_end_state = i_tmp; LOG_DEBUG("\tIR end_state = %s", tap_state_name(i_tmp)); } else { svf_para.dr_end_state = i_tmp; LOG_DEBUG("\tDR end_state = %s", tap_state_name(i_tmp)); } } else { LOG_ERROR("%s: %s is not a stable state", argus[0], argus[1]); return ERROR_FAIL; } break; case FREQUENCY: if ((num_of_argu != 1) && (num_of_argu != 3)) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } if (1 == num_of_argu) { // TODO: set jtag speed to full speed svf_para.frequency = 0; } else { if (strcmp(argus[2], "HZ")) { LOG_ERROR("HZ not found in FREQUENCY command"); return ERROR_FAIL; } if (ERROR_OK != svf_execute_tap()) { return ERROR_FAIL; } svf_para.frequency = atof(argus[1]); // TODO: set jtag speed to if (svf_para.frequency > 0) { command_run_linef(cmd_ctx, "jtag_khz %d", (int)svf_para.frequency / 1000); LOG_DEBUG("\tfrequency = %f", svf_para.frequency); } } break; case HDR: xxr_para_tmp = &svf_para.hdr_para; goto XXR_common; case HIR: xxr_para_tmp = &svf_para.hir_para; goto XXR_common; case TDR: xxr_para_tmp = &svf_para.tdr_para; goto XXR_common; case TIR: xxr_para_tmp = &svf_para.tir_para; goto XXR_common; case SDR: xxr_para_tmp = &svf_para.sdr_para; goto XXR_common; case SIR: xxr_para_tmp = &svf_para.sir_para; goto XXR_common; XXR_common: // XXR length [TDI (tdi)] [TDO (tdo)][MASK (mask)] [SMASK (smask)] if ((num_of_argu > 10) || (num_of_argu % 2)) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } i_tmp = xxr_para_tmp->len; xxr_para_tmp->len = atoi(argus[1]); LOG_DEBUG("\tlength = %d", xxr_para_tmp->len); xxr_para_tmp->data_mask = 0; for (i = 2; i < num_of_argu; i += 2) { if ((strlen(argus[i + 1]) < 3) || (argus[i + 1][0] != '(') || (argus[i + 1][strlen(argus[i + 1]) - 1] != ')')) { LOG_ERROR("data section error"); return ERROR_FAIL; } argus[i + 1][strlen(argus[i + 1]) - 1] = '\0'; // TDI, TDO, MASK, SMASK if (!strcmp(argus[i], "TDI")) { // TDI pbuffer_tmp = &xxr_para_tmp->tdi; xxr_para_tmp->data_mask |= XXR_TDI; } else if (!strcmp(argus[i], "TDO")) { // TDO pbuffer_tmp = &xxr_para_tmp->tdo; xxr_para_tmp->data_mask |= XXR_TDO; } else if (!strcmp(argus[i], "MASK")) { // MASK pbuffer_tmp = &xxr_para_tmp->mask; xxr_para_tmp->data_mask |= XXR_MASK; } else if (!strcmp(argus[i], "SMASK")) { // SMASK pbuffer_tmp = &xxr_para_tmp->smask; xxr_para_tmp->data_mask |= XXR_SMASK; } else { LOG_ERROR("unknow parameter: %s", argus[i]); return ERROR_FAIL; } if (ERROR_OK != svf_copy_hexstring_to_binary(&argus[i + 1][1], pbuffer_tmp, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to parse hex value"); return ERROR_FAIL; } LOG_DEBUG("\t%s = 0x%X", argus[i], (**(int**)pbuffer_tmp) & svf_get_mask_u32(xxr_para_tmp->len)); } // If a command changes the length of the last scan of the same type and the MASK parameter is absent, // the mask pattern used is all cares if (!(xxr_para_tmp->data_mask & XXR_MASK) && (i_tmp != xxr_para_tmp->len)) { // MASK not defined and length changed if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } buf_set_ones(xxr_para_tmp->mask, xxr_para_tmp->len); } // If TDO is absent, no comparison is needed, set the mask to 0 if (!(xxr_para_tmp->data_mask & XXR_TDO)) { if (NULL == xxr_para_tmp->tdo) { if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->tdo, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } } if (NULL == xxr_para_tmp->mask) { if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len)) { LOG_ERROR("fail to adjust length of array"); return ERROR_FAIL; } } memset(xxr_para_tmp->mask, 0, (xxr_para_tmp->len + 7) >> 3); } // do scan if necessary if (SDR == command) { // check buffer size first, reallocate if necessary i = svf_para.hdr_para.len + svf_para.sdr_para.len + svf_para.tdr_para.len; if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3)) { #if 1 // simply print error message LOG_ERROR("buffer is not enough, report to author"); return ERROR_FAIL; #else uint8_t *buffer_tmp; // reallocate buffer buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index); // svf_tdi_buffer isn't NULL here free(svf_tdi_buffer); svf_tdi_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index); // svf_tdo_buffer isn't NULL here free(svf_tdo_buffer); svf_tdo_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index); // svf_mask_buffer isn't NULL here free(svf_mask_buffer); svf_mask_buffer = buffer_tmp; buffer_tmp = NULL; svf_buffer_size = svf_buffer_index + ((i + 7) >> 3); #endif } // assemble dr data i = 0; buf_set_buf(svf_para.hdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hdr_para.len); i += svf_para.hdr_para.len; buf_set_buf(svf_para.sdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sdr_para.len); i += svf_para.sdr_para.len; buf_set_buf(svf_para.tdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tdr_para.len); i += svf_para.tdr_para.len; // add check data if (svf_para.sdr_para.data_mask & XXR_TDO) { // assemble dr mask data i = 0; buf_set_buf(svf_para.hdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hdr_para.len); i += svf_para.hdr_para.len; buf_set_buf(svf_para.sdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sdr_para.len); i += svf_para.sdr_para.len; buf_set_buf(svf_para.tdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tdr_para.len); i += svf_para.tdr_para.len; // assemble dr check data i = 0; buf_set_buf(svf_para.hdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hdr_para.len); i += svf_para.hdr_para.len; buf_set_buf(svf_para.sdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sdr_para.len); i += svf_para.sdr_para.len; buf_set_buf(svf_para.tdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tdr_para.len); i += svf_para.tdr_para.len; svf_add_check_para(1, svf_buffer_index, i); } else { svf_add_check_para(0, svf_buffer_index, i); } field.tap = tap; field.num_bits = i; field.out_value = &svf_tdi_buffer[svf_buffer_index]; field.in_value = &svf_tdi_buffer[svf_buffer_index]; /* NOTE: doesn't use SVF-specified state paths */ jtag_add_plain_dr_scan(1, &field, svf_para.dr_end_state); svf_buffer_index += (i + 7) >> 3; } else if (SIR == command) { // check buffer size first, reallocate if necessary i = svf_para.hir_para.len + svf_para.sir_para.len + svf_para.tir_para.len; if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3)) { #if 1 // simply print error message LOG_ERROR("buffer is not enough, report to author"); return ERROR_FAIL; #else uint8_t *buffer_tmp; // reallocate buffer buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index); // svf_tdi_buffer isn't NULL here free(svf_tdi_buffer); svf_tdi_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index); // svf_tdo_buffer isn't NULL here free(svf_tdo_buffer); svf_tdo_buffer = buffer_tmp; buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3)); if (NULL == buffer_tmp) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index); // svf_mask_buffer isn't NULL here free(svf_mask_buffer); svf_mask_buffer = buffer_tmp; buffer_tmp = NULL; svf_buffer_size = svf_buffer_index + ((i + 7) >> 3); #endif } // assemble ir data i = 0; buf_set_buf(svf_para.hir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hir_para.len); i += svf_para.hir_para.len; buf_set_buf(svf_para.sir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sir_para.len); i += svf_para.sir_para.len; buf_set_buf(svf_para.tir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tir_para.len); i += svf_para.tir_para.len; // add check data if (svf_para.sir_para.data_mask & XXR_TDO) { // assemble dr mask data i = 0; buf_set_buf(svf_para.hir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hir_para.len); i += svf_para.hir_para.len; buf_set_buf(svf_para.sir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sir_para.len); i += svf_para.sir_para.len; buf_set_buf(svf_para.tir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tir_para.len); i += svf_para.tir_para.len; // assemble dr check data i = 0; buf_set_buf(svf_para.hir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hir_para.len); i += svf_para.hir_para.len; buf_set_buf(svf_para.sir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sir_para.len); i += svf_para.sir_para.len; buf_set_buf(svf_para.tir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tir_para.len); i += svf_para.tir_para.len; svf_add_check_para(1, svf_buffer_index, i); } else { svf_add_check_para(0, svf_buffer_index, i); } field.tap = tap; field.num_bits = i; field.out_value = &svf_tdi_buffer[svf_buffer_index]; field.in_value = &svf_tdi_buffer[svf_buffer_index]; /* NOTE: doesn't use SVF-specified state paths */ jtag_add_plain_ir_scan(1, &field, svf_para.ir_end_state); svf_buffer_index += (i + 7) >> 3; } break; case PIO: case PIOMAP: LOG_ERROR("PIO and PIOMAP are not supported"); return ERROR_FAIL; break; case RUNTEST: // RUNTEST [run_state] run_count run_clk [min_time SEC [MAXIMUM max_time SEC]] [ENDSTATE end_state] // RUNTEST [run_state] min_time SEC [MAXIMUM max_time SEC] [ENDSTATE end_state] if ((num_of_argu < 3) && (num_of_argu > 11)) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } // init run_count = 0; min_time = 0; max_time = 0; i = 1; // run_state i_tmp = tap_state_by_name(argus[i]); if (i_tmp != TAP_INVALID) { if (svf_tap_state_is_stable(i_tmp)) { svf_para.runtest_run_state = i_tmp; /* When a run_state is specified, the new * run_state becomes the default end_state. */ svf_para.runtest_end_state = i_tmp; LOG_DEBUG("\trun_state = %s", tap_state_name(i_tmp)); i++; } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(i_tmp)); return ERROR_FAIL; } } // run_count run_clk if (((i + 2) <= num_of_argu) && strcmp(argus[i + 1], "SEC")) { if (!strcmp(argus[i + 1], "TCK")) { // clock source is TCK run_count = atoi(argus[i]); LOG_DEBUG("\trun_count@TCK = %d", run_count); } else { LOG_ERROR("%s not supported for clock", argus[i + 1]); return ERROR_FAIL; } i += 2; } // min_time SEC if (((i + 2) <= num_of_argu) && !strcmp(argus[i + 1], "SEC")) { min_time = atof(argus[i]); LOG_DEBUG("\tmin_time = %fs", min_time); i += 2; } // MAXIMUM max_time SEC if (((i + 3) <= num_of_argu) && !strcmp(argus[i], "MAXIMUM") && !strcmp(argus[i + 2], "SEC")) { max_time = atof(argus[i + 1]); LOG_DEBUG("\tmax_time = %fs", max_time); i += 3; } // ENDSTATE end_state if (((i + 2) <= num_of_argu) && !strcmp(argus[i], "ENDSTATE")) { i_tmp = tap_state_by_name(argus[i + 1]); if (svf_tap_state_is_stable(i_tmp)) { svf_para.runtest_end_state = i_tmp; LOG_DEBUG("\tend_state = %s", tap_state_name(i_tmp)); } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(i_tmp)); return ERROR_FAIL; } i += 2; } // calculate run_count if ((0 == run_count) && (min_time > 0)) { run_count = min_time * svf_para.frequency; } // all parameter should be parsed if (i == num_of_argu) { if (run_count > 0) { // run_state and end_state is checked to be stable state // TODO: do runtest #if 1 /* FIXME handle statemove failures */ int retval; // enter into run_state if necessary if (cmd_queue_cur_state != svf_para.runtest_run_state) { retval = svf_add_statemove(svf_para.runtest_run_state); } // call jtag_add_clocks jtag_add_clocks(run_count); // move to end_state if necessary if (svf_para.runtest_end_state != svf_para.runtest_run_state) { retval = svf_add_statemove(svf_para.runtest_end_state); } #else if (svf_para.runtest_run_state != TAP_IDLE) { LOG_ERROR("cannot runtest in %s state", tap_state_name(svf_para.runtest_run_state)); return ERROR_FAIL; } jtag_add_runtest(run_count, svf_para.runtest_end_state); #endif } } else { LOG_ERROR("fail to parse parameter of RUNTEST, %d out of %d is parsed", i, num_of_argu); return ERROR_FAIL; } break; case STATE: // STATE [pathstate1 [pathstate2 ...[pathstaten]]] stable_state if (num_of_argu < 2) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } if (num_of_argu > 2) { // STATE pathstate1 ... stable_state path = (tap_state_t *)malloc((num_of_argu - 1) * sizeof(tap_state_t)); if (NULL == path) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } num_of_argu--; // num of path i_tmp = 1; /* path is from parameter 1 */ for (i = 0; i < num_of_argu; i++, i_tmp++) { path[i] = tap_state_by_name(argus[i_tmp]); if (path[i] == TAP_INVALID) { LOG_ERROR("%s: %s is not a valid state", argus[0], argus[i_tmp]); free(path); return ERROR_FAIL; } /* OpenOCD refuses paths containing TAP_RESET */ if (TAP_RESET == path[i]) { /* FIXME last state MUST be stable! */ if (i > 0) { jtag_add_pathmove(i, path); } jtag_add_tlr(); num_of_argu -= i + 1; i = -1; } } if (num_of_argu > 0) { // execute last path if necessary if (svf_tap_state_is_stable(path[num_of_argu - 1])) { // last state MUST be stable state jtag_add_pathmove(num_of_argu, path); LOG_DEBUG("\tmove to %s by path_move", tap_state_name(path[num_of_argu - 1])); } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(path[num_of_argu - 1])); free(path); return ERROR_FAIL; } } free(path); path = NULL; } else { // STATE stable_state state = tap_state_by_name(argus[1]); if (svf_tap_state_is_stable(state)) { LOG_DEBUG("\tmove to %s by svf_add_statemove", tap_state_name(state)); /* FIXME handle statemove failures */ svf_add_statemove(state); } else { LOG_ERROR("%s: %s is not a stable state", argus[0], tap_state_name(state)); return ERROR_FAIL; } } break; case TRST: // TRST trst_mode if (num_of_argu != 2) { LOG_ERROR("invalid parameter of %s", argus[0]); return ERROR_FAIL; } if (svf_para.trst_mode != TRST_ABSENT) { if (ERROR_OK != svf_execute_tap()) { return ERROR_FAIL; } i_tmp = svf_find_string_in_array(argus[1], (char **)svf_trst_mode_name, ARRAY_SIZE(svf_trst_mode_name)); switch (i_tmp) { case TRST_ON: jtag_add_reset(1, 0); break; case TRST_Z: case TRST_OFF: jtag_add_reset(0, 0); break; case TRST_ABSENT: break; default: LOG_ERROR("unknown TRST mode: %s", argus[1]); return ERROR_FAIL; } svf_para.trst_mode = i_tmp; LOG_DEBUG("\ttrst_mode = %s", svf_trst_mode_name[svf_para.trst_mode]); } else { LOG_ERROR("can not accpet TRST command if trst_mode is ABSENT"); return ERROR_FAIL; } break; default: LOG_ERROR("invalid svf command: %s", argus[0]); return ERROR_FAIL; break; } if (debug_level >= LOG_LVL_DEBUG) { // for convenient debugging, execute tap if possible if ((svf_buffer_index > 0) && \ (((command != STATE) && (command != RUNTEST)) || \ ((command == STATE) && (num_of_argu == 2)))) { if (ERROR_OK != svf_execute_tap()) { return ERROR_FAIL; } // output debug info if ((SIR == command) || (SDR == command)) { int read_value; memcpy(&read_value, svf_tdi_buffer, sizeof(int)); // in debug mode, data is from index 0 int read_mask = svf_get_mask_u32(svf_check_tdo_para[0].bit_len); LOG_DEBUG("\tTDO read = 0x%X", read_value & read_mask); } } } else { // for fast executing, execute tap if necessary // half of the buffer is for the next command if (((svf_buffer_index >= SVF_MAX_BUFFER_SIZE_TO_COMMIT) || (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE / 2)) && \ (((command != STATE) && (command != RUNTEST)) || \ ((command == STATE) && (num_of_argu == 2)))) { return svf_execute_tap(); } } return ERROR_OK; } static const struct command_registration svf_command_handlers[] = { { .name = "svf", .handler = handle_svf_command, .mode = COMMAND_EXEC, .help = "Runs a SVF file.", .usage = "filename ['quiet']", }, COMMAND_REGISTRATION_DONE }; int svf_register_commands(struct command_context *cmd_ctx) { return register_commands(cmd_ctx, NULL, svf_command_handlers); }